Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse"

Transcript

1 Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso rscho d controparte): un perodo per quello a breve termne (tasso corrente S ); pù perod per quello a pù lunga scadenza (tasso corrente Z ). Investre a lunga o a breve? Confrontare l rendmento del ttolo a lunga (nvestmento a lungo termne) con la sequenza d rendment che s ottengono nvestendo la somma n un ttolo a breve e rnnovando l nvestmento alla scadenza per un numero d perod corrspondent alla durata del ttolo a lunga (nvestmento rolled over). G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 1

2 Esempo 1. Arbtraggo tra ttol a scadenza dversa. Investre una untà monetara n un ttolo a cnque perod che garantsce ogg un tasso d nteresse 5 per tutt e cnque perod, o n uno con scadenza a un perodo che offre ogg l tasso 1 e rnnovare per t quattro volte l nvestmento a breve a tass 1 (t=1,..., 4) che s formeranno all nzo de successv quattro perod? Se s conoscono con certezza tass d nteresse futur, n equlbro s deve avere: (1+ 5 ) 5 = (1+ 1 ) ( ) ( ) ( ) ( ) Tutt acqustano (vendono) l ttolo a lunga se l termne a prmo membro è maggore (mnore) d quello a secondo membro: l prezzo sale (scende) e l tasso d nteresse scende (sale), fno al raggungmento dell equlbro. G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 2

3 Ne logartm: 5log(1+ 5 )=log(1+ 1 )+log( )+log( )+log( )+log( ) Approssmando (per valor d vcn a zero è log(1+) ): Il tasso a lunga corrente è (crca) uguale alla meda artmetca de tass a breve de cnque perod. Pù n generale: 1 1 z t Z S z t= ( Z ndca una qualsas durata maggore del perodo untaro S ). G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 3

4 Nella realtà tass d nteresse a breve futur non sono conoscut con certezza dagl agent. Due possbltà: 1. E presente un mercato a termne, n cu la lqudazone d una compravendta avvene n un perodo futuro rspetto a quello d sottoscrzone del contratto e tass sulle operazon future sono contrattualmente not ogg. Se v è un elevato numero d arbtraggst tra pront e termne, l tasso Z è ft crca par alla meda artmetca de tass a termne S de corrspondent t perod: 1 1 z ft Z S z t= dove f S è un tasso unperodale a termne e t è l perodo nzale d attuazone del contratto. G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 4

5 2. Non v è certezza su tass d nteresse futur e la scelta s fonda sulle aspettatve degl operator su tass d nteresse a breve futur alle dverse scadenze. Ogn agente nveste a lunga o a breve a seconda delle sue aspettatve su rendment relatv de ttol. Se sono numeros, tass corrent a pù lunga scadenza esprmono la valutazone corrente delle attese (mede) del mercato su tass d nteresse d breve perodo futur: 1 1 z et Z S z t= ( S et è l valore atteso del tasso d nteresse a breve all nzo del t-esmo perodo). G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 5

6 Nella realtà, le nformazon dsponbl rguardano tass d nteresse corrent alle dverse scadenze: dervare dalla struttura de tass a lunga le aspettatve mede d mercato crca la tendenza (al ralzo o al rbasso) de tass a breve. Esempo: 2 ttol a lunga con scadenza contgua, al perodo Z e al perodo (Z+1). Esprmamo l loro rapporto come sequenza d tass a breve termne, per ottenere l espressone del tasso d nteresse a breve atteso per l perodo Z: ( 1+ ) Z 1 ( 1+ ) Z ( et 1+ ) Z + 1 S + t = = = 1 Z Z 1 ( et ) Z 1+ S t = Z+1 e Z sono tass d nteresse corrent su ttol d durata (Z+1) e Z perod et (entramb not) e S è l tasso d nteresse atteso, all nzo del perodo t, su un ttolo della durata d un perodo. + ez S G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 6

7 Ne logartm: ez ( Z + 1) log( 1+ + ) ( Z)log( 1+ ) = log( 1+ ) Z 1 Z S Dato che log(1+) : Aggungendo e sottraendo Z ottenamo: (Z+1) Z + 1 Z Z ez S ez S Z + (Z+1)( Z + 1 Z ) l tasso a breve atteso per un dato perodo (Z+1) nvestmento della durata d un perodo da effettuare all nzo del perodo (Z+1) mplcto nella struttura corrente de tass a lunga è dunque rcavable (con buona approssmazone) dal rendmento d due ttol a lunga d opportuna scadenza e dalla scadenza del ttolo. G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 7

8 La struttura per scadenza de tass corrent, contenendo la struttura mplcta d tutt tass a termne d breve perodo, permette d rcavare valor de tass a breve futur attes present n un dato momento sul mercato. Il mercato fornsce nformazon sulle tendenze de tass d nteresse futur. Gl operator che s attendono ogg un tasso a breve al tempo t maggore d quello, S et, mplcto nella attuale stuazone d mercato, nvestono n ttol con scadenza a t perod e renvestono la somma n un ttolo a breve per l ulterore perodo. L arbtraggo, nfluenzando la domanda e l offerta de ttol, determna varazon nella loro quotazone, fno a quando non s determna un prezzo d equlbro che rflette l opnone meda degl operator su tass futur d breve perodo. G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 8

9 I tass a termne mplct esprmono una condzone d ndfferenza: è equvalente effettuare un nvestmento/fnanzamento per T ann o effettuare la stessa operazone per un perodo nferore, rnnovandola per l tempo resduo. Esempo. Un nvesttore vuole nvestre a 2 ann e osserva: 1=2,5%; 2=2,78%. Opzon possbl: 1. acqustare un ttolo con scadenza a 2 ann; 2. acqustare un ttolo a 1 anno e, alla scadenza, renvestre la somma ottenuta per un ulterore anno al tasso che s trova sul mercato n quel momento. Le operazon sono fnanzaramente equvalent se l tasso a un anno fra un anno, 1 1, è par al valore X che soddsfa l uguaglanza: (1+,278) 2 = (1+,25)(1+X). Equazone è soddsfatta se: X = (1+,278) 2 /(1+,25) 1 =,36. Il tasso a termne equvalente è 1 1=3,6%. G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 9

10 La curva de rendment e la struttura ntertemporale de tass d nteresse La dsponbltà d una sere d tass a lunga a dverse scadenze consente d: dsegnare la curva de rendment (yeld curve), ossa la relazone tra rendmento e vta resdua d un ttolo prvo d rscho; rcostrure la struttura esstente n un punto nel tempo de tass a termne mplct per l ntero ntervallo d scadenze. Lo scarto fra l tasso a lunga e a termne n corrspondenza della stessa scadenza nforma crca le attese del mercato per un ralzo o un rbasso de tass d nteresse. La curva de rendment può essere nclnata postvamente (all aumentare della scadenza tass aumentano) o negatvamente (all aumentare della scadenza tass dmnuscono). Può anche essere patta (tass a breve ugual a quell a lunga). G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 1

11 Nel caso d una curva de rendment nclnata postvamente (normale), s ha: ez S Z + (Z+1)( Z + 1 Z ) e ( Z+1 Z ) > Per ogn scadenza, tass a termne ez S sono maggor de tass corrent Z per le medesme scadenze: se l tasso a lunga relatvo a una data scadenza è par alla meda d tutt precedent tass a breve, l aumento del tasso corrente a lunga nel passaggo da una scadenza a quella successva rchede che l corrspondente tasso futuro a breve sa pù elevato. Se la curva de rendment è nclnata negatvamente (curva nvertta), s ha: ez S Z + (Z+1)( Z + 1 Z ) e Z+1 - Z < Per ogn scadenza, tass a termne ez S sono mnor de tass corrent Z per le medesme scadenze. E se la curva è patta? G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 11

12 Se la curva de rendment è crescente, la curva de tass a termne s trova sempre al d sopra d essa. G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 12

13 Cosa accade se s ha un tratto decrescente e po crescente? G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 13

14 Lo scarto fra l tasso a lunga e quello a termne, dovuto all arbtraggo operato dagl agent sulla base delle aspettatve su tass d nteresse futur, segnala le loro prospettve future. Attese d aument de tass attes mplct a breve: tass a lunga crescent Attese d rduzone de tass attes mplct a breve: tass a lunga decrescent Le attese ralzste o rbassste sono collegate a: Inflazone (l attesa d un suo aumento mplca un maggor tasso d rendmento che compens la perdta d potere d acqusto del valore nomnale dell nvestmento fnanzaro; attese d tass crescent; curva de rendment crescente; vceversa, n presenza d attese dsnflazonstche) Evoluzone cclca dell economa (fas espansve/recessve accompagnano attese d tass crescent/decrescent) Poltca monetara attesa G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 14

15 Altre spegazon dello scarto tra tass a lunga e tass a breve (pendenza della curva de rendment) s basano sull potes fondamentale che ttol con scadenza dversa non sano tra loro perfett sosttut: ch emette ttol prefersce fond a lunga scadenza; ch nveste prefersce scadenze pù brev. 1) Premo per la lqudtà. Per ndrzzare fond su ttol a pù lunga scadenza, gl nvesttor rchedono un premo per la lqudtà; tass a lunga sono pù elevat d quanto non sarebbero per effetto esclusvamente delle attese su tass futur. La preferenza degl nvesttor per ttol pù lqud derva da: ncertezza sulle necesstà future d fond; ncertezza sull andamento de tass d nteresse nel lungo perodo; scadenze pù brev garantscono mnor rsch d perdte n conto captale. G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 15

16 2) Esstenza per gl nvesttor d un habtat preferto. I mercat de ttol con scadenze dfferent sono segmentat : tant sotto-mercat n cu operano condzon d domanda e offerta dverse. Gl nvesttor prvlegano un orzzonte temporale breve; prendtor d fond uno lungo. Poché per ttol a pù breve termne prevale la domanda e per quell a pù lungo termne l offerta, la curva de rendment ha una nclnazone postva. Le sue modfcazon sono spegate da varazon de fattor d domanda e offerta de sngol segment del mercato fnanzaro. I tass mplct costtuscono una valutazone meda del contrbuto pesato d attese, lqudtà e habtat alla determnazone de tass alle dverse scadenze. G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 16

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014 Dpartmento d Economa Azendale e Stud Gusprvatstc Unverstà degl Stud d Bar Aldo Moro Corso d Macroeconoma 2014 1.Consderate l seguente grafco: LM Partà de tass d nteresse LM B A IS IS Y E E E Immagnate

Dettagli

Indicatori di rendimento per i titoli obbligazionari

Indicatori di rendimento per i titoli obbligazionari Indcator d rendmento per ttol obblgazonar LA VALUTAZIONE DEGLI INVESTIMENTI A TASSO FISSO Per valutare la convenenza d uno strumento fnanzaro è necessaro precsare: /4 Le specfche esgenze d un nvesttore

Dettagli

Risoluzione quesiti I esonero 2011

Risoluzione quesiti I esonero 2011 Rsoluzone quest I esonero 011 1) Compto 1 Q3 Un azenda a a dsposzone due progett d nvestmento tra d loro alternatv. Il prmo prevede l pagamento d un mporto par a 100 all epoca 0 e fluss par a 60 all epoca

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

MACROECONOMIA A.A. 2014/2015

MACROECONOMIA A.A. 2014/2015 MACROECONOMIA A.A. 2014/2015 ESERCITAZIONE 2 MERCATO MONETARIO E MODELLO /LM ESERCIZIO 1 A) Un economa sta attraversando un perodo d profonda crs economca. Le banche decdono d aumentare la quota d depost

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 22: 30 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/27? Eserczo Dmostrare che l equazone della frontera

Dettagli

Modelli di base per la politica economica

Modelli di base per la politica economica Marcella Mulno Modell d base per la poltca economca Corso d Poltca economca a.a. 22-23 Captolo 2 Modello - e poltche scal e monetare In questo captolo rchamamo brevemente l modello macroeconomco a prezz

Dettagli

Bonus Cap Certificates con sottostante Allianz SE, AXA SA, Assicurazioni Generali S.p.A.

Bonus Cap Certificates con sottostante Allianz SE, AXA SA, Assicurazioni Generali S.p.A. Bonus Cap Certfcates con sottostante Allanz SE, AXA SA, Asscurazon General S.p.A. Dal 7 febbrao fno al 1 marzo solo su ISIN: DE000HV8AKJ8 Sottostante: Allanz SE, AXA SA, Asscurazon General S.p.A. Scadenza:

Dettagli

Economia del Lavoro. Argomenti del corso

Economia del Lavoro. Argomenti del corso Economa del Lavoro Argoment del corso Studo del funzonamento del mercato del lavoro. In partcolare, l anals economca nerente l comportamento d: a) lavorator, b) mprese, c) sttuzon nel processo d determnazone

Dettagli

A. AUMENTO DELLA SPESA PUBBLICA FINANZIATO ESCLUSIVAMENTE TRAMITE INDEBITAMENTO

A. AUMENTO DELLA SPESA PUBBLICA FINANZIATO ESCLUSIVAMENTE TRAMITE INDEBITAMENTO 4. SCHMI ALTRNATIVI DI FINANZIAMNTO DLLA SPSA PUBBLICA. Se l Governo decde d aumentare la Spesa Pubblca G (o Trasferment TR), allora deve anche reperre fond necessar per fnanzare questa sua maggore spesa.

Dettagli

VA TIR - TA - TAEG Introduzione

VA TIR - TA - TAEG Introduzione VA TIR - TA - TAEG Introduzone La presente trattazone s pone come obettvo d analzzare due prncpal crter d scelta degl nvestment e fnanzament per valutare la convenenza tra due o pù operazon fnanzare. S

Dettagli

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria 2 Modello IS-LM 2. Gl e ett della poltca monetara S consderun modello IS-LM senzastatocon seguent datc = 0:8, I = 00( ), L d = 0:5 500, M s = 00 e P =. ) S calcolno valor d equlbro del reddto e del tasso

Dettagli

Hansard OnLine. Unit Fund Centre Guida

Hansard OnLine. Unit Fund Centre Guida Hansard OnLne Unt Fund Centre Guda Sommaro Pagna Introduzone al Unt Fund Centre (UFC) 3 Uso de fltr per la selezone de fond 4-5 Lavorare con rsultat del fltro 6 Lavorare con rsultat del fltro - Prezz 7

Dettagli

Condensatori e resistenze

Condensatori e resistenze Condensator e resstenze Lucano attaa Versone del 22 febbrao 2007 Indce In questa nota presento uno schema replogatvo relatvo a condensator e alle resstenze, con partcolare rguardo a collegament n sere

Dettagli

I SINDACATI E LA CONTRATTAZIONE COLLETTIVA. Il ruolo economico del sindacato in concorrenza imperfetta, in cui:

I SINDACATI E LA CONTRATTAZIONE COLLETTIVA. Il ruolo economico del sindacato in concorrenza imperfetta, in cui: I IDACATI E LA COTRATTAZIOE COLLETTIVA Il ruolo economco del sndacato n concorrenza mperfetta, n cu: a) le mprese fssano prezz de ben n contest d concorrenza monopolstca (con extra-proftt); b) lavorator

Dettagli

Verifica termoigrometrica delle pareti

Verifica termoigrometrica delle pareti Unverstà Medterranea d Reggo Calabra Facoltà d Archtettura Corso d Tecnca del Controllo Ambentale A.A. 2009-200 Verfca termogrometrca delle paret Prof. Marna Mstretta ANALISI IGROTERMICA DEGLI ELEMENTI

Dettagli

Indici di misurazione del potere di mercato

Indici di misurazione del potere di mercato Indc d msurazone del potere d mercato Metod tradzonal: tass d rendmento, margn e q d Tobn Indc d concentrazone Metod presuntv d Ganmara Martn Introduzone Le teore de mercat concorrenzal e non concorrenzal

Dettagli

Approfondimento Capitolo 4. Definizioni esistono due tipi di grandezze in economia

Approfondimento Capitolo 4. Definizioni esistono due tipi di grandezze in economia Poltca Economca E. Marchett 1 Approfondmento Captolo 4 efnzon esstono due tp d grandezze n economa Grandezze Flusso: una quanttà che s forma n un ntervallo d tempo (es.: reddto, rsparmo, nvestmento ) Grandezze

Dettagli

Sintesi della policy di valutazione e pricing delle obbligazioni emesse da Banca Emilveneta S.p.A.

Sintesi della policy di valutazione e pricing delle obbligazioni emesse da Banca Emilveneta S.p.A. Sntes della polcy d valutazone e prcng delle obblgazon emesse da Banca Emlveneta S.p.A. INDICE 1. PREMESSA...1 2. METODOLOGIA DI PRICING...1 2.1 PRICING...3 1. PREMESSA Il presente documento ha lo scopo

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Valore attuale di una rendita. Valore attuale in Excel: funzione VA

Valore attuale di una rendita. Valore attuale in Excel: funzione VA Valore attuale d una rendta Nella scorsa lezone c samo concentrat sul problema del calcolo del alore attuale d una rendta S che è dato n generale da V ( S) { R ; t, 0,,,..., n,... } n 0 R ( t ), doe (t

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

Performance Attribution mono-periodale e multi-periodale: quali implicazioni per la scomposizione dell extra-rendimento?

Performance Attribution mono-periodale e multi-periodale: quali implicazioni per la scomposizione dell extra-rendimento? .mefop.t Performance Attrbuton mono-perodale e mult-perodale: qual mplcazon per la scomposzone dell extra-rendmento? Andrea Maran e Luca D Galleonardo Mefop Mlano..005 .mefop.t Premessa Ch usa la Performance

Dettagli

La POLITICA di BILANCIO espansiva della DOMANDA Il Deficit spending Il DEBITO PUBBLICO

La POLITICA di BILANCIO espansiva della DOMANDA Il Deficit spending Il DEBITO PUBBLICO 1 Ettore Peyron P.A.S. 2014 Ddattca della MACROECONOMIA Lezone N 4 A Testo tratto dalle Dspense del Corso d Economa pubblca Unverstà degl stud d Torno Anno accademco 2010/2011 Facoltà d Economa Lezone

Dettagli

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM) Identfcazone: SIT/Tec-012/05 Revsone: 0 Data 2005-06-06 Pagna 1 d 7 Annotazon: Il presente documento fornsce comment e lnee guda sull applcazone della ISO 7500-1 COPIA CONTROLLATA N CONSEGNATA A: COPIA

Dettagli

MOBILITA DI CAPITALI

MOBILITA DI CAPITALI Poltca Economca dell'unone Europea MOBILITA DI CAPITALI Prof. Roberto Lombard Prof. Roberto Lombard 1 Le Econome moderne hanno un elevato grado d nterazone ed ntegrazone de Mercat Fnanzar ed de Captal

Dettagli

MATEMATICA FINANZIARIA 1 ECONOMIA AZIENDALE. Cognome... Nome Matricola..

MATEMATICA FINANZIARIA 1 ECONOMIA AZIENDALE. Cognome... Nome Matricola.. MATEMATICA FINANZIARIA PROVA SCRITTA DEL 0 FEBBRAIO 009 ECONOMIA AZIENDALE Cognome... Nome Matrcola.. ESERCIZIO Un ndduo ha ogg a dsposzone una somma S0.000 che ha accumulato negl ultm ann tramte l ersamento

Dettagli

L AUTORITÀ PER L ENERGIA ELETTRICA E IL GAS

L AUTORITÀ PER L ENERGIA ELETTRICA E IL GAS Delberazone 20 ottobre 2004 Approvazone delle condzon general d accesso e d erogazone del servzo d rgassfcazone d gnl predsposte dalla socetà Gnl Itala Spa (delberazone n. 184/04) L AUTORITÀ PER L ENERGIA

Dettagli

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz LEZIONE e 3 La teora della selezone d portafoglo d Markowtz Unverstà degl Stud d Bergamo Premessa Unverstà degl Stud d Bergamo Premessa () È puttosto frequente osservare come gl nvesttor tendano a non

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Valutazione delle opzioni col modello di Black e Scholes

Valutazione delle opzioni col modello di Black e Scholes Valutazone delle opzon col modello d Black e Scholes Rosa Mara Mnnn a.a. 2014-2015 1 Introduzone L applcazone del moto Brownano all economa é stata nnescata prncpalmente da due cause. Attorno agl ann 70,

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Economie di scala, concorrenza imperfetta e commercio internazionale

Economie di scala, concorrenza imperfetta e commercio internazionale Sanna-Randacco Lezone n. 14 Econome d scala, concorrenza mperfetta e commerco nternazonale Non v è vantaggo comparato (e qund non v è commerco nter-ndustrale). S vuole dmostrare che la struttura d mercato

Dettagli

Calcolo della caduta di tensione con il metodo vettoriale

Calcolo della caduta di tensione con il metodo vettoriale Calcolo della caduta d tensone con l metodo vettorale Esempo d rete squlbrata ed effett del neutro nel calcolo. In Ampère le cadute d tensone sono calcolate vettoralmente. Per ogn utenza s calcola la caduta

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

La retroazione negli amplificatori

La retroazione negli amplificatori La retroazone negl amplfcator P etroazonare un amplfcatore () sgnfca sottrarre (o sommare) al segnale d ngresso (S ) l segnale d retroazone (S r ) ottenuto dal segnale d uscta (S u ) medante un quadrpolo

Dettagli

SOLUZIONI III PLICO DI ESERCIZI DI RAGIONERIA

SOLUZIONI III PLICO DI ESERCIZI DI RAGIONERIA SOLUZIONI III PLICO DI ESERCIZI DI RAGIONERIA ESERCIZIO N.1 Calcolo del metodo patrmonale semplce con correzone reddtuale 1. Determnazone del patrmono netto rettfcato Dat blanco stato patrmonale al 31.12.01

Dettagli

BANCA POPOLARE DI VICENZA S.C.P.A. OBBLIGAZIONI CON OPZIONE EUROPEA DI TIPO CALL O PUT PLAIN VANILLA, ASIATICA O DIGITALE

BANCA POPOLARE DI VICENZA S.C.P.A. OBBLIGAZIONI CON OPZIONE EUROPEA DI TIPO CALL O PUT PLAIN VANILLA, ASIATICA O DIGITALE Socetà cooperatva per azon Sede socale: Vcenza, Va Btg. Framarn n. 18 scrtta al n. 1515 dell Albo delle Banche e de Grupp Bancar, codce AB 5728.1 Capogruppo del "Gruppo Banca Popolare d Vcenza Captale

Dettagli

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Facoltà d Economa Valutazone de prodott e dell mpresa d asscurazone I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Clauda Colucc Letza Monno Gordano Caporal Martna Ragg I Modell Multstato sono un

Dettagli

Cenni di matematica finanziaria Unità 61

Cenni di matematica finanziaria Unità 61 Prerequst: - Rsolvere equazon algebrche d 1 grado ed equazon esponenzal Questa untà è rvolta al 2 benno del seguente ndrzzo dell Isttuto Tecnco, settore Tecnologco: Agrara, Agroalmentare e Agrondustra.

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modell descrttv, statstca e smulazone Master per Smart Logstcs specalst Roberto Cordone (roberto.cordone@unm.t) Statstca descrttva Cernusco S.N., govedì 28 gennao 2016 (9.00/13.00) 1 / 15 Indc d poszone

Dettagli

La contabilità analitica nelle aziende agrarie

La contabilità analitica nelle aziende agrarie 2 La contabltà analtca nelle azende agrare Estmo rurale ed element d contabltà (analtca) S. Menghn Corso d Laurea n Scenze e tecnologe agrare Percorso Economa ed Estmo Contabltà generale e cont. ndustrale

Dettagli

31/03/2012. Collusione (Cabral cap.8 PRN capp. 13-14) Il modello standard. Collusione nel modello di Bertrand. Collusione nel modello di Bertrand

31/03/2012. Collusione (Cabral cap.8 PRN capp. 13-14) Il modello standard. Collusione nel modello di Bertrand. Collusione nel modello di Bertrand Collusone (Cabral cap.8 PRN capp. 13-14) Accord tact o esplct per aumentare l potere d mercato e pratcare prezz pù elevat rspetto all equlbro non cooperatvo corrspondente Esste un vantaggo dalla collusone

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Fondamenti di Fisica Acustica

Fondamenti di Fisica Acustica Fondament d Fsca Acustca Pro. Paolo Zazzn - DSSARR Archtettura Pescara Anals n requenza de segnal sonor, bande d ottava e terz d ottava. Rumore banco e rumore rosa. Lvello equvalente. Fsologa dell apparato

Dettagli

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi ESEMPIO N. Anals d mercuro n matrc solde medante spettrometra d assorbmento atomco a vapor fredd 0 Introduzone La determnazone del mercuro n matrc solde è effettuata medante trattamento termco del campone

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria APPENDICE ATEATICA Elemen d maemaca fnanzara. Il regme dell neresse semplce L neresse è l fruo reso dall nvesmeno del capale. Nel corso dell esposzone s farà rfermeno a due regm o pologe d calcolo dell

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Prof. Giulio Cainelli. appunti di Giovanni Gentile

Prof. Giulio Cainelli. appunti di Giovanni Gentile ECONOMIA POLITICA Macroeconoma Prof. Gulo Canell LA CONTABILITA NAZIONALE E LE VARIABILI MACROECONOMICHE La macroeconoma s occupa del comportamento aggregato del sstema economco, de meccansm d funzonamento

Dettagli

Tutti gli strumenti vanno tarati

Tutti gli strumenti vanno tarati L'INCERTEZZA DI MISURA Anta Calcatell I.N.RI.M S eseguono e producono msure per prendere delle decson sulla base del rsultato ottenuto, come per esempo se bloccare l traffco n funzone d msure d lvello

Dettagli

Strutture deformabili torsionalmente: analisi in FaTA-E

Strutture deformabili torsionalmente: analisi in FaTA-E Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 1: Martedì 17/2/2015

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 1: Martedì 17/2/2015 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2014-2015 Lezone 1: Martedì 17/2/2015 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/40? Codce docente 030508 Codce corso 00675 Matematca

Dettagli

MACROECONOMIA DAVIDE BENZA. http://davidebenza.altervista.org/ Parte 1 fino al primo compitino

MACROECONOMIA DAVIDE BENZA. http://davidebenza.altervista.org/ Parte 1 fino al primo compitino MACROECONOMIA Parte 1 fno al prmo comptno DAVIDE BENZA http://davdebenza.altervsta.org/ un graze dallo staff d Sharenotes (http:// www.sharenotes.t) 1 Appunt d macroeconoma. CAPITOLO 1 (leggere) Le semplfcazon

Dettagli

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni:

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni: Anals ammortzzata Anals ammortzzata S consdera l tempo rchesto per esegure, nel caso pessmo, una ntera sequenza d operazon. Se le operazon costose sono relatvamente meno frequent allora l costo rchesto

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE AA 2016/2017 1 Esercz 2 Regme d sconto commercale Eserczo 1 Per quale durata una somma a scadenza S garantsce lo stesso valore

Dettagli

LA VALUTAZIONE D AZIENDA: I METODI ASSOLUTI E I METODI RELATIVI. Dott.ssa Elisa MENICUCCI

LA VALUTAZIONE D AZIENDA: I METODI ASSOLUTI E I METODI RELATIVI. Dott.ssa Elisa MENICUCCI LA VALUTAZIONE D AZIENDA: I METODI ASSOLUTI E I METODI RELATIVI Dott.ssa Elsa MENICUCCI Dottore Commercalsta Rcercatrce area Azendale IRDCEC Modena, 24 aprle 2014 INTRODUZIONE ALLA VALUTAZIONE D AZIENDA

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

Mauro Vettorello. Vi veneto. come Calcolare la Rata di un Finanziamento o di un Leasing senza calcolatrice STUDIO VETTORELLO

Mauro Vettorello. Vi veneto. come Calcolare la Rata di un Finanziamento o di un Leasing senza calcolatrice STUDIO VETTORELLO Mauro Vettorello V veneto come Calcolare la Rata d un Fnanzamento o d un Leasng senza calcolatrce STUDIO VETTORELLO V veneto come Calcolare la Rata d un Fnanzamento o d un Leasng senza calcolatrce Mauro

Dettagli

3. Esercitazioni di Teoria delle code

3. Esercitazioni di Teoria delle code 3. Eserctazon d Teora delle code Poltecnco d Torno Pagna d 33 Prevsone degl effett d una decsone S ndvduano due tpologe d problem: statc: l problema non vara nel breve perodo dnamc: l problema vara Come

Dettagli

7. Redditività industriale e redditività dei mezzi propri. RO ROI Redditività industriale K RN MP ROE

7. Redditività industriale e redditività dei mezzi propri. RO ROI Redditività industriale K RN MP ROE Prof. Antono Renz Economa e gestone delle mprese Parte tredcesma Struttura fnanzara e reddtvtà 7. Reddtvtà ndustrale e reddtvtà de mezz propr RN = reddto netto RO = reddto operatvo OF = oner fnanzar OT

Dettagli

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE UNA RASSEGNA SUI METODI DI STIMA DEL VALUE at RISK (VaR) Chara Pederzol - Costanza Torrcell Dpartmento d Economa Poltca - Unverstà degl Stud d Modena e Reggo Emla Marzo 999 INDICE Introduzone. Il concetto

Dettagli

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N LE MEDIE LEZIOE MEDIE ALGEBRICHE: calcolate con operazon algebrche su valor del carattere (meda artmetca) per varabl Rassumere le nformazon: MEDIA ARITMETICA MEDIAA, MODA, QUATILI MEDIE LASCHE: determnate

Dettagli

TEST D INGRESSO MATEMATICA 24/05/2011

TEST D INGRESSO MATEMATICA 24/05/2011 TEST D INGRESSO MATEMATICA // COGNOME NOME ISTITUTO COMPRENSIVO/SCUOLA MEDIA CITTA Legg attentamente. ISTRUZIONI PER LA COMPILAZIONE DEL QUESTIONARIO Inza a lavorare solo quando te lo drà l nsegnante e

Dettagli

Teoria delle Decisioni

Teoria delle Decisioni La teora delle decson Teora delle Decson L oggetto della Decson Theory è la decsone ntesa come scelta tra alternatve Esemp: se ntrodurre o meno d un nuovo prodotto, se rnnovare un mpanto oppure aprrne

Dettagli

RELAZIONE TECNICA. Introduzione. 1 Finalità e requisiti delle attività di dispacciamento nel mercato elettrico liberalizzato

RELAZIONE TECNICA. Introduzione. 1 Finalità e requisiti delle attività di dispacciamento nel mercato elettrico liberalizzato Allegato n. 1 a Prot AU/01/130 RELAZIONE TECNICA PRESUPPOSTI PER L ADOZIONE DI SCHEMA DI CONDIZIONI PER L EROGAZIONE DEL PUBBLICO SERVIZIO DI DISPACCIAMENTO DELL ENERGIA ELETTRICA SUL TERRITORIO NAZIONALE

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI 1. LEGGI FINANZIARIE

CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI 1. LEGGI FINANZIARIE CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI SOMMARIO:. Legg fnanzare. - 2. Regme fnanzaro dell neresse semplce e dello scono razonale. - 3. Regme fnanzaro dell neresse e dello scono composo. - 4. Tass equvalen.

Dettagli

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL LUGLIO 009 ECONOMIA AZIENDALE ESERCIZIO Un ndduo ntende acqustare un motorno che ha un prezzo d 300. Volendo accedere ad un fnanzamento, gl engono proposte le seguent

Dettagli

Minicorso Stocks Market Trading Analysis

Minicorso Stocks Market Trading Analysis Parte 2 Mncorso Stocks Market Tradng Analyss d Andrea Savano Rendlo semplce, premessa Innanztutto una confezone apr e chud Investre a lume d candela Ors contro tor a rtmo d swng La meda è moble, qual puma

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

Analisi del moto pre e post urto del veicolo

Analisi del moto pre e post urto del veicolo Captolo Anals del moto pre e post urto del vecolo 3.1 Moto rettlneo p. xx 3.1.1 Accelerazone unforme p. xx 3.1. Dstanza per l arresto del vecolo ed evtabltà p. xx 3.1.3 Dagramm veloctà-tempo e dstanza

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

POR FESR Sardegna 2007-2013 Asse VI Competitività BANDO PUBBLICO. Voucher Startup Incentivi per la competitività delle Startup innovative

POR FESR Sardegna 2007-2013 Asse VI Competitività BANDO PUBBLICO. Voucher Startup Incentivi per la competitività delle Startup innovative POR FESR Sardegna 2007-2013 Asse VI Compettvtà BANDO PUBBLICO Voucher Startup Incentv per la compettvtà delle Startup nnovatve ALLEGATO 3 PIANO DI UTILIZZO DEL VOUCHER STARTUP INNOVATIVE 2014 3. Pano d

Dettagli

Esercitazioni del corso: STATISTICA

Esercitazioni del corso: STATISTICA A. A. 0-0 Eserctazon del corso: STATISTICA Sommaro Eserctazone : Moda Medana Meda Artmetca Varabltà: Varanza, Devazone Standard, Coefcente d Varazone ESERCIZIO : UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA

Dettagli

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare.

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare. Una semplce applcazone del metodo delle caratterstche: la propagazone d un onda d marea all nterno d un canale a sezone rettangolare. In generale la propagazone d un onda monodmensonale n una corrente

Dettagli

Simulazione seconda prova Tema assegnato all esame di stato per l'abilitazione alla professione di geometra, 2006

Simulazione seconda prova Tema assegnato all esame di stato per l'abilitazione alla professione di geometra, 2006 Smulazone seconda prova Tema assegnato all esame d stato per l'abltazone alla professone d geometra, 006 roposte per lo svolgmento pubblcate sul ollettno SIFET (Socetà Italana d Fotogrammetra e Topografa)

Dettagli

Analizzata: - Nei livelli Prezzi - Nelle differenze Rendimenti. Rendimento al tempo t: Variabile finanziaria

Analizzata: - Nei livelli Prezzi - Nelle differenze Rendimenti. Rendimento al tempo t: Variabile finanziaria Varable fnanzara Analzzata: - Ne lvell Prezz - Nelle dfferenze endent endento al tepo t: t ( P P ) t P t 1 t 1 1 Unverstà d Terao - Teora del portafoglo fnanzaro - Prof. Paolo D Antono endento atteso:

Dettagli

DECRETA. ART. 3 Il compenso per l attività di collaborazione è fissato in 1.095,00 esente dall imposta sul reddito delle persone fisiche.

DECRETA. ART. 3 Il compenso per l attività di collaborazione è fissato in 1.095,00 esente dall imposta sul reddito delle persone fisiche. BANDO PER n. 64 BORSE DI COLLABORAZIONE PER IL SUPPORTO PRESSO IL C.I.A.O. DELL UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA NEL PERIODO DA SETTEMBRE 2010 A FINE GENNAIO 2011 000280 IL RETTORE VISTO VISTO

Dettagli

Manuale di istruzioni Manual de Instruções Millimar C1208 /C 1216

Manuale di istruzioni Manual de Instruções Millimar C1208 /C 1216 Manuale d struzon Manual de Instruções Mllmar C1208 /C 1216 Mahr GmbH Carl-Mahr-Str. 1 D-37073 Göttngen Telefon +49 551 7073-0 Fax +49 551 Cod. ord. Ultmo aggornamento Versone 3757474 15.02.2007 Valda

Dettagli

PRIVATIZZAZIONE DEL WELFARE E RUOLO DELLE ASSOCIAZIONI DI RAPPRESENTANZA

PRIVATIZZAZIONE DEL WELFARE E RUOLO DELLE ASSOCIAZIONI DI RAPPRESENTANZA PRIVATIZZAZIONE DEL WELFARE E RUOLO DELLE ASSOCIAZIONI DI RAPPRESENTANZA La rforma del sstema pensonstco talano: le queston aperte e le prospettve d svluppo della componente a captalzzazone Carlo Mazzaferro

Dettagli

Potenzialità degli impianti

Potenzialità degli impianti Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Potenzaltà degl mpant Impant ndustral Potenzaltà degl mpant 1 Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Defnzone della potenzaltà

Dettagli

Mercati e Intermediari Finanziari. IL MERCATRO e-mid: INTRADAY PATTERN E CRISI FINANZIARIA

Mercati e Intermediari Finanziari. IL MERCATRO e-mid: INTRADAY PATTERN E CRISI FINANZIARIA Alma Mater Studorum Unverstà d Bologna DOTTOATO DI ICECA IN Mercat e Intermedar Fnanzar Cclo XXII Settore scentfco-dscplnare d afferenza: SECS-P/11 ECONOMIA DEGLI INTEMEDIAI FINANZIAI IL MECATO e-mid:

Dettagli

Questo è il secondo di una serie di articoli, di

Questo è il secondo di una serie di articoli, di DENTRO LA SCATOLA Rubrca a cura d Fabo A. Schreber Il Consglo Scentfco della rvsta ha pensato d attuare un nzatva culturalmente utle presentando n ogn numero d Mondo Dgtale un argomento fondante per l

Dettagli

TORRI DI RAFFREDDAMENTO PER L ACQUA

TORRI DI RAFFREDDAMENTO PER L ACQUA TORRI DI RAFFREDDAMENTO PER ACQUA Premessa II funzonamento degl mpant chmc rchede generalmente gross quanttatv d acqua: questa, oltre ad essere utlzzata drettamente n alcune lavorazon, come lavagg, dssoluzon,

Dettagli

CORSO DI FISICA TECNICA 2 AA 2013/14 ACUSTICA. Lezione n 2:

CORSO DI FISICA TECNICA 2 AA 2013/14 ACUSTICA. Lezione n 2: CORSO DI FISICA TECNICA AA 013/14 ACUSTICA Lezone n : Lvell sonor: operazon su decbel e lvello sonoro equvalente. Anals n requenza de segnal sonor, bande d ottava e terz d ottava. Rumore banco e rumore

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità alcolo delle Probabltà Quanto è possble un esto? La verosmglanza d un esto è quantfcata da un numero compreso tra 0 e. n partcolare, 0 ndca che l esto non s verfca e ndca che l esto s verfca senza dubbo.

Dettagli

EH SmartView. Una SmartView sui rischi e sulle opportunità. Servizio di monitoraggio dell assicurazione del credito. www.eulerhermes.

EH SmartView. Una SmartView sui rischi e sulle opportunità. Servizio di monitoraggio dell assicurazione del credito. www.eulerhermes. EH SmartVew Servz Onlne d Euler Hermes Una SmartVew su rsch e sulle opportuntà Servzo d montoraggo dell asscurazone del credto www.eulerhermes.t Cos è EH SmartVew? EH SmartVew è l servzo d Euler Hermes

Dettagli

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi Allenament d matematca: Teora de numer e algebra modulare Soluzon esercz 29 novembre 2013 1. Canguro salterno. Un canguro salterno s trova a ped d una scala nfnta che ntende salre nel seguente modo: Salta

Dettagli

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi Regressone Multpla e Regressone Logstca: concett ntroduttv ed esemp I Edzone ottobre 014 Vncenzo Paolo Senese vncenzopaolo.senese@unna.t Indce Note prelmnar alla I edzone 1 Regressone semplce e multpla

Dettagli

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE GIOVANNI CRUPI, ANDREA DONATO SUMMARY. We characterze a set of

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli