Verifica di Topografia

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Verifica di Topografia"

Transcript

1 ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI " In Memoria dei Morti per la Patria " * CHIAVARI * ANNO SCOLASTICO Verifica di Topografia classe 3^ Geometri 1) In un appezzamento a forma triangolare, la lunghezza di un cateto è pari a 5.2 m e la lunghezza dell ipotenusa è di 8.3 m. Si può calcolare l ampiezza dell angolo tra essi compreso? 2) Se la tangente di un angolo è positiva, esso angolo è sicuramente del 1 quadrante? 3) E vero che il seno della somma di due angoli è uguale al seno di un terzo angolo quando la somma dei tre angoli è pari a un angolo piatto? 4) In un appezzamento a forma triangolare, la lunghezza di un cateto è pari a 5.2 m e la lunghezza dell ipotenusa è di 8.3 m. Si po applicare il teorema del coseno? 5) In un appezzamento a forma triangolare, la lunghezza di un cateto è pari a 5.2 m e la lunghezza dell altro cateto è di 8.3 m. E vero che l angolo tra essi compreso è costante? 6) Se la tangente di un angolo è negativa, esso angolo è sicuramente del 4 quadrante? 7) In un appezzamento a forma triangolare, la lunghezza di un cateto è pari a 5.2 m e la lunghezza dell altro cateto è di 8.3 m. E vero che si può applicare il teorema dei seni per ricavare la lunghezza dell ipotenusa? 8) In un appezzamento a forma triangolare, la lunghezza di un cateto è pari a 5.2 m e la lunghezza dell altro cateto è di 8.3 m. Si deve

2 usare la formula inversa della tangente per ricavare l ampiezza dell angolo opposto al cateto più grande? 9) In un appezzamento a forma triangolare, la lunghezza di un cateto è pari a 5.2 m e la lunghezza dell altro cateto è di 8.3 m. E possibile l utilizzo del teorema di Pitagora per ricavare la lunghezza dell ipotenusa? 10) In un appezzamento a forma triangolare, la lunghezza di un cateto è pari a 5.2 m e la lunghezza dell ipotenusa è di 8.3 m. Posso utilizzare il teorema di Pitagora per ricavare la lunghezza dell altro cateto? 11) In un appezzamento a forma triangolare, la lunghezza di un cateto è pari a 5.2 m e la lunghezza dell ipotenusa è di 8.3 m. Si può calcolare la lunghezza del perimetro dell appezzamento? 12) In un appezzamento a forma triangolare, la lunghezza di un lato è pari a 52.2 m e la lunghezza di un altro lato è di 83.3 m. Si può calcolare l ampiezza dell angolo tra essi compreso se il lato opposto è lungo 75.5 m? 13) In un triangolo rettangolo se il coseno di un angolo vale 0,5 allora un cateto è lungo la metà dell ipotenusa? 14) In un appezzamento a forma triangolare, la lunghezza di un lato è pari a 52.2 m e la lunghezza di un altro lato è di 83.3 m. Si può calcolare la lunghezza del perimetro dell appezzamento se l angolo tra essi compreso è ampio 60,000? 15) In un triangolo rettangolo la somma degli angoli acuti interni è sempre un angolo retto? 16) Tutti gli elementi di un triangolo si possono determinare solo se del triangolo stesso si misurano 3 lati? 17) Nella circonferenza goniometrica, la lunghezza della proiezione del punto generico P, della circonferenza stessa, sull asse delle ascisse rappresenta il coseno dell angolo di rotazione del raggio OP in senso orario rispetto all asse delle ordinate? 18) 58,5000 gradi sessadecimali equivalgono a 65 gradi centesimali? 19) Se la tangente di un angolo è infinitamente grande, l angolo in gradi sessagesimali al massimo è ampio 90?

3 20) Se il seno e il coseno di un angolo sono entrambi negativi, esso angolo è sicuramente del 3 quadrante? 21) Se il seno e il coseno di un angolo sono di segno opposto, esso angolo è sicuramente del 2 quadrante? 22) 65 gradi centesimali equivalgono a gradi sessagesimali? 23) Se il seno di un angolo vale 0.5 può il coseno dello stesso valere 0.5? 24) Se il seno di un angolo vale 0.5 può il coseno dell angolo ad esso complementare valere sempre 0.5? 25) Tutti gli elementi di un triangolo si possono determinare solo se del triangolo stesso si misurano 2 elementi più un lato? 26) Il teorema del coseno, si può applicare se un triangolo è ottusangolo? 27) Nel caso di un triangolo acutangolo si deve applicare solo il teorema dei coseni? 28) In un triangolo rettangolo se la tangente di un angolo vale 0,5 allora un cateto è lungo la metà dell altro? 29) Si può applicare il teorema dei coseni in un triangolo se di esso si è misurata la lunghezza di due lati oltre agli angoli? 30) Si può applicare il teorema dei seni in un triangolo se di esso si sono misurate le lunghezze dei lati? 31) Si può applicare il teorema dei seni in un triangolo se di esso si è misurata la lunghezza di due lati oltre all angolo compreso tra i due lati stessi? 32) Si può applicare il teorema dei coseni in un triangolo se di esso si è misurata solo la lunghezza di due lati oltre all angolo opposto ad uno dei due lati stessi? 33) E vero che il seno della somma di due angoli è uguale al seno di un terzo angolo quando la somma dei tre angoli è pari a un angolo retto? 34) E vero che in un triangolo qualsiasi il seno di un angolo è uguale al coseno della somma degli altri 2 angoli? 35) E vero che in un triangolo rettangolo il seno di un angolo non retto è uguale al coseno dell altro angolo non retto?

4 36) E vero che in un triangolo rettangolo la tangente di un angolo non retto è uguale alla cotangente dell altro angolo non retto? 37) E vero che un triangolo isoscele rettangolo è noto completamente se si conosce la lunghezza dell ipotenusa? 38) E vero che un triangolo isoscele rettangolo è noto completamente se si conosce la lunghezza di un cateto? 39) E vero che in un triangolo qualsiasi è costante il rapporto tra un lato e il seno del relativo angolo opposto? 40) E vero che il coseno di un angolo retto è uguale a 1? 41) Se in un triangolo il rapporto tra un lato e il seno dell angolo opposto è costante, allora, per il triangolo rettangolo, questa costante è pari alla lunghezza dell ipotenusa? 42) In un triangolo rettangolo, il rapporto tra un cateto e il coseno del suo angolo opposto è uguale alla lunghezza dell ipotenusa? 43) In un triangolo rettangolo, il rapporto tra un cateto e il seno del suo angolo adiacente non retto è uguale alla lunghezza dell ipotenusa? 44) In un triangolo rettangolo, l ipotenusa per il seno di un angolo adiacente è uguale all ipotenusa per il coseno dell altro angolo adiacente? 45) Nel rilievo topografico, la coltellazione è un metodo che serve esclusivamente per misurare distanze? 46) E vero che il filo a piombo è in grado di individuare la verticale? 47) E vero che le paline topografiche possono essere colorate bianche e rosse a tratti di 20 cm? 48) E vero che gli errori accidentali si commettono malgrado la nostra volontà? 49) E vero che gli errori grossolani si eliminano attraverso osservazioni ripetute della stessa grandezza? 50) E vero che gli errori sistematici hanno lo stesso segno? 51) E vero che le entità degli errori sistematici e accidentali non sono conosciute e quindi incorreggibili? 52) E vero che una volta calcolata la media aritmetica, la somma degli scarti, tra questa, e le singole osservazioni è nulla?

5 53) In un triangolo rettangolo se il seno di un angolo vale 0,5 allora un cateto è lungo la metà dell ipotenusa? 54) E vero che in un triangolo rettangolo può essere isoscele ma non equilatero? 55) Le paline topografiche hanno una funzione di aiuto nell individuare un allineamento topografico? 56) E vero che gli scarti, tra la media aritmetica di più osservazioni e le osservazioni stesse, sono sempre positivi? 57) E vero che la somma degli scarti, tra la media aritmetica di più osservazioni e le osservazioni stesse, posti al quadrato è fondamentale per il calcolo dello scarto quadratico medio delle singole osservazioni? 58) E vero che la somma degli scarti, tra la media aritmetica di più osservazioni e le osservazioni stesse, posti al quadrato è fondamentale per il calcolo dello scarto quadratico medio della media? 59) E vero che per trasformare un angolo da gradi centesimali a gradi sessadecimali basta moltiplicarlo per 0,9? 60) E vero che angoli molto piccoli possono essere sostituiti dalla loro conversione nel sistema radiante? 61) E vero che per trasformare un angolo da gradi sessadecimali a gradi centesimali basta dividerlo per 0,9? 62) Per avere un angolo in radianti occorre moltiplicarlo per pi greco dopo averlo diviso per 180 gradi sessadecimali? 63) Per esprimere un angolo sessagesimali in radianti occorre moltiplicarlo per pi greco dopo averlo diviso per 180 gradi sessagesimali? 64) Un cateto di un triangolo rettangolo è sempre minore della somma degli altri due lati dello stesso triangolo? 65) Per esprimere un angolo sessadecimale in radianti occorre moltiplicarlo per pi greco dopo averlo diviso per 180 gradi sessadecimali? 66) Per esprimere un angolo sessagesimale in gradi sessadecimali occorre dividerne i secondi per 60, sommare il risultato ai primi,

6 dividerne la somma per 60 e aggiungere infine il tutto ai gradi, che restano invariati? 67) Una proporzione si scrive rispettando l eguaglianza del rapporto tra i dati posti al primo membro e quelli posti al secondo membro? 68) In una proporzione, il prodotto dei medi è sempre uguale al prodotto degli estremi? 69) Nei due membri di una proporzione, eseguendone il rapporto, si deve ottenere un numero adimensionale uguale. 70) Il sistema di misura angolare centesimale prevede che esistano 4 quadranti positivi e 4 negativi? 71) Il sistema di misura angolare centesimale ha come massimo angolo un angolo di 100 gradi? 72) Il sistema di misura angolare radiante ha come massima misura angolare 2 pi greco? 73) Il sistema di misura angolare sessadecimale ha come misura angolare dell angolo piatto ? 74) E vero che un angolo pari a pi greco radianti è uguale ad un angolo di 200 gradi centesimali? 75) E vero che l angolo espresso in radianti abbisogna di 7 decimali per ottenere risultati topograficamente utili? 76) E vero che un angolo giro espresso in gradi centesimali contiene di secondi centesimali? 77) E vero che un angolo giro in gradi sessagesimali contiene secondi sessagesimali? 78) E vero che un radiante è ampio quanto secondi sessagesimali circa? 79) E vero che un secondo sessagesimale corrisponde a circa 3 secondi centesimali? 80) E vero che in un primo sessagesimale sono contenuti 60 secondi sessagesimali? 81) In un triangolo rettangolo la somma del seno al quadrato di un angolo non retto più il coseno al quadrato dello stesso angolo è uguale a 1? 82) E vero che a 100 secondi sessadecimali corrispondono 100 secondi centesimali?

7 83) E vero che a 15 secondi sessagesimali corrispondono 25 secondi centesimali? 84) E vero che un secondo sessagesimale può essere suddiviso in 1000 millesimi di secondo? 85) Il triangolo rettangolo ha un angolo che vale pi greco mezzi? 86) La tangente di un angolo, in un triangolo rettangolo, è data dal rapporto tra i due cateti a piacere? 87) La tangente di un angolo non retto, in un triangolo rettangolo, è data dal rapporto tra il cateto ad esso opposto e quello adiacente? 88) In un triangolo rettangolo, la relazione tra due cateti si esprime utilizzando il coseno di uno dei due angoli non retti? 89) In un triangolo rettangolo, la relazione tra due cateti si esprime utilizzando la cotangente di uno dei due angoli non retti? 90) 27 gradi sessadecimali corrispondono a 30 gradi centesimali? 91) In un triangolo rettangolo, la relazione tra un cateto e l ipotenusa si esprime utilizzando il seno dell angolo tra essi compreso? 92) In un triangolo rettangolo, la relazione tra un cateto e l ipotenusa si esprime utilizzando il coseno dell angolo tra essi compreso? 93) Il filo a piombo è detto così perché perpendicolare sempre a un piano? 94) In un triangolo rettangolo, la relazione tra un cateto e l ipotenusa si esprime utilizzando il seno dell angolo non compreso tra essi lati? 95) In un triangolo rettangolo, la relazione tra un cateto e l ipotenusa si esprime utilizzando il coseno dell angolo non compreso tra essi lati? 96) Il triplometro ha generalmente di serie una livella per poter essere tenuto orizzontale? 97) Nella circonferenza goniometrica il raggio è adimensionale. Allora anche il seno e il coseno dell angolo formato dal raggio OP che ruota in senso orario sono adimensionali? 98) E vero che il seno di un angolo è uguale al seno del suo angolo supplementare? 99) E vero che il seno di un angolo è uguale al coseno del suo angolo complementare?

Questionario di GONIOMETRIA. per la classe 3^ Geometri

Questionario di GONIOMETRIA. per la classe 3^ Geometri Questionario di GONIOMETRIA per la classe 3^ Geometri Questo questionario è impostato su 33 domande disponibili e ideate per la verifica prevista dopo la parte di corso fino ad oggi svolta. Tutte le domande

Dettagli

Verifica di Topografia

Verifica di Topografia ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI " In Memoria dei Morti per la Patria " * CHIAVARI * ANNO SCOLASTICO 2010-2011 Verifica di Topografia classe 5^ Geometri 1) Se il seno e il coseno di

Dettagli

I.I.S. "Morea-Vivarelli" -- Fabriano CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONE GRAFICA

I.I.S. Morea-Vivarelli -- Fabriano CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONE GRAFICA I.I.S. "Morea-Vivarelli" -- Fabriano CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONE GRAFICA Classe II a Agrario Modulo A UNITÀ 1 ANGOLI E FUNZIONI GONIOMETRICHE AMODULO PROVE Questionario Vero/Falso

Dettagli

Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3.

Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3. MODULO 3 LEZIONE 3 parte 2 Trigonometria: La risoluzione dei triangoli. Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che

Dettagli

TRIGONOMETRIA E COORDINATE

TRIGONOMETRIA E COORDINATE Y Y () X O (Y Y ) - α X (X X ) 200 c TRIGONOMETRI E OORDINTE ngoli e sistemi di misura angolare Funzioni trigonometriche Risoluzione dei triangoli rettangoli Risoluzione dei poligoni Risoluzione dei triangoli

Dettagli

Test sui triangoli. Vengono presentate 25 domande a risposta multipla, risolte e commentate.

Test sui triangoli. Vengono presentate 25 domande a risposta multipla, risolte e commentate. Test sui triangoli In questa dispensa vengono proposti dei test di verifica relativi alle nozioni di geometria piana sui triangoli, in particolare, la classificazione dei triangoli, i criteri di uguaglianza

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA GONIOMETRIA E TRIGONOMETRIA Dr. Erasmo Modica erasmo@galois.it RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice

Dettagli

Risoluzione dei triangoli rettangoli

Risoluzione dei triangoli rettangoli Risoluzione dei triangoli rettangoli In questa dispensa esamineremo il problema della risoluzione dei triangoli rettangoli. Riprendendo la definizione di seno e coseno, mostreremo come questi si possano

Dettagli

Repetitorium trigonometriae - per immagini

Repetitorium trigonometriae - per immagini Repetitorium trigonometriae - per immagini Regole di base Ipotenusa Opposto Adiacente Tenendo a mente la seguente nomenclatura di un triangolo rettangolo si ha: sin = Opposto Ipotenusa cos = Adiacente

Dettagli

TRIGONOMETRIA. Un angolo si misura in gradi. Un grado è la novantesima parte di un angolo retto.

TRIGONOMETRIA. Un angolo si misura in gradi. Un grado è la novantesima parte di un angolo retto. TRIGONOMETRIA DA RICORDARE: Due angoli si dicono supplementari quando la loro somma è pari a 80 Due angoli si dicono complementari quando la loro somma è pari a 90 Due angoli si dicono opposti quando la

Dettagli

GEOMETRIA ANALITICA. Il Piano cartesiano

GEOMETRIA ANALITICA. Il Piano cartesiano GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,

Dettagli

CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015

CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 Lezione del 3 NOVEMBRE 2015 GEOMETRIA CRITERI DI CONGRUENZA FRA TRIANGOLI IL SIMBOLO indica la congruenza PRIMO CRITERIO DI CONGRUENZA: Se due triangoli

Dettagli

--- Domande a Risposta Multipla --- Numeri, Frazioni e Potenze

--- Domande a Risposta Multipla --- Numeri, Frazioni e Potenze Corso Zero di Matematica per FARMACIA A.A. 009/0 Prof. Massimo Panzica Università degli Studi di Palermo FARMACIA CORSO ZERO DI MATEMATICA 009/0 --- Domande a Risposta Multipla --- Numeri, Frazioni e Potenze

Dettagli

FORMULARIO DEI TRIANGOLI

FORMULARIO DEI TRIANGOLI RISOLUZIONE TRIANGOLI GENERICI Pagina 1 di 15 FORMULARIO DEI TRIANGOLI Teorema di Pitagora OP= 1 PP = sen OP = cos QQ = tan = Definizione seno Definizione coseno Definizione tangente TT = cotan = Consideriano

Dettagli

MATEMATICA: Compiti delle vacanze Estate 2015

MATEMATICA: Compiti delle vacanze Estate 2015 MATEMATICA: Compiti delle vacanze Estate 2015 Classe II a PRIMA PARTE Ecco una raccolta degli esercizi sugli argomenti svolti quest anno: risolvili sul tuo quaderno! Per algebra ho inserito anche una piccola

Dettagli

Il Piano Cartesiano Goniometrico

Il Piano Cartesiano Goniometrico Valori di seno e coseno per angoli multipli di / Il Piano Cartesiano Goniometrico Seno e coseno: valori per angoli particolari September 1, 010 Valori di seno e coseno per angoli multipli di / Sommario

Dettagli

APPUNTI DI GONIOMETRIA

APPUNTI DI GONIOMETRIA APPUNTI DI GONIOMETRIA RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice angolo ciascuna delle due parti in cui un piano è diviso da due semirette aventi la stessa origine. Definizione: Dicesi

Dettagli

UNITÀ DIDATTICA 3 FUNZIONI GONIOMETRICHE

UNITÀ DIDATTICA 3 FUNZIONI GONIOMETRICHE UNITÀ DIDATTICA FUNZIONI GONIOMETRICHE 1 La misura degli angoli In ogni circonferenza è possibile definire una corrispondenza biunivoca tra angoli al centro e archi: a ogni angolo al centro corrisponde

Dettagli

QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE

QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE relativo a TRIGONOMETRIA a cura di Mariacristina Fornasari, Daniela Mari, Giuliano Mazzanti, Valter Roselli, Luigi Tomasi 1 1) Un angolo misura 315 o. La sua misura

Dettagli

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5 GEOMETRIA 01. Se il raggio di un cerchio dimezza, la sua area diventa: 1/ b) 1/4 c) / d) 1/5 0. Quanto misura il lato di un quadrato la cui area è equivalente a quella di un triangolo che ha la base di

Dettagli

Angoli e loro misure

Angoli e loro misure Angoli e loro misure R s Unità di misura: gradi, minuti, secondi 1 o =60' 1'=60'' Es: 35 o 41'1'' radianti α(rad) s R Angolo giro = 360 o = R/R = rad R=1 arco rad Es.: angolo retto R Arco 4 : se R=1 π

Dettagli

SENO, COSENO E TANGENTE DI UN ANGOLO

SENO, COSENO E TANGENTE DI UN ANGOLO Goniometria e trigonometria Misurare gli angoli nel sistema circolare L unità di misura del sistema circolare è il radiante def. Un radiante è la misura di un angolo alla circonferenza che sottende un

Dettagli

LE FUNZIONI GONIOMETRICHE

LE FUNZIONI GONIOMETRICHE LE FUNZIONI GONIOMETRICHE La misura degli angoli Si chiama angolo la porzione di piano racchiusa tra due semirette. Angolo convesso Angolo concavo Le unità di misura degli angoli sono: il grado sessagesimale

Dettagli

Capitolo 1 - Elementi di trigonometria

Capitolo 1 - Elementi di trigonometria Capitolo 1 - Elementi di trigonometria 1.1 Unità di misura angolari Esistono quattro unità di misura principali degli angoli: sessagesimali, sessadecimali, centesimali e radianti. Negli angoli sessagesimali

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa

Dettagli

Corso di Matematica - Docente Iulita Massimo. Corso di Matematica - Docente Iulita Massimo 11 ottobre 2017

Corso di Matematica - Docente Iulita Massimo. Corso di Matematica - Docente Iulita Massimo 11 ottobre 2017 11 ottobre 2017 Corso di Matematica - Docente Iulita Massimo Documento riassuntivo delle lezioni #settimana 1 #settimana2 Docente: Iulita Massimo 11/10/2017 Definizione di angolo Angolo La geometria definisce

Dettagli

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0.

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0. CLASSE 3^ C LICEO SCIENTIFICO Novembre 01 La circonferenza 1. Ricava l equazione di ciascuna delle circonferenze rappresentate, spiegando in maniera esauriente il procedimento che seguirai, prima di svolgere

Dettagli

Funzioni goniometriche di angoli notevoli

Funzioni goniometriche di angoli notevoli Funzioni goniometriche di angoli notevoli In questa dispensa calcoleremo il valore delle funzioni goniometriche per gli angoli notevoli di 30, 45 e 60. Dopo aver richiamato il concetto di sezione aurea

Dettagli

Applicazioni dei teoremi di Pitagora ed Euclide

Applicazioni dei teoremi di Pitagora ed Euclide Utilizzando le misure di segmenti e superfici si possono riscrivere i teoremi di Pitagora ed Euclide per il triangolo rettangolo: Teorema di Pitagora: 1 + c i c = 1 Teorema di Euclide: c p i 1 = 1 c =

Dettagli

FUNZIONI GONIOMETRICHE

FUNZIONI GONIOMETRICHE FUNZIONI GONIOMETRICHE ANGOLI Col termine angolo indichiamo la parte di piano limitata da due semirette aventi la stessa origine, chiamata vertice. Possiamo definire anche l angolo come la parte di piano

Dettagli

che ci permette di passare da un sistema di misura all'altro con le:

che ci permette di passare da un sistema di misura all'altro con le: Goniometria Misura degli angoli Gli angoli vengono spesso misurati in gradi sessagesimali (1 = 1/360 dell'angolo giro), anche se una Legge dello Stato italiano del 1960 impone di esprimerli in radianti.

Dettagli

I TRIANGOLI AB < AC + BC

I TRIANGOLI AB < AC + BC I TRIANGOLI Il triangolo è un poligono formato da tre angoli e da tre lati: rappresenta la figura più semplice in assoluto, in quanto 3 è il numero minimo di segmenti necessari per delimitare una superficie

Dettagli

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Dr. Andrea Malizia Prof. Maria Guerrisi 1 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Sistemi di riferimento e spostamento 2 Sistemi di riferimento e spostamento

Dettagli

Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh

Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh Geometria - 0 Triangoli qualunque somma degli angoli interni, calcolo del perimetro e dell area Oggetti Vertici Lati Angoli Altezza Raggio Simbolo A, B, C a, b, c,, h S, r Perimetro = + + Somma angoli

Dettagli

I TRIANGOLI. Esistono vari tipi di triangoli che vengono classificati in base ai lati e agli angoli.

I TRIANGOLI. Esistono vari tipi di triangoli che vengono classificati in base ai lati e agli angoli. I TRIANGOLI Il triangolo è un poligono formato da tre angoli o vertici e da tre lati. Il triangolo è la forma geometrica con il minor numero di lati perché tre è il numero minimo di lati con cui si può

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

Trigonometria angoli e misure

Trigonometria angoli e misure Trigonometria angoli e misure ITIS Feltrinelli anno scolastico 27-28 R. Folgieri 27-28 1 Angoli e gradi Due semirette che condividono la stessa origine danno luogo ad un angolo. Le due semirette (che si

Dettagli

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono

Dettagli

1 I solidi a superficie curva

1 I solidi a superficie curva 1 I solidi a superficie curva PROPRIETÀ. Un punto che ruota attorno ad un asse determina una circonferenza. PROPRIETÀ. Una linea, un segmento o una retta che ruotano attorno ad un asse determinano una

Dettagli

Consolidamento conoscenze. 1. Scrivi l enunciato del teorema di Pitagora. In ogni.

Consolidamento conoscenze. 1. Scrivi l enunciato del teorema di Pitagora. In ogni. onsolidamento conoscenze 1. Scrivi l enunciato del teorema di Pitagora. In ogni.. Siano c, e i rispettivamente i cateti e l ipotenusa di un triangolo rettangolo, quale delle seguenti scritture esprime

Dettagli

Indice del vocabolario della Geometria euclidea

Indice del vocabolario della Geometria euclidea Indice del vocabolario della Geometria euclidea 1 Postulati di appartenenza: piano, retta e punto nello spazio Punto, retta, piano nello spazio Punto, retta nel piano Punto nella retta Punto esterno alla

Dettagli

LA CIRCONFERENZA e IL CERCHIO

LA CIRCONFERENZA e IL CERCHIO LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più

Dettagli

I TRIANGOLI AB < AC + BC

I TRIANGOLI AB < AC + BC I TRIANGOLI Il triangolo è un poligono formato da tre angoli e da tre lati: rappresenta la figura più semplice in assoluto, in quanto 3 è il numero minimo di segmenti necessari per delimitare una superficie

Dettagli

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE REGOLA DELLA SEMPLIFICAZIONE DELLE AREE Ogni formula di calcolo delle aree dei poligoni può essere espressa tramite una frazione avente al numeratore un prodotto di due valori e un unico valore al denominatore.

Dettagli

Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa.

Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa. Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa. Lato Vertice Angolo interno Angolo esterno I lati del poligono sono segmenti che costituiscono la linea spezzata.

Dettagli

Geometria euclidea. Alessio del Vigna

Geometria euclidea. Alessio del Vigna Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,

Dettagli

Le grandezze fisiche scalari sono completamente definite da un numero e da una unità di misura.

Le grandezze fisiche scalari sono completamente definite da un numero e da una unità di misura. UNITÀ 3 LE GRANDEZZE FISICHE VETTORIALI E I VETTORI 1. Grandezze fisiche scalari e vettoriali. 2. I vettori. 3. Le operazioni con i vettori. 4. Addizione e sottrazione di vettori. 5. Prodotto di un numero

Dettagli

Ministero della Difesa Direzione Generale per il Personale Militare I Reparto

Ministero della Difesa Direzione Generale per il Personale Militare I Reparto Ministero della Difesa Direzione Generale per il Personale Militare I Reparto Concorso Interno, per titoli ed esami, a 300 posti per l ammissione al 20 corso di aggiornamento e formazione professionale

Dettagli

IL TRIANGOLO. Teorema di Pitagora. Il triangolo è un poligono avente tre lati.

IL TRIANGOLO. Teorema di Pitagora. Il triangolo è un poligono avente tre lati. IL TRIANGOLO Il triangolo è un poligono avente tre lati. FORMULE AREA: Il triangolo è equivalente a metà parallelogramma. A = (b x h) : da cui: b= A : h e h= A : b TRIANGOLO RETTANGOLO (a, b cateti; c

Dettagli

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE CORSO DI TECNOLOGIE E TECNICHE DI RARESENTAZIONI GRAFICHE ER L ISTITUTO TECNICO SETTORE TECNOLOGICO Agraria, Agroalimentare e Agroindustria classe seconda ARTE RIMA Disegno del rilievo Unità Didattica:

Dettagli

GEOMETRIA. Congruenza, angoli e segmenti

GEOMETRIA. Congruenza, angoli e segmenti GEOMETRIA Per affermare che un triangolo è isoscele o rettangolo oppure che un quadrilatero è un parallelogramma o un rettangolo o un rombo o un quadrato o un trapezio o un trapezio isoscele, c è sempre

Dettagli

Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa.

Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. IL TEOREMA DI PITAGORA Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. ENUNCIATO: la somma dei quadrati costruiti sui

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni CLASSIFICAZIONE RISPETTO AI

Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni CLASSIFICAZIONE RISPETTO AI Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni CLASSIFICAZIONE RISPETTO AI LATI: equilatero, isoscele, scaleno CLASSIFICAZIONE RISPETTO

Dettagli

GONIOMETRIA. sin (x) = PH OP. ctg (x ) = cos (x) = CB sin (x) cosec (x ) = 1 = ON sin (x)

GONIOMETRIA. sin (x) = PH OP. ctg (x ) = cos (x) = CB sin (x) cosec (x ) = 1 = ON sin (x) GONIOMETRIA sin (x = PH OP cos (x = OH OP tg (x = sin(x = TA cos(x ctg (x = cos (x = CB sin (x sec (x = 1 = OM cos(x cosec (x = 1 = ON sin (x La tangente si calcola sempre sulla retta verticale passante

Dettagli

Anno Scolastico:

Anno Scolastico: LICEO SCIENTIFICO DI STATO "G. BATTAGLINI" TARANTO PROGRAMMA DI MATEMATICA svolto nella Classe III Sezione A. Anno Scolastico: 2012-2013. Docente: Francesco Pantano. 1. Disequazioni. Richiami sulle disequazioni

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto senα OP OA cateto cos α OP PA cateto tgα OA cateto opposto

Dettagli

Appunti di Trigonometria per il corso di Matematica di base

Appunti di Trigonometria per il corso di Matematica di base Appunti di Trigonometria per il corso di Matematica di base di Giovanna Neve Diploma accademico di primo livello per il corso di Tecnico di Sala di Registrazione Conservatorio C. Pollini Padova Indice

Dettagli

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo In un triangolo si dice altezza relativa a un lato il segmento di perpendicolare al lato condotta dal vertice opposto. Si dice mediana relativa a un lato il segmento che unisce il punto medio del lato

Dettagli

Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare:

Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare: Matematica La matematica rappresenta una delle materie di base dei vari indirizzi del nostro Istituto e, anche se non sarà approfondita come in un liceo scientifico, prevede comunque lo studio di tutte

Dettagli

Trigonometria. Parte della matematica che si occupa di studiare le relazioni tra i lati e gli angoli di un triangolo

Trigonometria. Parte della matematica che si occupa di studiare le relazioni tra i lati e gli angoli di un triangolo Trigonometria Parte della matematica che si occupa di studiare le relazioni tra i lati e gli angoli di un triangolo I triangoli rettangoli Premessa: ricordiamo le definizioni di seno e coseno di un angolo

Dettagli

FUNZIONI GONIOMETRICHE Prof. E. Modica

FUNZIONI GONIOMETRICHE Prof. E. Modica FUNZIONI GONIOMETRICHE Prof. E. Modica erasmo@galois.it DEFINIZIONE DELLE FUNZIONI GONIOMETRICHE Consideriamo un triangolo A rettangolo in B e sia α l angolo acuto di vertice A. Successivamente, consideriamo

Dettagli

Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1

Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Raccolta di problemi di geometra piana sul teorema di Pitagora applicato ai triangolo con angoli di 45, 30 e 60

Dettagli

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione

Dettagli

Teoria in sintesi 10. Teoria in sintesi 14

Teoria in sintesi 10. Teoria in sintesi 14 Indice L attività di recupero Funzioni goniometriche Teoria in sintesi 0 Obiettivo Calcolare il valore di espressioni goniometriche in seno e coseno Obiettivo Determinare massimo e minimo di funzioni goniometriche

Dettagli

QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE

QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE relativo a GEOMETRIA PIANA EQUAZIONI E DISEQUAZIONI a cura di Mariacristina Fornasari, Daniela Mari, Giuliano Mazzanti, Valter Roselli, Luigi Tomasi 1) Nel piano

Dettagli

La somma degli angoli interni di un triangolo è uguale a un angolo piatto (180 ).

La somma degli angoli interni di un triangolo è uguale a un angolo piatto (180 ). Il triangolo (UbiLearning) - 1 Triangoli Un triangolo è un poligono formato da tre lati. Rappresenta la più semplice figura piana formata dal minimo numero di lati utili a chiudere una superficie piana.

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

Principali Definizioni e Teoremi di Geometria

Principali Definizioni e Teoremi di Geometria Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo

Dettagli

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati 5. Triangoli 5.1 efinizioni Un triangolo è un poligono con tre lati. In figura 5.1 i lati sono i segmenti =c, =b e =a. Gli angoli (interni) sono α = ˆ, β = ˆ e γ = ˆ. Si dice che un angolo è opposto a

Dettagli

CONGRUENZE TRA FIGURE DEL PIANO

CONGRUENZE TRA FIGURE DEL PIANO CONGRUENZE TRA FIGURE DEL PIANO Appunti di geometria ASSIOMI 15. La congruenza tra figure è una relazione di equivalenza 16. Tutte le rette del piano sono congruenti tra loro; così come tutti i piani,

Dettagli

TRIANGOLI. Proprietà: in ogni triangolo la somma di due lati è maggiore del terzo lato. CLASSIFICAZIONE DEI TRIANGOLI

TRIANGOLI. Proprietà: in ogni triangolo la somma di due lati è maggiore del terzo lato. CLASSIFICAZIONE DEI TRIANGOLI TRIANGOLI Si dice triangolo un poligono che ha 3 lati e 3 angoli. Proprietà: in ogni triangolo la somma di due lati è maggiore del terzo lato. a) RISPETTO AI LATI CLASSIFICAZIONE DEI TRIANGOLI SCALENO:

Dettagli

Esercizi per le vacanze estive.

Esercizi per le vacanze estive. Esercizi per le vacanze estive. ^ A B Controlla il quaderno delle regole: se non è ordinato o se mancano alcune parti, completalo, chiedendo se è possibile ad un compagno. GEOMETRIA A Ripassa le caratteristiche

Dettagli

Consolidamento Conoscenze

Consolidamento Conoscenze onsolidamento onoscenze 1. Scrivi l enunciato del teorema di Pitagora. In ogni triangolo rettangolo il quadrato costruito sull ipotenusa è equivalente alla somma dei quadrati costruiti sui due cateti..

Dettagli

LE FUNZIONI GONIOMETRICHE Di Pietro Aceti

LE FUNZIONI GONIOMETRICHE Di Pietro Aceti LE FUNZIONI GONIOMETRICHE Di Pietro Aceti INDICE 1GRADI E RADIANTI CIRCONFERENZA GONIOMETRICA FUNZIONI GOGNOMERICHE 4PRIMO TEOREMA FONDAMENTALE DELLA GOGNOMETRIA 5SECONDO TEOREMA FONDAMENTALE DELLA GOGNOMETRIA

Dettagli

24/03/2012 APPUNTI DI GEOMETRIA EUCLIDEA LEZIONE 2-3. definizione 26-29/3/2012

24/03/2012 APPUNTI DI GEOMETRIA EUCLIDEA LEZIONE 2-3. definizione 26-29/3/2012 PPUNTI DI GEOMETRI EULIDE LEZIONE 2-3 26-29/3/2012 definizione un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni un triangolo è un l

Dettagli

Costruzioni geometriche. (Teoria pag , esercizi )

Costruzioni geometriche. (Teoria pag , esercizi ) Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

TRIANGOLI CLASSIFICAZIONE DEI TRIANGOLI RISPETTO AI LATI. Def: Si dice triangolo un poligono che ha 3 lati e 3 angoli.

TRIANGOLI CLASSIFICAZIONE DEI TRIANGOLI RISPETTO AI LATI. Def: Si dice triangolo un poligono che ha 3 lati e 3 angoli. TRIANGOLI Si dice triangolo un poligono che ha 3 lati e 3 angoli. Proprietà: in ogni triangolo la somma di due lati è sempre maggiore del terzo lato. CLASSIFICAZIONE DEI TRIANGOLI RISPETTO AI LATI SCALENO:

Dettagli

Problemi di massimo e minimo

Problemi di massimo e minimo Problemi di massimo e minimo Supponiamo di avere una funzione continua in Per il teorema di Weierstrass esistono il massimo assoluto M e il minimo assoluto m I problemi di massimo e minimo sono problemi

Dettagli

POLIGONI: PROPRIETÀ E FORMULE PER IL CALCOLO DI PERIMETRO E AREA. Poligono formato da 3 angoli e 3 lati. Nessuna diagonale.

POLIGONI: PROPRIETÀ E FORMULE PER IL CALCOLO DI PERIMETRO E AREA. Poligono formato da 3 angoli e 3 lati. Nessuna diagonale. POLIGONI: PROPRIETÀ E FORMULE PER IL CALCOLO DI PERIMETRO E AREA NOME E FIGURA PROPRIETÀ FORMULE TRIANGOLO Poligono formato da 3 angoli e 3 lati. Nessuna diagonale. P=somma delle misure dei 3lati SCALENO

Dettagli

Anno 4 Superficie e volume dei solidi

Anno 4 Superficie e volume dei solidi Anno 4 Superficie e volume dei solidi Introduzione In questa lezione parleremo del volume e della superficie dei solidi, imparando a trattare con semplicità il loro calcolo tramite le formule Al termine

Dettagli

LUNGHEZZA DELLA CIRCONFERENZA E AREA DEL CERCHIO Conoscenze. 2. Completa le seguenti formule, dirette e inverse, riguardanti la circonferenza.

LUNGHEZZA DELLA CIRCONFERENZA E AREA DEL CERCHIO Conoscenze. 2. Completa le seguenti formule, dirette e inverse, riguardanti la circonferenza. LUNGHEZZA DELLA CIRCONFERENZA E AREA DEL CERCHIO Conoscenze 1. Completa. a. Si chiama circonferenza rettificata il b. Il rapporto tra la lunghezza di una circonferenza e il suo diametro è una... che si

Dettagli

GEOMETRIA EUCLIDEA. segno lasciato dalla punta di una matita appena appoggiata sul foglio. P

GEOMETRIA EUCLIDEA. segno lasciato dalla punta di una matita appena appoggiata sul foglio. P GEOMETRIA EUCLIDEA 1) GLI ENTI FONDAMENTALI: PUNTO, RETTA E PIANO Il punto, la retta e il piano sono gli ELEMENTI ( o ENTI ) GEOMETRICI FONDAMENTALI della geometria euclidea; come enti fondamentali non

Dettagli

Corso di Analisi: Algebra di Base. 7^ Lezione

Corso di Analisi: Algebra di Base. 7^ Lezione Corso di Analisi: Algebra di Base 7^ Lezione Goniometria.Elementi di trigonometria piana. Unità di misura degli angoli. Misura di angoli orientati. Circonferenza goniometrica. Angoli e archi noti. Le funzioni,

Dettagli

Angolo. Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O.

Angolo. Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O. Angolo Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O. Trigonometria - Corso di matematica - Alessia Ceccato 1 Circonferenza goniometrica

Dettagli

Proprietà dei triangoli e criteri di congruenza

Proprietà dei triangoli e criteri di congruenza www.matematicamente.it Proprietà dei triangoli 1 Proprietà dei triangoli e criteri di congruenza Nome: classe: data: 1. Relativamente al triangolo ABC in figura, quali affermazioni sono vere? A. AH è altezza

Dettagli

Principali Definizioni e Teoremi di Geometria

Principali Definizioni e Teoremi di Geometria Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo

Dettagli

Funzioni goniometriche

Funzioni goniometriche Funzioni goniometriche In questa dispensa vengono introdotte le definizioni delle funzioni goniometriche. Preliminarmente si introducono le convenzioni sull orientazione degli angoli e sulla loro rappresentazione

Dettagli

Liceo Scientifico Statale ALBERT EINSTEIN Milano

Liceo Scientifico Statale ALBERT EINSTEIN Milano Liceo Scientifico Statale ALBERT EINSTEIN Milano A.S. 200/20 TEST DII IINGRESSO MATEMATIICA CLLASSII PRIIME ALUNNO/A: (COGNOME) (NOME) CLASSE: SCUOLA DI PROVENIENZA: AVVERTENZE: Hai 60 minuti di tempo;

Dettagli

CONOSCENZE 1. gli enti fondamentali e le loro. 2. la posizione reciproca di punto, retta, piano 3. gli angoli e le loro proprietaá

CONOSCENZE 1. gli enti fondamentali e le loro. 2. la posizione reciproca di punto, retta, piano 3. gli angoli e le loro proprietaá GEOMETRIA PREREQUISITI l conoscere le caratteristiche del sistema decimale l conoscere le proprietaá delle quattro operazioni e operare con esse l operare con le misure angolari CONOSCENZE 1. gli enti

Dettagli

Test sui teoremi di Euclide e di Pitagora

Test sui teoremi di Euclide e di Pitagora Test sui teoremi di Euclide e di Pitagora I test proposti in questa dispensa riguardano il teorema di Pitagora e i due teoremi di Euclide, con le applicazioni alle varie figure geometriche. Vengono presentate

Dettagli

Il valore assoluto (lunghezza, intensita )

Il valore assoluto (lunghezza, intensita ) Il valore assoluto (lunghezza, intensita ) = se 0 - se < 0 = 5 5-0, = 0 3, = 3 Il valore assoluto di un numero reale è quindi sempre un numero positivo. Geometricamente rappresenta la misura della distanza

Dettagli

Grandezze geometriche e fisiche. In topografia si studiano le grandezze geometriche: superfici angoli

Grandezze geometriche e fisiche. In topografia si studiano le grandezze geometriche: superfici angoli Topografia la scienza che studia i mezzi e i procedimenti operativi per il rilevamento e la rappresentazione grafica, su superficie piana (un foglio di carta) di una porzione limitata di terreno.... è

Dettagli

Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo.

Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. SIMILITUDINE Problemi Problema 8.179 Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. La bisettrice divide l angolo =60 in due angoli di 30,

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

La circonferenza e il cerchio

La circonferenza e il cerchio La circonferenza e il cerchio Def.: Si dice circonferenza una linea piana chiusa formata dall insieme dei punti che hanno la stessa distanza da un punto detto centro. Si dice raggio di una circonferenza

Dettagli

Postulati e definizioni di geometria piana

Postulati e definizioni di geometria piana I cinque postulati di Euclide I postulato Adimandiamo che ce sia concesso, che da qualunque ponto in qualunque ponto si possi condurre una linea retta. Tra due punti qualsiasi è possibile tracciare una

Dettagli

CONOSCENZE 1. gli elementi di un triangolo 2. la classificazione dei triangoli. 3. il teorema dell'angolo esterno. 4. i punti notevoli di un triangolo

CONOSCENZE 1. gli elementi di un triangolo 2. la classificazione dei triangoli. 3. il teorema dell'angolo esterno. 4. i punti notevoli di un triangolo GEOMETRIA I TRIANGOLI PREREQUISITI l conoscere le caratteristiche del sistema di numerazione decimale l conoscere le proprietaá delle quattro operazioni e operare con esse l conoscere gli enti geometrici

Dettagli

Teoremi di geometria piana

Teoremi di geometria piana la congruenza teoremi sugli angoli γ teorema sugli angoli complementari Se due angoli sono complementari di uno stesso angolo α β In generale: Se due angoli sono complementari di due angoli congruenti

Dettagli