Simulazione della seconda prova scritta

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Simulazione della seconda prova scritta"

Transcript

1 Lico Sciniico "A. M. Rovggio" Cologna Vna (V) ESAME DI STATO DI LICEO SCIENTIFICO Anno sc. 8/9 CORSO SPERIMENTALE PNI - Piano Nazional Inomaica Simulazion dlla sconda pova scia Tma di: MATEMATICA Cognom Nom dl candidao class Poblma n Qusio n Qusio n Qusio n Qusio n Qusio Il candidao isolva uno di du poblmi 5 di qusii dl qusionaio. PROBLEMA Siano dai un cchio di aggio d una sua coda AB ugual al lao dl quadao in sso inscio.. Do P un gnico puno dlla ciconnza, giacn sull aco maggio di smi A B, si considi il appoo: lo si spima in unzion di g PAˆ B. PA PB AB. Si sudi la unzion () così onua si acci il suo gaico γ, indipndnmn dai limii posi dal poblma gomico.. Do C il puno d inszion dlla cuva γ con il suo asinoo oizzonal, si sciva l quazion dlla angn a γ in C.. Si calcoli l aa dlla pa inia di piano compsa a la cuva γ, la sudda angn la a di quazion k, ssndo k l ascissa dl puno di massimo laivo. Soluzion PA PB. dminiamo il appoo AB A B D P C Pag.

2 Poso an PAˆ B Considaa la angn alla ciconnza in A, poniamo l limiazion p l incognia, Inai acciaa la angn alla ciconnza in A si dduc dalla simmia dl quadao (vnualmn acciando al diagonal AC) ch l angolo può vaia la su ampizza a 5 gadi (la somma dll angolo compso a la angn alla ciconnza il lao AD dll angolo o compso a i lai dl quadao AD AB). P la simmia dl quadao, s congiungiamo l smo B con il vic D, l angolo P il oma dlla coda alloa si ha ch ˆ A DB AB sin Inol poiché l angolo Val anch AP ˆ B insis sulla coda AB sso è di. ABP ˆ PAB ˆ PAˆ B Oa conosciamo ui gli angoli dl iangolo APB il lao AB, possiamo applica il oma di sni. Dobbiamo icava pò in unzion dl sno il valo dgli angoli inni dl iangolo considao. Dall uguaglianza sin PAB ˆ ± ˆ sin APB an PAB ˆ an PAB ˆ ± ; cos PAB ˆ cos ± an PAB ˆ ± sin ABP ˆ sin PAB ˆ sin cos PAB ˆ cos sin PAB ˆ cos PAB ˆ sin PAˆ B ± ( ) ( ) ± ± ± Applicando il oma dlla coda ai lai AP BP si oin: sin ˆ AP ABP ± BP sin PAB ˆ ± ( ) PA PB Pano la lazion dl poblma AB divna Pag.

3 Pag. ± ±. sudiamo la unzion così onua ) Dominio smp viicao R Dom ) Inszion con gli assi ; impossibil ) Posiivià N: R D: > R Da cui sgu R ) Limii Poiché non vi sono puni di disconinuià non ci sono asinoi vicali. lim ± asinoo oizzonal Poiché c è l asinoo oizzonal non vi sono asinoi obliqui. 5) Divaa pima Dom Dom

4 ( ) ( ) N: ( ) D: ( ) > R La soluzioni sono Quindi Alloa è puno di minimo mn è puno di massimo. 6) Gaico P accia mglio il gaico calcoliamo i puni smani: ( ), 59 ( ),.Calcoliamo il puno C inszion dlla cuva γ con il suo asinoo oizzonal C Pag.

5 Pag. 5 ; C Sciviamo oa l quazion dlla angn a γ in C. Il coicin angola dlla angn è dao da Uilizzando la omula m sciviamo la a angn:. Calcoliamo l aa dlla pa inia di piano compsa a la cuva γ, la angn al puno la a di quazion (ssndo l ascissa dl puno di massimo laivo). Quindi Calcoliamo i puni di inszion a cuva a angn:,

6 Pag. 6 Poiché è ascissa dl puno di angnza il puno di inszion a a dv av cuva è. Quindi p calcola l aa si dv calcola: d d acan ln d d acan ln acan ln ln 5 PROBLEMA Sia dao l insim dll sguni amigli di unzioni c b a. Si dminino i coicini c b a,, dll quazion in modo ch la cuva da ssa appsnaa in un iimno casiano O abbia l ass dll odina com asinoo vical un smo laivo nl puno 9 ; A ;. Si disgni il gaico dlla cuva;. Si calcoli l aa dlla gion di piano dl pimo quadan compsa a la cuva, l ass dll asciss la a passan p l oigin gli assi angn alla cuva sssa;. Dmina il volum dl solido di oazion gnao da una oazion compla aono all ass dlla unzion compsa a il puno di angnza dminao al qusio pcdn il puno di inszion dlla unzion l ass dll asciss appann al pimo quadan. Soluzion

7 . Ainché la cuva a b c abbia l ass dll odina com asinoo, cioè la a, popio il puno dv ss un puno di disconinuià, quindi: c c ss ch c. Possiamo già sciv: c, ainché al condizion scluda popio il valo, dv a b S la unzion ha un smo laivo, cioè un puno di massimo o di minimo nl puno A ;, 9 ncssaiamn la sua divaa in dv annullasi. a ( ) ( a b) 6 a b 9 a a 6 b a b Quindi a b a b 9 a b 6 a b S la unzion passa p il puno unzion, pano possiamo sosiui: A ; l su coodina dvono soddisa la lazion dlla 9 a b 8 a b 9 9 a b a b a b a b a b b b a b b a b b a Quindi la unzion è: sudiamo la unzion così onua ) Dominio Dom ( ) R \ { } ) Inszion con gli assi Pag. 7

8 ± ) Posiivià N: D: > > Da cui sgu < ) Limii lim lim asinoo vical lim ± asinoo oizzonal. Poiché c è l asinoo oizzonal non vi sono asinoi obliqui. 5) Divaa pima Dom ( ) Dom( ) N: R \ { } D: > La soluzioni sono Quindi Alloa è puno di minimo mn è puno di massimo. 6) Gaico P accia mglio il gaico calcoliamo i puni smani: Pag. 8

9 ( ) 9 ( ) 9. P calcola l aa dlla gion di piano dl pimo quadan compsa a la cuva, l ass dll asciss la a passan p l oigin gli assi angn alla cuva sssa pocdiamo a calcola qus ulima. L quazion dll a angn si dmina a inini m ch passano p l oigin, mndol a sisma con l quazion dlla unzion imponndo la condizion. m m m m m m poniamo P dmina il puno di angnza miamo a sisma l quazion dlla unzion con la a angn appna ovaa Pag. 9

10 Pag. L cui soluzioni sono Poiché l aa da calcola è nl pimo quadan il valo da consida è. L aa da dmina è dlimiaa: supiomn dalla a angn iniomn dall ass p [ ] ; ; supiomn dalla a angn iniomn dalla unzion p [ ] ;. Alloa: d d d d d S d d d d ln ln ln

11 Pag.. P dmina il volum dl solido di oazion gnao da una oazion compla aono all ass dalla unzion p dobbiamo uilizza la omula: [ ] b a d V Quindi d V d d d V Qusionaio. Si dminino l cosani a b in modo al ch la unzion: > p p b a isuli coninua divabil nl puno. Soluzion Poiché è coninua in possiamo calcola b lim lim lim H P la dinizion di coninuià dv ss lim b Analogamn dv accad p la divabilià. Quindi > p p a a lim lim lim lim lim H P la dinizion di divabilià dv ss

12 lim a. Qual è la capacià massima di un cono di apoma dm? Si aa di dmina il volum massimo di un cono di apoma assgnao V Sia l alzza dl cono Quindi l limiazioni sono < < (l alzza dv ss mino dll apoma, alimni non si oma il cono). P il oma di Piagoa il aggio di bas val: Il volum dl cono si spim con la omula: Quindi: Calcoliamo la divaa dl volum: n sudiamo il sgno: V V h ( ) ( ) V ( ) ( ) Quindi: ± ± valoi inni Il volum massimo si oin p alzza Alloa il volum massimo val:. Pag.

13 V ma Si dmini il numo al posiivo λ in modo ch la cuva appsnaiva dlla unzion g λ divida in pai quiss la gion dlimiaa dalla cuva appsnaiva dlla λ unzion, dall ass dall. λ Il poblma ichid di dmina λ al ch l aa sosa λ unzion g, cioè: λ d λ d sia divisa in du pai dalla λ λ λ λ λ λ λ λ λ λ Pongo λ λ λ C. E. λ λ λ λ λ λ λ λ λ λ non accabil λ λ ln accabil. Si dmini la pobabilià ch, lanciando 8 vol una mona non uccaa, si onga vol sa. La pobabilià ch sca sa P ( T ) è ugual alla pobabilià ch sca coc P ( C) applicando la lgg binomial si oin:, alloa Pag.

14 8 P 8!!! Si dimosi ch l quazion ( ) valo appossimao con du ci dcimali sa. Scomponiamo l quazion ( ) p > ha un unica adic al s n calcoli un com sgu La sconda unzion è un ipbol. Tacciamo i gaici nl piano casiano. Vi è un inszion a p >. Applichiamo il modo di biszion alla unzion ( )., m [ ;], 9 Scgliamo l invallo 5 ; 5,9 Pag.

15 m, 9 5 ; Scgliamo l invallo ;,9 m, 78 ; 8 8 Scgliamo l invallo ; m, ; Scgliamo l invallo 5 ; m, ; 8 Scgliamo l invallo 5 9 ; m 5 9, 9 ; Scgliamo l invallo 5 8 ; m 5 9, 6 ; Si dimosi ch il volum dl cilindo quilao inscio in una sa di aggio è mdio popozional a il volum dl cono quilao inscio il volum dlla sa. Un cilindo quilao è un cilindo la cui alzza misua il doppio dl aggio di bas, quindi Pag. 5

16 V H P O G A K B F HP OH OK inol HK HP, il iangolo OHP è angolo isoscl, cioè è mà di un quadao, considando ch OP OP HP OP HP OP HP Un cono quilao è un cono il cui apoma misua il doppio dl aggio di bas. Pano OF OV il iangolo VFG è quilao, quindi O VF ˆ OFˆ V, quindi 6 VF OV cos 6 VF GF applicando il oma di Piagoa calcoliamo 9 VG VF GF La ichisa dl poblma è di dimosa ch il volum dl cilindo quilao inscio in una sa di aggio è mdio popozional a il volum dl cono quilao inscio il volum dlla sa, cioè: V : V V : V cono cil cil sa V cono h 9 V cil h Vsa Sosiundo nlla popozion V : V V : V cono cil cil sa Pag. 6

17 9 : : Viichiamo la popozion applicando la popià podoo di mdi ugual podoo dgli smi : Si calcoli il valo mdio dlla unzion accos nll invallo. Il oma dlla mdia ingal ama ch: Toma dlla mdia Sia R( [ a; b] ) alloa sis (p al limiazza di ) un valo µ al ch p cui isula µ in ;sup [ a ; b] [ a; b] b µ a ( b a) S è coninua su [ a; b] alloa sis c [ a; b] al ch ( c) µ l ingal si può spim b a ( c)( b a) La unzion accos soddisa l iposi dl oma, quindi calcoliamo il puno c: accos ( c)( ) accos accos ( c) ( c) Ingiamo p pai ( c) [ accos ] d accos d d d Pag. 7

18 [ ] 8. In un piano iio ad un sisma di assi casiani sono assgnai i puni A(,), B(,). Si dmini sul smiass posiivo dll asciss un puno C dal qual il sgmno AB è viso con un angolo di massima ampizza. B(,) A(,) O C (;) Disgniamo su un gaico casiano i puni A(,), B(,) il puno ( ;) C con >. Applicando il oma di Piagoa ai iangoli angoli AOC BOC si oin ch i lai dl iangolo ABC misuano: AC BC OC AO OC BO 6 Dobbiamo imposa una unzion p l angolo ACB ˆ α p cui α ;, icodando la omula dll aa di un iangolo A ab sin γ (dov γ è l angolo compso a a b) possiamo sciv: A ( ABC) AC BC sinα 6 sinα Snza la misua dll aa dl iangolo pò qusa unzion non è uilizzabil p dmina l angolo α, dobbiamo spim l aa anch in un alo modo, quindi dalla omula classica dll aa dl iangolo abbiamo: A ( ABC) bh AB CO Uguagliando l du spssioni dll aa abbiamo oniamo una lazion da cui è possibil icava sin α in unzion di : 6 sinα 6 sinα Pag. 8

19 sinα Oa p calcola il massimo valo p α diviamo: 7 6 D sinα [ ] 6 7 ( 7 6) Sudiamo il sgno dlla divaa: ( 6 ) ( 7 6) ( 7 6) 7 6 Poiché ui i mini ann il numao sono posiivi, sudiamo solo qus ulimo: 6 6 ± valoi inni Il valo massimo sin α lo si oin quindi p, il puno ccao è C (;). Uilizziamo al poblma p calcola α, sosiuiamo nll spssion di sin α : sinα sin α Da cui si icava α acsin Si sciva l quazion dlla angn al diagamma dlla unzion d nl puno P di ascissa. In coispondnz di si ha: 5 log Il puno P alloa ha coodina P ( ;). log d d Pag. 9

20 La a angn si oin dalla omula m( ) : m ( ) P icava il coicin angola dlla angn dobbiamo calcola la divaa dlla unzion nl puno, alloa: Poiché da d si oin ( ), considando gli smi posi dal poblma dl ao ch si aa di una unzion composa: D [ ] log D d log log log log log log Ossvazion L smo inio di ingazion è, quindi quando calcoliamo la pimiiva in poi la diviamo ci oviamo a diva una cosan ch com isulao di al opazion da zo. Alloa: m log log log La a angn ccaa è: ( ). Ta l pimiiv F() dlla unzion P ( ; log) Dminiamo una pimiiva gnica dlla unzion F(): A individua qulla ch passa p il puno d B ( ) ( ) P il pincipio di idnià di polinomi si ha: A B A A B A Possiamo sciv oa B A ( ) d A A B 8 B A ( A B) ( ) A Pag.

21 8 8 d d c ( ) ln ln 8 F ln ln c Poiché la unzion F() dv passa p il puno P ( ; log) nll spssion pcdn: sosiuiamo l coodina di P Pano la pimiiva ccaa è: F 8 ln ln ln c 8 ln ln c 8 c ln ln 8 c ln ln 8 c ln ln c ln 8 ln ln ln Duaa massima dlla pova: 5 o. È consnio solano l uso di calcolaici non pogammabili. Non è ammsso lascia l aula dgli sami pima ch siano ascos o dalla consgna dlla copia con l acc. Pag.

Corso di ordinamento- Sessione suppletiva - a.s Soluzione di De Rosa Nicola

Corso di ordinamento- Sessione suppletiva - a.s Soluzione di De Rosa Nicola Coso di odinamno- Sssion suppliva - a.s. 7-8 Soluzion di D Rosa Nicola ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Tma di: MATEMATICA a. s. 7-8 PROBLEMA Dao un quadan AOB di cchio, di cno

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzione dei polemi a) Sudiamo il gafico di f ( ) D: R -]- ; [ - (-) f( ) - - - - - f ( ), quindi la funzione è dispai - Le inesezioni con l asse delle hanno ascisse + e - lim f ( ) lim " + " + - si

Dettagli

A5. Datazione con isotopi radioattivi

A5. Datazione con isotopi radioattivi A5. Daazion con isoopi adioaivi Ricodiao qui bvn co vin applicao il odo di daazion con isoopi adioaivi. Una sosanza adioaiva é una sosanza i cui nucli aoici si asfoano sponanan ni nucli di unala sosanza

Dettagli

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le Pro. Frnando D Anglo. class 5DS. a.s. 007/008. Nll pagin sgunti trovrt una simulazion di sconda prova su cui lavorrmo dopo l vacanz di Pasqua. Pr mrcoldì 6/03/08 guardat il problma 4 i qusiti 1 8 9-10.

Dettagli

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica:

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica: Sessione sraordinaria LS_ORD 7 Soluzione Si consideri la figura soosane, ce rappresena la quesione geomerica: Il riangolo APB, essendo inscrio in una semicirconferenza è reangolo, per cui AP r sin, PB

Dettagli

, controllando che risulta: () 1

, controllando che risulta: () 1 Sessione suppleiva di odinameno 008 009 ESAME DI STATO DI LICEO SCIENTIFICO Indiizzo M: odinameno liceo della comunicazione CORSO DI ORDINAMENTO Sessione suppleiva 009 Tema di MATEMATICA Il candidao isolva

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2009

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2009 Sssion odinaia 8 9 lico di odinamnto ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 9 Il candidato isolva uno di du poblmi 5 di qusiti sclti nl qustionaio. PROBLEMA E assnato il stto cicola AOB

Dettagli

SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI

SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI PROBLEMA SESSIONE ORDINARIA 0 CORSI SPERIMENTALI Sia ( x) ln ( x) ln x sia ( x) ln ( x) ln x.. Si dtrmino i domini di di.. Si disnino, nl mdsimo sistma di assi cartsiani ortoonali Oxy, i raici di di..

Dettagli

Innanzitutto, dalla descrizione data nel testo dell esercizio possiamo scrivere:

Innanzitutto, dalla descrizione data nel testo dell esercizio possiamo scrivere: Corso di conomia Poliica II (HZ) /0/202 Soluzion srcizio Innanziuo, dalla dscrizion daa nl so dll srcizio possiamo scrivr: i * 0,06, 5. a) Sappiamo ch il asso di apprzzamno/dprzzamno dlla mona nazional

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

Richiami su numeri complessi

Richiami su numeri complessi Richiami su numri complssi Insim C di numri complssi E' l'insim dll coppi ordina di numri rali = Z R j Z I ; Z R, Z I R Z = Z R, Z I j Δ = (0,1) unià immaginaria Si noi ch C conin R; in paricolar linsim

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

Appendice Analisi in frequenza dei segnali

Appendice Analisi in frequenza dei segnali Appndic Analisi in rqunza di sgnali - Appndic Analisi in rqunza di sgnali - Sgnali priodici Sviluppo in sri di Fourir Un sgnal è priodico nl mpo quando si rip ogni scondi. Si vda, com smpio, il sgnal in

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

Problemi di geometria

Problemi di geometria 1 2 3 4 5 6 7 8 9 10 11 12 13 14 In un triangolo rettangolo l altezza relativa all ipotenusa è lunga 16 cm e la proiezione sull ipotenusa di un cateto è lunga 4 cm. Calcola l area del triangolo. [544 cm

Dettagli

LA DISTANZA DA CENTRO RAPPRESENTA IL RAGGIO CISCUNA DELLE DUE PARTI IN CUI E DIVISA UNA CIRCONFERENZA SI CHIAMA ARCO

LA DISTANZA DA CENTRO RAPPRESENTA IL RAGGIO CISCUNA DELLE DUE PARTI IN CUI E DIVISA UNA CIRCONFERENZA SI CHIAMA ARCO LA CIRCONFERENZA LA CIRCONFERENZA E IL LUOGO DEI PUNTI EQUIDISTANTI DA UN PUNTO FISSO DETTO CENTRO LA DISTANZA DA CENTRO RAPPRESENTA IL RAGGIO UN SEGMENTO CHE CONGIUNGE DUE PUNTI DELLA CIRCONFERENZA SI

Dettagli

Corso di Analisi: Algebra di Base. 3^ Lezione

Corso di Analisi: Algebra di Base. 3^ Lezione Corso di Analisi: Algbra di Bas ^ Lzion Disquazioni algbrich. Disquazioni di. Disquazioni di. Disquazioni faoriali. Disquazioni biquadraich. Disquazioni binomi. Disquazioni fra. Sismi di disquazioni. Allgao

Dettagli

Problemi di geometria

Problemi di geometria 1 3 4 5 6 7 8 9 Un triangolo rettangolo ha un angolo acuto di 30, il cateto minore misura 6 m. Calcola il perimetro e l area del triangolo. [8,39 m; 31,18 m ] Un triangolo rettangolo ha un angolo acuto

Dettagli

Verifica di Matematica sommativa durata della prova : 2 ore. Punt. attr. Problema

Verifica di Matematica sommativa durata della prova : 2 ore. Punt. attr. Problema Liceo Scientifico Statale M. Curie Classe D aprile Verifica di Matematica sommativa durata della prova : ore Nome Cognome Voto N.B. Il punteggio massimo viene attribuito in base alla correttezza e alla

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 )

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 ) Sri di Fourir a mpo coninuo La rapprsnazion di sgnali nl dominio dlla frqunza Jan Bapis Josph Fourir (768 83 ) Fourir sviluppò la oria mamaica dl calor uilizzando funzioni rigonomrich (sni cosni), ch noi

Dettagli

Ing. Gestionale Ing. Informatica Ing. Meccanica Ing. Tessile. Cognome Nome Matricola

Ing. Gestionale Ing. Informatica Ing. Meccanica Ing. Tessile. Cognome Nome Matricola Ing Gstional Ing Informatica Ing Mccanica Ing Tssil Cognom Nom Matricola Univrsità dgli Studi di Brgamo Scondo Compitino di Matmatica II ) Si considri la matric 2 3 3 2 Si calcolino gli autovalori gli

Dettagli

I quadrati sono 5. Esercizio pagina 198 numero 119 Calcola la misura del perimetro dell'area del trapezio in figura

I quadrati sono 5. Esercizio pagina 198 numero 119 Calcola la misura del perimetro dell'area del trapezio in figura Considera il piano cartesiano. Quanti sono i quadrati aventi un vertice in (-1;-1) e tali che uno degli assi coordinati sia asse di simmetria del quadrato stesso? I quadrati sono 5 Esercizio pagina 198

Dettagli

Retta di minima distanza, sfere e circonferenza nello spazio Alcuni esercizi svolti

Retta di minima distanza, sfere e circonferenza nello spazio Alcuni esercizi svolti Rea di minima disana sfee e ciconfeena nello spaio Alcuni esecii svoli. Sabilie se le ee ed s sono complanai o sghembe. Nel pimo caso pecisae se esse sono paallele oppue incideni e ovae l equaione di un

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x.

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x. DERIVATE OBIETTIVI MINIMI: Conoscr la dinizion di drivata d il suo siniicato omtrico Sapr calcolar smplici drivat applicando la dinizion Conoscr l drivat dll unzioni lmntari Conoscr l rol di drivazion

Dettagli

5. Schermature. Fig.5.1 Uso dello schermo per le emissioni radiate e per la suscettibilità radiata.

5. Schermature. Fig.5.1 Uso dello schermo per le emissioni radiate e per la suscettibilità radiata. Quso documno è ao dal Capiolo 5 dll dispns dl coso di "Compaibilià lomagnica" dl Coso di Laua di Inggnia dll Tlcomunicazioni, nuo dal Pof. Agosino Monochio. Quso documno non è dfiniivo. Ogni foma di ipoduzion,

Dettagli

soluzione in 7 step Es n 208

soluzione in 7 step Es n 208 soluzione in 7 soluzione in 7 soluzione in 7 AH 5 CA CH 5 6 4,8 5 36 3,04 5,96 5 cm soluzione in 7 AH 5 CA CH 5 6 4,8 5 36 3,04 5,96 5 cm 3 : 4,8 5 4,8 : HB 4,8 soluzione in 7 AH 5 CA CH 5 6 4,8 5 36 3,04

Dettagli

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4 Corso di Laura in Economia Matmatica pr l applicazioni conomich finanziari Esrcizi 4 Vrificar s l sgunti funzioni, nll intrvallo chiuso indicato, soddisfano l ipotsi dl torma di Roll, in caso affrmativo,

Dettagli

Capitolo 7 - Schermature

Capitolo 7 - Schermature Appuni di Compaibilià lomagnica Capiolo 7 - Schmau Inoduzion... fficinza di schmaua... Impoanza dlla schmaua di cavi ch aavsano lo schmo...3 Impoanza dll apu: pincipio di Babin...5 Considazioni gnali...6

Dettagli

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA TRIANGOLI Criteri di congruenza Due triangoli sono congruenti se hanno congruenti:

Dettagli

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010 Soluzioni dei quesiti della maturità scientifica AS 009/010 Nicola Gigli Sun-Ra Mosconi giugno 010 Quesito 1 Un generico polinomio di grado n si può scrivere nella forma p(x) a 0 + a 1 x + + a n x n dove

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO Pag. / Sssion ordinaria 7 Sconda prova scria Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PIANO NAZIONALE INFORMATICA Tma di: MATEMATICA Il candidao risolva uno di du problmi risponda

Dettagli

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss 1 Appunti su agomenti monogafici pe il coso di FM1 Pof. Pieluigi Contucci Gavità e Teoema di Gauss Vogliamo dimostae, a patie dalla legge di gavitazione univesale che il campo gavitazionale geneato da

Dettagli

ECONOMIA POLITICA II - ESERCITAZIONE 4 Parità dei tassi d interesse IS-LM in economia aperta

ECONOMIA POLITICA II - ESERCITAZIONE 4 Parità dei tassi d interesse IS-LM in economia aperta CONOMIA POLITICA II - SRCITAZION 4 Parià i assi inrss IS-LM in conomia apra srcizio Suppon ch all sro il asso i inrss sia l 5.5% ch l aual asso i cambio nominal sia pari a.5. a) Nl caso in cui ci si aspi

Dettagli

Spettro di densità di potenza e rumore termico

Spettro di densità di potenza e rumore termico Spro di dnsià di ponza rumor rmico lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- roprià sprali: rasormaa di Fourir RSFORM DI FOURIR NI-RSFORM DI FOURIR S s

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.matefilia.it PNI 8 - SESSIONE SUPPLETIVA QUESITO Si determinino le costanti a e b in modo tale che la funzione: ax + b per x f(x) = { e x per x > x risulti continua e derivabile nel punto x=. Per essere

Dettagli

Soluzione. Un punto generico ha coordinate ( x, y) Per cui. Le coordinate del centro sono allora

Soluzione. Un punto generico ha coordinate ( x, y) Per cui. Le coordinate del centro sono allora Sssion suppltiva LS_ORD 7 Soluzion di D Rosa Nicola Soluzion Un punto gnrico ha coordinat, pr cui si ha: PO PA Pr cui PO PA [ ] L coordinat dl cntro sono allora O,, è R. C, d il raggio, visto ch la circonfrnza

Dettagli

Nel linguaggio C. File di testo sequenza di caratteri (per memorizzare caratteri) File binario sequenza di byte (per memorizzare interi, record,.

Nel linguaggio C. File di testo sequenza di caratteri (per memorizzare caratteri) File binario sequenza di byte (per memorizzare interi, record,. LA PERSISTENZA DEI DATI L vaiabili usa finoa sono volaili, cioè la loo via mina con la minazion dll scuzion dl pogamma. Il conco di fil fonisc la possibilià di mmoizza dai in foma psisn, cioè in una foma

Dettagli

I TRIANGOLI ESERCIZI. compreso tra.. e...

I TRIANGOLI ESERCIZI. compreso tra.. e... I TRIANGOLI ESERCIZI 1. Considerazioni generali sui triangoli Osserva la figura e poi completa le frasi a lato. 1 A Il punto. è il vertice opposto al lato AC, mentre il punto C è il vertice. al lato AB.

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

LA CIRCONFERENZA E IL CERCHIO

LA CIRCONFERENZA E IL CERCHIO GEOMETRIA LA CIRCONERENZA E IL CERCHIO PREREQUISITI l conoscere le proprietaá delle quattro operazioni e operare con esse l conoscere gli enti fondamentali della geometria e le loro proprietaá l possedere

Dettagli

Corso di ordinamento- Sessione ordinaria all estero (EUROPA) - a.s Soluzione di De Rosa Nicola

Corso di ordinamento- Sessione ordinaria all estero (EUROPA) - a.s Soluzione di De Rosa Nicola Corso di ordinamento- Sessione ordinaria all estero (EUROPA - a.s. 007-008 MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLE ITALIANE ALL ESTERO (EUROPA ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria

Dettagli

A T T E N Z I O N E. Ministero dell Istruzione, dell Università e della Ricerca

A T T E N Z I O N E. Ministero dell Istruzione, dell Università e della Ricerca Pag /7 Sessione straordinaria 03 A T T E N Z I O N E Il plico relativo a questa prova contiene due temi: il primo destinato ai corsi sperimentali, il secondo ai corrispondenti corsi di ordinamento e ai

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Sistemi dinamici lineari del 1 ordine

Sistemi dinamici lineari del 1 ordine Appuni di onrolli Auomaici Simi dinamici linari dl ordin Inroduzion... ipoa al gradino uniario... ipoa alla rampa... Empio...3 Empio...4 INTODUZIONE Si dfinic ima (lmnar) dl primo ordin un ima (linar mpo-invarian)

Dettagli

Istogrammi ad intervalli

Istogrammi ad intervalli Istogrammi ad intrvalli Abbiamo visto com costruir un istogramma pr rapprsntar un insim di misur dlla stssa granda isica. S la snsibilità dllo strumnto di misura è alta, è probabil ch tra gli N valori

Dettagli

Il ruolo delle aspettative in economia

Il ruolo delle aspettative in economia Capiolo XV. Il ruolo dll aspaiv in conomia . Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao asso di inrss

Dettagli

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva, matematicamente.it PROBLEMA Data una semicirconferenza di diametro AB =, si prenda su di essa un punto P e sia M la proiezione di P

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa

Dettagli

5) Equazioni delle rette tangenti ad una circonferenza condotte da un punto. 6) Equazione della retta tangente ad una circonferenza in un suo punto

5) Equazioni delle rette tangenti ad una circonferenza condotte da un punto. 6) Equazione della retta tangente ad una circonferenza in un suo punto Maemaica Liceo \ Unià Didaica N 8 La ciconfeenza Unià Didaica N 8 : La ciconfeenza Equazione della ciconfeenza di ceno C e aggio Equazione geneale della ciconfeenza Ciconfeenza avene equazione paicolae

Dettagli

Esame di maturità scientifica, corso di ordinamento a. s

Esame di maturità scientifica, corso di ordinamento a. s Problema 1 Esame di maturità scientifica, corso di ordinamento a. s. -4 Sia f la funzione definita da: f()=- Punto 1 Disegnate il grafico G di f()=-. La funzione f()=- è una funzione polinomiale (una cubica).

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti Equazioni di Scondo Grado in Una Variabil, x Complt, Pur Spuri. Tcnich pr risolvrl d Esmpi svolti Francsco Zumbo www.francscozumbo.it http://it.gocitis.com/zumbof/ Qusti appunti vogliono ssr un ultrior

Dettagli

Anno 2. Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali

Anno 2. Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali Anno 2 Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali 1 Introduzione In questa lezione tratteremo i poligoni inscritti e circoscritti a una circonferenza, descrivendone

Dettagli

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0.

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0. CLASSE 3^ C LICEO SCIENTIFICO Novembre 01 La circonferenza 1. Ricava l equazione di ciascuna delle circonferenze rappresentate, spiegando in maniera esauriente il procedimento che seguirai, prima di svolgere

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

rappresenta la distanza del centro O dalla corda.

rappresenta la distanza del centro O dalla corda. PROBLEMI DI GEOMETRIA 1 Problema 1.160.86 Indica con L un punto del lato AB del quadrato ABCD e considera il segmento AL. Proseguendo nello stesso verso di rotazione prendi sugli altri lati i punti M,

Dettagli

Equivalenza, misura di grandezze e aree

Equivalenza, misura di grandezze e aree MATEMATICAperTUTTI Equivalenza, misura di grandezze e aree 1 ESERCIZIO GUIDATO L equivalenza dei poligoni. Sappiamo che per stabilire se due figure sono equivalenti si può vedere se sono equiscomponibili,

Dettagli

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza):

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza): Nozioni di bas sull conich (lliss (x^2/a^2)+(y^2/b^2)=1, iprbol(x^2/a^2)-(y^2/b^2)=1, parabola circonfrnza): Dlta =0, significa un solo punto di intrszion tra fascio di rtt conica Dlta >=0, significa 2

Dettagli

si abbia AC þ AD ¼ 2kr. Posto CAB b ¼ 2x, con 0 x 4, si ottiene l equazione 2 cos2 x þ cos 2 ¼ x, si ottiene l equazione 2 sin x þ una soluzione per

si abbia AC þ AD ¼ 2kr. Posto CAB b ¼ 2x, con 0 x 4, si ottiene l equazione 2 cos2 x þ cos 2 ¼ x, si ottiene l equazione 2 sin x þ una soluzione per Esecizi Poblemi di igonomeia con discussione Poblemi sui iangoli eangoli 1 Considea una semiciconfeenza di diameo e aggio uniaio. Deemina su di essa un uno P in modo che, dea M la sua oiezione oogonale

Dettagli

ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011

ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011 ESAME DI STATO LICEO SCIENTIFICO MATEMATICA PROBLEMA La funzione f ( ) ( )( ) è una funzione dispari di terzo grado Intercetta l asse nei punti ;, ; e ; Risulta f per e per è invece f per e per f ' risulta

Dettagli

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio.

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio. . Cono e cilindro.. Definiione. Diremo superficie il luogo geomerico dei puni dello spaio le cui coordinae soddisfano un equaione del ipo F che viene dea equaione caresiana della superficie. Se F è un

Dettagli

Lezione 21 (BAG cap. 19) Regimi di cambio. Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia

Lezione 21 (BAG cap. 19) Regimi di cambio. Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Lzion 21 (BAG cap. 19) Rgimi di cambio Corso di Macroconomia Prof. Guido Ascari, Univrsià di Pavia Il capiolo si occupa Aggiusamno nl mdio priodo d ffi di una svaluazion Crisi dl asso di cambio Tasso di

Dettagli

Le coniche e la loro equazione comune

Le coniche e la loro equazione comune L conich la loro quazion comun L conich com ombra di una sra Una sra ch tocca il piano π nl punto F è illuminata da una sorgnt puntiorm S. Nl caso dlla igura l'ombra dll sra risulta una suprici dlimitata

Dettagli

INCERTEZZA DELLE MISURE. Terminologia. Precisione: riproducibilità di una misura Accuratezza: vicinanza della misura con il valore vero

INCERTEZZA DELLE MISURE. Terminologia. Precisione: riproducibilità di una misura Accuratezza: vicinanza della misura con il valore vero INCERTEZZA DELLE MISURE Trminologi Prcision: riproduciilià di un misur Accurzz: vicinnz dll misur con il vlor vro Error sprimnl incrzz dll misur Tipologi di rrori sprimnli Error sismico: ls sismicmn l

Dettagli

LA PERPENDICOLARITA NELLO SPAZIO. Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani.

LA PERPENDICOLARITA NELLO SPAZIO. Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani. 1 LA PERPENDICOLARITA NELLO SPAZIO Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani. 2.1 La perpendicolarità retta piano Nel piano la perpendicolarità tra

Dettagli

Problemi di geometria

Problemi di geometria criteri di similitudine sui triangoli 1 Dimostra che le altezze di un triangolo sono inversamente proporzionali ai relativi lati. 2 Dimostra che due triangoli rettangoli sono simili se hanno ordinatamente

Dettagli

Soluzioni 28 a Gara Città di Padova (6 Aprile 2013)

Soluzioni 28 a Gara Città di Padova (6 Aprile 2013) Soluzioni 28 a Gara Città di Padova (6 Aprile 2013) 1.- Sia K il valore comune delle somme degli elementi della prima riga, di quelli della seconda e di quelli della colonna. Sia X il numero messo nella

Dettagli

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Sessione straordinaria - a.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Tema di: MATEMATICA a.s. 9- Svolgimento a cura di Nicola De Rosa Il candidato risolva uno

Dettagli

IL TEOREMA DI PITAGORA

IL TEOREMA DI PITAGORA GEOMETRIA IL TEOREMA DI PITAGORA E LE SUE APPLICAZIONI PREREQUISITI l conoscere le rorietaá delle quattro oerazioni ed oerare con esse l conoscere il significato ed oerare con otenze ed estrazioni di radici

Dettagli

Rette perpendicolari

Rette perpendicolari Rette perpendicolari Definizione: due rette incidenti (che cioè si intersecano in un punto) si dicono perpendicolari quando dividono il piano in quattro angoli retti. Per indicare che la retta a è perpendicolare

Dettagli

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}.

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}. Soluzioni Capitolo [.] A B = {,,,, 7, 8}, A B = {, 7}, A\B = {,, }, B\A = {8}. [.] I) [, 0] V) VI) V [, 0] (, 0) V IX) [, 00) X) ( [, ],(, 00) (, 00) (, 0 + ) (, 0 ], ), (, 0 + ) [.] B\A = {} {b = n +,

Dettagli

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x).

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x). Esame liceo Scientifico : ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMI Problema. Sia ABCD un quadrato di lato, P un punto di AB e γ la circonferenza

Dettagli

PNI 2014 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

PNI 2014 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it PNI 0 SESSIONE STRAORDINARIA - QUESITI QUESITO Un gruppo di attivisti antinucleari ha organizzato una marcia di protesta verso un sito scelto per la costruzione di una centrale termonucleare.

Dettagli

Matema&ca. TRIGONOMETRIA La trigonometria. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica

Matema&ca. TRIGONOMETRIA La trigonometria. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica Matema&ca TRIGONOMETRIA La trigonometria DOCENTE: Vincenzo Pappalardo MATERIA: Matematica INTRODUZIONE Finora ci siamo occupati di goniometria, ossia della misura di angoli e delle funzioni goniometriche

Dettagli

La valutazione finanziaria

La valutazione finanziaria STUDIO BERETTA DOTTTARELLI TTARELLI DOTTORI COMMERCIALISTI ASSOCIATI Srgio Bra La valuazion finanziaria Prmssa Il valor dl capial conomico vin simao considrando i flussi di cassa prodoi in fuuro dall imprsa

Dettagli

CLASSE 3^ A LICEO SCIENTIFICO 31 Agosto 2015 Recupero MATEMATICA

CLASSE 3^ A LICEO SCIENTIFICO 31 Agosto 2015 Recupero MATEMATICA CLASSE 3^ A LICEO SCIENTIFICO 3 Agosto 205 Recupero MATEMATICA. Scrivi l equazione della circonferenza passante per i punti ;2 e 2;5 e avente il centro sulla retta di equazione = 2 2. L asse del segmento

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.matefilia.it PNI 009 - SESSIONE SUPPLETIVA QUESITO 1 Nel gioco del lotto, qual è la probabilità dell estrazione di un numero assegnato? Quante estrazioni occorre effettuare perché si possa aspettare,

Dettagli

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI TEST 1 In figura sono disegnati l angolo aob e il segmento PQ, perpendicolare al lato Oa e tale che PH sia congruente a HQ. Il luogo geometrico dei

Dettagli

SVOLGIMENTO. 2 λ = b S

SVOLGIMENTO. 2 λ = b S RELAZIONE Dimnsionar sol d anima dl longhron d il rivsimno dl bordo di aacco, in una szion disan 4 m dalla mzzria, pr un ala monolonghron di un vlivolo avn l sguni cararisich: - pso oal W 4700 N - suprfici

Dettagli

Applicazioni della trigonometria alla geometria

Applicazioni della trigonometria alla geometria unti di matematica licazioni della tigonometia alla geometia. ea di un tiangolo, note le misue di due lati e quella dell'angolo da essi comeso. TEOREM L'aea di un qualsiasi tiangolo è eguale al semiodotto

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

soluzione in 7 step Es n 221

soluzione in 7 step Es n 221 soluzione in 7 soluzione in 7 AC 5 AD 2 DC 2 5 4 2 2 5 2304 4096 5 00 5 0 cm soluzione in 7 AC 5 AD 2 DC 2 5 4 2 2 5 2304 4096 5 00 5 0 cm 2 soluzione in 7 AC 5 AD 2 DC 2 5 4 2 2 5 2304 4096 5 00 5 0 cm

Dettagli

PROBLEMI SVOLTI SULLA PIRAMIDE

PROBLEMI SVOLTI SULLA PIRAMIDE PROBLEMI SVOLTI SULLA PIRAMIDE Premetto che non ho messo il trattino nell indicazione dei segmenti, ad esempio VK (sopra ci vuole il trattino perché indica una misura) e il triangolino per indicare i triangoli,

Dettagli

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006 Corso di Laura in Informatica - a.a. 25/6 Calcolo dll Probabilità Statistica Prova scritta dl III appllo - 7/6/26 Il candidato risolva i problmi proposti, motivando opportunamnt l propri rispost.. Sia

Dettagli

CAPITOLO 3 INTRODUZIONE ALLE TURBOMACCHINE

CAPITOLO 3 INTRODUZIONE ALLE TURBOMACCHINE CAPITOLO 3 INTRODUZIONE ALLE TURBOMACCHINE 3.. Inoduzion In quso capiolo analizziamo nl daglio il funzionamno dll ubomaccin, pando dalla dscizion dll asfomazioni c in ss anno luogo. Si passà poi alla dscizion

Dettagli

CAPITOLO 8 ANCORA SULLA CONSOLIDAZIONE

CAPITOLO 8 ANCORA SULLA CONSOLIDAZIONE 8.1 Inoduzion CAPITOLO 8 Nl capiolo 7 è saa illusaa la oia dlla consolidazion monodimnsional di Tzaghi, ch pm di sima il mpo ncssaio alla dissipazion dll soapssioni insiziali, quindi al ificasi di cdimni

Dettagli

Problemi: forza di Coulomb

Problemi: forza di Coulomb Poblmi: oza di Coulomb. Du paticll iss di caica 8 - sono post ispttivamnt nll oigin dll ass d in un punto di coodinata L. In ch punto, a distanza inita, si può colloca un poton p in modo ch sti in uilibio?

Dettagli

Phillips (1958): Correlazione negativa stabile tra variazione percentuale dei salari monetari e il tasso di disoccupazione (Dati UK, )

Phillips (1958): Correlazione negativa stabile tra variazione percentuale dei salari monetari e il tasso di disoccupazione (Dati UK, ) INFLAZIONE E DISOCCUAZIONE: INTRODUZIONE hillips (958): Corrlazion ngaiva sabil ra variazion prcnal di salari monari il asso di disoccpazion (Dai UK, 86-957) Samlson Solow (960): confrmano il rislao di

Dettagli

Atomo Idrogeno. 02/27/14 2-ATOM-0.doc 0

Atomo Idrogeno. 02/27/14 2-ATOM-0.doc 0 Atomo Idogno /7/4 -ATOM-.doc Atomo L'tton è soggtto a potnzia ttostatico attattivo Z Fisica cassica: 'tton è dstinato a coassa su nuco a fmasi Mccanica quantistica: Più 'tton si avvicina a nuco più è confinato

Dettagli

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13 Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in

Dettagli

ALGEBRA. Dopo avere ripassato:

ALGEBRA. Dopo avere ripassato: ALGEBRA Dopo avere ripassato: la divisione tra polinomi, le tecniche di scomposizione, la procedura di somma di frazioni algebriche, la risoluzione di equazioni intere e fratte, svolgi i seguenti esercizi:

Dettagli