IMPIANTI FOTOVOLTAICI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "IMPIANTI FOTOVOLTAICI"

Transcript

1 IMPIANTI FOTOVOLTAICI 1 Introduzione La tecnologia fotovoltaica si basa sulla conversione diretta dell energia irradiata dal Sole, generata dalle reazioni di fusione nucleare che avvengono al suo interno, in energia elettrica. Dell energia irradiata dal Sole, verso lo spazio, giunge sugli strati più esterni dell atmosfera terrestre una potenza pari a circa 1367 W/m 2. Di questa potenza solamente una parte, per via dei fenomeni di assorbimento e diffusione, a cui la radiazione solare è soggetta nell attraversamento degli strati dell atmosfera, giunge al suolo. La potenza solare che effettivamente giunge al suolo è quindi funzione della latitudine e quindi dello spessore di atmosfera che la radiazione solare si trova a dover attraversare. Nelle norme, così come nella pratica impiantistica di progettazione, il valore di massima radiazione al suolo viene assunto pari a 1000 W/m Effetto fotovoltaico Quando la radiazione solare investe un qualsivoglia materiale cede energia agli elettroni più esterni degli atomi, che lo costituiscono, se tale energia è sufficiente, l'elettrone (portatore di carica negativa) risulta libero di allontanarsi dall'atomo di origine, dando luogo alla formazione di una lacuna (portatore di carica positiva). Si rendono pertanto disponibili portatori di carica, che possono essere sfruttati per generare una corrente. Al fine di generare tale corrente è necessario creare un campo elettrico interno al materiale e ciò è ottenuto stabilendo un eccesso di atomi caricati negativamente (anioni) in una parte del semiconduttore e un eccesso di atomi caricati positivamente (cationi) nell altro. Tali eccessi di cariche positive e negative all interno del semiconduttore sono ottenuti attraverso un processo detto di drogaggio. Il processo di drogaggio è ottenuto inserendo all interno della struttura cristallina del semiconduttore degli atomi del terzo gruppo, come ad esempio il boro (B), e del quinto gruppo, quale ad esempio il fosforo (P), per ottenere rispettivamente una struttura di tipo p (con un eccesso di lacune, aventi carica positiva, da cui la dizione tipo p ) e una di tipo n (con un eccesso di elettroni, aventi carica negativa, da cui la dizione tipo n ). Nel caso del Silicio, essendo questo un semiconduttore avente quattro elettroni di valenza, il drogaggio con un elemento del terzo gruppo, quale il boro, che ha pertanto tre elettroni di valenza, non permette la chiusura dell ottetto, dando luogo quindi alla formazione di una lacuna, portatore di carica positiva. Mentre il drogaggio con un elemento del quinto gruppo, quale il fosforo, che ha cinque elettroni di valenza, di cui quattro concorrono alla chiusura dell ottetto, mentre il quinto resta libero di spostarsi all interno del reticolo cristallino del semiconduttore fungendo da portatore di carica negativa. 1

2 Elettroni di valenza Si Si Elettroni di valenza Si Elettroni di valenza Si Si Si Si B Si Si P Si Si Si lacuna Si Elettrone di conduzione Figura 1: struttura cristallina del Silicio. Figura 2: Silicio drogato con boro. Figura 3: Silicio drogato con fosforo. Va sottolineato che il materiale risulta essere globalmente neutro, dato che il drogaggio viene realizzato con atomi neutri (non ioni), quello che cambia è l'eccesso di elettroni nei legami covalenti, da una parte, e il difetto degli stessi dall'altra. Quindi sia la struttura di tipo p che quella di tipo n sono neutre. Lo strato drogato tipo n, presenta una carica negativa debolmente legata, costituita da un elettrone in eccesso per ogni atomo drogante. Nello stesso modo, nello strato drogato di tipo p, si ottiene un eccesso di carica positiva, data dalle lacune degli atomi droganti. Se si congiungono due semiconduttori, uno di tipo p e uno di tipo n, si ottiene, in corrispondenza della zona di contatto, una zona di separazione detta giunzione p-n (Figura 4). Mettendo a contatto i due materiali così ottenuti, si viene a verificare un flusso di diffusione di elettroni dalla zona n alla zona p e di lacune in direzione opposta (gli elettroni e le lacune si spostano fino al raggiungimento dell'equilibrio elettrostatico, che determina un eccesso di carica positiva nella zona n, un eccesso di elettroni nella zona p e una regione intermedia detta regione di svuotamento. Il risultato è un campo elettrico interno al dispositivo che si estende a cavallo della regione di svuotamento, generalmente spessa pochi micrometri. E 0 ZONA P ZONA N REGIONE DI SVUOTAMENTO Figura 4: rappresentazione schematica della giunzione p-n. Quando la giunzione p-n è investita dalla parte del silicio tipo n da un flusso luminoso questo cede energia agli atomi di Silicio portando alcuni elettroni dalla banda di valenza a quella di conduzioni, 2

3 liberando quindi, sia sul lato n che su quello p della coppie elettrone / lacuna, libere a questo punto di muoversi all interno del semiconduttore. Il campo elettrico separa gli elettroni in eccesso generati dall assorbimento della luce dalle rispettive lacune, spingendoli in direzioni opposte, gli elettroni verso la zona n e le lacune verso la zona p. Una volta attraversato il campo, gli elettroni liberi non tornano più indietro, perché il campo, agendo come un diodo, impedisce loro di invertire la marcia. Quindi, se si connette la giunzione p-n con un conduttore, nel circuito esterno si otterrà un flusso di elettroni che parte dallo strato n, a potenziale maggiore, verso lo strato p, a potenziale minore. Fino a quando la cella resta esposta alla luce, l'elettricità fluisce con regolarità sotto forma di corrente continua Efficienza di conversione L energia trasportata dal flusso luminoso è pari a: E = h*υ dove h è la costante di Plank e υ è la frequenza, che è pari al reciproco della lunghezza d onda della radiazione luminosa. υ = 1/λ Nel caso del Silicio l energia necessaria a liberare una coppia elettrone / lacuna è pari all energia associata ad un flusso luminoso avente una lunghezza d onda al massima pari a λ max = 1,15 mm infatti al crescere di λ diminuisce l energia trasportata. 3

4 Pertanto quella parte di radiazione luminosa, pari a circa il 25%, che ha una lunghezza d onda superiore a λ max non sarà in grado di liberare coppie elettrone / lacuna e quindi non potrà essere convertita in energia elettrica, inoltre la restante parte, avente una lunghezza d onda minore di λ max, trasporta una quantità di energia superiore a quanto necessario alla liberazione della coppia elettrone / lacuna, energia che pertanto non potrà essere convertita in energia elettrica ma verrà persa sotto forma di calore. Colore Lunghezza d onda Rosso 0,700 0,645 mm Arancione 0,645 0,585 mm Giallo 0,585 0,575 mm Verde 0,575 0,490 mm Azzurro 0,490 0,455 mm Indaco 0,455 0,425 mm Violetto 0,425 0,380 mm In totale solamente il 44% dell energia incidente sul pannello fotovoltaico ha la lunghezza d onda giusta per liberare l elettrone di valenza, facendolo saltare a elettrone do conduzione. Quindi anche realizzando un pannello ideale questo non potrà mai avere un rendimento superiore al 44%. Fattori che contribuiscono a ridurre il rendimento di conversione al disotto del valore ideale del 44% sono: la riflessione, non tutti i fotoni che incidono sulla cella penetrano al suo interno, dato che in parte vengono riflessi dalla superficie della cella e in parte incidono sulla griglia metallica dei contatti; ricombinazione, non tutte le coppie elettrone-lacuna generate vengono raccolte dal campo elettrico di giunzione e inviate al carico esterno, dato che nel percorso dal punto di generazione verso la giunzione possono incontrare cariche di segno opposto e quindi ricombinarsi; resistenze parassite, le cariche generate e raccolte nella zona di svuotamento devono essere inviate all'esterno tramite contatti metallici posti sul fronte e sul retro della cella. Anche se durante la fabbricazione viene effettuato un processo di lega tra silicio e alluminio dei contatti, resta una certa resistenza all'interfaccia, che provoca una dissipazione che riduce la potenza trasferita al carico. 4

5 1.1.2 Corrente e tensione di cella La cella è l unità costitutiva il pannello fotovoltaico. Ogni cella colpita dalla radiazione solare genera una densità di corrente dell ordine delle decine di milliampere per cm 2 determinando un potenziale di 0,5 1 V. I moduli fotovoltaici in silicio cristallino sono realizzati collegando in serie, normalmente, 28, 36, 64 o 72 celle. Le celle sono collegate in serie tra loro al fine di ottenere la tensione di modulo voluta, pari solitamente a 12 V in condizioni standard. Tipo di cella Area [cm 2 ] V OC I SC Efficienza di cella [%] Silicio monocristallino 4,0 0,706 42,2 24,7 Silicio policristallino 1,1 0,654 38,1 19,8 Silicio amorfo 1,0 0,887 19,4 12,7 CuInGaSe 2 (CIGS) 1,0 0,669 35,7 18,4 CdTe 1,1 0,848 25,9 16,4 Tabella 1: area, tensione a vuoto, corrente di corto circuito e efficienza di cella. 1.2 Struttura di un impianto fotovoltaico Gli impianti fotovoltaici possono essere suddivisi in due macrofamiglie: gli impianti in isola (stand-alone); gli impianti in rete (grid-connected). I principali elementi che costituiscono un impianto fotovoltaico sono: i pannelli fotovoltaici; le stringhe; i quadri di capo; gli inverter; i trasformatori. A seconda del tipo di impianto fotovoltaico, della sua taglio e dell uso che si fa dell energia prodotta alcuni degli elementi sopra riportati potrà essere presente nella struttura dell impianto o meno e potranno esservi ulteriori componenti Impianti isolati Gli impianti isolati (stand-alone) sono impiegati la dove l utenza presenta carichi elettrici di piccola potenza in servizio isolato dalla rete, quali ad esempio l alimentazione di piccoli ripetitori telefonici e radio, rifugi alpini, ecc.. Negli impianti stand-alone l energia elettrica prodotta dall impianto fotovoltaico deve essere accumulata in batterie, per poter essere impiegata nelle ore a bassa o nulla produzione elettrica, quali ad esempio la notte. 5

6 1.2.2 Impianti connessi in rete Gli impianti connessi in rete (grid-connected) sono impianti in grado di cedere l energia prodotta alla rete elettrica. Pertanto non richiedono l accumulo di energia Pannelli fotovoltaici La maggior parte delle celle fotovoltaiche attualmente in commercio sono realizzate tramite semiconduttori in silicio. Le principali tipologie di celle fotovoltaiche sono: celle in silicio monocristallino; celle in silicio policristallino; celle a film sottile. Celle in silicio monocristallino Le celle in silicio monocristallino (Figura 5) sono realizzate a partire da cristalli di silicio ad elevato grado di purezza, che vengo prima fusi e poi fatti solidificare in modo da ottenere un lingotto di forma cilindrica costituito da un monocristallo, avente un diametro compreso tra i 13 e i 20 cm e un altezza di circa 200 cm. Il cristallo viene successivamente tagliato a fette sottili dello spessore di μm, dette celle, che andranno a costituire i moduli o pannelli fotovoltaici, ottenuti collegando tra loro più celle. I pannelli fotovoltaici monocristallini presentano rendimenti tipici minori o uguali al 16%. Figura 5 Celle in silicio policristallino Le celle in silicio policristallino (Figura 6) hanno costi minori delle monocristalline e sono tipicamente ottenute per fusione degli scarti del processo industriale di produzione dei moduli monocristallini. I pannelli fotovoltaici policristallini presentano rendimenti tipici minori o uguali al 14%. Figura 6 6

7 Celle a film sottile Le celle a film sottile (Figura 7 e Figura 8) sono composte da strati di materiale semiconduttore (non sempre è presente il silicio), quali silicio amorfo, telloruro di cadmio, solfuro di cadmio, ecc., depositati generalmente come miscela di gas su supporti a basso costo (vetro, polimeri, alluminio) che danno consistenza fisica alla miscela. I pannelli fotovoltaici a film sottile presentano rendimenti tipici dell ordine del 5 8%. Figura 7 Figura 8 Calcolo del rendimento di pannello Si definiscono condizioni standard (STC standard test condition) per l effettuazione dei test di laboratorio sui pannelli al fine di definirne l efficienza: irraggiamento 1000 W/m 2 ; temperatura del modulo 25 C. Tra i principali dati riportati nella scheda tecnica di un pannello fotovoltaico vi sono: la potenza nominale del pannello; le dimensioni del pannello. Si definisce rendimento di pannello il rapporto tra la potenza in watt e la superficie del pannello in m 2. Ad esempio un pannello da 220 W, avente le seguenti dimensioni: altezza 1644 mm; larghezza 992 mm; profondità 46 mm; avrà un rendimento di pannello pari a: potenza 220 W 134,89 W 0,13489 kw sup erficie (1,644 0,992) m m m si dice, anche se impropriamente essendo il risultato ottenuto non un vero rendimento, il quale dovrebbe essere dimensionale, che il modulo ha un rendimento del 14,45%. Ciò deriva dal fatto che se si divide il risultato ottenuto con un valore d irraggiamento di riferimento, quale ad 1000 W/m 2 si ottiene la percentuale di conversione della potenza solare in potenza elettrica, cioè un rendimento. 7

8 W 134,89 m W m 2 0, , 49% Il pannello in condizioni standard genererà quindi una potenza di 220 W, pari a un rendimento di conversione dell energia solare in energia elettrica del 13,49%. In presenza di un valore di irraggiamento superiore o inferiore ai W/m 2, e al variare della percentuale di luce diretta e diffusa, di temperature di pannello superiori o inferiori a 25 C e di un angolo di incidenza della radiazione solare superiore o inferiore ai 90 la potenza generata dal pannello potrà essere maggiore o minore di 220 W. Radiazione diretta e diffusa La luce che investe il pannello fotovoltaico si divide in irraggiamento: diretto; diffuso; albedo (emissioni elettromagnetiche dei corpi circostanti). La componente di luce diffusa in presenza di celo nuvoloso o nebbia può essere anche maggioritaria. Figura 9: irraggiamento diretto, diffuso e albedo. 8

9 Figura 10: composizione dell'irraggiamento. Le diverse tecnologie di pannelli fotovoltaico hanno una capacità più o meno spinta di percepire la radiazione diffusa. I pannelli in silicio monocristallino sono quelli con minor capacità di conversione della componente diffusa, i policristallino presentano prestazioni migliori in tal senso e i film sottili sono quelli più idonei all installazione in presenza di una rilevante componente di luce diffusa. Nel nord Italia, dove per la presenza di frequenti annuvolamenti o di nebbia i pannelli policristallini risultano più adatti all impiego dei monocristallini. In generale, nel caso di installazione su superfici orientate a nord o a sud \ est o sud \ ovest con forte scostamento da sud, e quindi scarso irraggiamento diretta e conseguente elevata rilevante importanza della componente diffusa, l uso di pannelli a film sottile permette di avere producibilità pari a quelle di un pannello in silicio cristallino perfettamente orientato a sud. Confronto tra pannelli monocristallini, policristallini e amorfi Si monocrstallino Si policrstallino Si amorfo η cella 14% 20% 12% - 15% 5% 10% Vantaggi Rendimento elevato e stabile. Tecnologia affidabile. Minor costo. Tecnologia affidabile. Svantaggi Elevato costo. Minor rendimento. Minori costi. Buon rendimento in presenza di basso irraggiamento e alte temperature. Possibilità d impiego su supporti flessibili. Elevata necessità di spazi a causa del basso rendimento. Tabella 2: confronto tra pannelli monocristallini, policristallini e amorfi Stringhe Ogni pannello fotovoltaico è costituito da un certo numero di celle, solitamente 36 o 72, ogni cella ha ai suoi capi una tensione dell ordine dei 0,5 0,6 V. Un modulo presenta quindi una tensione hai suoi capi dell ordine, tipicamente, di 35 V e una corrente massima di qualche amper (es.: 5 A). Al fine di ottenere la potenza elettrica desiderata, che è data dal prodotto della tensione per la corrente P el [ W ] V * I 9

10 Si collegano più pannelli tra loro in serie, a formare delle stringhe. La tensione ai capi di n pannelli posti in serie è pari alla somma delle tensioni a capi di ogni pannello. V stringa [ volt] n i 1 V i La scelta del valore della tensione generata si basa su considerazioni di ingegneria elettrica relative ad aspetti di sicurezza ed efficienza del sistema, che vanno oltre gli obiettivi di questo corso. In generale i sistemi fotovoltaici per l alimentazione di utenze isolate hanno tensioni nominali in corrente continua piuttosto standardizzate (12, 24, 48, 110 V), in quanto i carichi utilizzati sul mercato (lampade, frigoriferi, televisori, pompe, ecc.) sono disponibili in queste tensioni. Diverso è il discorso per gli impianti fotovoltaici collegati in rete. La rete di distribuzione in media tensione è a V. La tensione, per poter immettere l energia prodotta, dall impianto fotovoltaico, in rete dovrà quindi essere innalzata dal valore a cui è generata al valore di V (paragrafo 1.2.7). In generale tanto maggiore sarà la potenza installata, tanto maggiore dovrà essere la tensione installata, così che a parità di potenza si avrà una minor corrente e quindi minori perdite di energia per effetto joule lungo i cavi di distribuzione e minori perdite di conversione da continua ad alternata. Valori tipici di tensione per gli impianti connessi in rete sono: dal centinaio di volt per gli impianti di piccola taglia; volt per gli impianti di taglia maggiore. La potenza ai capi di una singola stringa sarà pari alla corrente di stringa, pari alla corrente di singolo modulo, per la tensione di stringa. Figura 11: collegamento in serie. Definita la potenza nominale desiderata, ne deriva il numero di moduli da installare. Gli inverter hanno un range ottimale di tensioni in ingresso, per ottenere tale valore di tensione si mettono più moduli in serie, a costituire una stringa, ottenendo così un certo numero di stringhe che collegherò tra loro in parallelo a dare la potenza nominale d impianto desiderata, tramite l impiego di quadri di campo. Ad esempio si considerino 10 pannelli collegati in serie aventi una potenza nominale di 200 W l uno, collegandoli in serie si ottiene una potenza ai capi della stringa di W Quadri di campo Al fine di ottenere una potenza ancora maggiore la stringhe sono collegate tra loro in parallelo tramite dei quadri di campo. I quadri di campo sono provvisti di un sezionatore, solitamente manuale, per togliere tensione lungo la linea che va dal quadro di campo all inverter. I cavi in corrente continua, posti a monte dei quadri di campo, e le stringhe, a cui sono collegati, rimangono invece comunque in tensione. 10

11 Ponendo n stringhe in parallelo si ottiene una potenza pari alla somma delle potenze delle singole stringhe. P[ W ] n i 1 P i I 1 A I 2 B I 3 P[ W ] V I V ( I I I ) V I V I V I P P P AB tot AB AB 1 AB 2 AB Al fine di ottenere un buon bilanciamento del sistema le stringhe sono progettate, in termini di numero, tipologia e orientamento dei moduli, per avere tutte circa la stessa potenza. Analogamente a quanto visto per le stringhe si supponga di collegare in parallelo 10 stringhe da W l una, quello che si ottiene è un sistema avente una potenza di 20 kw Inverter I pannelli fotovoltaici generano corrente continua. La maggior parte delle apparecchiature elettromeccaniche funziona con corrente alternata, così come la rete di distribuzione in media e alta tensione è in alternata. Vi sono delle reti di distribuzione in altissima tensione in continua ma sono la minoranza. L inverter (Figura 12) è un dispositivo la cui funzione è convertire la corrente da continua ad alternata. Per piccoli impianti è possibile adottare inverter da esterni, ovvero inverte provvisti di certificazione per l installazione in ambiente esterno, in grado pertanto di sopportare gli agenti atmosferici. E in ogni caso opportuno proteggere tali dispositivi dall irraggiamento solare diretto, per evitare che d estate si surriscaldino, con conseguente perdita di efficienza di conversione. Per fare ciò è sufficiente installarli a ridosso di un cornicione del tetto o di una parete, che li protegga almeno in parte dalle intemperie e realizzare sul posto una piccola tettoia protettiva. Evitare in ogni caso di installarli in ambienti Figura 12: inverter aurora da 330 kw (non installabile in esterno). 11

12 dove d estate si possono raggiungere temperature troppo elevate. Ad esempio quando il tetto su cui si stanno installando i moduli è realizzato in lamiera, anche qualora al di sotto di questo vi fosse disponibile uno spazio chiuso, quindi protetto dal sole e dalla pioggia, ricordarsi che in simili spazi destate si raggiungono con facilità i 50 C, tali volumi non sono quindi inidonei a ospitare gli inverter. Gli inverter per applicazioni grid-connected hanno lo scopo primario di permettere una conversione della corrente da cc \ ca la più efficiente possibile e sono pertanto provvisti di un dispositivo di inseguimento del punto di massima potenza (MPPT- Maximum Power Point Tracker). Il dispositivo MPPT ha lo scopo di individuare istante per istante il punto sulla curva caratteristica (I;V) (Figura 13) dei moduli fotovoltaici che massimizza la potenza generata. Al variare della radiazione solare varia la curva I-V del pannello, l inverter regola la corrente delle stringhe ad esso collegato così da modificarne i valori di I e V al fine di massimizzare la potenza generata. Figura 13: curva I-V per celle fotovoltaiche e sistema MPPT Trasformatore Compito del trasformatore è innalzare la tensione dal valore di uscita dagli inverter al valore di rete. Abbiamo visto che negli impianti grid-connected l energia elettrica è generata con valori di tensione nell ordine dei V. Nel caso di allacciamento alla rete elettrica in media tensione (vedasi paragrafo ) la tensione dovrà essere innalzata a V. Esistono due macrofamiglie di trasformatori: trasformatori in resina; trasformatori ad olio. Entrare nel merito delle differenze tra i due dispositivi e sull opportunità di impiego dell uno piuttosto che dell altro prescinde dagli obiettivi del presente corso. I trasformatori standard sono progettati per innalzare la tensione dai 380 V ai V. Se il sistema fotovoltaico produce corrente a tensione inferiore ai 380 V, che indicheremo con V1, con V1 < 380 V, è necessario o prevedere l installazione di uno o più trasformatori che innalzino la tensione da V1 fino a 380 V, prima del trasformatore 380 / V, o adottare un trasformatore speciale a / V. Esistono inverter provvisti di trasformatori integrati per l innalzamento della tensione dai valori di campo a 380 V. 12

13 Il vantaggio di adottare una soluzione con trasformatori associati agli inverter per l innalzamento della tensione a 380 V è di poter utilizzare un trasformatore finale 380 / V che essendo standard è di facile e rapide reperibilità sul mercato al contrario di un trasformatore speciale a / V. Svantaggio di una simile soluzione sono le maggiori perdite di conversione. I piccoli trasformatori, per l innalzamento della tensione a 380 V, hanno rendimenti di conversione minori dei trasformatori per l innalzamento a V, con perdite aggiuntive dell ordine dei 2 3 punti percentuali della produzione. Figura 14: trasformatore 400 \ V Punto di consegna Il punto di consegna è fisicamente una sala all interno della quale si trova la quadristica elettrica dove arrivano i cavi elettrici che portano l energia elettrica prodotta dall impianto fotovoltaico e ripartono i cavi elettrici della rete pubblica Perdite del sistema Il rendimento dei pannelli fotovoltaici, che nelle migliori delle ipotesi si aggira intorno al 16% non è il rendimento dell impianto fotovoltaico. Una volta prodotta la corrente in continuo, ai capi delle stringhe, questa andrà ceduta in rete, per gli impianti grid-connected, la corrente dovrà quindi percorrere un tragitto lungo il quale si avranno le seguenti perdite: perdite distribuite lungo i cavi di continua dai moduli fino agli inverter (i cavi in continua sono soggetti a perdite maggiori di trasporto dei cavi in alternata); 13

14 perdite concentrate di conversione da cc /ca; perdite concentrate di trasformazione per l innalzamento della tensione dalla tensione di campo a 380 V; perdite distribuite lungo i cavi di alternata che collegano gli inverter alla sala quadri di BT e al trasformatore; perdite concentrate di trasformazione per l innalzamento della tensione da 380 / V, solo nel caso in cui l allacciamento alla rete pubblica non possa avvenire in BT; perdite distribuite sulla linea di MT che va dal trasformatore al punto di consegna alla rete pubblica; perdite per minori per minor rendimento di pannello dovuto all innalzamento della temperatura del modulo Allacciamento alla rete di distribuzione L allacciamento di impianti di generazione elettrica alla rete di distribuzione dell energia è regolamentata dalla norma CEI IV, agosto 2000, e dalla CEI La prima fa riferimento all allacciamento a reti di BT e MT e la seconda tratta il caso dell allacciamento alla rete di alta tensione (AT V). Recentemente è stata emessa una variante della CEI denominata V1 che tiene conto delle specificità degli impianti fotovoltaici. Potenza impianto Allacciamento BT Allacciamento MT < 100 kw X > 100 kw e < kw X Tabella 3: modalità di allacciamento alla rete di distribuzione. Le norme CEI e la variante V1 prescrivono alcuni dispositivi di protezione che devono intervenire nel caso di guasto o mal funzionamento della rete di distribuzione alla quale l impianto fotovoltaico è collegato. Tali dispositivi sono: dispositivo generale; dispositivo d interfaccia; dispositivo di generatore. 14

15 Figura 15: dispositivi richiesti per l'allacciamento di un impianto fotovoltaico alla rete di distribuzione. Dispositivo generale e dispositivo di generatore Si tratta di un dispositivo automatico posto tra il punto di consegna e il trasformatore, all interno del quadro di MT. Il suo scopo è, in caso di malfunzionamento della rete pubblica o dell impianto, inclusa la necessità di togliere corrente a questo per interventi di manutenzione, sganciare l impianto dalla rete pubblica, togliendo tensione al trasformatore sul lato di MT. Il trasformatore sarà comunque ancora in tensione essendo collegato ai quadri di BT. In ragione di ciò insieme al dispositivo generale dovrà azionarsi il dispositivo d interfaccia (vedasi paragrafo seguente). Nel caso d impianti elettrici tradizionali, quali ad esempio una centrale a turbogas una volta spenta la turbina l impianto non produce più energia elettrica, ma è comunque in tensione essendo collegato fisicamente alla rete pubblica che a sua volta è in tensione. Attivando l interruttore generale si sgancia l impianto, interrompendo fisicamente il collegamento dalla rete pubblica e questo non è più in tensione. Ciò rende possibile effettuare interventi manutentivi in sicurezza, su quelle parti dell impianto usualmente in tensione. Nel caso d impianti fotovoltaici, non essendo possibile spegnere il sole, sganciando l interruttore generale si evita che l impianto sia posto in tensione dalla rete pubblica, ma questo, resta comunque in tensione essendo i pannelli esposti al sole. Alternativamente il dispositivo generale può anche essere installato sul quadro di BT, con il compito di sezionare l impianto tra il trasformatore e il quadro di BT. 15

16 Dispositivo e protezione d interfaccia Quasi tutti gli inverter sono provvisti di protezione e dispositivo d interfaccia, le quali consentono il sezionamento dell impianto scollegando l inverter dalla rete di BT, sezionando quindi la parte d impianto a monte dell inverter (inverter e pannelli) da quanto vi è a valle (cavi in ca, quadristica di BT, trasformatore e linea di MT). Il dispositivo d interfaccia è un interruttore, che è comandato dalla protezione d interfaccia, il quale è un dispositivo costituito da relè di frequenza e di tensione: minima frequenza; massima frequenza; minima tensione; massima tensione. La protezione d interfaccia interviene in caso di sovraccarico o cortocircuito sulla rete Enel o del distributore locale, o mancata alimentazione da parte della rete di distribuzione Poiché spesso capita che siano collegati in parallelo più inverter al fine di raggiungere la potenza voluta la normativa CEI V1 prevede che per un numero di inverter massimo di tre e per potenze minori di 20 kw siano sufficienti i dispositivi d interfaccia presenti sui singoli inverter, in caso contrario è necessario installare un dispositivo / protezione d interfaccia esterno e comune a tutti gli inverter posti a valle di questi, cioè tra questi e il dispositivo generale. Il dispositivo di generatore, dove con generatore s intende l inverter stesso, interviene invece in caso di guasti interni all inverter, staccandolo dal resto dell impianto. Anche in caso di intervento del dispositivo d interfaccia resta comunque in tensione la parte d impianto a valle dell inverter, la quale rimarrà sempre almeno parzialmente in tensione. I quadri di campo sono, a loro volta, provvisti di sezionatori manuali, che permettono di togliere tensione tra i quadri di campo e l inverter, ma anche così resta in tensione la parte dell impianto che va dai pannelli, via cavi in continua, ai quadri di campo, con i conseguenti rischi in caso di interventi manutentivi o eccezionali, quale ad esempio un intervento dei vigili del fuoco in caso d incendio. 16

17 Figura 16: schema di connessione alla rete in BT con dispositivo di interfaccia integrato nell'inverter. Figura 17: schema di connessione alla rete di BT con dispositivo / protezione d'interfaccia unico per più inverter. Dispositivo generale e dispositivo d interfaccia integrati Il dispositivo generale e quello d interfaccia possono coincidere in un unico dispositivo, comandato dalla protezione d interfaccia. 17

18 In Figura 18 il dispositivo generale e quello d interfaccia coincidono in un unico dispositivo posto nel quadro di sinistra. Tra il quadro di sinistra e quello di destra si trova la barra di collegamento alla linea di BT (Figura 19). Mentre nel quadro di destra si trova la protezione d interfaccia con sotto di essa le protezioni di linea, il cui compito e sezionare le linee elettriche di ca dei singoli inverter così da permettere interventi manutentivi su di essi, presi singolarmente, senza dover sezionare l intero impianto. DISPOSITIVO GENERALE E DI INTERFACCIA CON DI FRONTE IL MOTORE DI TRASCINAMENTO PROTEZIONE DI INTERFACCIA PROTEZIONI DI LINEA BARRA DI BT Figura 18: quadro di BT. 18

19 BARRA DI BT MOTORINO DI TRASCINAMENTO DISPOSITIVO GENERALE E D INTERFACCIA Figura 19: vista lato sinistro quadro BT. 19

20 1.3 Dimensionamento di un impianto fotovoltaico Nel dimensionamento di massima di un impianto fotovoltaico si deve tenere conto di due aspetti: la superficie utile disponibile, dalla quale dipende la potenza massima installabile; il fabbisogno elettrico dell utente, almeno che l obiettivo non sia di cedere tutta o buona parte dell energia prodotta in rete Potenza massima installabile La potenza complessiva di picco dell impianto, di prima approssimazione, è calcolata in base alle superfici a disposizione, sulla base delle planimetrie dell area interessata e di un sopralluogo necessario ad individuare eventuali superfici non utilizzabili a causa di fenomeni di ombreggiamento, ad esempio dovuti a palazzi vicini, alberi, impiantistica di servizio presente sui tetti, ecc.. Superfici piane Per superfici perfettamente piane la potenza massima installabile può essere calcolata, tenendo conto degli ombreggiamenti tra file successive di pannelli, secondo la seguente legge ingegneristica: P (kwp) = AREA UTILE (m 2 ) / (8*2.5) (m 2 /kwp) Superfici inclinate Per superfici inclinate la potenza massima installabile può essere calcolata secondo la seguente legge ingegneristica: P (kwp) = AREA UTILE (m 2 ) / 8 (m 2 /kwp) L area utile è calcolata escludendo tutti quegli ostacoli che possono essere causa di ombreggiamento o rendere difficoltoso l accesso all area in fase d installazione, posa cavi e manutenzione, quali: cornici; antenne; impiantistica di servizio (tubazioni; lucernari, impianti di condizionamento, ecc..) Producibilità L irraggiamento, quindi l energia solare disponibile al suolo, è diverso a seconda della latitudine. Tale valore non solo varia molto tra l equatore e i poli ma varia in modo significativo anche tra il Nord e il Sud Italia. Le coordinate geografiche di riferimento utili per determinare l irraggiamento medio annuo sono: - latitudine; - longitudine. In Italia un impianto fotovoltaico con moduli orientati a sud con inclinazione (angolo di tilt, vedasi paragrafo seguente) di 30 presenta valori di producibilità media annua netta molto diversi a seconda della localizzazione. 20

21 I dati sull irraggiamento sono reperibili sul sito: Producibilità Nord kwh/kwp Centro kwh/kwp Sud kwh/kwp dove è sufficiente inserire le coordinate (longitudine e latitudine) del sito dove si intende fare l impianto fotovoltaico per ottenere il valore dell irraggiamento, nonché l angolo di tilt ottimale. Angolo di tilt e azimut L angolo di tilt è l inclinazione del pannello rispetto all asse orizzontale. 30 Più l angolo di incidenza della radiazione solare tende ad essere normale al pannello minore sarà la componente riflessa e quindi maggiore la produzione del pannello. Durante il giorno la posizione del sole varia in cielo, quindi a meno di non utilizzare pannelli ad inseguimento, ovvero pannelli provvisti di un supporto mobile che li orienta costantemente nella direzione del sole, è necessario installare i moduli con un inclinazione che ne massimizzi la produzione. Area geografica Angolo di tilt Italia Bolzano 35 Siracusa 30 Polo Nord 90 Equatore 0 Si definisce angolo di azimut lo scostamento rispetto al sud. L orientamento del pannello deve essere il più possibile verso sud. Il sole sorge a est e tramonta a ovest, e per quasi tutto l anno si trova localizzato nell emisfero sud, per paesi come il nostro che si trovano a nord dell equatore. Pertanto orientando i pannelli a sud si ha la loro massima esposizione al sole durante l anno. Se i pannelli dovessero essere installati con un orientamento non perfettamente sud nord, tanto più l angolo di azimut dovesse essere grande e tanto minore sarà la producibilità del pannello. 21

22 ORIENTAMENTO INCLINAZIONE (orizzontale = 0 - verticale = 90 ) Sud = 0 e Est/Ovest = ,89 0,97 1 0,99 0,93 0,83 0, ,89 0,96 1 0,98 0,93 0,83 0, ,89 0,96 0,99 0,97 0,92 0,82 0, ,89 0,94 0,97 0,95 0,90 0,81 0, ,89 0,93 0,94 0,92 0,87 0,79 0, ,89 0,91 0,91 0,88 0,83 0,76 0, ,89 0,88 0,87 0,83 0,78 0,71 0,62 Tabella 4: energia solare al variare dell'orientamento e dell'inclinazione (dati orientativi) in Italia. Dai dati in Tabella 4 si evince che installando i pannelli con un orientamento (angolo di azimut) di 90, cioè in direzione est o ovest, complanari ad un tetto avente un inclinazione di 90 o su una struttura di supporto a 90 (angolo di tilt) i kwh prodotti per kwp installato saranno il 62% di quelli ottenibili installando il pannello in modo ottimale, si avrà quindi una perdita del 38% della producibilità massima ottenibile installando i pannelli con orientameno a sud e inclinazione dei moduli di 30. Ombreggiamento e diodi di by-pass Se un pannello è parzialmente ombreggiato può essere soggetto o ha un calo di produzione o all annullamento completo della produzione, con conseguente riduzione o completa perdita di produzione dell intera stringa all interno della quale il pannello è inserito. Nella scelta e valutazione delle superfici su cui installare un impianto fotovoltaico si deve fare quindi particolare attenzione alla presenza di elementi che possano proiettare un ombra sui moduli durante le varie ore della giornata. Nel far ciò si deve considerare che: di giorno il movimento del sole modifica la posizione delle ombre proiettate dagli oggetti per terra facendo descrivere a queste un semicerchio; al mattino e al tramonto le ombre sono più lunghe essendo il sole più basso in cielo. In generale dato un oggetto avente un altezza h eventuali pannelli che dovessero essere installati in prossimità di questo andranno posti ad una distanza di almeno 3 volte h. Gli stessi pannelli tendono a farsi ombra tra loro, se posti su strutture di supporto, non è quindi il caso di pannelli posti complanari al tetto, in ragione di ciò ogni fila di pannelli dovrà essere distanziata dalla fila precedente di una distanza pari a 3 volte l altezza della fila precedente. 22

23 h d = 3h I diodi sono dei dispositivi che permettono alla corrente di attraversarli in una solo direzione. Ogni modulo fotovoltaico in silicio cristallino è suddiviso in più zone ognuna provvista di un proprio diodo di by-pass. Se una zona del modulo è soggetta a ombreggiamento le celle che la compongono possono subire o una riduzione della producibilità o in caso di forte ombreggiamento possono arrivare a bloccarsi, impedendo il passaggio della corrente. Un modulo è un sistema costituito da più celle in serie, se una cella ha una riduzione della producibilità tutto il modulo è soggetto a una proporzionale analoga riduzione, inoltre basta che una cella si blocchi per annullare la produzione elettrica dell intero modulo. Ogni diodo è posto in parallelo alla zona del pannello a cui è associato e quindi tale zona del pannello e il diodo si comportano come se fossero due resistenze in parallelo. Dall elettrotecnica sappiamo che la corrente in presenza di due resistenze in parallelo tende a fluire verso la resistenza minore il risultato è che la zona di pannello ombreggiata viene bypassata dalla corrente e si dirige attraverso il diodo, evitando così il blocco del modulo. A sua volta ogni modulo è collegato in serie con altri moduli, a costituire una stringa. Quindi l ombreggiamento di un modulo rischia di compromettere la produzione dell intera stringa, in ragione di ciò spesso i pannelli sono provvisti di un ulteriore diodo di by-pass che in caso di necessità INSTALLAZIONE IN VERTICALE interviene bypassando l intero modulo. 4 file e 3 diodi Ad esempio i moduli in silicio monocristallino sono suddivisi in quattro file, con tre diodi di by-pass. Se l ombra investe una fila di celle, interviene il diodo di fila permettendo alla corrente di bypassare la fila ombreggiata e dirigersi verso la successiva. Nell esempio in Figura 20 un modulo in silicio monocristallino è parzialmente coperto da un ombra, la quale investe esclusivamente la quarta fila di celle. Ciò causa l intervento del terzo diodo che esclude la quarta fila permettendo al modulo di continuare a lavorare. OMBRA Figura 20: modulo in silicio monocristallino, ombra sulla quarta fila. 23

24 INSTALLAZIONE IN ORIZZONTALE Nell esempio in Figura 21 un modulo in silicio monocristallino è parzialmente coperto dalla stessa ombra dell esempio precedente, la disposizione del modulo in assetto orizzontale fa si che l ombra investa tutte e quattro le file di celle. Ciò causa l intervento di tutti i diodi e il non funzionamento dell intero modulo. Con il rischio di perdere l intera produzione di stringa. 4 file e 3 diodi OMBRA Figura 21: modulo in silicio monocristallino, ombra su tutte le quattro file. Calcolo della producibilità attesa Il calcolo della producibilità di un impianto fotovoltaico si calcola a partire dall irraggiamento al metro quadro medio annuo, in presenza di un inclinazione ottimale della superficie incidente. Figura 22: irraggiamento medio annuo per m 2, inclinazione ottimale della superficie incidente. 24

25 A partire dall irraggiamento, kwh / m2, si ricava, noto il rendimento atteso di pannello, e le perdite del sistema attese, la producibilità annua per kwp installato, misurata in kwh / kwp. La producibilità lorda attesa sarà pari a: Producibilità lorda (kwh/kwp) = Irraggiamento (kwh/m^2) * rendimento pannello * superficie al kwp (m^2/kwp) Mentre la producibilità netta si calcola tenendo conto delle perdite del sistema: Producibilità netta (kwh/kwp) = producibilità lorda (kwh/kwp) * (1 perdite concentrate perdite distribuite perdite per riflessione perdite per temperatura) Esempio di calcolo della producibilità attesa per un impianto sito in Brescia Irraggiamento Brescia: kwh/m^2. Rendimento pannello policristallino: 0,14. Superficie al kwp: ~ 8 m^2/kwp. Perdite: temperatura (9,5%) + riflessione (2,5%) + concentrate, distribuite e inverter (14%) + trasformatore (2%) = 28%. Producibilità lorda (kwh/kwp) = (kwh/m 2 ) * 0,14 * 8 (m 2 /kwp) = (kwh/kwp) Producibilità netta (kwh/kwp) = (kwh/kwp) * (1-0,28) = (kwh/kwp) Esempio di calcolo della producibilità attesa per un impianto sito ad Augusta (Sicilia) In meridione si hanno valori di producibilità significativamente maggiori grazie al maggior valore di irraggiamento, controbilanciati, in piccola parte, da maggiori perdite per temperatura. Irraggiamento Augusta: kwh/m^2. Rendimento pannello policristallino: 0,14. Superficie al kwp: ~ 8 m^2/kwp. Perdite: temperatura (11%) + riflessione (2,5%) + concentrate, distribuite e inverter (14%) + trasformatore (2%) = 29,5%. Producibilità lorda (kwh/kwp) = (kwh/m 2 ) * 0,14 * 8 (m 2 /kwp) = (kwh/kwp) Producibilità netta (kwh/kwp) = (kwh/kwp) * (1-0,295) = (kwh/kwp) 25

26 Figura 23: irraggiamento e producibilità attesa in Italia. I valori di producibilità attesa, in funzione della località considerata, possono essere presi dal sito: 26

27 Figura 24: pagina internet per il calcolo della producibilità attesa. 27

28 Figura 25: una volta indicata la località, schermata precedente, selezionare Calculate. Il sito fornisce anche l indicazione dell azimut e dell angolo di tilt ottimali e i valori ipotizzati di rendimento di pannello e le perdite stimate. Tutti questi valori possono essere all occorrenza settati diversamente. Figura 26: ipotesi del sistema. 28

29 Figura 27: producibilità attesa per Augusta. Come si può vedere il valore di producibilità attesa calcolata dal sito, kwh/kwp, non si discosta di molto dal valore da noi stimato, sulla base di una valore di irraggiamento medio annuo atteso preso dalla cartina di Figura 23, lato destro. 29

IMPIANTI FOTOVOLTAICI IN CONTO ENERGIA

IMPIANTI FOTOVOLTAICI IN CONTO ENERGIA IMPIANTI FOTOVOLTAICI IN CONTO ENERGIA Un impianto solare fotovoltaico consente di trasformare l energia solare in energia elettrica. Non va confuso con un impianto solare termico, che è sostanzialmente

Dettagli

IMPIANTI FOTOVOLTAICI PER LA PRODUZIONE DI ENERGIA ELETTRICA INSTALLATI SU EDIFICI

IMPIANTI FOTOVOLTAICI PER LA PRODUZIONE DI ENERGIA ELETTRICA INSTALLATI SU EDIFICI IMPIANTI FOTOVOLTAICI PER LA PRODUZIONE DI ENERGIA ELETTRICA INSTALLATI SU EDIFICI LINEE D INDIRIZZO PER LA VALUTAZIONE DEI RISCHI CORRELATI ALL INSTALLAZIONE DI IMPIANTI FOTOVOTAICI SU EDIFICI DESTINATI

Dettagli

Cos è il fotovoltaico?

Cos è il fotovoltaico? Cos è il fotovoltaico? Il termine fotovoltaico si spiega (quasi) da solo: è composto dalla parola greca phos (=luce) e Volt (=unitá di misura della tensione elettrica). Si tratta dunque della trasformazione

Dettagli

I CIRCUITI ELETTRICI

I CIRCUITI ELETTRICI I CIRCUITI ELETTRICI Ogni dispositivo elettronico funziona grazie a dei circuiti elettrici. Le grandezze che descrivono un circuito elettrico sono: l intensità di corrente elettrica (i), cioè la carica

Dettagli

REALIZZAZIONE DI N 3 IMPIANTI FOTOVOLTAICI CONNESSI ALLA RETE ELETTRICA DI DISTRIBUZIONE

REALIZZAZIONE DI N 3 IMPIANTI FOTOVOLTAICI CONNESSI ALLA RETE ELETTRICA DI DISTRIBUZIONE Comune di CELLE LIGURE (SV) REALIZZAZIONE DI N 3 IMPIANTI FOTOVOLTAICI CONNESSI ALLA RETE ELETTRICA DI DISTRIBUZIONE MAGAZZINO PALAZZETTO TRIBUNA PROGETTO ESECUTIVO RELAZIONE GENERALE Impianto: Impianto

Dettagli

PROGETTO DI UN IMPIANTO FOTOVOLTAICO GRID-CONNECTED PER IL MUNICIPIO DI PRIOLO GARGALLO (SR)

PROGETTO DI UN IMPIANTO FOTOVOLTAICO GRID-CONNECTED PER IL MUNICIPIO DI PRIOLO GARGALLO (SR) PROGETTO DI UN IMPIANTO FOTOVOLTAICO GRID-CONNECTED PER IL MUNICIPIO DI PRIOLO GARGALLO (SR) RELAZIONE TECNICA ILLUSTRATIVA 0 PREMESSA... 2 1 IDENTIFICAZIONE DELLA TIPOLOGIA D IMPIANTO... 3 2 COMPONENTI

Dettagli

Pannelli Solari Termici. Parete esterna verticale. Tipologia di. inserimento. I pannelli solari termici sono inseriti sulla parete esterna verticale

Pannelli Solari Termici. Parete esterna verticale. Tipologia di. inserimento. I pannelli solari termici sono inseriti sulla parete esterna verticale Pannelli Solari Termici Parete esterna verticale I pannelli solari termici sono inseriti sulla parete esterna verticale dell edificio. Pannelli Solari Termici Parete esterna verticale e parapetti Legenda

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca Trascrizione del testo e redazione delle soluzioni di Paolo Cavallo. La prova Il candidato svolga una relazione

Dettagli

Impianti Solari Fotovoltaici

Impianti Solari Fotovoltaici Impianti Solari Fotovoltaici Sono da considerarsi energie rinnovabili quelle forme di energia generate da fonti che per loro caratteristica intrinseca si rigenerano o non sono "esauribili" nella scala

Dettagli

Quaderni di applicazione tecnica N.10 Impianti fotovoltaici

Quaderni di applicazione tecnica N.10 Impianti fotovoltaici Quaderni di applicazione tecnica N.10 Quaderni di Applicazione Tecnica Indice Introduzione... 4 1 Generalità sugli impianti fotovoltaici... 5 1.1 Principio di funzionamento... 5 1.2 Energia del sole...

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre 2003 1

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre 2003 1 CAPITOLO I CORRENTE ELETTRICA Copyright ISHTAR - Ottobre 2003 1 INDICE CORRENTE ELETTRICA...3 INTENSITÀ DI CORRENTE...4 Carica elettrica...4 LE CORRENTI CONTINUE O STAZIONARIE...5 CARICA ELETTRICA ELEMENTARE...6

Dettagli

La corrente elettrica

La corrente elettrica PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio La corrente elettrica Sommario 1) Corrente elettrica

Dettagli

Riscaldamento dell acqua con pannelli fotovoltaici

Riscaldamento dell acqua con pannelli fotovoltaici RISCALDATORI DI ACQUA IBRIDI LOGITEX LX AC, LX AC/M, LX AC/M+K Gamma di modelli invenzione brevettata Riscaldamento dell acqua con pannelli fotovoltaici Catalogo dei prodotti Riscaldatore dell acqua Logitex

Dettagli

Camera di combustione Struttura chiusa dentro cui un combustibile viene bruciato per riscaldare aria o altro.

Camera di combustione Struttura chiusa dentro cui un combustibile viene bruciato per riscaldare aria o altro. C Caldaia L'unità centrale scambiatore termico-bruciatore destinata a trasmettere all'acqua il calore prodotto dalla combustione. v. Camera di combustione, Centrali termiche, Efficienza di un impianto

Dettagli

Unità 12. La corrente elettrica

Unità 12. La corrente elettrica Unità 12 La corrente elettrica L elettricità risiede nell atomo Modello dell atomo: al centro c è il nucleo formato da protoni e neutroni ben legati tra di loro; in orbita intorno al nucleo si trovano

Dettagli

Istituto per l Energia Rinnovabile. Autori: David Moser, PhD; Daniele Vettorato, PhD. Bolzano, Gennaio 2013

Istituto per l Energia Rinnovabile. Autori: David Moser, PhD; Daniele Vettorato, PhD. Bolzano, Gennaio 2013 Istituto per l Energia Rinnovabile Catasto Solare Alta Val di Non Relazione Versione: 2.0 Autori: David Moser, PhD; Daniele Vettorato, PhD. Coordinamento e Revisione: dott. Daniele Vettorato, PhD (daniele.vettorato@eurac.edu)

Dettagli

ESPERIENZA N 8: UNA CELLA SOLARE CASALINGA PROPRIETÀ E APPLICAZIONI:

ESPERIENZA N 8: UNA CELLA SOLARE CASALINGA PROPRIETÀ E APPLICAZIONI: ESPERIENZA N 8: UNA CELLA SOLARE CASALINGA PROPRIETÀ E APPLICAZIONI: La cella solare è un spositivo per la trasformazione energia luminosa in energia elettrica. L applicazione più nota questi tipi spositivi

Dettagli

Lo schema a blocchi di uno spettrofotometro

Lo schema a blocchi di uno spettrofotometro Prof.ssa Grazia Maria La Torre è il seguente: Lo schema a blocchi di uno spettrofotometro SORGENTE SISTEMA DISPERSIVO CELLA PORTACAMPIONI RIVELATORE REGISTRATORE LA SORGENTE delle radiazioni elettromagnetiche

Dettagli

AC Anywhere. Inverter. Manuale utente. F5C400u140W, F5C400u300W F5C400eb140W e F5C400eb300W

AC Anywhere. Inverter. Manuale utente. F5C400u140W, F5C400u300W F5C400eb140W e F5C400eb300W AC Anywhere Inverter (prodotto di classe II) Manuale utente F5C400u140W, F5C400u300W F5C400eb140W e F5C400eb300W Leggere attentamente le istruzioni riguardanti l installazione e l utilizzo prima di utilizzare

Dettagli

RELAZIONE DI IMPATTO AMBIENTALE

RELAZIONE DI IMPATTO AMBIENTALE RELAZIONE DI IMPATTO AMBIENTALE Fattori di impatto ambientale Un sistema fotovoltaico non crea un impatto ambientale importante, visto che tale tecnologia è utilizzata per il risparmio energetico. I fattori

Dettagli

Analogia tra il circuito elettrico e il circuito idraulico

Analogia tra il circuito elettrico e il circuito idraulico UNIVERSITÁ DEGLI STUDI DELL AQUILA Scuola di Specializzazione per la Formazione degli Insegnanti nella Scuola Secondaria Analogia tra il circuito elettrico e il circuito idraulico Prof. Umberto Buontempo

Dettagli

1. Diodi. figura 1. figura 2

1. Diodi. figura 1. figura 2 1. Diodi 1.1. Funzionamento 1.1.1. Drogaggio 1.1.2. Campo elettrico di buil-in 1.1.3. Larghezza della zona di svuotamento 1.1.4. Curve caratteristiche Polarizzazione Polarizzazione diretta Polarizzazione

Dettagli

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante Circuiti Elettrici Schema riassuntivo Leggi fondamentali dei circuiti elettrici lineari Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante La conseguenza

Dettagli

GRUPPI REFRIGERANTI ALIMENTATI AD ACQUA CALDA

GRUPPI REFRIGERANTI ALIMENTATI AD ACQUA CALDA GRUPPI REFRIGERANTI ALIMENTATI AD ACQUA CALDA 1 Specifiche tecniche WFC-SC 10, 20 & 30 Ver. 03.04 SERIE WFC-SC. SEZIONE 1: SPECIFICHE TECNICHE 1 Indice Ver. 03.04 1. Informazioni generali Pagina 1.1 Designazione

Dettagli

fotovoltaico chiavi in mano

fotovoltaico chiavi in mano chiavi in mano 1 Tetto a falda - silicio monocristallino ad altissima efficienza / disponibile da 1 a 20KWp I moduli fotovoltaici più efficienti al mondo (19,5%) ed inverters di stringa SUNPOWER garantiti

Dettagli

Inizia presentazione

Inizia presentazione Inizia presentazione Che si misura in ampère può essere generata In simboli A da pile dal movimento di spire conduttrici all interno di campi magnetici come per esempio nelle dinamo e negli alternatori

Dettagli

LE FONTI ENERGETICHE.

LE FONTI ENERGETICHE. LE FONTI ENERGETICHE. Il problema La maggior parte dell'energia delle fonti non rinnovabili è costituita dai combustibili fossili quali carbone, petrolio e gas naturale che ricoprono l'80% del fabbisogno

Dettagli

1 LA CORRENTE ELETTRICA CONTINUA

1 LA CORRENTE ELETTRICA CONTINUA 1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo

Dettagli

Vetro e risparmio energetico Controllo solare. Bollettino tecnico

Vetro e risparmio energetico Controllo solare. Bollettino tecnico Vetro e risparmio energetico Controllo solare Bollettino tecnico Introduzione Oltre a consentire l ingresso di luce e a permettere la visione verso l esterno, le finestre lasciano entrare anche la radiazione

Dettagli

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t; CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S

Dettagli

SVILUPPO SOSTENIBILE L ENERGIA FOTOVOLTAICA

SVILUPPO SOSTENIBILE L ENERGIA FOTOVOLTAICA SVILUPPO SOSTENIBILE L ENERGIA FOTOVOLTAICA 22 3 sommario L energia...................................................... 3 Energia dal sole................................................. 4 Quanta energia?..................................................

Dettagli

Manuale d uso. Per abitazioni, baite, camper, caravan, barche

Manuale d uso. Per abitazioni, baite, camper, caravan, barche Manuale d uso Regolatore di carica EP5 con crepuscolare Per abitazioni, baite, camper, caravan, barche ITALIANO IMPORTANTI INFORMAZIONI SULLA SICUREZZA Questo manuale contiene importanti informazioni sulla

Dettagli

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE a cura di G. SIMONELLI Nel motore a corrente continua si distinguono un sistema di eccitazione o sistema induttore che è fisicamente

Dettagli

SEGNI GRAFICI E SIMBOLI ELETTRICI PER SCHEMI DI IMPIANTO

SEGNI GRAFICI E SIMBOLI ELETTRICI PER SCHEMI DI IMPIANTO LA PROTEZIONE DELLE CONDUTTURE CONTRO LE SOVRACORRENTI DEFINIZIONI NORMA CEI 64-8/2 TIPOLOGIE DI SOVRACORRENTI + ESEMPI SEGNI GRAFICI E SIMBOLI ELETTRICI PER SCHEMI DI IMPIANTO DISPOSITIVI DI PROTEZIONE

Dettagli

Ing Guido Picci Ing Silvano Compagnoni

Ing Guido Picci Ing Silvano Compagnoni Condensatori per rifasamento industriale in Bassa Tensione: tecnologia e caratteristiche. Ing Guido Picci Ing Silvano Compagnoni 1 Tecnologia dei condensatori Costruzione Com è noto, il principio costruttivo

Dettagli

REGOLE TECNICHE PER LA CONNESSIONE DI IMPIANTI DI PRODUZIONE DI ENERGIA ELETTRICA

REGOLE TECNICHE PER LA CONNESSIONE DI IMPIANTI DI PRODUZIONE DI ENERGIA ELETTRICA RTC REGOLE TECNICHE PER LA CONNESSIONE DI IMPIANTI DI PRODUZIONE DI ENERGIA ELETTRICA ALLA RETE DI DISTRIBUZIONE IN BASSA TENSIONE DELL AZIENDA PUBBLISERVIZI BRUNICO INDICE 1. Scopo 3 2. Campo di applicazione

Dettagli

ENERGIE RINNOVABILI FOTO VOLTAICO

ENERGIE RINNOVABILI FOTO VOLTAICO ENERGIE RINNOVABILI FOTO VOLTAICO INDICE DEI CONTENUTI 00. PREMESSA...3 01. L AMBIENTE...4 02. SALVAGUARDARE L AMBIENTE...5 03. L ENERGIA...6 04. FONTI DELL ENERGIA ELETTRICA...7 05. FOTO VOLTAICO...8

Dettagli

La corrente elettrica

La corrente elettrica Unità didattica 8 La corrente elettrica Competenze Costruire semplici circuiti elettrici e spiegare il modello di spostamento delle cariche elettriche. Definire l intensità di corrente, la resistenza e

Dettagli

Le Armoniche INTRODUZIONE RIFASAMENTO DEI TRASFORMATORI - MT / BT

Le Armoniche INTRODUZIONE RIFASAMENTO DEI TRASFORMATORI - MT / BT Le Armoniche INTRODUZIONE Data una grandezza sinusoidale (fondamentale) si definisce armonica una grandezza sinusoidale di frequenza multipla. L ordine dell armonica è il rapporto tra la sua frequenza

Dettagli

Strumenti Elettronici Analogici/Numerici

Strumenti Elettronici Analogici/Numerici Facoltà di Ingegneria Università degli Studi di Firenze Dipartimento di Elettronica e Telecomunicazioni Strumenti Elettronici Analogici/Numerici Ing. Andrea Zanobini Dipartimento di Elettronica e Telecomunicazioni

Dettagli

SOFTWARE PV*SOL. Programma di simulazione dinamica per calcolare dimensionamento e rendimento di impianti fotovoltaici

SOFTWARE PV*SOL. Programma di simulazione dinamica per calcolare dimensionamento e rendimento di impianti fotovoltaici SOFTWARE PV*SOL Programma di simulazione dinamica per calcolare dimensionamento e rendimento di impianti fotovoltaici Introduzione PV*SOL è un software per il dimensionamento e la simulazione dinamica,

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

2. FONDAMENTI DELLA TECNOLOGIA

2. FONDAMENTI DELLA TECNOLOGIA 2. FONDAMENTI DELLA TECNOLOGIA 2.1 Principio del processo La saldatura a resistenza a pressione si fonda sulla produzione di una giunzione intima, per effetto dell energia termica e meccanica. L energia

Dettagli

PRODUZIONE DI ENERGIA ELETTRICA COME E PERCHÉ

PRODUZIONE DI ENERGIA ELETTRICA COME E PERCHÉ PRODUZIONE DI ENERGIA ELETTRICA COME E PERCHÉ Perché produrre energia elettrica Tutta la società moderna si basa sul consumo di energia, per fare qualsiasi attività necessitiamo di qualche forma di energia.

Dettagli

Teoria quantistica della conduzione nei solidi e modello a bande

Teoria quantistica della conduzione nei solidi e modello a bande Teoria quantistica della conduzione nei solidi e modello a bande Obiettivi - Descrivere il comportamento quantistico di un elettrone in un cristallo unidimensionale - Spiegare l origine delle bande di

Dettagli

IMPIANTI ELETTRICI CIVILI

IMPIANTI ELETTRICI CIVILI UNIVERSITA DEGLI STUDI DI FIRENZE Facoltà di Architettura Corso di Fisica Tecnica Ambientale Prof. F. Sciurpi - Prof. S. Secchi A.A. A 2011-20122012 IMPIANTI ELETTRICI CIVILI Per. Ind. Luca Baglioni Dott.

Dettagli

PROTEZIONE DAI CONTATTI DIRETTI ED INDIRETTI

PROTEZIONE DAI CONTATTI DIRETTI ED INDIRETTI PROTEZIONE DAI CONTATTI DIRETTI ED INDIRETTI Appunti a cura dell Ing. Emanuela Pazzola Tutore del corso di Elettrotecnica per meccanici, chimici e biomedici A.A. 2005/2006 Facoltà d Ingegneria dell Università

Dettagli

CABLAGGI ED ISTRUZIONI DI UTILIZZO

CABLAGGI ED ISTRUZIONI DI UTILIZZO VALIDO PER MOD. DTCHARGE E 1000 CABLAGGI ED ISTRUZIONI DI UTILIZZO LEGGERE CON CURA IN OGNI SUA PARTE PRIMA DI ALIMENTARE TOGLIAMO IL COPERCHIO, COSA FARE?? Il DTWind monta alternatori tri fase. Ne consegue

Dettagli

Cognome... Nome... LE CORRENTI MARINE

Cognome... Nome... LE CORRENTI MARINE Cognome... Nome... LE CORRENTI MARINE Le correnti marine sono masse d acqua che si spostano in superficie o in profondità negli oceani: sono paragonabili a enormi fiumi che scorrono lentamente (in media

Dettagli

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente Unità G16 - La corrente elettrica continua La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente 1 Lezione 1 - La corrente elettrica

Dettagli

La corrente elettrica

La corrente elettrica La corrente elettrica La corrente elettrica è un movimento di cariche elettriche che hanno tutte lo stesso segno e si muovono nello stesso verso. Si ha corrente quando: 1. Ci sono cariche elettriche; 2.

Dettagli

2.1 Difetti stechiometrici Variano la composizione del cristallo con la presenza di elementi diversi dalla natura dello stesso.

2.1 Difetti stechiometrici Variano la composizione del cristallo con la presenza di elementi diversi dalla natura dello stesso. 2. I difetti nei cristalli In un cristallo perfetto (o ideale) tutti gli atomi occuperebbero le corrette posizioni reticolari nella struttura cristallina. Un tale cristallo perfetto potrebbe esistere,

Dettagli

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico 1.1 Lo schema di misurazione Le principali grandezze elettriche che caratterizzano un bipolo in corrente continua, quali per esempio

Dettagli

Gli interruttori ABB nei quadri di bassa tensione

Gli interruttori ABB nei quadri di bassa tensione Dicembre 2006 Gli interruttori ABB nei quadri di bassa tensione 1SDC007103G0902 Gli interruttori ABB nei quadri di bassa tensione Indice Introduzione... 2 1 Il riscaldamento nei quadri elettrici 1.1 Generalità...

Dettagli

EFFETTO ANTIGHIACCIO: La potenza occorrente al metro quadro per prevenire la

EFFETTO ANTIGHIACCIO: La potenza occorrente al metro quadro per prevenire la Sistema scaldante resistivo per la protezione antighiaccio ed antineve di superfici esterne Il sistema scaldante ha lo scopo di evitare la formazione di ghiaccio e l accumulo di neve su superfici esterne

Dettagli

CENTRALINA ELETTRONICA FAR Art. 9600-9612 - 9613

CENTRALINA ELETTRONICA FAR Art. 9600-9612 - 9613 CENTRALINA ELETTRONICA FAR Art. 9600-9612 - 9613 MANUALE D ISTRUZIONE SEMPLIFICATO La centralina elettronica FAR art. 9600-9612-9613 è adatta all utilizzo su impianti di riscaldamento dotati di valvola

Dettagli

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione 1. L elettrone ha una massa di 9.1 10-31 kg ed una carica elettrica di -1.6 10-19 C. Ricordando che la forza gravitazionale

Dettagli

Inverter e connessione alla rete alla rete elettrica

Inverter e connessione alla rete alla rete elettrica SPECIALE TECNICO Inverter e connessione alla rete alla rete elettrica Francesco Groppi Comitato Elettrotecnico Italiano (CEI, CT82, Working Group 2 Inverter) SPONSOR www.fronius.com www.mastervoltsolar.it

Dettagli

Informazione Tecnica Derating termico per Sunny Boy e Sunny Tripower

Informazione Tecnica Derating termico per Sunny Boy e Sunny Tripower Informazione Tecnica Derating termico per Sunny Boy e Sunny Tripower Mediante il derating termico l inverter riduce la propria potenza per proteggere i propri componenti dal surriscaldamento. Il presente

Dettagli

Serie 12 - Interruttore orario 16 A. Caratteristiche SERIE 12 12.01 12.11 12.31

Serie 12 - Interruttore orario 16 A. Caratteristiche SERIE 12 12.01 12.11 12.31 Serie - nterruttore orario 16 A SERE Caratteristiche.01.11.31 nterruttore orario elettromeccanico - Giornaliero * - Settimanale ** Tipo.01-1 contatto in scambio 16 A larghezza 35.8 mm Tipo.11-1 contatto

Dettagli

GRUPPO DI CONTINUITA' 12 V - BATTERIA BACKUP

GRUPPO DI CONTINUITA' 12 V - BATTERIA BACKUP GRUPPO DI CONTINUITA' 12 V - BATTERIA BACKUP Salve, questo circuito nasce dall'esigenza pratica di garantire continuità di funzionamento in caso di blackout (accidentale o provocato da malintenzionati)

Dettagli

I testi sono così divisi: HOME. PRODUZIONE DI ENERGIA VERDE o Energia eolica o Energia fotovoltaica o Energia a biomassa

I testi sono così divisi: HOME. PRODUZIONE DI ENERGIA VERDE o Energia eolica o Energia fotovoltaica o Energia a biomassa Testi informativi sugli interventi e gli incentivi statali in materia di eco-efficienza industriale per la pubblicazione sul sito web di Unioncamere Campania. I testi sono così divisi: HOME EFFICIENTAMENTO

Dettagli

SOLARE AEROVOLTAICO. R-Volt. L energia fronte-retro. www.systovi.com FABBRICATO IN FRANCIA

SOLARE AEROVOLTAICO. R-Volt. L energia fronte-retro. www.systovi.com FABBRICATO IN FRANCIA SOLARE AEROVOLTAICO L energia fronte-retro www.systovi.com FABBRICATO IN FRANCIA SISTEMA BREVETTATO IL PUNTO DI RIFERIMENTO PER IL RISPARMIO ENERGETICO E IL COMFORT TERMICO Effetto fronte-retro Recupero

Dettagli

LE FONTI DI ENERGIA RINNOVABILE IN ITALIA

LE FONTI DI ENERGIA RINNOVABILE IN ITALIA LE FONTI DI ENERGIA RINNOVABILE IN ITALIA Prof. Federico Rossi UNIVERSITA DEGLI STUDI DI PERUGIA Polo Scientifico Didattico di Terni PRINCIPALI RIFERIMENTI NORMATIVI DLgs 16 marzo 1999 n. 79 (Decreto Bersani):

Dettagli

Guida alla progettazione

Guida alla progettazione Guida alla progettazione Introduzione Gli Smart Module ampliano significativamente le possibilità di progettazione degli impianti fotovoltaici. I moduli ottimizzati con la tecnologia Tigo Energy possono

Dettagli

Alle nostre latitudini la domanda di

Alle nostre latitudini la domanda di minergie Protezioni solari con lamelle, in parte fisse, e gronde Benessere ter edifici ed effi Nella società contemporanea trascorriamo la maggior parte del nostro tempo in spazi confinati, in particolare

Dettagli

Elettrificatori per recinti

Elettrificatori per recinti Elettrificatori per recinti 721 Cod. R315527 Elettri catore multifunzione PASTORELLO SUPER PRO 10.000 Articolo professionale, dotato di rotoregolatore a 3 posizioni per 3 diverse elettroscariche. Può funzionare

Dettagli

FUNZIONAMENTO DI UN BJT

FUNZIONAMENTO DI UN BJT IL TRANSISTOR BJT Il transistor inventato nel 1947, dai ricercatori Bardeen e Brattain, è il componente simbolo dell elettronica. Ideato in un primo momento, come sostituto delle valvole a vuoto per amplificare

Dettagli

LAVORO, ENERGIA E POTENZA

LAVORO, ENERGIA E POTENZA LAVORO, ENERGIA E POTENZA Nel linguaggio comune, la parola lavoro è applicata a qualsiasi forma di attività, fisica o mentale, che sia in grado di produrre un risultato. In fisica la parola lavoro ha un

Dettagli

Concetti di base sulla CORRENTE ELETTRICA

Concetti di base sulla CORRENTE ELETTRICA Concetti di base sulla CORRENTE ELETTRICA Argomenti principali Concetti fondamentali sull'atomo, conduttori elettrici, campo elettrico, generatore elettrico Concetto di circuito elettrico (generatore-carico)

Dettagli

In un collegamento in parallelo ogni lampadina ha. sorgente di energia (pile) del circuito. i elettrici casalinghi, dove tutti gli utilizzatori sono

In un collegamento in parallelo ogni lampadina ha. sorgente di energia (pile) del circuito. i elettrici casalinghi, dove tutti gli utilizzatori sono I CIRCUITI ELETTRICI di CHIARA FORCELLINI Materiale Usato: 5 lampadine Mammut 4 pile da 1,5 volt (6Volt)+Portabatteria Tester (amperometro e voltmetro) I circuiti in Parallelo In un collegamento in parallelo

Dettagli

PERICOLI DERIVANTI DALLA CORRENTE ELETTRICA

PERICOLI DERIVANTI DALLA CORRENTE ELETTRICA PERICOLI DERIVANTI DALLA CORRENTE ELETTRICA CONTATTI DIRETTI contatti con elementi attivi dell impianto elettrico che normalmente sono in tensione CONTATTI INDIRETTI contatti con masse che possono trovarsi

Dettagli

Capitolo 4 Protezione dai contatti indiretti.

Capitolo 4 Protezione dai contatti indiretti. Capitolo 4 Protezione dai contatti indiretti. La protezione contro i contatti indiretti consiste nel prendere le misure intese a proteggere le persone contro i pericoli risultanti dal contatto con parti

Dettagli

Impianti fotovoltaici

Impianti fotovoltaici saeg Impianti fotovoltaici che manda calore e luce che giungono ai nostri sensi e ne risplendono le terre - Inno al SOLE FONTE DI TUTTA L ENERGIA SULLA TERRA calor lumenque profusum perveniunt nostros

Dettagli

< 3-4 metri/secondo. 3-4 metri/secondo. 4-5 metri/secondo. 5-6 metri/secondo. 6-7 metri/secondo. 7-8 metri/secondo.

< 3-4 metri/secondo. 3-4 metri/secondo. 4-5 metri/secondo. 5-6 metri/secondo. 6-7 metri/secondo. 7-8 metri/secondo. Chi abita in una zona ventosa può decidere di sfruttare il vento per produrre energia elettrica per gli usi domestici. In modo simile al fotovoltaico godrà di incentivi per la realizzazione, ma prima è

Dettagli

REGIONE ABRUZZO ARAEN ENERGIOCHI

REGIONE ABRUZZO ARAEN ENERGIOCHI REGIONE ABRUZZO ARAEN ENERGIOCHI Presentazione per le scuole primarie A cura di Enrico Forcucci, Paola Di Giacomo e Alessandra Santini ni Promuovere la conoscenza e la diffusione delle energie provenienti

Dettagli

Protezione dai contatti indiretti

Protezione dai contatti indiretti Protezione dai contatti indiretti Se una persona entra in contatto contemporaneamente con due parti di un impianto a potenziale diverso si trova sottoposto ad una tensione che può essere pericolosa. l

Dettagli

RESISTIVITA ELETTRICA DELLE POLVERI: MISURA E SIGNIFICATO PER LA SICUREZZA

RESISTIVITA ELETTRICA DELLE POLVERI: MISURA E SIGNIFICATO PER LA SICUREZZA RESISTIVITA ELETTRICA DELLE POLVERI: MISURA E SIGNIFICATO PER LA SICUREZZA Nicola Mazzei - Antonella Mazzei Stazione sperimentale per i Combustibili - Viale A. De Gasperi, 3-20097 San Donato Milanese Tel.:

Dettagli

IMPIANTO FOTOVOLTAICO DELLA POTENZA DI 540kWp DA REALIZZARSI A RESANA (TV)

IMPIANTO FOTOVOLTAICO DELLA POTENZA DI 540kWp DA REALIZZARSI A RESANA (TV) IMPIANTO FOTOVOLTAICO DELLA POTENZA DI 540kWp DA REALIZZARSI A RESANA (TV) Individuazione del sito di installazione Il sito individuato per la realizzazione dell Impianto Fotovoltaico si trova nel Comune

Dettagli

IMPIANTI ELETTTRICI parte II

IMPIANTI ELETTTRICI parte II IMPIANTI ELETTTRICI parte II di Delucca Ing. Diego PROTEZIONE DI UN IMPIANTO DAI SOVRACCARICHI E DAI CORTO CIRCUITI Una corrente I che passa in un cavo di sezione S, di portata IZ è chiamata di sovracorrente

Dettagli

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj 61- Quand è che volumi uguali di gas perfetti diversi possono contenere lo stesso numero di molecole? A) Quando hanno uguale pressione e temperatura diversa B) Quando hanno uguale temperatura e pressione

Dettagli

Energie rinnovabili - energie di fonti energetiche inesauribili - sono un importante alternativa rispetto allo sfruttamento delle fonti energetiche

Energie rinnovabili - energie di fonti energetiche inesauribili - sono un importante alternativa rispetto allo sfruttamento delle fonti energetiche Energie rinnovabili - energie di fonti energetiche inesauribili - sono un importante alternativa rispetto allo sfruttamento delle fonti energetiche tradizionali. Il principo dell uso è di deviare energie

Dettagli

La potenza della natura, il controllo della tecnologia Dall esperienza ABB, OVR PV: protezione dalle sovratensioni in impianti fotovoltaici

La potenza della natura, il controllo della tecnologia Dall esperienza ABB, OVR PV: protezione dalle sovratensioni in impianti fotovoltaici La potenza della natura, il controllo della tecnologia Dall esperienza ABB, OVR PV: protezione dalle sovratensioni in impianti fotovoltaici Fatti per il sole, minacciati dalle scariche atmosferiche L importanza

Dettagli

L=F x s lavoro motore massimo

L=F x s lavoro motore massimo 1 IL LAVORO Nel linguaggio scientifico la parola lavoro indica una grandezza fisica ben determinata. Un uomo che sposta un libro da uno scaffale basso ad uno più alto è un fenomeno in cui c è una forza

Dettagli

Circuiti in Corrente Continua (direct current=dc) RIASSUNTO: La carica elettrica La corrente elettrica Il Potenziale Elettrico La legge di Ohm Il

Circuiti in Corrente Continua (direct current=dc) RIASSUNTO: La carica elettrica La corrente elettrica Il Potenziale Elettrico La legge di Ohm Il Circuiti in Corrente Continua direct currentdc ASSUNTO: La carica elettrica La corrente elettrica l Potenziale Elettrico La legge di Ohm l resistore codice dei colori esistenze in serie ed in parallelo

Dettagli

Altezza del sole sull orizzonte nel corso dell anno

Altezza del sole sull orizzonte nel corso dell anno Lucia Corbo e Nicola Scarpel Altezza del sole sull orizzonte nel corso dell anno 2 SD ALTEZZA DEL SOLE E LATITUDINE Per il moto di Rivoluzione che la Terra compie in un anno intorno al Sole, ad un osservatore

Dettagli

INVERTER per MOTORI ASINCRONI TRIFASI

INVERTER per MOTORI ASINCRONI TRIFASI APPUNTI DI ELETTROTECNICA INVERTER per MOTORI ASINCRONI TRIFASI A cosa servono e come funzionano A cura di Marco Dal Prà www.marcodalpra.it Versione n. 3.3 - Marzo 2013 Inverter Guida Tecnica Ver 3.3 Pag.

Dettagli

Consigli per la compilazione del questionario

Consigli per la compilazione del questionario Istruzioni per l accesso al SIAD e la compilazione della scheda Normativa Il Decreto Ministeriale del 14 gennaio 2012 ha definito che il GSE si occupi della rilevazione degli impianti con potenza fino

Dettagli

Brushless. Brushless

Brushless. Brushless Motori Motori in in corrente corrente continua continua Brushless Brushless 69 Guida alla scelta di motori a corrente continua Brushless Riduttore 90 Riddutore Coppia massima (Nm)! 0,6,7 30 W 5,5 max.

Dettagli

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione.

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. COMPETENZE MINIME- INDIRIZZO : ELETTROTECNICA ED AUTOMAZIONE 1) CORSO ORDINARIO Disciplina: ELETTROTECNICA

Dettagli

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015 Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015 Piano di lavoro annuale Materia : Fisica Classi Quinte Blocchi tematici Competenze Traguardi formativi

Dettagli

funzionamento degli accumulatori al piombo/acido.

funzionamento degli accumulatori al piombo/acido. Il triangolo dell Incendio Possibili cause d incendio: I carrelli elevatori Particolare attenzione nella individuazione delle cause di un incendio va posta ai carrelli elevatori, normalmente presenti nelle

Dettagli

/ * " 6 7 -" 1< " *,Ê ½, /, "6, /, Ê, 9Ê -" 1/ " - ÜÜÜ Ìi «V Ì

/ *  6 7 - 1<  *,Ê ½, /, 6, /, Ê, 9Ê - 1/  - ÜÜÜ Ìi «V Ì LA TRASMISSIONE DEL CALORE GENERALITÀ 16a Allorché si abbiano due corpi a differenti temperature, la temperatura del corpo più caldo diminuisce, mentre la temperatura di quello più freddo aumenta. La progressiva

Dettagli

Ecco come funziona un sistema di recinzione!

Ecco come funziona un sistema di recinzione! Ecco come funziona un sistema di recinzione! A) Recinto elettrico B) Fili elettrici C) Isolatori D) Paletti E) Paletti messa a terra 3 m 3 m 1 m Assicurarsi che ci siano almeno 2500V in tutta la linea

Dettagli

LAVORI DI MANUTENZIONE SU IMPIANTI ELETTRICI. Disposizioni per l esecuzione di lavori in tensione -- Programma LEONARDO

LAVORI DI MANUTENZIONE SU IMPIANTI ELETTRICI. Disposizioni per l esecuzione di lavori in tensione -- Programma LEONARDO LAVORI DI MANUTENZIONE SU IMPIANTI ELETTRICI Lavori di manutenzione su impianti elettrici Manutenzione Atto, effetto, insieme delle operazioni volte allo scopo di mantenere efficiente ed in buono stato,

Dettagli

Progetto Obiettivo Ambiente, Risparmio Energetico Ed Energie Alternative G.A.I.A.

Progetto Obiettivo Ambiente, Risparmio Energetico Ed Energie Alternative G.A.I.A. Progetto Obiettivo Ambiente, Risparmio Energetico Ed Energie Alternative G.A.I.A. Scenario tecnico ed economico sulla produzione di energia da Fonti Rinnovabili Relatore Ing. Francesco Matera Realizzato

Dettagli

Corrente elettrica (regime stazionario)

Corrente elettrica (regime stazionario) Corrente elettrica (regime stazionario) Metalli Corrente elettrica Legge di Ohm Resistori Collegamento di resistori Generatori di forza elettromotrice Metalli Struttura cristallina: ripetizione di unita`

Dettagli

SUPERCONDUTTIVITÀ. A cura di: Andrea Sosso I.N.RI.M. (IEN)

SUPERCONDUTTIVITÀ. A cura di: Andrea Sosso I.N.RI.M. (IEN) SUPERCONDUTTIVITÀ A cura di: Andrea Sosso I.N.RI.M. (IEN) Il fenomeno della superconduttività è stato osservato per la prima volta nel 1911 dal fisico olandese Heike Kamerlingh Onnes dell'università de

Dettagli