x = x(t) y = y(t) t [a, b]

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "x = x(t) y = y(t) t [a, b]"

Transcript

1 Dt un curv continu. Curve ed integrli di line : t [, b] i punti () = (x(), y()) e (b) = (x(b), y(b)) si chimno primo e secondo estremo dell curv, rispettivmente. L curv si dice chius se () = (b). L curv si dice semplice se Def. (Curv regolre). Un curv : t < t 2 b e (t ) = (t 2 ) = t = e t 2 = b. t I R intervllo si dice regolre se è di clsse C (I) ed il vettore tngente soddisf l seguente condizione () (t) = (x (t), y (t)) t I. L condizione () equivle l ftto che l velocità sclre v(t) = (t) = x (t) 2 + y (t) 2 è sempre divers d zero e grntisce l esistenz dell rett tngente ll trcci in ciscun punto (t ) = (x(t ), y(t )). L equzione crtesin dell rett tngente è esplicitmente dt d y (t )(x x(t )) x (t )(y y(t )) =. Un clsse importnte di curve è descritt dl seguente esempio. Esempio (Grfico di un funzione). Si ϕ : [, b] R un funzione di clsse C ([, b]), llor l curv x(t) = t : t [, b] y(t) = ϕ(t) è un curv regolre l cui trcci è il grfico di ϕ, (x, y) R 2 x [, b], y = ϕ(x) }, e (t) = (, ϕ (t)) v(t) = + ϕ (t) 2. L equzione dell rett tngete in (t ) = (t, ϕ(t )) = (x, ϕ(x )) risult ϕ (x )(x x ) (y ϕ(x )) =, in ccordo con il significto geometrico di derivt. Dt un curv regolre si definiscono () il versore tngente T (t) = (t) (t) = ( x (t) x (t) 2 + y (t), y (t) 2 x (t) 2 + y (t) ), 2 (2) se T (t) è derivbile e T (t), il versore normle (3) se T (t) è derivbile, l curvtur N(t) = T (t) T (t), χ(t) = T (t) (t) = T (t). v(t)

2 2 Il significto geometrico è chirito dlle seguenti relzioni. Se θ(t) indic l ngolo tr l semirett delle scisse positive e l semirett individut dl vettore tngente (t) (positivo se misurto in senso ntiorrio), llor T (t) = (cos θ(t), sin θ(t)) (t) = v(t)t (t) T (t) T (t) = T (t) N(t) = N(t) = θ (t) θ ( sin θ(t), cos θ(t)) (t) T (t) = θ (t) N(t) = χ(t)v(t)n(t) (t) = v (t)t (t) + v(t)t (t) = v (t)t (t) + χ(t)v(t) 2 N(t) (il versore ( sin θ(t), cos θ(t)) è ottenuto ruotndo T (t) di π/2 in senso ntiorrio). Def. 2 (Lunghezz di un curv). Dt un curv regolre : t [, b] si chim lunghezz dell curv il vlore positivo l = b Si chim sciss curviline l funzione s : [, b] R s(t) = t (t) b b dt = x (t) 2 + y (t) 2 dt = v(t) dt. (τ) t t dτ = x (τ) 2 + y (τ) 2 dτ = v(τ) dτ. Poiché è di clsse C, v(t) è un funzione continu, quindi è integrbile in [, b]. seguenti proprietà () s(t) è un funzione di clsse C, s([, b]) = [, l ] e s (t) = v(t) > ; (2) s = s(t) è un funzione invertibile e, dett t = t(s) l su invers, l curv x = x(t(s)) (s) = (t(s)) = y = y((t(s)) s [, l ] Vlgono le si chim rppresentzione stndrd dell curv. (3) le curve ed hnno l stess trcci, gli stessi versori tngente e normle, e l stess curvtur. In prticolre (s) = T (t(s)) ṽ(t) = (s) = χ(t(s))n(t(s)). I seguenti esempi mostrno il significto geometrico delle quntità definite. Esempio 2 (Moto rettilineo). Sino (x, y ) R 2, θ [ π, π] e l curv x(t) = x + r(t) cos θ (t) = t [, ] y(t) = y + r(t) sin θ dove r : [, ] R r C r() = ([, ]) r r() = l (t) > t [, ]. Poiché (t) = r (t)(cos θ, sin θ), è un curv regolre l cui trcci è il segmento di estremi P = (x, y ) e P = (x + l cos θ, y + l sin θ), che gice sull rett pssnte per (x, y ) ed h direzione il versore (cos θ, sin θ). Inoltre si h che v(t) = r (t) T (t) = (cos θ, sin θ) T (t) = χ(t) =.

3 L sciss curviline è dt d s(t) = t r (τ)dτ = r(t) e l lunghezze dell curv è s() = r() = l. L rppresentzione stndrd dell curv risult x(s) = x + s cos θ (s) = (t(s)) = s [, l], y(s) = y + s sin θ che è l equzione prmetric del segmento di estremi P e P. Esempio 3 (Moto circolre). Si r > e l curv x(t) = r cos θ(t) (t) = t [, ] y(t) = r sin θ(t) dove θ : [, ] R θ C θ() = θ ([, ]) θ θ() = θ (t) > t [, ]. Poiché (t) = rθ (t)( sin θ(t), cos θ(t)), è un curv regolre l cui trcci è l rco di circonferenz (di rggio r e centro l origine ) di estremi P = (r cos θ, r sin θ ) e P = (r cos θ, r sin θ ). Inoltre si h che v(t) = rθ (t) T (t) = ( sin θ(t), cos θ(t)) N(t) = (cos θ(t), sin θ(t)) χ(t) = r. L sciss curviline è dt d s(t) = t rθ (τ)dτ = r(θ(t) θ ) e l lunghezze dell curv è s() = r(θ θ ). L rppresentzione stndrd dell curv risult (s) = (t(s)) = x(s) = r cos(θ + s r ) y(s) = r sin(θ + s r ) s [, r(θ θ )], che è l equzione prmetric dell rco di circonferenz di estremi P e P. Si : [, b] R un curv regolre, si denot con l curv (t) = ( t) con t [ b, ]. Se η : [b, c] R è un ltr curv regolre tle che (b) = η(b), si denot con + η l curv (t) t [, b] ( + η)(t) =. η(t) t ]b, c] Un curv : [, b] R 2 si dice regolre trtti se è somm di un numero finito di curve regolri, cioè i : [ = n dove i, i+ ] R 2 curve regolri tli che i ( i+ ) = i+ ( i+ ). = < 2 <... < n < n+ = b Def. 3 (Integrle di line). Si un curv regolre : t [, b]. Dt un funzione continu f : A R R tle che ([, b]) A, si chim integrle di line di f lungo b f(x, y)ds = f((t)) (t) b dt = f(x(t), y(t)) x (t) 2 + y (t) 2 dt. Dto un cmpo continuo F (x, y) = u(x, y)dx + v(x, y)dy, (x, y) A, tle che ([, b]) A, si chim integrle di line di F lungo b b F (P ) dp = F ((t)) (t) dt = u(x, y)x (t) + v(x, y)y (t) dt 3

4 4 L definizione si estende in modo nturle curve regolri trtti. Per gli integrli di line vlgono le proprietà usuli dell integrle (linerità, monotoni, dditività rispetto ll somm di curve). Inoltre vlgono le seguenti relzioni f(x, y)ds = f(x, y)ds e F (P ) dp = F (P ) dp e, se : [, l ] R 2 è l rppresentzione stndrd di e T (s) è il versore tngente, l f(x, y)ds = = f( (s))ds F (P ) dp = l F ( (s)) T (s) ds. Def. 4 (Dominio regolre). Un insieme D R 2 si dice dominio regolre se () D è perto e limitto; (2) per ogni (x, y ) D esiste un funzione f : U R con U R 2 perto e f di clsse C (U) tle che D U = (x, y) R 2 f(x, y) = } (x, y ) U f(x, y ) = ( f)(x, y ) D U = (x, y) R 2 f(x, y) < }. L condizione (2) può essere indebolit mmettendo che l frontier D bbi un numero finito di spigoli. Per il teorem dell funzione implicit, esistono : [, b ] R 2,..., n : [ n, b n ] R 2 curve semplici regolri tli che due due hnno trcci disgiunt d eccezione l più degli estremi, cioè ed l frontier di D è l unione delle trcce, cioè i (] i, b i [) j (] j, b j [) = i j. D = ([, b ])... n ([ n, b n ]). Se l orientmento di ciscun i è scelto in modo che percorrendo l frontier l insieme D si trov sinistr, per ogni cmpo F : A R 2 continuo con D A, si definisce F (P ) dp = + D F (P ) dp F (P ) dp. n Esempio 4 (Dominio normle). L insieme D = (x, y) R 2 x ], b[, ϕ(x) < y < ψ(x) } dove ϕ, ψ : [, b] R di clsse C ([, b]) è un dominio regolre trnne nei quttro vertici (, ϕ()), (b, ϕ(b)), (, ψ()), (b, ψ(b)). L frontier orientt è formt d quttro curve x(t) = t x(t) = b (t) = t [, b] y(t) = ϕ(t) 2 (t) = t [ϕ(), ψ(b)] y(t) = t x(t) = t x(t) = 3 (t) = t [ b, ] y(t) = ψ( t) 4 (t) = t [ ψ(), ϕ()]. y(t) = t Il seguente teorem estende l cso di integrli doppi l formul fondmentle del clcolo integrle. Più precismente l orientmento dell curv è tle che, se T (t) = (cos θ(t), sin θ(t)) è il versore tngente nel punto (t) ed n(t) = ( sin θ(t), cos θ(t)) è il versore ortogonle d T (t) ottenuto ruotndo T (t) in senso ntiorrio, llor (t) + ɛ n(t) D per ɛ positivo sufficientemente piccolo.

5 Teo (Formul di Green). Si F : A R 2 un cmpo di clsse C (A) e D dominio regolre con D A, llor F (P ) dp = + D F (x, y) = u(x, y)dx + v(x, y)dy D ( ) v u (x, y) (x, y) dxdy. x y Il seguente esempio mostr l vlidità dell formul di Green per un dominio prticolrmente semplice. Esempio 5. Il qudrto D =], [ ], [ è un dominio regolre ( prte i quttro vertici) e l frontier orientt + D è dt di quttro lti x(t) = t x(t) = (t) = t [, ] y(t) = 2 (t) = t [, ] y(t) = t x(t) = t x(t) = 3 (t) = t [, ] y(t) = 4 (t) = t [, ]. y(t) = t Se F (x, y) = u(x, y)dx + v(x, y)dy, (x, y) A, è un cmpo di clsse C (A) con D A, llor l formul di integrzione su domini normli ed il teorem fondmentle del clcolo integrle forniscono v v (x, y)dxdy = dy (x, y)dx = (v(, y) v(, y)) dy D x x = F (P ) dp + F (P ) dp 2 4 u u (x, y)dxdy = dx (x, y)dy = (u(x, ) u(x, )) dx D y y = F (P ) dp + F (P ) dp, 3 d cui segue l formul di Green. Esempio 6 (Are dell ellisse). Dti, b >, si D = (x, y) R 2 ( x )2 + ( y b )2 < }, D è un dominio regolre e + D = dove x(t) = cos t (t) = t [, 2π]. y(t) = b sin t Il cmpo F (x, y) = xdy è di clsse C (R 2 ) e l formul di Green implic 2π m(d) dxdy = F (P ) P = cos t b cos t dt = πb. D + D Def. 5. Dto un cmpo F : A R 2 di clsse C (A) F (x, y) = u(x, y)dx + v(x, y)dy, () il cmpo F si dice conservtivo se esiste g : A R di clsse C 2 (A) tle che g (x, y) = u(x, y) ( g)(x, y) = F (x, y) cioè x g (x, y) A = v(x, y) y e l funzione g si chim potenzile del cmpo. (2) il cmpo F si dice irrotzionle se v u (x, y) = (x, y) (x, y) A. x y 5

6 6 Se F : A R 2 è un cmpo conservtivo, vlgono i seguenti ftti: () il cmpo F è irrotzionle (segue dl teorem di Schwrz sulle derivte seconde miste), m il vicevers non è vero (vedi Esempio 7 ); (2) se A è connesso per rchi, il potenzile g è unico meno di un costnte dditiv (inftti se h è un ltro potenzile (h g)(x, y) =, per cui h(x, y) = g(x, y) + c); (3) dt un curv regolre : [, b] R 2 di estremi P = () e P = (b) tle che ([, b]) A, llor F (P ) dp = g(p ) g(p ); inftti, se (t) = (x(t), y(t)), per l regol di derivzione in cten b [ F (P ) dp = u(x(t), y(t))x (t) + v(x(t), y(t))y (t) ] dt b [ g = x (x(t), y(t))x (t) + g ] y (x(t), y(t))y (t) dt = = g(x(b), y(b)) g(x(), y()) = g(p ) g(p ); (4) per ogni curv chius vle F (P ) dp =, b g(x(t), y(t)) dt (5) per ogni coppi di curve : [, b ] R 2 e 2 : [ 2, b 2 ] R 2 che hnno l stesso primo estremo e lo stesso secondo estremo, cioè ( ) = 2 ( 2 ) e (b ) = 2 (b 2 ), vle F (P ) dp = F (P ) dp ; 2 (6) se A è connesso per rchi, dto (x, y ) A l unico potenzile di F tle che g(x, y ) = è dto d b [ g(x, y) = F (P ) dp = u(x(t), y(t))x (t) + v(x(t), y(t))y (t) ] dt, dove (t) = (x(t), y(t)), t [, b], è un qulunque curv regolre di primo estremo (x, y ) e secondo estremo P = (x, y) tle che ([, b]) A. Oss.. Se un cmpo F : R 2 di clsse C (A) soddisf l condizione (4) o, equivlentemente, l condizione (5), llor il cmpo F è conservtivo. Il seguente esempio mostr come un cmpo irrotzionle non si necessrimente conservtivo. y Esempio 7. Si F (x, y) = dx + x dy = u(x, y)dx + v(x, y)dy con (x, y) A = R 2 \ (, )}. x 2 +y 2 x 2 +y 2 Poiché v x (x, y) = y2 x 2 (x 2 + y 2 ) 2 u y (x, y) = y2 x 2, (x 2 + y 2 ) 2 il cmpo è irrotzionle, tuttvi se è l circonferenz di rggio e centro l origine percors in verso ntiorrio x(t) = cos t (t) = t [, 2π] y(t) = sin t llor l integrle di line di F risult 2π F (P ) dp = sin 2 t + cos 2 t dt = 2π, per cui F non è conservtivo.

7 Il seguente teorem, conseguenz dell formul di Green, dà un condizione sufficiente sul dominio ffinchè un cmpo irrotzionle si conservtivo. A questo fine si dà l seguente definizione. Def. 6. Un insieme A perto e connesso per rchi si dice semplicemente connesso se per ogni curv : [, b] R 2 regolre, semplice e chius per cui ([, b]) A, esiste un dominio regolre D tle che D A e + D =. Teo 2. Si A un insieme semplicemente connesso ed F : A R 2 un cmpo di clsse C (A). Se F è irrotzionle, llor è conservtivo. Se A non è semplicemente connesso, un cmpo irrotzionle F può essere conservtivo o meno, come mostrno il seguente esempio e l esempio 7. Esempio 8. Si F (x, y) = log( x 2 + y 2 ), il ftto che x x 2 +y 2 dx + y x 2 +y 2 dy con (x, y) A = R 2 \ (, )}. Posto g(x, y) = g x (x, y) = x x 2 + y 2 g x (x, y) A (x, y) = x x 2 + y 2 implic che g è un potenzile per F e, essendo A connesso per rchi, ogni potenzile di F è dell form g(x, y) = +c con c R. 7

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n.

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n. Cmpi Ultimo ggiornmento: 18 febbrio 217 Un funzione F di n vribili reli e vlori in R n è dett cmpo di vettori. Nel seguito considereremo F : A R n con A perto di R n. 1. Integrli curvilinei di second specie

Dettagli

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes I Teoremi di Green, dell divergenz o di Guss e di Stokes In R Si un sottoinsieme limitto di R semplice rispetto d entrmbi gli ssi crtesini con costituit dll unione di un numero finito di sostegni di curve

Dettagli

Matematica I, Funzione integrale

Matematica I, Funzione integrale Mtemtic I, 24.0.2. Funzione integrle Definizione Sino f : A R, funzione continu su A intervllo, e c in A. L funzione che ssoci d ogni in A l integrle di f sull intervllo [c, ], viene dett funzione integrle

Dettagli

LEZIONE 9-6 maggio 2016 Campi vettoriali

LEZIONE 9-6 maggio 2016 Campi vettoriali LEZIONE 9-6 mggio 216 mpi vettorili 1. Introduzione DEFINIZIONE 1.1. Dto un insieme S R 3, un cmpo vettorile F su S è un legge che ssoci d ogni punto di S un vettore F(x,y,z) di componenti (F 1 (x,y,z),f

Dettagli

Integrali curvilinei (integrali di densità) Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Integrali curvilinei (integrali di densità) Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milno orso di Anlisi e Geometri 1 Federico Lstri federico.lstri@polimi.it Integrli curvilinei di prim specie (integrli di densità) 15 Dicembre 215 Indice 1 Integrli di line di prim specie

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

Curve e forme differenziali

Curve e forme differenziali Curve e forme differenzili Bricentro di un curv Si dt un curv :,b] R 3 di clsse C 1 trtti, con (t) = ( 1 (t), 2 (t), 3 (t)). Assumimo che si ssegnt un funzione continu e positiv µ : (,b]) R, che chimimo

Dettagli

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo Integrli ll integrle deinito ll integrle indeinito Indice dell lezione Integrle Deinito Rettngoloide Integrle deinito come re del rettngoloide Esempi e propriet Primitiv Teorem ondmentle del clcolo integrle

Dettagli

Appunti di Analisi Matematica IV M.K.Venkatesha Murthy e Maria Stella Gelli Il Teorema di Gauss-Green

Appunti di Analisi Matematica IV M.K.Venkatesha Murthy e Maria Stella Gelli Il Teorema di Gauss-Green Appunti di Anlisi Mtemtic IV M.K.Venktesh Murthy e Mri Stell Gelli Il Teorem di Guss-Green L nozione di integrle di un form differenzile è di importnz fondmentle in Anlisi ed in Fisic per le sue ppliczioni.

Dettagli

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Corso di Laurea in Ingegneria Civile ed Ambientale Prima prova scritta di Analisi Matematica 1 del 10/01/2011 A

Corso di Laurea in Ingegneria Civile ed Ambientale Prima prova scritta di Analisi Matematica 1 del 10/01/2011 A Prim prov scritt di Anlisi Mtemtic 1 del 10/01/2011 A (1) Fornire l definizione di funzione integrbile secondo Riemnn e di integrle di Riemnn. (2) Enuncire e dimostrre il Teorem di Rolle. (3) Dimostrre

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE Umberto Mrconi Diprtimento di Mtemtic Pur e Applict Pdov Premess Si [, [, fissto. Voglimo cpire cos signific: w dw perché l funzione integrnd è illimitt. Se considerimo, per b [, [,

Dettagli

F (r(t)), d dt r(t) dt

F (r(t)), d dt r(t) dt Cmpi vettorili Un cmpo vettorile è un funzione vlori vettorili F : A R, con A R n, ove in questo cso l imensione el ominio e el coominio è l stess. F ( 1, 2,..., n ) (f 1 ( 1, 2,..., n ), f 2 ( 1, 2,...,

Dettagli

Geometria Differenziale: Parte 7

Geometria Differenziale: Parte 7 Geometri Differenzile: Prte 7 Sommrio Curvtur geodetic. Tubo intorno un curv dello spzio. Superfici prllele. Mpp esponenzile. 1 Curvtur geodetic Si α : I Σ un curv prmetrizzt dll sciss curviline, intermente

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

0.1 Arco di curva regolare

0.1 Arco di curva regolare .1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali

Dettagli

lungo la curva. 2 x 2 + y 2 (4p)v- Si calcoli il raggio di curvatura nei vari istanti e in funzione della posizione. =: L.

lungo la curva. 2 x 2 + y 2 (4p)v- Si calcoli il raggio di curvatura nei vari istanti e in funzione della posizione. =: L. Anlisi Mtemtic II, Anno Accdemico 7-8. Ingegneri Edile e Architettur Vincenzo M. Tortorelli 5 Settembre 7: prim prov in itinere. N. mtr./nno iscr. Cognome docente/ crediti Nome Istruzioni l fine dell vlutzione:

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

Ellisse riferita al centro degli assi

Ellisse riferita al centro degli assi Appunti delle lezioni tenute in clsse: ellisse e iperole Ellisse riferit l centro degli ssi Dti due punti F ed F detti fuochi, l ellisse è il luogo geometrico dei punti P del pino per cui è costnte l somm

Dettagli

C... ϕ(t) = (x(t), y(t), z(t)),

C... ϕ(t) = (x(t), y(t), z(t)), 1 urve Si ϕ un funzione continu definit in un intervllo I di R e vlori in R 3 : ϕ : I R R 3 t I ϕ(t) = (x(t), y(t), z(t)), cioè tle che le componenti x(t), y(t) e z(t) sino funzioni continue dell vribile

Dettagli

Modulo o "valore assoluto" Proprietà del Valore Assoluto. Intervalli

Modulo o valore assoluto Proprietà del Valore Assoluto. Intervalli Modulo o "vlore ssoluto" Dto x definimo modulo o vlore ssoluto di x il numero rele positivo x se x 0 x = x se x < 0 Es. 5 è 5. 2.34 è 2.34 Dl punto di vist geometrico x rppresent l distnz di x d 0. x x

Dettagli

Formulario di Analisi Matematica 1

Formulario di Analisi Matematica 1 Formulrio di Anlisi Mtemtic Indice degli rgomenti Punti interni, isolti, di ccumulzione e di frontier Alcune costnti Proprietà delle potenze Proprietà degli esponenzili Proprietà dei logritmi Proprietà

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

Equivalenza tra equazioni di Lagrange e problemi variazionali

Equivalenza tra equazioni di Lagrange e problemi variazionali Equivlenz tr equzioni di Lgrnge e problemi AM Cherubini 20 Aprile 2007 1 / 21 Problemi Mostrimo or come si possono ricvre sistemi di equzioni con struttur lgrngin in un mbito diverso: prim si er crtterizzt

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

1 Integrali doppi di funzioni a scala su rettangoli

1 Integrali doppi di funzioni a scala su rettangoli INEGRALI DOPPI L prim motivzione per lo studio degli integrli di funzioni di due vribili è il lolo di volumi, in nlogi on l pplizione degli integrli di funzioni di un vribile l lolo di ree. L proedur di

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

Integrale definito (p.204)

Integrale definito (p.204) Integrle definito (p.4) Trttimo dei cenni sull teori dell integrzione nel cso di funzioni continue (integrle di Cuchy). Gli integrli si estendono l cso di funzioni limitte (integrle di Riemnn). Nel clcolo

Dettagli

1 Il problema del calcolo dell area di una regione piana limitata

1 Il problema del calcolo dell area di una regione piana limitata Anlisi Mtemtic 2 1 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 1 INTEGRALI DI FUNZIONI DI UNA VARIABILE REALE 1 Il problem del clcolo dell re di un regione pin limitt Se si consider un

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale.

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale. 1 Integrli dipendenti d un prmetro e derivzione sotto il segno di integrle. Considerimo l funzione f(x, t) : A [, b] R definit nel rettngolo A [, b], essendo A un sottoinsieme perto di R e [, b] un intervllo

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Anlisi e Geometri Esercizi sugli integrli Integrli propri. Clcolre i seguenti integrli immediti: I = I = I 5 = ln e e d I = e + e + 6e + e d I = rtg ln ( + ln ) d I 6 = e e + d d rtg + ( + ) ( + ( + )

Dettagli

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010)

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010) Ingegneri dei Sistemi Elettrici_2 (ultim modific 08/03/2010) Prim di definire le grndee di bse e le costnti universli del modello elettromgnetico per poter sviluppre i vri temi dell elettromgnetismo, si

Dettagli

Nome.Cognome classe 5D 21 Febbraio Verifica di matematica. (punti 1.5) x è sempre decrescente in R? (punti 1)

Nome.Cognome classe 5D 21 Febbraio Verifica di matematica. (punti 1.5) x è sempre decrescente in R? (punti 1) Nome.Conome clsse 5D Febbrio Veriic di mtemtic Dt l unzione: ke k k per < per punti.5 Dimostr che k R è continu e derivbile R b Trov il vlore di k tle che l tnente l rico dell unzione nel suo punto di

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 PROBLEMA ) L prbol di equzione V ' (0,0). y h sse di simmetri prllelo ll sse delle ordinte e vertice in L prbol di equzione

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Calcolo Vettoriale. Fisica I - Lezione 01. Cristiano Guidorzi Dipartimento di Fisica Universitá di Ferrara

Calcolo Vettoriale. Fisica I - Lezione 01. Cristiano Guidorzi Dipartimento di Fisica Universitá di Ferrara Fisic I - Leione 01 Cristino Guidori Diprtimento di Fisic Universitá di Ferrr guidori@fe.infn.it http://www.fe.infn.it/ guidori/ 21 Novembre 2002 Fisic I - A.A. 2002-2003 Leione 01 Definiioni e Notioni

Dettagli

Omotopia, forme chiuse e esatte

Omotopia, forme chiuse e esatte Omotopi, forme chiuse e estte Per curv intenimo un curv orientt regolre trtti. Dt un curv enoteremo con l curv ottenut cmbino orientzione, si h ω = ω per ogni form ω (1) Due curve, tli che il punto finle

Dettagli

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI Considerimo un funzione f : I R, dove I è un intervllo di R. Si c un punto interno I in cui f è discontinu. Diremo che c è un punto di discontinuità di prim

Dettagli

Esercizi sulle curve in forma parametrica

Esercizi sulle curve in forma parametrica Esercizi sulle curve in form prmetric Esercizio. L Elic Cilindric. Dt l curv di equzioni prmetriche: xt cos t yt sin t t 0 T ] > 0 b IR zt bt trovre: versore tngente normle binormle vettore curvtur rggio

Dettagli

Meccanica dei Solidi. Vettori

Meccanica dei Solidi. Vettori Meccnic dei Solidi Prof. Ing. Stefno Avers Università di Npoli Prthenope.. 2005-06 Lezione 2 Vettori Definizione: Un grndezz vettorile (o un vettore) è un grndezz fisic crtterizzt oltre che d un numero

Dettagli

Area del Trapezoide. f(x) A f(a) f(b) f(x)

Area del Trapezoide. f(x) A f(a) f(b) f(x) Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.

Dettagli

Corso di Analisi Matematica. Calcolo integrale

Corso di Analisi Matematica. Calcolo integrale .. 2011/12 Lure triennle in Informtic Corso di Anlisi Mtemtic Clcolo integrle Avvertenz Questi sono ppunti informli delle lezioni, che vengono resi disponibili per comodità degli studenti. Prte del mterile

Dettagli

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i

Dettagli

Diario del corso di Analisi Matematica 2

Diario del corso di Analisi Matematica 2 Dirio del corso di Anlisi Mtemtic 2 G. Orlndi.. 2010-11 Vengono qui di seguito elencti gli rgomenti trttti lezione. Il dirio servirà nche per definire il progrmm d esme. Lezione del 4/10/10 (2 ore). Proprietà

Dettagli

Teoremi di Green, Stokes e Gauss

Teoremi di Green, Stokes e Gauss pprofondimenti Teoremi di Green, Stokes e Guss In quest sezione dimostrimo i Teoremi di Greendetto nche Formul di Guss-Green, di Stokes o del rotore e di Guss o dell divergenz. 1.1 Teorem di Green 1.1

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Integrali curvilinei e integrali doppi

Integrali curvilinei e integrali doppi Integrli curvilinei e integrli doppi Integrli curvilinei di prim specie Prim di inizire l trttzione di questo rgomento dimo l definizione di curv. Per curv nello 3 3 spzio R intendimo un sottoinsieme di

Dettagli

5. Funzioni elementari trascendenti

5. Funzioni elementari trascendenti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 5. Funzioni elementri trscendenti A. A. 2013-2014 1 FUNZIONI ESPONENZIALI Le più semplici funzioni esponenzili sono le funzioni f: R R definite

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

a monometriche Oxy, l equazione cartesiana di Γ è: y =

a monometriche Oxy, l equazione cartesiana di Γ è: y = Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Tem di: MATEMATICA Il cndidto risolv uno dei due problemi e 5 dei quesiti del questionrio. PROBLEMA Nel pino sono dti: il cerchio γ

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

Teorema della Divergenza (di Gauss)

Teorema della Divergenza (di Gauss) eorem dell ivergenz (di Guss) i un dominio tridimensionle regolre, l cui frontier è un superficie chius orientt con cmpo normle unitrionˆ uscente d. e F(,,z) F (,,z) i F (,,z) j F (,,z) k è un cmpo vettorile

Dettagli

CORSO ANALISI MATEMATICA 1 A.A. 2015/2016. Testo consigliato

CORSO ANALISI MATEMATICA 1 A.A. 2015/2016. Testo consigliato Università degli studi di Cgliri CORSO ANALISI MATEMATICA 1 A.A. 2015/2016 Docente: Monic Mrrs 1 Anlisi Mtemtic 1 Testo consiglito con elementi di geometri e lgebr linere. M. Brmnti, C.D. Pgni, S. Sls

Dettagli

Micol Amr ANALISI MATEMATICA I - 999/000 rispettivmente, hnno entrmbe come sostegno l circonferenz unitri di centro l'origine, m sono due curve distin

Micol Amr ANALISI MATEMATICA I - 999/000 rispettivmente, hnno entrmbe come sostegno l circonferenz unitri di centro l'origine, m sono due curve distin CURVE IN IR N. Denizione e prime propriet. Si I un intervllo contenuto in IR. Dt un N-pl di funzioni f i : I! IR, i =;:::;N, indicheremo con f : I! IR N l funzione che d ogni punto x I ssoci l N-pl fx)

Dettagli

INTERVALLI NELL INSIEME R

INTERVALLI NELL INSIEME R INTEVALLI NELL INSIEME Lo studio dell topologi (1) (dl greco "nlysis situs" ossi "studio del luogo") dell'insieme è di fondmentle importnz per gli rgomenti e i prolemi di nlisi infinitesimle. Il "luogo"

Dettagli

1 COORDINATE CARTESIANE

1 COORDINATE CARTESIANE 1 COORDINATE CARTESIANE In un sistem di ssi crtesini (,) un punto P è identificto dll su sciss e dll su ordint : Asciss : distnz di P dll sse delle ordinte Ordint :distnz di P dll sse delle scisse P(-4,4)

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.mtefili.it PNI 2005 - SESSIONE SUPPLETIVA QUESITO È dto un trpezio rettngolo, in cui le bisettrici degli ngoli dicenti l lto obliquo si intersecno in un punto del lto perpendicolre lle bsi. Dimostrre

Dettagli

Teoremi di geometria piana

Teoremi di geometria piana l congruenz teoremi sugli ngoli γ teorem sugli ngoli complementri Se due ngoli sono complementri di uno stesso ngolo α β In generle: Se due ngoli sono complementri di due ngoli congruenti α γ β teorem

Dettagli

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1 INTEGRALI IMPROPRI c Pol Gervsio - Anlisi Mtemtic - A.A. 6/7 Integrli impropri cp.pdf Abbimo visto che l integrle di Riemnn è definito per funzioni limitte e su intervlli limitti. Si or I R un intervllo

Dettagli

ARGOMENTI DI ANALISI DUE A.A

ARGOMENTI DI ANALISI DUE A.A ARGOMENTI DI ANALISI DUE A.A. 3 GIUSEPPE DE MARCO. Curve Per lo studio delle funzioni vlori vettorili di un vribile rele, collettivmente e vgmente denominte curve, seguo il mio libro Anlisi Due, bbrevito

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO RECUPERO ESTIVO PER LE CLASSI ^D- E SCIENTIFICO Argomenti d rivedere: I QUADRIMESTRE: ) Equzioni di secondo grdo e relzioni tr coefficienti e rdici

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

Superfici di Riferimento (1/4)

Superfici di Riferimento (1/4) Superfici di Riferimento (1/4) L definizione di un superficie di riferimento nsce dll necessità di vere un supporto mtemtico su cui sviluppre il rilievo eseguito sull superficie terrestre. Tle superficie

Dettagli

Scuola di Dottorato in Scienze e Tecnologie dell Informazione e della Comunicazione.

Scuola di Dottorato in Scienze e Tecnologie dell Informazione e della Comunicazione. T. ZOLZZI. Appunti del corso di Introduzione ll Anlisi Funzionle Scuol di Dottorto in Scienze e Tecnologie dell Informzione e dell Comuniczione. NOTA. L utore desider ringrzire le studentesse di dottorto,

Dettagli

Diario del corso di Analisi Matematica 2

Diario del corso di Analisi Matematica 2 Dirio del corso di Anlisi Mtemtic 2 G. Orlndi.. 211-12 Vengono qui di seguito elencti gli rgomenti trttti lezione. Il dirio servirà nche per definire il progrmm d esme. Lezione del 5/1/11 (2 ore). Proprietà

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

Dispense di MATEMATICA PER L INGEGNERIA 4

Dispense di MATEMATICA PER L INGEGNERIA 4 ispense di MATEMATICA PER L INGEGNERIA 4 Qurto trimestre del o nno del Corso di Lure in Ingegneri Elettronic ocente: Murizio Romeo Mggio 25 ii Indice Integrzione delle funzioni di più vribili. Insiemi

Dettagli

1 Integrali generalizzati su intervalli illimitati

1 Integrali generalizzati su intervalli illimitati Lezioni per il corso di Anlisi 2, AA 07-08. Dott.ss Sndr Lucente Argomento: Integrli generlizzti 1 1 Integrli generlizzti su intervlli ilitti Definizione 1.1. Si f : [,[ R un funzione continu. Se esiste

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Integrale di Riemann su R n

Integrale di Riemann su R n CAPITOLO 5 Integrle di iemnn su n 1. Funzioni integrbili secondo iemnn In questo cpitolo dremo l definizione di funzione integrbile secondo iemnn su n. Come già ftto nel cso delle funzioni integrbili su,

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione ordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione ordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione ordinri Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA In un pino, riferito d un sistem

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α

ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α Trigonometri I In quest prim prte dell trigonometri denimo le funzioni trigonometriche seno, coseno e tngente e le loro funzioni inverse. Vedremo nche come utilizzrle nell risoluzione dei tringoli. Comincimo

Dettagli

Sorgenti di campo magnetico. Esempio 1. Soluzione 1. Campo magnetico generato da un lungo filo rettilineo percorso da corrente

Sorgenti di campo magnetico. Esempio 1. Soluzione 1. Campo magnetico generato da un lungo filo rettilineo percorso da corrente Cmpo mgnetico generto d un lungo filo rettilineo percorso d corrente Sorgenti di cmpo mgnetico Ingegneri Energetic Docente: Angelo Crone Il cmpo mgnetico dovuto d un filo rettilineo è inversmente proporzionle

Dettagli

Risoluzione verifica di matematica 3C del 17/12/2013

Risoluzione verifica di matematica 3C del 17/12/2013 Problem 1 Risoluzione verific di mtemtic C del 17/1/01 Si clcolno le intersezioni tr le rette generiche del fscio proprio y x y 1, risolvendo il sistem: x y 1 y mx Si ottengono i punti di coordinte espresse

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

Funzioni 1. 3) una legge che ad un elemento x di X associa al più un unico elemento ( x)

Funzioni 1. 3) una legge che ad un elemento x di X associa al più un unico elemento ( x) Funzioni Un funzione f d X in Y è costituit d un tern di elementi ) un insieme X, detto dominio di f 2) un insiemey, detto codominio di f f di Y. Nel cso, in cui X,Y sino sottinsiemi di R, generlmente

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccrdo il:rchiucchi@unite.it Medicin Veterinri: CFU 5 (corso

Dettagli

Nello studio della meccanica si incontrano due principali categorie di grandezze: scalari e vettori. Cosa distingue queste quantita?

Nello studio della meccanica si incontrano due principali categorie di grandezze: scalari e vettori. Cosa distingue queste quantita? Vettori e sclri Nello studio dell meccnic si incontrno due principli ctegorie di grndezze: sclri e vettori. Cos distingue queste quntit? Domenic sono ndto in iciclett per due ore L informzione sul tempo

Dettagli

Integrale definito. Introduzione: il problema delle aree

Integrale definito. Introduzione: il problema delle aree Integrle definito Introduzione: il prolem delle ree Il prolem delle ree è uno dei tre grndi prolemi che ci sono stti trmndti dgli ntichi, che lo definivno come il prolem dell qudrtur del cerchio: trovre,

Dettagli

Sistemi principali di normali ad una varietà giacenti nel suo o 2. Nota di

Sistemi principali di normali ad una varietà giacenti nel suo o 2. Nota di Sistemi principli di normli d un vrietà gicenti nel suo o 2. Not di Giuseppe Vitli Pdov. In un mio recente lvoro *) ho considerto, per ogni superficie il cui j si di 2 k dimensioni (k 2, 3), un sistem

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

Durata della prova: 3h. 2 +y 4. tan y sin y lim = 1. (x 4 +y 2 )y 3

Durata della prova: 3h. 2 +y 4. tan y sin y lim = 1. (x 4 +y 2 )y 3 Università degli Studi di Napoli Federico II Corso di Laurea in Matematica Analisi Matematica II (Gruppo ), A.A. 22/3 Prova scritta del 28 gennaio 23 Durata della prova: 3h. sercizio (8 punti). Si consideri

Dettagli

June 1, 2011 COMPLEMENTI DI ANALISI 2

June 1, 2011 COMPLEMENTI DI ANALISI 2 June 1, 2011 COMPLEMENTI DI ANALISI 2 1. Introduzione ll topologi e ll struttur di R 2 e R 3. [3, Prgrfi 1 e 2, Cpitolo 2] L esperienz dell Anlisi A ci insegn che, per poter definire limiti, derivte etc,

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Lure in Scienze e Tecnologie Agrrie Corso Integrto: Mtemtic e Sttistic Modulo: Mtemtic (6 CFU) ( CFU Lezioni CFU Esercitzioni) Corso di Lure in Tutel e Gestione del territorio e del Pesggio Agro-Forestle

Dettagli

c a (seno di alfa); (coseno di alfa); (tangente di alfa).

c a (seno di alfa); (coseno di alfa); (tangente di alfa). Sito Personle di Ettore Limoli Lezioni di Mtemtic Prof. Ettore Limoli Sommrio Elementi di trigonometri... 1 Angoli e loro misur... Funzioni e loro grfici... 4 Usre i grfici... 5 Funzioni inverse delle

Dettagli

Funzioni a variazione limitata

Funzioni a variazione limitata Cpitolo 1 Funzioni vrizione limitt 1.1 Il problem delle primitive di funzioni L 1 Il problem dell ricerc delle primitive di un ssegnt funzione f : I R con I = [, b] intervllo limitto, cioè le soluzioni

Dettagli

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico Second prov mturit 06 soluzione secondo problem di mtemtic scientifico Skuol.net June, 06 Primo Problem Le tre funzioni proposte sono f () ( ) k f () 6 + 9k + f () cos( π k ). Punto Affinche l funzione

Dettagli