Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse"

Transcript

1 Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso rscho d controparte): un perodo per quello a breve termne (tasso corrente S ); pù perod per quello a pù lunga scadenza (tasso corrente Z ). Investre a lunga o a breve? Confrontare l rendmento del ttolo a lunga (nvestmento a lungo termne) con la sequenza d rendment che s ottengono nvestendo la somma n un ttolo a breve e rnnovando l nvestmento alla scadenza per un numero d perod corrspondent alla durata del ttolo a lunga (nvestmento rolled over). G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 1

2 Esempo 1. Arbtraggo tra ttol a scadenza dversa. Investre una untà monetara n un ttolo a cnque perod che garantsce ogg un tasso d nteresse 5 per tutt e cnque perod, o n uno con scadenza a un perodo che offre ogg l tasso 1 e rnnovare per t quattro volte l nvestmento a breve a tass 1 (t=1,..., 4) che s formeranno all nzo de successv quattro perod? Se s conoscono con certezza tass d nteresse futur, n equlbro s deve avere: (1+ 5 ) 5 = (1+ 1 ) ( ) ( ) ( ) ( ) Tutt acqustano (vendono) l ttolo a lunga se l termne a prmo membro è maggore (mnore) d quello a secondo membro: l prezzo sale (scende) e l tasso d nteresse scende (sale), fno al raggungmento dell equlbro. G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 2

3 Ne logartm: 5log(1+ 5 )=log(1+ 1 )+log( )+log( )+log( )+log( ) Approssmando (per valor d vcn a zero è log(1+) ): Il tasso a lunga corrente è (crca) uguale alla meda artmetca de tass a breve de cnque perod. Pù n generale: 1 1 z t Z S z t= ( Z ndca una qualsas durata maggore del perodo untaro S ). G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 3

4 Nella realtà tass d nteresse a breve futur non sono conoscut con certezza dagl agent. Due possbltà: 1. E presente un mercato a termne, n cu la lqudazone d una compravendta avvene n un perodo futuro rspetto a quello d sottoscrzone del contratto e tass sulle operazon future sono contrattualmente not ogg. Se v è un elevato numero d arbtraggst tra pront e termne, l tasso Z è ft crca par alla meda artmetca de tass a termne S de corrspondent t perod: 1 1 z ft Z S z t= dove f S è un tasso unperodale a termne e t è l perodo nzale d attuazone del contratto. G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 4

5 2. Non v è certezza su tass d nteresse futur e la scelta s fonda sulle aspettatve degl operator su tass d nteresse a breve futur alle dverse scadenze. Ogn agente nveste a lunga o a breve a seconda delle sue aspettatve su rendment relatv de ttol. Se sono numeros, tass corrent a pù lunga scadenza esprmono la valutazone corrente delle attese (mede) del mercato su tass d nteresse d breve perodo futur: 1 1 z et Z S z t= ( S et è l valore atteso del tasso d nteresse a breve all nzo del t-esmo perodo). G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 5

6 Nella realtà, le nformazon dsponbl rguardano tass d nteresse corrent alle dverse scadenze: dervare dalla struttura de tass a lunga le aspettatve mede d mercato crca la tendenza (al ralzo o al rbasso) de tass a breve. Esempo: 2 ttol a lunga con scadenza contgua, al perodo Z e al perodo (Z+1). Esprmamo l loro rapporto come sequenza d tass a breve termne, per ottenere l espressone del tasso d nteresse a breve atteso per l perodo Z: ( 1+ ) Z 1 ( 1+ ) Z ( et 1+ ) Z + 1 S + t = = = 1 Z Z 1 ( et ) Z 1+ S t = Z+1 e Z sono tass d nteresse corrent su ttol d durata (Z+1) e Z perod et (entramb not) e S è l tasso d nteresse atteso, all nzo del perodo t, su un ttolo della durata d un perodo. + ez S G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 6

7 Ne logartm: ez ( Z + 1) log( 1+ + ) ( Z)log( 1+ ) = log( 1+ ) Z 1 Z S Dato che log(1+) : Aggungendo e sottraendo Z ottenamo: (Z+1) Z + 1 Z Z ez S ez S Z + (Z+1)( Z + 1 Z ) l tasso a breve atteso per un dato perodo (Z+1) nvestmento della durata d un perodo da effettuare all nzo del perodo (Z+1) mplcto nella struttura corrente de tass a lunga è dunque rcavable (con buona approssmazone) dal rendmento d due ttol a lunga d opportuna scadenza e dalla scadenza del ttolo. G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 7

8 La struttura per scadenza de tass corrent, contenendo la struttura mplcta d tutt tass a termne d breve perodo, permette d rcavare valor de tass a breve futur attes present n un dato momento sul mercato. Il mercato fornsce nformazon sulle tendenze de tass d nteresse futur. Gl operator che s attendono ogg un tasso a breve al tempo t maggore d quello, S et, mplcto nella attuale stuazone d mercato, nvestono n ttol con scadenza a t perod e renvestono la somma n un ttolo a breve per l ulterore perodo. L arbtraggo, nfluenzando la domanda e l offerta de ttol, determna varazon nella loro quotazone, fno a quando non s determna un prezzo d equlbro che rflette l opnone meda degl operator su tass futur d breve perodo. G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 8

9 I tass a termne mplct esprmono una condzone d ndfferenza: è equvalente effettuare un nvestmento/fnanzamento per T ann o effettuare la stessa operazone per un perodo nferore, rnnovandola per l tempo resduo. Esempo. Un nvesttore vuole nvestre a 2 ann e osserva: 1=2,5%; 2=2,78%. Opzon possbl: 1. acqustare un ttolo con scadenza a 2 ann; 2. acqustare un ttolo a 1 anno e, alla scadenza, renvestre la somma ottenuta per un ulterore anno al tasso che s trova sul mercato n quel momento. Le operazon sono fnanzaramente equvalent se l tasso a un anno fra un anno, 1 1, è par al valore X che soddsfa l uguaglanza: (1+,278) 2 = (1+,25)(1+X). Equazone è soddsfatta se: X = (1+,278) 2 /(1+,25) 1 =,36. Il tasso a termne equvalente è 1 1=3,6%. G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 9

10 La curva de rendment e la struttura ntertemporale de tass d nteresse La dsponbltà d una sere d tass a lunga a dverse scadenze consente d: dsegnare la curva de rendment (yeld curve), ossa la relazone tra rendmento e vta resdua d un ttolo prvo d rscho; rcostrure la struttura esstente n un punto nel tempo de tass a termne mplct per l ntero ntervallo d scadenze. Lo scarto fra l tasso a lunga e a termne n corrspondenza della stessa scadenza nforma crca le attese del mercato per un ralzo o un rbasso de tass d nteresse. La curva de rendment può essere nclnata postvamente (all aumentare della scadenza tass aumentano) o negatvamente (all aumentare della scadenza tass dmnuscono). Può anche essere patta (tass a breve ugual a quell a lunga). G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 1

11 Nel caso d una curva de rendment nclnata postvamente (normale), s ha: ez S Z + (Z+1)( Z + 1 Z ) e ( Z+1 Z ) > Per ogn scadenza, tass a termne ez S sono maggor de tass corrent Z per le medesme scadenze: se l tasso a lunga relatvo a una data scadenza è par alla meda d tutt precedent tass a breve, l aumento del tasso corrente a lunga nel passaggo da una scadenza a quella successva rchede che l corrspondente tasso futuro a breve sa pù elevato. Se la curva de rendment è nclnata negatvamente (curva nvertta), s ha: ez S Z + (Z+1)( Z + 1 Z ) e Z+1 - Z < Per ogn scadenza, tass a termne ez S sono mnor de tass corrent Z per le medesme scadenze. E se la curva è patta? G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 11

12 Se la curva de rendment è crescente, la curva de tass a termne s trova sempre al d sopra d essa. G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 12

13 Cosa accade se s ha un tratto decrescente e po crescente? G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 13

14 Lo scarto fra l tasso a lunga e quello a termne, dovuto all arbtraggo operato dagl agent sulla base delle aspettatve su tass d nteresse futur, segnala le loro prospettve future. Attese d aument de tass attes mplct a breve: tass a lunga crescent Attese d rduzone de tass attes mplct a breve: tass a lunga decrescent Le attese ralzste o rbassste sono collegate a: Inflazone (l attesa d un suo aumento mplca un maggor tasso d rendmento che compens la perdta d potere d acqusto del valore nomnale dell nvestmento fnanzaro; attese d tass crescent; curva de rendment crescente; vceversa, n presenza d attese dsnflazonstche) Evoluzone cclca dell economa (fas espansve/recessve accompagnano attese d tass crescent/decrescent) Poltca monetara attesa G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 14

15 Altre spegazon dello scarto tra tass a lunga e tass a breve (pendenza della curva de rendment) s basano sull potes fondamentale che ttol con scadenza dversa non sano tra loro perfett sosttut: ch emette ttol prefersce fond a lunga scadenza; ch nveste prefersce scadenze pù brev. 1) Premo per la lqudtà. Per ndrzzare fond su ttol a pù lunga scadenza, gl nvesttor rchedono un premo per la lqudtà; tass a lunga sono pù elevat d quanto non sarebbero per effetto esclusvamente delle attese su tass futur. La preferenza degl nvesttor per ttol pù lqud derva da: ncertezza sulle necesstà future d fond; ncertezza sull andamento de tass d nteresse nel lungo perodo; scadenze pù brev garantscono mnor rsch d perdte n conto captale. G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 15

16 2) Esstenza per gl nvesttor d un habtat preferto. I mercat de ttol con scadenze dfferent sono segmentat : tant sotto-mercat n cu operano condzon d domanda e offerta dverse. Gl nvesttor prvlegano un orzzonte temporale breve; prendtor d fond uno lungo. Poché per ttol a pù breve termne prevale la domanda e per quell a pù lungo termne l offerta, la curva de rendment ha una nclnazone postva. Le sue modfcazon sono spegate da varazon de fattor d domanda e offerta de sngol segment del mercato fnanzaro. I tass mplct costtuscono una valutazone meda del contrbuto pesato d attese, lqudtà e habtat alla determnazone de tass alle dverse scadenze. G. Cccarone, Economa e Poltca Monetara a.a ; Lezone 1 Pagna 16

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE UNA RASSEGNA SUI METODI DI STIMA DEL VALUE at RISK (VaR) Chara Pederzol - Costanza Torrcell Dpartmento d Economa Poltca - Unverstà degl Stud d Modena e Reggo Emla Marzo 999 INDICE Introduzone. Il concetto

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Strutture deformabili torsionalmente: analisi in FaTA-E

Strutture deformabili torsionalmente: analisi in FaTA-E Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo

Dettagli

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri Artmetca de calcolator Rappresentazone de numer natural e relatv Addzone e sommator: : a propagazone d rporto, veloce, con segno Moltplcazone e moltplcator: senza segno, con segno e algortmo d Booth Rappresentazone

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Unità Didattica N 25. La corrente elettrica

Unità Didattica N 25. La corrente elettrica Untà Ddattca N 5 : La corrente elettrca 1 Untà Ddattca N 5 La corrente elettrca 01) Il problema dell elettrocnetca 0) La corrente elettrca ne conduttor metallc 03) Crcuto elettrco elementare 04) La prma

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

5. Il lavoro di un gas perfetto

5. Il lavoro di un gas perfetto 5. Il lavoro d un gas perfetto ome s esprme l energa nterna d un gas perfetto? Un gas perfetto è l sstema pù semplce che possamo mmagnare: le nterazon a dstanza fra le molecole sono così debol da essere

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrca e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà esstenze n sere e n parallelo Effetto termco della corrente Legg d Krchhoff Corrente elettrca

Dettagli

Metodologia di controllo. AUTORIMESSE (III edizione) Codice attività: 63.21.0. Indice

Metodologia di controllo. AUTORIMESSE (III edizione) Codice attività: 63.21.0. Indice Metodologa d controllo AUTORIMESSE (III edzone) Codce attvtà: 63.21.0 Indce 1. PREMESSA... 2 2. ATTIVITÀ PREPARATORIA AL CONTROLLO... 3 2.1 Interrogazon dell Anagrafe Trbutara... 3 2.2 Altre nterrogazon

Dettagli

Progetto Lauree Scientifiche. La corrente elettrica

Progetto Lauree Scientifiche. La corrente elettrica Progetto Lauree Scentfche La corrente elettrca Conoscenze d base Forza elettromotrce Corrente Elettrca esstenza e resstvtà Legge d Ohm Crcut 2 Una spra d rame n equlbro elettrostatco In un crcuto semplce

Dettagli

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica.

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica. ppunt per l corso d Laboratoro d Fsca per le Scuole Superor rgoent Msure d corrente elettrca contnua, d dfferenza d potenzale e d resstenza elettrca. Struent d sura: prncp d funzonaento. Coe s effettuano

Dettagli

COMUNICAZIONE AI GRUPPI DI LAVORO SIDEA (13/09/02) LE CONDIZIONI DI OTTIMALITÀ PER LA DETERMINAZIONE DELLE CATTURE DI PESCE

COMUNICAZIONE AI GRUPPI DI LAVORO SIDEA (13/09/02) LE CONDIZIONI DI OTTIMALITÀ PER LA DETERMINAZIONE DELLE CATTURE DI PESCE COMUNICAZIONE AI GRUPPI DI LAVORO SIDEA (13/9/2) ECONOMIA E POLITICA DEL SETTORE ITTICO 1.INTRODUZIONE. LE CONDIZIONI DI OTTIMALITÀ PER LA DETERMINAZIONE DELLE CATTURE DI PESCE (una applcazone ad un contesto

Dettagli

Misura della distanza focale. di una lente convergente. Metodo di Bessel

Misura della distanza focale. di una lente convergente. Metodo di Bessel Zuccarello Francesco Laboratoro d Fsca II Msura della dstanza focale d una lente convergente Metodo d Bessel A.A. 003-004 Indce Introduzone..pag. 3 Presuppost Teorc.pag. 4 Anals de dat.pag. 8. Modo d operare...pag.

Dettagli

CIRCUITI DI IMPIEGO DEI DIODI

CIRCUITI DI IMPIEGO DEI DIODI UT D MPEGO DE DOD addrzzare ad na seonda. l crcto pù seplce, che pega l dodo coe raddrzzatore d na tensone alternata, è rappresentato n Fg.. n esso n generatore deale d tensone alternata l c valore stantaneo

Dettagli

Leggere i dati da file

Leggere i dati da file Esempo %soluzon d una equazone d secondo grado dsp('soluzon d a^+b+c') anput('damm l coeffcente a '); bnput('damm l coeffcente b '); cnput('damm l coeffcente c '); deltab^-4*a*c; f delta0 dsp('soluzon

Dettagli

CONTO CONSUNTIVO PER L'ESERCIZIO FINANZIARIO 2012 RELAZIONE ILLUSTRATIVA DEL DIRIGENTE SCOLASTICO

CONTO CONSUNTIVO PER L'ESERCIZIO FINANZIARIO 2012 RELAZIONE ILLUSTRATIVA DEL DIRIGENTE SCOLASTICO DIREZIONE DIDATTICA DEL 4 CIRCOLO DI FORLI' Va Gorgna Saff, n.12 Tel 0543/33345 fax 0543/458861 C.F. 80004560407 CM FOEE00400B e-mal foee00400b@struzone.t - posta cert.: foee00400b@pec.struzone.t sto web:

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

Lorenzo Pistocchini RICERCA DI SISTEMA ELETTRICO. Agenzia Nazionale per le Nuove Tecnologie, l Energia e lo Sviluppo Economico Sostenibile

Lorenzo Pistocchini RICERCA DI SISTEMA ELETTRICO. Agenzia Nazionale per le Nuove Tecnologie, l Energia e lo Sviluppo Economico Sostenibile Agenza Nazonale per le Nuove Tecnologe, l Energa e lo Svluppo Economco Sostenble RICERCA DI SISTEMA ELETTRICO Ottmzzazone termofludodnamca e dmensonamento d uno scambatore d calore n controcorrente con

Dettagli

PROCESSI CASUALI. Segnali deterministici e casuali

PROCESSI CASUALI. Segnali deterministici e casuali POCESSI CASUALI POCESSI CASUALI Segnal deermnsc e casual Un segnale () s dce DEEMIISICO se è una funzone noa d, coè se, fssao un qualunque sane d empo o, l valore ( o ) assuno dal segnale è noo con esaezza

Dettagli

ELABORAZIONE DI SEGNALI E IMMAGINI

ELABORAZIONE DI SEGNALI E IMMAGINI Fltraggo d un segnale EABORAZIOE DI SEGAI E IAGII. Bertero P. Boccacc bertero@ds.unge.t boccacc@ds.unge.t Al ne d glorare la qualtà d un segnale dgtale una tecnca d prara portanza è l ltraggo. Con l quale

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

Nadia Garbellini. L A TEX facile. Guida all uso

Nadia Garbellini. L A TEX facile. Guida all uso Nada Garbelln L A TEX facle Guda all uso 2010 Nada Garbelln L A TEX facle Guda all uso seconda edzone rveduta e corretta 2010 PRESENTAZIONE L amca e brava Nada Garbelln, autrce d questa bella e semplce

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

Liste di specie e misure di diversità

Liste di specie e misure di diversità Lte d pece e mure d dvertà Carattertche delle lte d pece I dat ono par, coè hanno molt valor null (a volte la maggoranza!) La gran parte delle pece preent è rara. I fattor ambental che nfluenzano la dtrbuzone

Dettagli

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Microeconomia venerdì 29 febbraio 2008 La struttura della lezione

Dettagli

CINEMATICA DEL CORPO RIGIDO

CINEMATICA DEL CORPO RIGIDO INEMTI DE ORPO RIGIDO o tudo della geometra degl potament de punt d un tema materale potzzato come rgdo rentra n quella parte della Meccanca laca che è la nematca. a cnematca tuda pobl movment d un corpo

Dettagli

PREFAZIONE. di Giuseppe Berto

PREFAZIONE. di Giuseppe Berto , PREFAZIONE d Guseppe Berto RICORDO DEL TERRAGLIO Quand'ero govane, e la vogla d grare l mondo m spngeva n terre lontane, a ch m chedeva notze del mo paese, rspondevo: l mo paese è una strada. In effett,

Dettagli

come si tiene conto della limitazione d ampiezza e di velocità come si tiene conto della limitazione di frequenza come si tiene conto degli offset

come si tiene conto della limitazione d ampiezza e di velocità come si tiene conto della limitazione di frequenza come si tiene conto degli offset 8a resentazone della lezone 8 /6 Obettv come s tene conto della lmtazone d ampezza e d veloctà come s tene conto della lmtazone d reqenza come s tene conto degl oset 8a saper preved. col calcolo l nlenza

Dettagli

Contratto di Assicurazione Multirischi. Eura Salute Di più

Contratto di Assicurazione Multirischi. Eura Salute Di più Fascicolo nformativo Europ Assistance talia S.p.A. Contratto di Assicurazione Multirischi Eura Salute Di più l presente Fascicolo nformativo, contenente: - Nota nformativa, comprensiva del glossario; -

Dettagli

Nota su Crescita e Convergenza

Nota su Crescita e Convergenza Nota su Crescita e Convergenza S. Modica 28 Ottobre 2007 Nella prima sezione si considerano crescita lineare ed esponenziale e le loro proprietà elementari. Nella seconda sezione si spiega la misura di

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto

Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto Il presente capitolo continua nell esposizione di alcune basi teoriche della manutenzione. In particolare si tratteranno

Dettagli

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue:

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue: CAMPO DI ESISTENZA. Poiché la funzione data è una razionale fratta, essa risulta definita su tutto l asse reale tranne che nei punti in cui il denominatore della frazione si annulla, cioè: C.E. { R: 0}

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

I costi nel breve periodo

I costi nel breve periodo I costi di produzione e la funzione di offerta Breve e lungo periodo Il breve periodo è quell orizzonte temporale nel quale l impresa può variare solo parzialmente l impiego degli input esempio: l impresa

Dettagli

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA DEFINIZIONE: Dato un numero reale a che sia a > 0 e a si definisce funzione esponenziale f(x) = a x la relazione che ad ogni valore di x associa uno e un solo

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

POLITECNICO di BARI - A.A. 2012/2013 Corso di Laurea in INGEGNERIA Informatica e dell Automazione

POLITECNICO di BARI - A.A. 2012/2013 Corso di Laurea in INGEGNERIA Informatica e dell Automazione POLITECNICO di BARI - A.A. 0/03 Corso di Laurea in INGEGNERIA Informatica e dell Automazione Problema Sia f :[0, +[! R una funzione continua. La funzione composta g() =f(kk) è c o n t i n u a? Problema

Dettagli

IFRS 2 Pagamenti basati su azioni

IFRS 2 Pagamenti basati su azioni Pagamenti basati su azioni International Financial Reporting Standard 2 Pagamenti basati su azioni FINALITÀ 1 Il presente IRFS ha lo scopo di definire la rappresentazione in bilancio di una entità che

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso Esercizio 1 Data la funzione di domanda: ELASTICITÀ Dire se partendo da un livello di prezzo p 1 = 1.5, al produttore converrà aumentare il prezzo fino al livello p 2 = 2. Sarebbe conveniente per il produttore

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4.0. Esponenziale. Nella prima sezione abbiamo definito le potenze con esponente reale. Vediamo ora in dettaglio le proprietà della funzione esponenziale a,

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

Tassi a pronti ed a termine (bozza)

Tassi a pronti ed a termine (bozza) Tassi a pronti ed a termine (bozza) Mario A. Maggi a.a. 2006/2007 Indice 1 Introduzione 1 2 Valutazione dei titoli a reddito fisso 2 2.1 Titoli di puro sconto (zero coupon)................ 3 2.2 Obbligazioni

Dettagli

L apertura di una economia ha 3 dimensioni

L apertura di una economia ha 3 dimensioni Lezione 19 (BAG cap. 6.1 e 6.3 e 18.1-18.4) Il mercato dei beni in economia aperta: moltiplicatore politica fiscale e deprezzamento Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Economia

Dettagli

TEORIA DELL UTILITÀ E DECISION PROCESS

TEORIA DELL UTILITÀ E DECISION PROCESS TEORIA DELL UTILITÀ E DECISION PROCESS 1 UTILITÀ Classicamente sinonimo di Desiderabilità Fisher (1930):... uno degli elementi che contribuiscono ad identificare la natura economica di un bene e sorge

Dettagli

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI 6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI Consdeao un sstea d n unt ateal con n > nteagent ta loo e con l esto dell unveso. Nello studo d un tale sstea sulta convenente scooe la foza agente ( et) sull

Dettagli

Equilibrio economico generale e benessere

Equilibrio economico generale e benessere Scambio Equilibrio economico generale e benessere Equilibrio economico generale e benessere (KR 12 + NS 8) Dipartimento di Economia Politica Università di Milano Bicocca Outline Scambio 1 Scambio 2 3 4

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

ISTITUTO COMPRENSIVO UGO FOSCOLO VESCOVATO SCUOLA SECONDARIA DI 1 GRADO PIANO ANNUALE DELLE ATTIVITA' A.S. 2013/14

ISTITUTO COMPRENSIVO UGO FOSCOLO VESCOVATO SCUOLA SECONDARIA DI 1 GRADO PIANO ANNUALE DELLE ATTIVITA' A.S. 2013/14 STTUTO COMPRENSVO UGO FOSCOLO SCUOLA SECONDARA D 1 GRADO PANO ANNUALE DELLE ATTVTA' A.S. 2013/14 PROT. N. 5991 /A-19 Vescovato, 19/09/2013 Data Giorno Sedi scolastiche Classi Orario Durata ATTVTA' COLLEGO

Dettagli

Applicazioni dell'analisi in più variabili a problemi di economia

Applicazioni dell'analisi in più variabili a problemi di economia Applicazioni dell'analisi in più variabili a problemi di economia La diversità tra gli agenti economici è alla base della nascita dell attività economica e, in generale, lo scambio di beni e servizi ha

Dettagli

Risposta temporale: esercizi

Risposta temporale: esercizi ...4 Risposta temporale: esercizi Esercizio. Calcolare la risposta al gradino del seguente sistema: G(s) X(s) = s (s+)(s+) Y(s) Per ottenere la risposta al gradino occorre antitrasformare la seguente funzione:

Dettagli

ISOTOPI LA SICUREZZA NON VA VISTA COME UN IMPEDIMENTO A SVOLGERE LA PROPRIA ATTIVITA, MA DIVENTA PARTE INTEGRANTE DELL ATTIVITA STESSA

ISOTOPI LA SICUREZZA NON VA VISTA COME UN IMPEDIMENTO A SVOLGERE LA PROPRIA ATTIVITA, MA DIVENTA PARTE INTEGRANTE DELL ATTIVITA STESSA LA SCUREZZA NON VA VSTA COME UN MPEDMENTO A SVOLGERE LA PROPRA ATTVTA, MA DVENTA PARTE NTEGRANTE DELL ATTVTA STESSA Dott.ssa Benedetta Persechino - SPESL - DML 1895 SCOPERTA DE RAGG X RADOATTVTA PROPRETA

Dettagli

Corso di Matematica finanziaria

Corso di Matematica finanziaria Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,

Dettagli

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione Alberi binari Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Alberi binari, A.A. 2009/2010 1/20 Alberi binari

Dettagli

DOCUMENTO DI SINTESI STRATEGIA DI ESECUZIONE E TRASMISSIONE DEGLI ORDINI BCC DI ALBEROBELLO E SAMMICHELE DI BARI S.C.

DOCUMENTO DI SINTESI STRATEGIA DI ESECUZIONE E TRASMISSIONE DEGLI ORDINI BCC DI ALBEROBELLO E SAMMICHELE DI BARI S.C. DOCUMENTO DI SINTESI STRATEGIA DI ESECUZIONE E TRASMISSIONE DEGLI ORDINI BCC DI ALBEROBELLO E SAMMICHELE DI BARI S.C. LA NORMATIVA MIFID La Markets in Financial Instruments Directive (MiFID) è la Direttiva

Dettagli

UNIVERSITA DEGLI STUDI MAGNA GRÆCIA DI CATANZARO LE NOTE DI VARIAZIONE AI FINI IVA

UNIVERSITA DEGLI STUDI MAGNA GRÆCIA DI CATANZARO LE NOTE DI VARIAZIONE AI FINI IVA UNIVERSITA DEGLI STUDI MAGNA GRÆCIA DI CATANZARO LE NOTE DI VARIAZIONE AI FINI IVA 1 NOTE DI VARIAZIONE IVA (art. 26 del DPR n. 633/1972) Obbligatorie Facoltative Si tratta delle variazioni in aumento

Dettagli

Capitolo 5. Il mercato della moneta

Capitolo 5. Il mercato della moneta Capitolo 5 Il mercato della moneta 5.1 Che cosa è moneta In un economia di mercato i beni non si scambiano fra loro, ma si scambiano con moneta: a fronte di un flusso reale di prodotti e di servizi sta

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

Capitolo 6. La produzione. A.A. 2013-2014 Microeconomia - Cap. 6 1. Questo file (con nome cap_06.pdf)

Capitolo 6. La produzione. A.A. 2013-2014 Microeconomia - Cap. 6 1. Questo file (con nome cap_06.pdf) Capitolo 6 La produzione A.A. 2013-2014 Microeconomia - Cap. 6 1 Questo file (con nome cap_06.pdf) può essere scaricato da siti e file elearning.moodle2.unito.it/esomas/course/ view.php?id=215 abbreviato

Dettagli

Capitolo 10 Costi. Robert H. Frank Microeconomia - 5 a Edizione Copyright 2010 - The McGraw-Hill Companies, srl

Capitolo 10 Costi. Robert H. Frank Microeconomia - 5 a Edizione Copyright 2010 - The McGraw-Hill Companies, srl Capitolo 10 Costi COSTI Per poter realizzare la produzione l impresa sostiene dei costi Si tratta di scegliere la combinazione ottimale dei fattori produttivi per l impresa È bene ricordare che la categoria

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

Il Modello AS-AD. Determiniamo l equilibrio determinato dall incontro tra domanda e offerta

Il Modello AS-AD. Determiniamo l equilibrio determinato dall incontro tra domanda e offerta Il Modello AS-AD In questa lezione: Deriviamo la curva di offerta aggregata Determiniamo l equilibrio determinato dall incontro tra domanda e offerta Studiamo il meccanismo di aggiustamento verso l equilibrio

Dettagli

La scelta razionale del consumatore (Frank - Capitolo 3)

La scelta razionale del consumatore (Frank - Capitolo 3) La scelta razionale del consumatore (Frank - Capitolo 3) L'INSIEME OPPORTUNITÁ E IL VINCOLO DI BILANCIO Un paniere di beni rappresenta una combinazione di beni o servizi Il vincolo di bilancio o retta

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

LE PROSPETTIVE PER L ECONOMIA ITALIANA NEL 2015-2017

LE PROSPETTIVE PER L ECONOMIA ITALIANA NEL 2015-2017 7 maggio 2015 LE PROSPETTIVE PER L ECONOMIA ITALIANA NEL 2015-2017 Nel 2015 si prevede un aumento del prodotto interno lordo (Pil) italiano pari allo 0,7% in termini reali, cui seguirà una crescita dell

Dettagli

Capitolo 7. F. Barigozzi Microeconomia CLEC 1

Capitolo 7. F. Barigozzi Microeconomia CLEC 1 Capitolo 7 Continuiamo ad acquisire gli strumenti che ci permetteranno di studiare la scelta ottimale dell impresa. In questo capitolo vengono trattati i costi dell impresa. Usando la funzione di produzione

Dettagli

Materiale originale prodotto dal Centro Didattico della Matematica - www.cedima.it - Tel. 0229408552

Materiale originale prodotto dal Centro Didattico della Matematica - www.cedima.it - Tel. 0229408552 Materiale originale prodotto dal Centro Didattico della Matematica - www.cedima.it - Tel. 0940855 La funzione: y = cos x DEFINIZIONE Si dice funzione coseno di un angolo nel cerchio trigonometrico, la

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz:

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz: FUNZIONI DI PIU VARIABILI Esercizi svolti. Determinare il dominio delle seguenti funzioni e rappresentarlo graficamente : (a) f log( x y ) (b) f log(x + y ) (c) f y x 4 (d) f sin(x + y ) (e) f log(xy +

Dettagli

Your Global Investment Authority. Tutto sui bond: I ABC dei mercati obbligazionari. Cosa sono e come funzionano gli swap su tassi d interesse?

Your Global Investment Authority. Tutto sui bond: I ABC dei mercati obbligazionari. Cosa sono e come funzionano gli swap su tassi d interesse? Your Global Investment Authority Tutto sui bond: I ABC dei mercati obbligazionari Cosa sono e come funzionano gli swap su tassi d interesse? Cosa sono e come funzionano gli swap su tassi d interesse? Gli

Dettagli

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997 1 RAPPRESENTAZIONE BINARIA DEI NUMERI Andrea Bobbio Anno Accademico 1996-1997 Numeri Binari 2 Sistemi di Numerazione Il valore di un numero può essere espresso con diverse rappresentazioni. non posizionali:

Dettagli

Materiale di approfondimento: numeri interi relativi in complemento a uno

Materiale di approfondimento: numeri interi relativi in complemento a uno Materiale di approfondimento: numeri interi relativi in complemento a uno Federico Cerutti AA. 2011/2012 Modulo di Elementi di Informatica e Programmazione http://apollo.ing.unibs.it/fip/ 2011 Federico

Dettagli

Luglio 2007. Direttive sulle informazioni agli investitori relative ai prodotti strutturati

Luglio 2007. Direttive sulle informazioni agli investitori relative ai prodotti strutturati Luglio 2007 Direttive sulle informazioni agli investitori relative ai prodotti strutturati Direttive sulle informazioni agli investitori relative ai prodotti strutturati Indice Preambolo... 3 1. Campo

Dettagli

1. Integrazione di funzioni razionali fratte

1. Integrazione di funzioni razionali fratte . Integazone d fnzon azonal fatte P S songa d vole calcolae n ntegale del to: d Q ove P e Q sono olno nell ndetenata d gado assegnato. Sonao ce: P a n n a n n a a Q b b b b oleent s etod d ntegazone I

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Decreto 2 novembre 2005 Regole tecniche per la formazione, la trasmissione e la validazione, anche temporale, della posta elettronica certificata

Decreto 2 novembre 2005 Regole tecniche per la formazione, la trasmissione e la validazione, anche temporale, della posta elettronica certificata Decreto 2 novembre 2005 Regole tecniche per la formazione, la trasmissione e la validazione, anche temporale, della posta elettronica IL MINISTRO PER L'INNOVAZIONE E LE TECNOLOGIE - Visto l articolo 17

Dettagli

DOCUMENTO DI SINTESI STRATEGIA DI ESECUZIONE E TRASMISSIONE DEGLI ORDINI BCC DI CASSANO DELLE MURGE E TOLVE S.C.

DOCUMENTO DI SINTESI STRATEGIA DI ESECUZIONE E TRASMISSIONE DEGLI ORDINI BCC DI CASSANO DELLE MURGE E TOLVE S.C. DOCUMENTO DI SINTESI STRATEGIA DI ESECUZIONE E TRASMISSIONE DEGLI ORDINI BCC DI CASSANO DELLE MURGE E TOLVE S.C. LA NORMATIVA MIFID La Markets in Financial Instruments Directive (MiFID) è la Direttiva

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

IIIEGIOEE S1(ìrL1.fiNA IL DIRIGENTE GENERALE

IIIEGIOEE S1(ìrL1.fiNA IL DIRIGENTE GENERALE REPBBLCA TALANA Doo. N, 7 gšfl- n.a.r. [../', 1- EGOEE S1(ìrL1.fiNA AS SES SORATO REGONALE DEl..L.'ENERGA E DE SERVZ D PUBBLCA UTLTÀ DPARTMENTO REGONALE DE.,'ACQUA E DE RFUT ui', L DRGENTE GENERALE VSTO

Dettagli

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi Evelina De Gregori Alessandra Rotondi al via 1 Percorsi guidati per le vacanze di matematica e scienze per la Scuola secondaria di primo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio Test d'ingresso NUMERI

Dettagli

Azionario Flessibile 7 anni Scheda sintetica - Informazioni specifiche 1 di 6

Azionario Flessibile 7 anni Scheda sintetica - Informazioni specifiche 1 di 6 Scheda sintetica - Informazioni specifiche 1 di 6 La parte Informazioni Specifiche, da consegnare obbligatoriamente all investitore contraente prima della sottoscrizione, è volta ad illustrare le principali

Dettagli

LA FUNZIONE INTEGRALE

LA FUNZIONE INTEGRALE LA FUNZIONE INTEGRALE MAGLIOCURIOSO & CAMILLO magliocurioso@hotmail.it Sommario. In questa breve dispensa ho semplicementrascritto in L A TEX il contenuto di questa discussione: http://www.matematicamente.it/forum/

Dettagli

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello.

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. CURVE DI LIVELLO Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. Definizione. Si chiama insieme di livello k della funzione f

Dettagli

ALCUNI ELEMENTI DI TEORIA DELLA STIMA

ALCUNI ELEMENTI DI TEORIA DELLA STIMA ALCUNI ELEMENTI DI TEORIA DELLA STIMA Quado s vuole valutare u parametro θ ad esempo: meda, varaza, proporzoe, oeffete d regressoe leare, oeffete d orrelazoe leare, e) d ua popolazoe medate u ampoe asuale,

Dettagli

Se si insiste non si vince

Se si insiste non si vince Se si insiste non si vince Livello scolare: 2 biennio Abilità interessate Valutare la probabilità in diversi contesti problematici. Distinguere tra eventi indipendenti e non. Valutare criticamente le informazioni

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

Capitolo 12 Il monopolio. Robert H. Frank Microeconomia - 5 a Edizione Copyright 2010 - The McGraw-Hill Companies, srl

Capitolo 12 Il monopolio. Robert H. Frank Microeconomia - 5 a Edizione Copyright 2010 - The McGraw-Hill Companies, srl Capitolo 12 Il monopolio IL MONOPOLIO Il monopolio è una forma di mercato in cui un unico venditore offre un bene che non ha stretti sostituti, ad una moltitudine di consumatori La differenza fondamentale

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Facoltà di Scienze della Comunicazione Università di Teramo Scelta

Dettagli

STATISTICA Lezioni ed esercizi

STATISTICA Lezioni ed esercizi Uverstà d Toro QUADERNI DIDATTICI del Dpartmeto d Matematca MARIA GARETTO STATISTICA Lezo ed esercz Corso d Laurea Botecologe A.A. / Quadero # Novembre M. Garetto - Statstca Prefazoe I questo quadero

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli