Teoria geometrica della propagazione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Teoria geometrica della propagazione"

Transcript

1 Teoria geometrica della propagazione 1 Valeria Petrini, Ph.D. Student DEIS/ARCES - Fondazione Ugo Bordoni valeria.petrini@unibo.it

2 Introduzione (1) 2 Una corretta caratterizzazione dei collegamenti radio non può prescindere dallo studio di alcuni fenomeni che possono influenzare la propagazione in spazio libero: Presenza di ostacoli che si frappongono tra le antenne provocando una ostruzione alla libera propagazione del fronte d onda Ellissoide terrestre che è l ostacolo più evidente sul quale poggiano le antenne. Le presenza del suolo genera una discontinuità tra dielettrici Atmosfera terrestre che può portare significative differenze dalla propagazione ideale, provocando un aumento di attenuazione soprattutto ad alte frequenze ma anche effetti di deviazione della direzione di propagazione

3 Introduzione (2) Le onde elettromagnetiche, una volta irradiate dall antenna trasmittente possono raggiungere l antenna ricevente in quattro modi: 1. Onda diretta 2. Onda terrestre (superficiale) 3. Onda spaziale 4. Onda di cielo 3

4 Introduzione (3) 4 Onda diretta: si ha quando trasmettitore e ricevitore si trovano in visibilità radio. Onda terrestre: si ha quando trasmettitore e ricevitore si trovano vicino al suolo. Questo tipo di onde si propaga al suolo seguendo la curvatura della superficie terrestre. Onda spaziale: interessa, per comunicazioni tra corrispondenti terrestri, esclusivamente gli strati più bassi dell atmosfera (troposfera). Onda di cielo: si genera quando l indice di rifrazione variabile della ionosfera produce il ritorno verso terra di un segnale lanciato verso lo spazio.

5 Guglielmo Marconi 5 È conosciuto per aver sviluppato un sistema di telegrafia senza fili via onde radio che ottenne una notevole diffusione: evoluzioni della trasmissioni senza fili portarono allo sviluppo dei moderni metodi di comunicazione come la TV, la radio il telefoni cellulari i telecomandi e tutti i sistemi che utilizzano le comunicazioni senza fili. Il 12 dicembre 1901 ci fu la comunicazione che costituì il primo segnale radio transoceanico. Per raggiungere l antenna ricevente in Canada avrebbe dovuto rimbalzare due volte sulla ionosfera.

6 Introduzione (4) 6 L atmosfera terrestre è una miscela di diversi gas atmosferici che può essere descritta come mezzo dielettrico non omogeneo ad indice di rifrazione variabile Lo studio della propagazione in mezzi ad indice di rifrazione variabile (n(h)) è molto complesso se condotto in modo esatto a partire dalle equazioni di Maxwell Risulta allora opportuno lo sviluppo di tecniche alternative, tra le quali l ottica geometrica è una delle più potenti

7 Teoria ondulatoria e Teoria geometrica Evoluzione pensiero scientifico: 1. Teoria geometrica 2. Teoria ondulatoria 3. Teoria vettoriale TEORIA GEOMETRICA Approccio che da alla radiazione elettromagnetica le stesse proprietà dei corpuscoli. La natura della luce ci permette quindi di analizzare alcuni fenomeni tramite i raggi luminosi (segmenti di retta aventi la direzione del fronte d onda) TEORIA ONDULATORIA Il campo elettromagnetico è descritto dalla cosiddetta funzione d onda che soddisfa l equazione delle onde 7 2 u(r,t) 1 v 2 2 u(r,t) t 2 = 0 u( r,t)

8 Teoria geometrica (o dei raggi) 8 Descrive la propagazione del campo in mezzi non omogenei senza perdite a condizione che gli scostamenti dall uniformità siano piccoli su lunghezze paragonabili alla lunghezza d onda. Esamina, quindi, la propagazione nell ipotesi di 0 (frequenze ottiche) trascurando quindi tutti i fenomeni connessi con la diffrazione individuando semplicemente dei raggi di propagazione dell energia. E utile anche alle frequenze radio se si vuole individuare il percorso della normale del fronte d onda in un mezzo indefinitamente esteso. Essendo una teoria scalare, non descrive quei fenomeni che richiedono la conoscenza di tutte le componenti del campo come ad esempio la polarizzazione

9 Definizioni 9 Onda: operata una perturbazione su una grandezza fisica in una regione limitata dello spazio, si dice che si ha un onda quando tale perturbazione si propaga nelle altre zone dello spazio con velocità e modalità che dipendono dal mezzo e dal tipo di grandezza perturbata Superficie d onda: luogo geometrico dei punti dello spazio nei quali la grandezza perturbata varia concordemente nel tempo (punti in cui oscilla in fase) Raggio: data un onda che si propaga in un dato mezzo si definisce raggio ogni linea dello spazio perpendicolare in ogni punto alla superficie d onda passante per quel punto

10 Equazioni di Maxwell (1) 10 Consideriamo: Mezzo normale: lineare, stazionario, non dispersivo ed isotropo Mezzo omogeneo Presenza di sorgenti di tipo elettrico E = jωµh H = jωε E + J i D = ρ J B = 0 i = jωρ Equazioni di Maxwell Equazioni della Divergenza Legge di conservazione della carica

11 Equazioni di Maxwell (2) 11 Per la risoluzione delle equazioni di Maxwell in presenza di correnti elettriche impresse facciamo riferimento alla determinazione dei cosiddetti potenziali Definisco A : potenziale vettore magnetico L equazione da risolvere per determinare non omogenea A è un equazione di Helmoltz 2 A +ω 2 µε A = µj i

12 Equazioni di Maxwell (3) 12 Ricaviamo, quindi, le espressioni dei campi generati dalle correnti elettriche impresse: H = 1 µ A E = A jωµε J i jωε Q: punto potenziante P: punto potenziato La procedura per risolvere queste equazioni richiede l uso delle funzioni di Green Consideriamo una regione illimitata

13 Equazioni di Maxwell (4) 13 Considerando che la soluzione è unica se i campi soddisfano le condizioni di radiazione di Sommerfeld: lim r r' E( r) = 0 r r' lim r r' H( r) = 0 r r' La soluzione risulta: A( r) = µ 4π V J i ( r' ) e γ r r' r r' dr'

14 Equazioni di Maxwell (5) 14 Consideriamo: Mezzo normale: lineare, stazionario, non dispersivo ed isotropo Mezzo omogeneo Assenza di sorgenti E = jωµh H = jωε E Equazioni di Maxwell D = 0 B = 0 Equazioni della Divergenza 2 E +ω 2 µε E = 0 2 E γ 2 E = 0 con γ 2 = ω 2 µε 2 H γ 2 H = 0 Equazioni di Helmholtz Omogenee

15 Equazioni di Maxwell (6) Facendo l ipotesi di separazione delle variabili le soluzioni risultano: 15 E = E 0e S r H = H 0e S r Onda Piana con S = a + jk = αˆ a + jkˆ k = αˆ a + jβ 0ˆ s β 0 = ω µ 0 ε 0 S : a : k : r : vettore di propagazione vettore attenuazione vettore di fase vettore posizione E = E 0 e jβ 0 r ˆ s H = H 0 e jβ 0 r ˆ s Dal punto di vista fisico, le onde piane uniformi rappresentano una soluzione sufficientemente approssimata se si è in presenza di una regione di spazio omogenea di dimensioni lineari molto maggiori della lunghezza d onda per a = 0 Onda Piana Uniforme Superfici equifase : piani k raggi rettilinei e paralleli

16 Consideriamo: Equazioni di Maxwell (7) Mezzo normale: lineare, stazionario, non dispersivo ed isotropo Mezzo non omogeneo ε( r) = ε 0 ε r ( r) con ε 0 = 1 µ = µ 0 Assenza di sorgenti E r H r ( ) = jωµh( r) ( ) = jωε r ( )E r ( ) 16 Equazioni di Maxwell 36π 10 9 Farad m Analogamente al classico passaggio dalle equazioni di Maxwell a quelle di Helmoltz, si può ottenere: 2 E( r) + ω 2 µε E( r) = E( r) ( )

17 Equazioni di Maxwell (8) 17 Poiché la soluzione in un mezzo omogeneo normale è data da un onda piana, se si ipotizza che nel mezzo non omogeneo, le variazioni siano piccole su distanze confrontabili con la lunghezza d onda, la soluzione può essere espressa da una funzione con ampiezza non più costante e con superfici equifase non più piane, del tipo: E( r) = E ( 0 r)e jβ 0S( r) H( r) = H ( 0 r)e jβ 0 S ( r ) con β 0 = ω µ 0 ε 0 Generalizzazione dell espressione precedente, considerando dipendenti dal punto. E 0 e H 0

18 Riprendiamo: Sapendo che: Ottica geometrica classica (1) D( r) = ε( r)e r n = ε ( r r) Da cui si ottiene: 18 2 E( r) + ω 2 µε E( r) = E( r) ( ) e D = 0 E r E r ( ) ( ) = ε r( r) ε r ( r) E( r) ( ) = ln n 2 ( r) ( ) ( )E r 2 E( r) + β 2 0 n( r)e( r) = 2 ln n( r) ( ) [ ( )E r ]

19 Ottica geometrica classica (2) 19 Cerchiamo per ( )E r 2 E( r) + β 2 0 n( r)e( r) = 2 ln n( r) ( ) [ ] una soluzione del tipo E( r) = E 0( r)e jβ 0S( r) Sapendo che: Otteniamo: ( f A) = f A + f A e F = 2 F E 0[ n 2 S 2 ] + 1 jβ 0 { E 0 2 S + 2 S[ E 0 ln( n) ] + 2 S E 0} { [ ( )]} = E ( jβ 0 ) E 0 ln n N.B. Nell espressione ho trascurato la dipendenza da r

20 Ottica geometrica classica (3) 20 Dividendo parte reale e parte immaginaria e volendo trovare soluzioni asintotiche per 0, otteniamo: S 2 = n 2 E 0 2 S + 2 S[ E 0 ln( n) ] + 2( S )E 0 Equazione iconale Equazione del trasposto

21 Equazione dei raggi (1) Risolvendo l equazione iconale si può calcolare 21 S( r) ( ) Le superfici per cui S r = costante sono i fronti d onda i quali definiscono le traiettoria del segnale in quanto permettono di individuare i raggi Detto ha: La direzione locale di il versore che indica la direzione locale di propagazione, si determina le traiettorie dei raggi Obiettivo: determinare le traiettorie dei raggi a partire dai termini noti, ovvero dalla distribuzione dell indice di rifrazione ˆ s ( ) ( ) s ˆ = S r n r Direzione del raggio

22 Equazione dei raggi (2) Introduciamo la coordinata curvilinea s del raggio: 22 s P P ( ) = dx 2 + dy 2 + dz 2 P 0 Consideriamo il versore tangente al raggio in un punto generico: ˆ s (s) = r(s) : dxˆ x + dyˆ y + dzˆ z dx 2 + dy 2 + dz 2 = dr( s) ds n( s) dr(s) ds Equazione parametrica della traiettoria = S(s) Equazione dei raggi

23 Equazione differenziale dei raggi (1) 23 Ciò che si è ricavato è che, sotto opportune ipotesi, la soluzione consiste in un campo TEM locale, la cui direzione di propagazione è ricavabile a partire da S Derivando l equazione dei raggi rispetto ad s si ottiene: Da cui si ottiene: d ds d ds S(s) n(s) dr(s) ds ( ) = d ds S(s) = d ds S(s) ( ) = S(s) s ˆ ( ) = n(s) d ds dr(s) n(s) = n(s) ds Equazione differenziale dei raggi

24 Equazione differenziale dei raggi (2) 24 L equazione differenziale dei raggi ha il grande vantaggio di poter descrivere le traiettoria dei raggi sapendo solo l andamento di n r Trattandosi di un equazione differenziale del II ordine ha infinite soluzioni; per individuare il raggio occorrono 2 condizioni al contorno: ( ) L integrazione dell equazione differenziale dei raggi può essere fatta numericamente con le tecniche di tracciamento dei raggi (Ray Tracing), molto più vantaggiose dell integrazione diretta dell equazione dell iconale

25 Traiettoria dei raggi (1) 25 In un generico punto della traiettoria è possibile definire il vettore curvatura associato a r(s): c = d 2 r (s) ds 2 = dˆ s (s) ds Indicando con R il raggio di curvatura locale si ha anche: Il versore segue la tangente alla traiettoria, mentre è normale ad esso e sono situati entrambi sul piano osculatore

26 Traiettoria dei raggi (2) Ricordando l equazione differenziale dei raggi: 26 n(s) = d dr(s) n(s) ds ds Dalla definizione di e otteniamo: s ˆ c d ds n(s) dr ds = d ds n(s)ˆ s (s) ( ) = dn(s) s s ˆ (s) + dˆ s ds n(s) = dn(s) ds ˆ s (s) + cn(s) Moltiplicando scalarmente per : c ˆ n(s) c ˆ = dn(s) ds s ˆ c ˆ + n(s)c c ˆ n(s)ˆ c = n(s)c c = n(s) n(s) 0 ˆ c

27 Traiettoria dei raggi (3) 27 Sapendo che: c = 1 R 1 R = n(s) n(s) ˆ c 0 Equazione della Curvatura L ultima relazione mostra che la direzione di è sempre concorde con quella di n, ovvero che il raggio tende sempre a piegare verso la regione a indice di rifrazione maggiore (equivalente della legge di Snell)

28 Esempio (1) ATMOSFERA OMOGENEA mezzo ad indice di rifrazione costante Equazione differenziale dei raggi: n d 2 r ds 2 Equazione della curvatura: n r = 0 r = as + b 1 R = 0 28 ( ) = costante 1 R = n n c ˆ n = d ds n dr ds Le traiettorie sono rettilinee in un mezzo omogeneo, ciascuna con direzione a e passante per r=b

29 Esempio (2) 29 MEZZO A STRATIFICAZIONE SFERICA n = n( r) n r ( ) = dn ( r ) r ˆ dr L equazione differenziale dei raggi risulta: d ds n ( r ) 0 dr(s) ds + n( r) d ds dr(s) ds = n r ˆ s ( ) d ds ˆ s (s) n r ( ) = dn ( r ) d Moltiplicando vettorialmente per r : ds r n ( r )ˆ s (s) r n( r)ˆ s = costante n r sin(ψ) = costante Legge di Snell per mezzi a stratificazione sferica: è alla base della propagazione ionosferica e troposferica, che sfruttano la possibilità di avere il rientro a terra dell onda oltre l orizzonte geometrico dr ˆ r ( ) ( ) = r dn r dr ˆ r = 0

30 Principio di Fermat 30 Si considerino in un dato mezzo due punti P 1 e P 2 e un percorso che li colleghi; si definisce cammino ottico il seguente funzionale: L 1,2 P 2 = ˆ n(s)ds P 1 PRINCIPIO di FERMAT: la traiettoria di un raggio rappresenta un minimo del cammino ottico Il principio di Fermat può essere un alternativa alla risoluzione dell equazione differenziale dei raggi; ad esempio in un mezzo omogeneo (n=cost) si ha:

31 Onda piana locale e intensità (1) Riscriviamo: E = jωµ 0 H H = jωε E Equazioni di Maxwell Sostituendo le soluzioni nelle equazioni di Maxwell e considerando: 31 ( f A) = f A + f A E = E 0e jβ 0 S H = H 0e jβ 0 S Soluzione equazioni di Maxwell S E 0 η 0 H 0 = 1 E 0 jβ 0 S H 0 + ε r E 0 = 1 H 0 η 0 jβ 0

32 Onda piana locale e intensità (2) 32 Conformemente all intenzione di determinare soluzioni asintotiche per 0 (f ) possono essere trascurati i secondi membri delle precedenti esperessioni Considerando l equazione iconale: S = nˆ s H 0 E 0 = n η 0 ˆ s E 0 = n ε r η 0ˆ s H 0 s = ˆ E 0 η = n ε r η 0 H 0 ˆ s N.B. Nelle espressioni ho trascurato la dipendenza da r

33 Onda piana locale e intensità (3) Il vettore di Poynting vale: e quindi l energia si propaga nella direzione dei raggi ottici 33 In conclusione, per descrivere compiutamente la soluzione fornita dall ottica geometrica è sufficiente risolvere l equazione iconale e successivamente tutto è descrivibile attraverso un unica funzione scalare, l intensità, costituita dal modulo del vettore di Poynting Queste conclusioni giustificano il fatto che nell ottica si sia effettuata una teoria scalare, in quanto ci si basa solo sulle traiettorie dei raggi e sulla loro intensità per descrivere la propagazione

34 Mezzo non omogeneo: Equazione da risolvere: Riepilogo Soluzione: generalizzazione onda piana Equazione iconale: Equazione dei raggi: ε r Equazione della curvatura: i raggi tendono sempre a curvare verso la regione ad indice di rifrazione maggiore; Mezzo omogeneo: traiettorie rettilinee Mezzo a stratificazione sferica: propagazione ionosferica e troposferica 34 ( ) = ε 0 ε r ( r) 2 E r S 2 = n 2 n( s) dr(s) ds ( ) ( ) = E 0 r ( ) = H 0 r ( ) + ω 2 µε E( r) = E( r) = S(s) E r H r ( )e jβ 0 S ( r ) ( )e jβ 0 S ( r )

35 Onda piana locale e intensità (4) 35 Il discorso fin qui fatto presenta tuttavia dei limiti; si consideri un tubo di flusso dell energia (superficie costituita lateralmente da una famiglia di raggi e ortogonalmente da due porzioni di superficie equifase) Legge di intensità dell ottica geometrica

36 Onda piana locale e intensità (5) 36 Si è ricavato che l intensità è inversamente proporzionale alla superficie di base del tubo di flusso Tale legge cade in difetto qualora si verifichi la convergenza di tutti i raggi in un punto, detto fuoco SPREADING FACTOR: è un fattore che tiene conto dell eventuale allargamento del fronte d onda con la propagazione; la potenza trasportata da un raggio può pertanto diminuire con la distanza anche se il mezzo è privo di perdite

37 Onda piana locale e intensità (6) 37 Se il mezzo è omogeneo (quindi la propagazione avviene per raggi rettilinei) e si ha una generica onda (cioè una generica sorgente) si può dimostrare che: da C 3 C 1 C 2 da ρ 1 0 s in cui ρ 1 e ρ 2 sono i raggi di curvatura principali e C 1 C 2 e C 3 C 4 sono le caustiche dell onda C 4 ρ 2 I casi tipici sono solitamente tre:

Antenne e Collegamento Radio

Antenne e Collegamento Radio Antenne e Collegamento Radio Trasmissione irradiata Oltre ad essere guidato attraverso le linee di trasmissione, il campo elettromagnetico si può propagare nello spazio (radiazione) Anche la radiazione

Dettagli

Propagazione Troposferica

Propagazione Troposferica Propagazione Troposferica 1 Valeria Petrini, Ph.D. Student DEIS/ARCES - Fondazione Ugo Bordoni valeria.petrini@unibo.it Introduzione (1) 2 Una corretta caratterizzazione dei collegamenti radio non può

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE Fisica generale II, a.a. 01/014 OND LTTROMAGNTICH 10.1. Si consideri un onda elettromagnetica piana sinusoidale che si propaga nel vuoto nella direzione positiva dell asse x. La lunghezza d onda è = 50.0

Dettagli

Luce e onde elettromagnetiche

Luce e onde elettromagnetiche Luce e onde elettromagnetiche Rappresentazione classica Rappresentazione quantistica dualità onda/particella. La rappresentazione classica è sufficiente per descrivere la maggior parte dei fenomeni che

Dettagli

"Antenne" Docente: Prof. Graziano CERRI. Programma dell insegnamento

Antenne Docente: Prof. Graziano CERRI. Programma dell insegnamento "Antenne" Docente: Prof. Graziano CERRI Programma dell insegnamento Corso di Laurea in Ingegneria Elettronica Vecchio Ordinamento Corso di Laurea in Ingegneria delle Telecomunicazioni Nuovo Ordinamento

Dettagli

Funzioni vettoriali di variabile scalare

Funzioni vettoriali di variabile scalare Capitolo 11 Funzioni vettoriali di variabile scalare 11.1 Curve in R n Abbiamo visto (capitolo 2) come la posizione di un punto in uno spazio R n sia individuata mediante le n coordinate di quel punto.

Dettagli

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Teoria corpuscolare (Newton) Teoria ondulatoria: proposta già al tempo di Newton, ma scartata perchè

Dettagli

Un materiale si definisce un buon conduttore se la sua conducibilità σ soddisfa a

Un materiale si definisce un buon conduttore se la sua conducibilità σ soddisfa a 1 BUON CONDUTTORE Un materiale si definisce un buon conduttore se la sua conducibilità σ soddisfa a σ ωε (1). Mentre in un materiale con conducibilità infinita il campo deve essere nullo, la presenza di

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Febbraio 04 Cognome: Nome: Matricola: Compito A Es: 8 punti Es: 8 punti Es: 8 punti Es4: 8 punti Totale a) Determinare

Dettagli

1.5 Calcolo di erenziale vettoriale Derivata ordinaria Gradiente Esempio n. 3 - Gradiente di 1

1.5 Calcolo di erenziale vettoriale Derivata ordinaria Gradiente Esempio n. 3 - Gradiente di 1 Indice 1 ANALISI VETTORIALE 1 1.1 Scalari e vettori......................... 1 1.1.1 Vettore unitario (versore)............... 2 1.2 Algebra dei vettori....................... 3 1.2.1 Somma di due vettori.................

Dettagli

Energia del campo elettromagnetico

Energia del campo elettromagnetico Energia del campo elettromagnetico 1. Energia 2. Quantità di moto 3. Radiazione di dipolo VII - 0 Energia Come le onde meccaniche, anche le onde elettromagnetiche trasportano energia, anche se non si propagano

Dettagli

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 DOWNLOAD Il pdf di questa lezione (onde1.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 08/10/2012 FENOMENI ONDULATORI Una classe di fenomeni

Dettagli

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 1. Il campo elettrico e legge di Coulomb: esempio del calcolo generato da alcune semplici distribuzioni. 2. Il campo

Dettagli

1 Rette e piani nello spazio

1 Rette e piani nello spazio 1 Rette e piani nello spazio Esercizio 1.1 È assegnato un riferimento cartesiano 0xyz. Sono assegnati la retta x = t, r : y = t, z = t, il piano π : x + y + z = 0 ed il punto P = (1, 1, 1). Scrivere le

Dettagli

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 4ALS MATERIA: FISICA

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 4ALS MATERIA: FISICA PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 4ALS MATERIA: FISICA Strategie didattiche: Le lezioni frontali saranno associate a delle esperienze di laboratorio per accompagnare la

Dettagli

Corso di Laurea in Astronomia. Laurea Triennale DISPENSE DI ESPERIMENTAZIONI DI FISICA 2

Corso di Laurea in Astronomia. Laurea Triennale DISPENSE DI ESPERIMENTAZIONI DI FISICA 2 Corso di Laurea in Astronomia Laurea Triennale DISPENSE DI ESPERIMENTAZIONI DI FISICA A.A. 01-013 Indice 1 Introduzione 5 1.1 Indice di rifrazione.............................. 5 1. Riflessione e rifrazione............................

Dettagli

Fondamenti di fisica

Fondamenti di fisica Fondamenti di fisica Elettromagnetismo: 6-7 Circuiti in corrente alternata Tensioni e correnti alternate Vettori di fase, valori quadratici medi Potenza media Sicurezza nei circuiti domestici Circuiti

Dettagli

Diffusione dei raggi X da parte di un elettrone

Diffusione dei raggi X da parte di un elettrone Diffusione dei raggi X da parte di un elettrone Consideriamo un onda elettro-magnetica piana polarizzata lungo x che si propaga lungo z L onda interagisce con un singolo elettrone (libero) inducendo un

Dettagli

60 o e. E i. ε 2. ε 1. acqua marina A B I ONDE PIANE E MATERIALI

60 o e. E i. ε 2. ε 1. acqua marina A B I ONDE PIANE E MATERIALI I ONDE PIANE E MATERIALI OP 1 Il campo elettrico nel punto A ha un modulo di 1V/m e forma un angolo di 6 o con la normale alla superficie. Calcolare e(b). ε 1 ε 2 A B 6 o e ε 1 =, ε 2 = 2 Nel punto A le

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE ESERCIZIO 1 Un onda elettromagnetica piana di frequenza ν = 7, 5 10 14 Hz si propaga nel vuoto lungo l asse x. Essa è polarizzata linearmente con il campo E che forma l angolo ϑ

Dettagli

ALCUNE SOLUZIONI DI ESERCIZI SU CAMPI VETTORIALI

ALCUNE SOLUZIONI DI ESERCIZI SU CAMPI VETTORIALI ALCUNE SOLUZIONI DI ESERCIZI SU CAMPI VETTORIALI Appello Febbraio 995 ( F (( + y i y (( + y j. ( Stabilire se F è conservativo e in caso affermativo trovarne un ( Calcolare il lavoro compiuto dal campo

Dettagli

parametri della cinematica

parametri della cinematica Cinematica del punto Consideriamo il moto di una particella: per particella si intende sia un corpo puntiforme (ad es. un elettrone), sia un qualunque corpo esteso che si muove come una particella, ovvero

Dettagli

Le onde elettromagnetiche

Le onde elettromagnetiche Campi elettrici variabili... Proprietà delle onde elettromagnetiche L intuizione di Maxwell (1831-1879) Faraday ed Henry misero in evidenza che un campo magnetico variabile genera un campo elettrico indotto.

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

Lezione 22 - Ottica geometrica

Lezione 22 - Ottica geometrica Lezione 22 - Ottica geometrica E possibile, in certe condizioni particolari, prescindere dal carattere ondulatorio della radiazione luminosa e descrivere la propagazione della luce usando linee rette e

Dettagli

Introduzione ai fenomeni di polarizzazione. Lezioni d'autore di Claudio Cigognetti

Introduzione ai fenomeni di polarizzazione. Lezioni d'autore di Claudio Cigognetti Introduzione ai fenomeni di polarizzazione Lezioni d'autore di Claudio Cigognetti VIDEO POLARIZZAZIONE IN UN IPAD, RICAPITOLANDO Impiegando occhiali aventi lenti polaroid e un display a cristalli liquidi

Dettagli

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue 1.1 Una sfera conduttrice di raggio R 1 = 10 cm ha una carica Q = 10-6 C ed è circondata da uno strato sferico di dielettrico di raggio (esterno) R 2 = 20 cm e costante dielettrica relativa. Determinare

Dettagli

Forme differenziali e campi vettoriali: esercizi svolti

Forme differenziali e campi vettoriali: esercizi svolti Forme differenziali e campi vettoriali: esercizi svolti 1 Esercizi sul Teorema di Green......................... 2 2 Esercizi sul Teorema di Stokes......................... 4 3 Esercizi sul Teorema di

Dettagli

MP. Moti rigidi piani

MP. Moti rigidi piani MP. Moti rigidi piani Quanto abbiamo visto a proposito dei moti rigidi e di moti relativi ci consente di trattare un esempio notevole di moto rigido come il moto rigido piano. Un moto rigido si dice piano

Dettagli

OTTICA GEOMETRICA CLASSICA: PROPAGAZIONE NEI MEZZI DISOMOGENEI.

OTTICA GEOMETRICA CLASSICA: PROPAGAZIONE NEI MEZZI DISOMOGENEI. P P Istituto P P Università OTTICA GEOMETRICA CLASSICA: PROPAGAZIONE NEI MEZZI DISOMOGENEI. (Metodo dell iconale) (1) () () Silvio BianchiP P, Umberto SciaccaP P, Alessandro SettimiP P () (1) Sapienza

Dettagli

Indice. Elettrostatica in presenza di dielettrici Costante dielettrica Interpretazione microscopica 119. capitolo. capitolo.

Indice. Elettrostatica in presenza di dielettrici Costante dielettrica Interpretazione microscopica 119. capitolo. capitolo. Indice Elettrostatica nel vuoto. Campo elettrico e potenziale 1 1. Azioni elettriche 1 2. Carica elettrica e legge di Coulomb 5 3. Campo elettrico 8 4. Campo elettrostatico generato da sistemi di cariche

Dettagli

Theory Italiano (Italy)

Theory Italiano (Italy) Q3-1 Large Hadron Collider (10 punti) Prima di iniziare questo problema, leggi le istruzioni generali nella busta a parte. In questo problema è discussa la fisica dell acceleratore di particelle del CERN

Dettagli

TEORIA DEI SISTEMI SISTEMI LINEARI

TEORIA DEI SISTEMI SISTEMI LINEARI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

L intensità è uguale alla potenza per unità di superficie per cui l intensità media è data da:

L intensità è uguale alla potenza per unità di superficie per cui l intensità media è data da: SIMULAZIONE II PROVA DI FISICA ESAME DI STATO LICEI SCIENTIFICI. SOLUZIONI QUESITI Soluzione quesito Detta la potenza media assorbita, la potenza elettrica media emessa sarà:,,,, L intensità è uguale alla

Dettagli

Esperienza 4. Misura dell Indice di rifrazione. Cenni teorici

Esperienza 4. Misura dell Indice di rifrazione. Cenni teorici Esperienza 4 Misura dell Indice di rifrazione Cenni teorici Al termine del Capitolo 10 del testo di Fisica A sono state formulate le 4 equazioni di Maxwell in forma locale, dipendenti dal tempo. Esse engono

Dettagli

La diffrazione. Prof. F. Soramel Fisica Generale II - A.A. 2004/05 1

La diffrazione. Prof. F. Soramel Fisica Generale II - A.A. 2004/05 1 La diffrazione Il fenomeno della diffrazione si incontra ogni volta che la luce incontra un ostacolo o un apertura di dimensioni paragonabili alla sua lunghezza d onda. L effetto della diffrazione è quello

Dettagli

5.4 Larghezza naturale di una riga

5.4 Larghezza naturale di una riga 5.4 Larghezza naturale di una riga Un modello classico più soddisfacente del processo di emissione è il seguente. Si considera una carica elettrica puntiforme in moto armonico di pulsazione ω 0 ; la carica,

Dettagli

Elettromagnetismo Formulazione differenziale

Elettromagnetismo Formulazione differenziale Elettromagnetismo Formulazione differenziale 1. Legge di Faraday 2. Estensione della legge di Ampere 3. Equazioni di Maxwell 4. Onde elettromagnetiche VI - 0 Legge di Faraday Campo elettrico Campo di induzione

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

1 EQUAZIONI DI MAXWELL IN FORMA DIFFERENZIALE

1 EQUAZIONI DI MAXWELL IN FORMA DIFFERENZIALE EQUAZIONI DI MAXWELL IN FORMA DIFFERENZIALE Le equazioni di Maxwll considerate finora sono dette equazioni in forma integrale e costituiscono la forma più generale di queste equazioni. Tuttavia il loro

Dettagli

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein)

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein) L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA POSTULATO DI DE BROGLIÈ Se alla luce, che è un fenomeno ondulatorio, sono associate anche le caratteristiche corpuscolari della materia

Dettagli

Lezione 15 Geometrie lineari di confinamento magnetico

Lezione 15 Geometrie lineari di confinamento magnetico Lezione 15 Geometrie lineari di confinamento magnetico G. Bosia Universita di Torino G. Bosia Introduzione alla fisica del plasma Lezione 15 1 Disuniformità con gradiente in direzione del campo ( ) Una

Dettagli

Indice. Fisica: una introduzione. Il moto in due dimensioni. Moto rettilineo. Le leggi del moto di Newton

Indice. Fisica: una introduzione. Il moto in due dimensioni. Moto rettilineo. Le leggi del moto di Newton Indice 1 Fisica: una introduzione 1.1 Parlare il linguaggio della fisica 2 1.2 Grandezze fisiche e unità di misura 3 1.3 Prefissi per le potenze di dieci e conversioni 7 1.4 Cifre significative 10 1.5

Dettagli

Antenne e propagazione. 1 Fondamenti TLC

Antenne e propagazione. 1 Fondamenti TLC Antenne e propagazione 1 Fondamenti TLC Il mezzo trasmissivo (canale) La descrizione dei mezzi fisici è propedeutica all illustrazione dei diversi sistemi di trasmissione. Il mezzo trasmissivo trasporta

Dettagli

T12 ONDE ELETTROMAGNETICHE E ANTENNE

T12 ONDE ELETTROMAGNETICHE E ANTENNE T12 ONDE ELETTROMAGNETICHE E ANTENNE T12.1 - Indicare se le seguenti affermazioni relative alle onde elettromagnetiche sono vere o false: a) Ogni onda e. m. è costituita da un campo elettrico ed un campo

Dettagli

Onde elettromagnetiche

Onde elettromagnetiche Onde elettromagnetiche SQ Campo determinato da cariche in moto Campo elettrico E dato da una carica puntiforme collocata in E {x 0, y 0, z 0 } E(x, y, z) = q r 4πɛ 0 r 2 con r = {x x 0, y y 0, z z 0 }

Dettagli

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti

Dettagli

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007 ESERCIZI I ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 006/007 1 FUNZIONI IN UE VARIABILI (I parte) Insiemi di definizione eterminare gli insiemi di definizione delle seguenti funzioni in due

Dettagli

Unità Didattica n 1: Onde, oscillazioni e suono. Prerequisiti. Forze e moto. Moto circolare uniforme.

Unità Didattica n 1: Onde, oscillazioni e suono. Prerequisiti. Forze e moto. Moto circolare uniforme. PROGRAMMA PREVISTO Testo di riferimento: Fisica Percorsi e metodi Vol. 2 (J. D. Wilson, A. J. Buffa) Le unità didattiche a fondo chiaro sono irrinunciabili, le unità didattiche a fondo scuro potranno essere

Dettagli

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Ottica geometrica In ottica geometrica si analizza la formazione di immagini assumendo che la luce si propaghi in modo rettilineo

Dettagli

Onde elettromagnetiche e gravitazionali, equazioni di Maxwell e significato fisico di rotore e divergenza I S. J ds. dj y. div J dv S.

Onde elettromagnetiche e gravitazionali, equazioni di Maxwell e significato fisico di rotore e divergenza I S. J ds. dj y. div J dv S. estratto da : L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare Onde elettromagnetiche e gravitazionali, equazioni di Maxwell e significato fisico di rotore e divergenza Ricordiamo che,

Dettagli

Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 2009/2010 ESERCITAZIONE 4.4

Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 2009/2010 ESERCITAZIONE 4.4 Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 9/ ESERCITAZIONE. (Cognome) (Nome) (Numero di matricola) Proposizione Vera Falsa Per due punti distinti di R passa un unica

Dettagli

1 Le equazioni di Maxwell e le relazioni costitutive 1 1.1 Introduzione... 1 1.2 Richiami sugli operatori differenziali...... 4 1.2.1 Il gradiente di uno scalare... 4 1.2.2 La divergenza di un vettore...

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

Simulazione Elettromagnetica

Simulazione Elettromagnetica Simulazione Elettromagnetica (per l elettronica delle radiofrequenze) D. Zito, Prof. B.Neri Università di Pisa Sommario Importanza della simulazione EM Introduzione ai simulatori EM Alcuni simulatori per

Dettagli

Moto vario nelle correnti a superficie libera Nozione elementare di onda In termini generali un'onda consiste nella propagazione di un segnale

Moto vario nelle correnti a superficie libera Nozione elementare di onda In termini generali un'onda consiste nella propagazione di un segnale 1 Moto vario nelle correnti a superficie libera Nozione elementare di onda In termini generali un'onda consiste nella propagazione di un segnale attraverso un mezzo (nella fattispecie un liquido) con una

Dettagli

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i

Dettagli

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB);

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB); VETTORI E GEOMETRIA ANALITICA 1 GEOMETRIA PIANA Segmenti e distanza tra punti. Rette in forma cartesiana e parametrica. Posizioni reciproche di due rette, parallelismo e perpendicolarità. Angoli e distanze.

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

Ottica fisiologica, ovvero perché funzionano i Google Glass (parte 2)

Ottica fisiologica, ovvero perché funzionano i Google Glass (parte 2) Ottica fisiologica, ovvero perché funzionano i Google Glass (parte 2) Corso di Principi e Modelli della Percezione Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it

Dettagli

Esercizi svolti. Geometria analitica: rette e piani

Esercizi svolti. Geometria analitica: rette e piani Esercizi svolti. Sistemi di riferimento e vettori. Dati i vettori v = i + j k, u =i + j + k determinare:. il vettore v + u ;. gli angoli formati da v e u;. i vettore paralleli alle bisettrici di tali angoli;

Dettagli

I.I.S MASCALUCIA PROGRAMMAZIONE DI FISICA LICEO CLASSICO A.S. 2009-2010

I.I.S MASCALUCIA PROGRAMMAZIONE DI FISICA LICEO CLASSICO A.S. 2009-2010 IIS MASCALUCIA PROGRAMMAZIONE DI FISICA LICEO CLASSICO AS 2009-2010 Modulo A Grandezze fisiche e misure Le basi dell algebra e dei numeri relativi Proporzionalità tra grandezze Calcolo di equivalenze tra

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

Teoria dei mezzi continui

Teoria dei mezzi continui Teoria dei mezzi continui Il modello di un sistema continuo è un modello fenomenologico adatto a descrivere sistemi fisici macroscopici nei casi in cui le dimensione dei fenomeni osservati siano sufficientemente

Dettagli

Sistemi di Telecomunicazione

Sistemi di Telecomunicazione Sistemi di Telecomunicazione Progetto di collegamenti radio troposferici tra punti fissi Universita Politecnica delle Marche A.A. 2014-2015 A.A. 2014-2015 Sistemi di Telecomunicazione 1/29 Evoluzione dei

Dettagli

Si intende la risposta di un materiale all esposizione alle radiazioni elettromagnetiche ed in particolare alla luce visibile.

Si intende la risposta di un materiale all esposizione alle radiazioni elettromagnetiche ed in particolare alla luce visibile. PROPRIETA OTTICHE DEI MATERIALI Si intende la risposta di un materiale all esposizione alle radiazioni elettromagnetiche ed in particolare alla luce visibile. Tratteremo inizialmente i concetti ed i principi

Dettagli

Conoscenze FISICA LES CLASSE TERZA SAPERI MINIMI

Conoscenze FISICA LES CLASSE TERZA SAPERI MINIMI FISICA LES SAPERI MINIMI CLASSE TERZA LE GRANDEZZE FISICHE E LA LORO MISURA Nuovi principi per indagare la natura. Il concetto di grandezza fisica. Misurare una grandezza fisica. L impossibilità di ottenere

Dettagli

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Ottica geometrica In ottica geometrica si analizza la formazione di immagini assumendo che la luce si propaghi in modo rettilineo

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Capitolo 1 Vettori applicati e geometria dello spazio

Capitolo 1 Vettori applicati e geometria dello spazio Capitolo 1 Vettori applicati e geometria dello spazio Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Tutorato di geometria e algebra lineare Anno accademico 2014-2015 Definizione (Vettore

Dettagli

Localizzazione di una esplosione

Localizzazione di una esplosione XXIII Ciclo di Dottorato in Geofisica Università di Bologna Corso di: Il problema inverso in sismologia Prof. Morelli Localizzazione di una esplosione Paola Baccheschi & Pamela Roselli 1 INTRODUZIONE Problema

Dettagli

Esercizi di Fisica LB - Ottica

Esercizi di Fisica LB - Ottica Esercizi di Fisica LB - Ottica Esercitazioni di Fisica LB per ingegneri - A.A. 2003-2004 Esercizio Un sistema ottico centrato è costituito (da sinistra a destra) da una lente sottile biconcava (l indice

Dettagli

OTTICA ONDE INTERFERENZA DIFFRAZIONE RIFRAZIONE LENTI E OCCHIO

OTTICA ONDE INTERFERENZA DIFFRAZIONE RIFRAZIONE LENTI E OCCHIO OTTICA ONDE INTERFERENZA DIFFRAZIONE RIFRAZIONE LENTI E OCCHIO 1 INTERFERENZA Massimi di luminosità Onda incidente L onda prodotta alla fenditura S0, che funge da sorgente, genera due onde alle fenditure

Dettagli

Esercizi Applicazioni Lineari

Esercizi Applicazioni Lineari Esercizi Applicazioni Lineari (1) Sia f : R 4 R 2 l applicazione lineare definita dalla legge f(x, y, z, t) = (x + y + z, y + z + t). (a) Determinare il nucleo di f, l immagine di f, una loro base e le

Dettagli

SPECCHI. Dalla posizione dell'immagine non emergono raggi luminosi; essa si trova sull'immaginario prolungamento dei raggi di luce riflessa.

SPECCHI. Dalla posizione dell'immagine non emergono raggi luminosi; essa si trova sull'immaginario prolungamento dei raggi di luce riflessa. SPECCHI SPECCHI PIANI Per specchio si intende un dispositivo la cui superficie è in grado di riflettere immagini di oggetti posti davanti a essa. Uno specchio è piano se la superficie riflettente è piana.

Dettagli

Un giunto per fusione viene ottenuto semplicemente fondendo insieme i due tronconi di fibra. Ne risulta una fibra unica senza interruzioni.

Un giunto per fusione viene ottenuto semplicemente fondendo insieme i due tronconi di fibra. Ne risulta una fibra unica senza interruzioni. INTRODUZIONE: CONNETTORI E GIUNTI OTTICI Un giunto per fusione viene ottenuto semplicemente fondendo insieme i due tronconi di fibra. Ne risulta una fibra unica senza interruzioni. Il punto di saldatura

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

Prova scritta del corso di Fisica e Fisica 1 con soluzioni

Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prof. F. Ricci-Tersenghi 17/02/2014 Quesiti 1. Un frutto si stacca da un albero e cade dentro una piscina. Sapendo che il ramo da cui si è staccato

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 6 Dinamica del punto materiale II Prof.ssa Stefania Petracca 1 Lavoro, energia cinetica, energie potenziali Le equazioni della dinamica permettono di determinare

Dettagli

Ottica geometrica. Propagazione per raggi luminosi (pennello di luce molto sottile)

Ottica geometrica. Propagazione per raggi luminosi (pennello di luce molto sottile) Ottica geometrica Propagazione per raggi luminosi (pennello di luce molto sottile) All interno di un mezzo omogeneo la propagazione e rettilinea: i raggi luminosi sono pertanto rappresentati da tratti

Dettagli

Fenomeni connessi con il moto ondoso.

Fenomeni connessi con il moto ondoso. Fenomeni connessi con il moto ondoso 0. Obbiettivo In queste pagine analizzeremo alcuni fenomeni connessi con il moto ondoso: la riflessione, la rifrazione e la diffrazione. Per visualizzare tali fenomeni

Dettagli

ANALISI VETTORIALE ESERCIZI SULLE SUPERFICI

ANALISI VETTORIALE ESERCIZI SULLE SUPERFICI ANALII VETTORIALE EERCIZI ULLE UPERFICI Esercizio Calcolare l area della superficie dove Σ {(x, y, z) (x, y) E, z 2 + x 2 + y 2 } E {(x, y) x 2 + y 2 4}. Essendo la superficie Σ data come grafico di una

Dettagli

Sistemi di Equazioni Differenziali

Sistemi di Equazioni Differenziali Sistemi di Equazioni Differenziali Nota introduttiva: Lo scopo di queste dispense non è trattare la teoria riguardo ai sistemi di equazioni differenziali, ma solo dare un metodo risolutivo pratico utilizzabile

Dettagli

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G. L INDUZIONE ELETTROMAGNETICA V Scientifico Prof.ssa Delfino M. G. INDUZIONE E ONDE ELETTROMAGNETICHE 1. Il flusso del vettore B 2. La legge di Faraday-Neumann-Lenz 3. Induttanza e autoinduzione 4. I circuiti

Dettagli

Propagazione della radiazione luminosa

Propagazione della radiazione luminosa Capitolo 3 Propagazione della radiazione luminosa La teoria ondulatoria della luce permette di descrivere accuratamente la propagazione della luce in un mezzo isotropo, i fenomeni della riflessione e della

Dettagli

FISICA II OBIETTIVI FORMATIVI PREREQUISITI RICHIESTI FREQUENZA LEZIONI CONTENUTI DEL CORSO

FISICA II OBIETTIVI FORMATIVI PREREQUISITI RICHIESTI FREQUENZA LEZIONI CONTENUTI DEL CORSO DIPARTIMENTO DI INGEGNERIA CIVILE E ARCHITETTURA (DICAR) Corso di laurea in Ingegneria civile e ambientale Anno accademico 2016/2017-2 anno FISICA II 9 CFU - 1 semestre Docente titolare dell'insegnamento

Dettagli

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo Parte 2, 1 Parte 2, 2 Elementi di Teoria dei Sistemi Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Cosa significa Dinamico? Parte 2, 4? e` univocamente determinata? Ingresso

Dettagli

Teorema di Gauss per il campo elettrico E

Teorema di Gauss per il campo elettrico E Teorema di Gauss per il campo elettrico E Dove vogliamo arrivare? Vogliamo arrivare al teorema di Gauss per il campo elettrico E : Φ E = q ε 0 Che dice fondamentalmente questo: il flusso attraverso una

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Gradiente, divergenza e rotore

Gradiente, divergenza e rotore Gradiente, divergenza e rotore Gradiente di una funzione scalare della posizione Sia f(x,y,z) una funzione scalare continua e derivabile delle coordinate costruiamo in ogni punto dello spazio un vettore

Dettagli

ε ε ε ε = L e, applicando Kirchoff, ε IR L = 0 ε L di L dx dx R R R dt R dt x L Rt L Rt L Rt L t

ε ε ε ε = L e, applicando Kirchoff, ε IR L = 0 ε L di L dx dx R R R dt R dt x L Rt L Rt L Rt L t Circuiti R serie Un circuito che contiene una bobina, tipo un solenoide, ha una autoinduttanza che impedisce alla corrente di aumentare e diminuire istantaneamente. Chiudendo l interruttore a t= la corrente

Dettagli

Geometria analitica del piano pag 12 Adolfo Scimone

Geometria analitica del piano pag 12 Adolfo Scimone Geometria analitica del piano pag 12 Adolfo Scimone Fasci di rette Siano r e r' due rette distinte di equazioni r: ax + by + c r': a' x + b' y + c' Consideriamo la retta combinazione lineare delle due

Dettagli

1.11.3 Distribuzione di carica piana ed uniforme... 32

1.11.3 Distribuzione di carica piana ed uniforme... 32 Indice 1 Campo elettrico nel vuoto 1 1.1 Forza elettromagnetica............ 2 1.2 Carica elettrica................ 3 1.3 Fenomeni elettrostatici............ 6 1.4 Legge di Coulomb.............. 9 1.5 Campo

Dettagli

R. Capone Analisi Matematica Integrali multipli

R. Capone Analisi Matematica Integrali multipli Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale

Dettagli

5 Fondamenti di Ottica

5 Fondamenti di Ottica Laboratorio 2B A.A. 2012/2013 5 Fondamenti di Ottica Formazione immagini Superfici rifrangenti Lenti sottili Lenti spessi Punti cardinali Ottica geometrica In ottica geometrica si analizza la formazione

Dettagli

La figura che segue mostra il corpo in questione e la posizione della cavità interna: + +

La figura che segue mostra il corpo in questione e la posizione della cavità interna: + + ESECIZI 2 UN C SFEIC DI AGGI =10 cm è UNIFMEMENTE CAIC CN DENSITA DI CAICA ρ=10 6 C/m 3 IN TUTT IL VLUME, TANNE IN UNA CAVITA INTENA SFEICA DI AGGI r 1 =/2. IL CENT DELLA CAVITA SI TVA A DISTANZA d=r 1

Dettagli

LA LUCE. Perché vediamo gli oggetti Che cos è la luce La propagazione della luce La riflessione La rifrazione

LA LUCE. Perché vediamo gli oggetti Che cos è la luce La propagazione della luce La riflessione La rifrazione LA LUCE Perché vediamo gli oggetti Che cos è la luce La propagazione della luce La riflessione La rifrazione Perché vediamo gli oggetti? Perché vediamo gli oggetti? Noi vediamo gli oggetti perché da essi

Dettagli