Fa riferimento ad una famiglia di linguaggi dichiarativi, basati sul calcolo dei predicati del primo ordine

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Fa riferimento ad una famiglia di linguaggi dichiarativi, basati sul calcolo dei predicati del primo ordine"

Transcript

1 Calcolo relazionale Fa riferimento ad una famiglia di linguaggi dichiarativi, basati sul calcolo dei predicati del primo ordine calcolo Specifica (èla base relazionale su tuple le di proprietà molti con costrutti su dichiarazioni domini del risultato del linguaggio di range piuttosto SQL) che indicare la procedura per calcolarlo Ne esistono versioni con potenzialità espressive diverse 1 A1,..., Calcolo su domini x1,.., f(x,...,aksono attributi distinti (anche non nella base di dati) A1: f(x1,..,,..,xk, :,..,xk) x1, x, èuna Ak: variabili a valori nei corrispondenti domini { A1: A xkèdetta formula logica (vale vero o falso) : x1, x, Target Ak: xk listin f(x1,..,xk) quanto definisce } Il struttura valori risultato sostituiti del èuna risultato a x1,..,xkrendono relazione su A1,...,,...,Akche vera la formula contiene fle tuple la i cui Le espressioni del calcolo sui domini hanno la forma 2

2 R(A1:x1,...,Ap:xp) La formula f xϑy formano e x1,..,xpsono una tupla variabili dove di RR(A1,..,Ap) èvera per èuno valori schema di x1,..,xpche di relazione Formule atomiche Se confronto o xϑc (=,,,,<,>) con x,y variabili, c costante e ϑoperatore di f1 f2(or) f1f2(and) f1(not) f1e f2sono formule allora sono formule Operatori logici 3 Data La una formula f e una variabile x (f) x si definisce la formula Data alla formula variabile èvera x rende se esiste vera falmeno un valore a che sostituito La x, formula una formula èvera f èvera f se e per una ogni x variabile possibile (f) x si definisce valore per la la formula variabile 4 Quantificatori Quantificatore esistenziale Quantificatore universale

3 P P Relazione fra e Ad esempio... Valgono le leggi di De Morgan x Per ogni impiegato x P cnon ècapo x x P Quindi... uno Non solo esiste dei m Supervisione(Impiegato: nessun msupervisione(impiegato: due operatori impiegato che ha ccome m, Capo: capo c) c) èsufficiente... Impiegati(Matricola,Nome,età,Stipendio) [1] Target Trovare guadagnano matricola, piùdi Supervisione(Capo,Impiegato) nome, 1.700etàe stipendio degli impiegati che Si considera il seguente schema {Matricola: Impiegati(Matricola: list...in m, Nome: m,nome: n, Età: e, n, Stipendio: Età: e, Stipendio: s s) (s>1700)} condizione Q: algebra relazionale σstipendio>1700(impiegati) 5 6

4 Target Trovare matricola, nome, etàdi tutti gli impiegati {Matricola: m, Nome: n, [2] s Impiegati(Matricola: list...in algebra m,nome: Età: e relazionale πmatricola,nome,età(impiegati) n, Età: e, Stipendio: s)} Q: Target {Matricola: Impiegati(Matricola: list m, Nome: m,nome: n,... Età: e anche... e n, Età: e, Stipendio: s)}condizione condizione Q:...in Target Trovare algebra πcapo(supervisione la matricola relazionale dei capi degli Impiegato=Matricola(σStipendio>1700(Impiegati))) impiegati che guadagnano piùdi [3] {Capo: listc Impiegati(Matricola: Supervisione(Impiegato: m,nome: Capo: n, Età: c) e, s>1700 Stipendio: s) La variabile mcomune alle due condizioni atomiche realizza la condizione} correlazione fra le tuple prevista dal join 7 8

5 Q:{NomeCapo: Target Trovare di 1700 listnome e stipendio dei capi degli impiegati che guadagnanopiù nc, StipCapo: [4] s>1700 Impiegati(Matricola: sc m,nome: Supervisione(Impiegato: Capo: n, Età: c) e, Stipendio: s) Le variabili Impiegati(Matricola: crealizzano due join c, Nome: nc, Età: ec, Stipendio: sc)} Q:{Matricola: Trovare gli impiegati che guadagnano piùdel rispettivo capo, MatrCapo: mostrando m, matricola, Nome: nome n, Stipendio: e stipendio s, di entrambi c, NomeCapo: [5] nc, m,nome: StipCapo: n, sc Età: e, Stipendio: s) s>sc Supervisione(Impiegato: Impiegati(Matricola: Capo: c) Variabili } riferite a tuple c, diverse nc, Età: ec, Stipendio: sc) 9 10

6 {Matricola: Trovare matricola e nome dei capi i cui impiegati guadagnano tutti più di 1700c, Nome: n c,nome: [6] n, Età: e, Stipendio: s) Q: m ( n ( e ( s (Impiegati(Matricola: m, Nome: n, Età: e,stipendio: specifica Supervisione(Impiegato: m, Capo: c) s 1700)))) } i capi s ) tutti Non esiste un Impiegato con capo ce stipendio inferiore a {Matricola: Trovare di 1700 c, Nome: matricola n e nome dei capi i cui impiegati guadagnano tutti più m ( n ( e ( s ( (Impiegati(Matricola: c,nome: n, Età: e, Stipendio: m, Nome: s) n, Età: specifica Supervisione(Impiegato: m, Capo: c)) s >1700)))) } e,stipendio: i capituttis ) Si ottiene O cnon m dall espressione (A ha B impiegati C) = m dipendenti precedente (A B o C) l impiegato applicando = m ( (A guadagna le leggi B) di piùdi De C) Morgan Q: [7]

7 dichiaratività "verbosità": espressioni senza tante senso variabili! { A: x R(A: x) } dipendono queste espressioni { sono A: { x, A: dipendenti B: x, y B: y dal R(A: x) dominio: y=y} x) } risposta èinfinita... dal dominio delle variabili. Se il le èinfinito, risposte la possibili 13 Pregi e difetti Pregi Difetti Calcolo e algebra per indipendente relazionale equivalente dal dominio a calcolo essa esiste un'espressione relazionale che dell'algebra sia un'espressione di conseguenza ogni espressione del indipendente calcolo dell'algebra relazionale dal dominio) relazionale equivalente esiste a essa (e 14 L algebra relazionale è indipendente dal dominio Si considerano solo le espressioni del calcolo relazionale che sono indipendenti dal dominio Calcolo e algebra sono equivalenti Dimostrazione costruttiva...

8 Riduzione Dipendenza dati delle dal variabili dominio le i i valori variabili provengono rappresentano solo dalla tuple base di Le La fèunaformula target espressioni range listelencale listèla del con listadegliobiettividell interrogazione valoreveroo calcolo variabililiberedellaformula su falso tuple con dichiarazioni f di 15 Calcolo su tuple con dichiarazioni di range Per superare le limitazioni del calcolo su domini range hanno la forma { target list range list f } Y: x x.z èuna variabile che rappresenta una tupla il cui rangeèuna x.z Z X Y relazione èuna lista definita di attributi su un insieme e Y = Z di attributi X x.* abbreviazione x) per X: Z: x.z x.x (si prelevano tutti gli attributi della tupla 16 Target list La target list è composta da elementi del tipo

9 i.* Impiegati(Matricola,Nome,Età,Stipendio),Stipendio) i.(nome,età) definisce Impiegati, come ovvero risultato {Matricola,Nome,Età,Stipendio} una tupla che contiene tutti gli attributi di relazione NomeCapo,StipCapo:i.(Nome,Stipendio) rappresenta {Nome,Età} una tupla definita sulla relazione con i due attributi definisceunatuplacon i due attributi{nomecapo,stipcapo} 17 Target list: esempio i è una variabile associata ad una tupla della Range list Ad i i esempio... può (Impiegati) assumere i valori delle tuple contenute nella relazione x(r) i (Impiegati), s (Supervisione), i1 (Impiegati) Elenca le variabili libere della formula f con i relativi campi di variabilità (relazione di appartenenza R) 18

10 atomi x.a ϑc-confronto valore dell attributo A della tupla x con connettivi x1.a la.a1ϑx2.a costante.a2-confronto c quantificatori x1e quello logici(,, ) dell attributo A2della fra il valore tupla dell attributo x2 A1della tupla x(r) x(r) esiste che nella associano relazione un rangealle R una alle tupla variabili vero se (f) tutte le tuple x in R soddisfano fx che soddisfa f 19 La formula f La formula f è costruita utilizzando Q: { Q: { Trovare guadagnano matricola, nome, etàe stipendio degli impiegati che Target i.* piùdi list i(impiegati) i.stipendio> 1700 } [1] Trovare matricola, nome, Rangelist etàdi tutti gli condizione i.(matricola,nome,età) i(impiegati) impiegati Target list Rangelist condizione }(vuota) 20

11 Q: Trovare Target matricola dei capi degli impiegati che guadagnano piùdi { s.capo listi(impiegati), [2] i.matricola= Rangelist condizione s.impiegatoi.stipendio>1700 join s(supervisione) condizione selezione } 21 Q:{NomeCapo, Target Trovare di 1700 listnome e stipendio dei capi degli impiegati che guadagnanopiù StipCapo: [3] c(impiegati), c.matricola= s(supervisione), s.capos.impiegato=i.matricola c.(nome,stipendio) i(impiegati) i.stipendio> 1700} Rangelist condizione selezione condizioni di join Le indipendente due variabili ce iaccedono ai valori della stessa relazione in modo 22

12 Q: Target Trovare gli impiegati che guadagnano piùdel rispettivo capo, {i.(matricola,nome,stipendio), mostrando matricola, nome e stipendio di entrambi [4] MatrCapo,NomeCapo,StipCapo: list c(impiegati), c.matricola= s(supervisione), s.capos.impiegato= c.(matricola,nome,stipendio) i(impiegati) Rangelist i.stipendio> condizione di c.stipendio} selezione condizioni di join i.matricola Trovare di 1700matricola e nome dei capi i cui impiegati guadagnano tutti più {c.(matricola, Target Nome) [5] c(impiegati), list s(supervisione) Q: c.matricola= Rangelist i(impiegati) ( (s.capo=s1.capo ( s1(supervisione) s1.impiegato=i.matricola) join per trovare in i.stipendio> Impiegati la tupla del 1700))} capo i e s1 non all interno sono variabili delle libere relazioni nella corrispondenti formula, ma variano s.capo 23 24

13 Trovare di 1700matricola e nome dei capi i cui impiegati guadagnano tutti più {c.(matricola, Target Nome) [6] c(impiegati), list s(supervisione) Q: c.matricola= Rangelist ( i(impiegati) (s.capo=s1.capo( s1(supervisione) s1.impiegato=i.matricolai.stipendio 1700)))} join per trovare in Impiegati la tupla del capo condizioni accedere alla di join tupla rispettivamente con le informazioni per trovare ogni i impegatodipendente capi in Supervisione e s.capo 25 I Ogni risultati variabile sono ha costruiti come rangeuna a partire dalle sola variabili relazionelibere Se relazione non si si hanno riesce una due sola a combinarle variabili variabile si libera per può produrre far si fa riferimento riferimento il risultato alle ad in due una modo relazioni sola corretto ma 26 Limitazioni: unione es. Il calcolo su tuple con dichiarazioni di range non permette di esprimere l unione di relazioni R1(A) R2(A)

14 Operazioni insiemistiche Intersezione Differenza { x1.* x1(r1) x2(r2) (x1.a1=x2.a2...x1.ak=x2.ak)} { x1.* preleva x1(r1) le x2(r2) tuple di r1che (x1.a1=x2.a2...x1.ak=x2.ak)} hanno una tupla uguale in r2 preleva le tuple di r1che non hanno una tupla uguale in r2 SQL che è basato sul calcolo su tuple con dichiarazione di range prevede un operatore esplicito per l unione Gli operatori di intersezione e differenza sono esprimibili possiamo calcoli solo estrarrevalori, non calcolarne di nuovi In a su SQL livello insiemi di ci interesse sono di di tupla estensioni tuple o di (somme, singolo ad hoc medie, valore (conversioni, ecc.) somme, ecc.) Soluzione esterna a SQL.. con programma Altri limiti calcolo di valori derivati interrogazioni inerentemente ricorsive, come la chiusura transitiva 27

15 Chiusura transitiva Per capo, ogni impiegato, trovare Supervisione(Impiegato, tutti i superiori (cioèil Capo) Paolo e BianchiGaia cosi' via) Belli capo, il capo del Gaia Mario Belli Mei Filippo Mario Mori Verdi ImpiegatoSuperiore Paolo Gaia Mario Belli BianchiGaia BianchiMario Mei Filippo Belli Mori Verdi Q:ImpiegatoCapo Accesso ricorsivo alla stessa relazione per un numero non predeterminato di volte {Impiegato: Soluzione i, Superiore: col s join? (Supervisione(Impiegato: join trovare i capi i,capo: dei Supervisione(Impiegato: capi s) c) c, Capo: s))} Se la gerarchia è a 2 livelli si può pensare a una soluzione con un join di Supervisione con se stessa Se si vuole estendere a gerarchie più profonde si devono aggiungere join a più termini 29 30

16 Conclusione Non esiste in algebra e calcolo relazionale la possibilità di esprimere l'interrogazione che, per ogni relazione binaria, ne calcoli la chiusura transitiva Per ciascuna relazione, è possibile calcolare la chiusura transitiva, ma con un'espressione ogni volta diversa: quanti join servono? non c'è limite! 31

Fondamenti di Teoria delle Basi di Dati

Fondamenti di Teoria delle Basi di Dati Fondamenti di Teoria delle Basi di Dati Riccardo Torlone Parte 6: Potenza espressiva del calcolo Calcolo su domini, discussione Pregi: dichiaratività Difetti: "verbosità": tante variabili! espressioni

Dettagli

(anno accademico 2008-09)

(anno accademico 2008-09) Calcolo relazionale Prof Alberto Belussi Prof. Alberto Belussi (anno accademico 2008-09) Calcolo relazionale E un linguaggio di interrogazione o e dichiarativo: at specifica le proprietà del risultato

Dettagli

Algebra Relazionale. algebra relazionale

Algebra Relazionale. algebra relazionale Algebra Relazionale algebra relazionale Linguaggi di Interrogazione linguaggi formali Algebra relazionale Calcolo relazionale Programmazione logica linguaggi programmativi SQL: Structured Query Language

Dettagli

Algebra di Boole ed Elementi di Logica

Algebra di Boole ed Elementi di Logica Algebra di Boole ed Elementi di Logica 53 Cenni all algebra di Boole L algebra di Boole (inventata da G. Boole, britannico, seconda metà 8), o algebra della logica, si basa su operazioni logiche Le operazioni

Dettagli

Esercitazione su SQL

Esercitazione su SQL Esercizio 1. Esercitazione su SQL Si consideri la base di dati relazionale composta dalle seguenti relazioni: impiegato Matricola Cognome Stipendio Dipartimento 101 Sili 60 NO 102 Rossi 40 NO 103 Neri

Dettagli

DBMS (Data Base Management System)

DBMS (Data Base Management System) Cos'è un Database I database o banche dati o base dati sono collezioni di dati, tra loro correlati, utilizzati per rappresentare una porzione del mondo reale. Sono strutturati in modo tale da consentire

Dettagli

Logica del primo ordine

Logica del primo ordine Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A7_4 V1.3 Logica del primo ordine Il contenuto del documento è liberamente utilizzabile dagli studenti, per studio

Dettagli

Materiale di approfondimento: numeri interi relativi in complemento a uno

Materiale di approfondimento: numeri interi relativi in complemento a uno Materiale di approfondimento: numeri interi relativi in complemento a uno Federico Cerutti AA. 2011/2012 Modulo di Elementi di Informatica e Programmazione http://apollo.ing.unibs.it/fip/ 2011 Federico

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

Dal modello concettuale al modello logico

Dal modello concettuale al modello logico Dal modello concettuale al modello logico Traduzione dal modello Entita - Associazione al modello Relazionale Ciclo di sviluppo di una base di dati (da parte dell utente) Analisi dello scenario Modello

Dettagli

Decomposizioni di uno schema, Decomposizioni che preservano i dati (loss-less joins) Prof.ssa Rosalba Giugno

Decomposizioni di uno schema, Decomposizioni che preservano i dati (loss-less joins) Prof.ssa Rosalba Giugno Decomposizioni di uno schema, Decomposizioni che preservano i dati (loss-less joins) Prof.ssa Rosalba Giugno Decomposizione di uno schema Dato uno schema relazionale R={A1,A2, An} una sua decomposizione

Dettagli

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. Universitá di Bologna

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. <sacerdot@cs.unibo.it> Universitá di Bologna Linguaggi 18: Semantica della logica del prim ordine Universitá di Bologna 11/04/2011 Outline Semantica della logica del prim ordine 1 Semantica della logica del prim ordine Semantica

Dettagli

Basi di Dati prof. Letizia Tanca lucidi ispirati al libro Atzeni-Ceri-Paraboschi-Torlone. SQL: il DDL

Basi di Dati prof. Letizia Tanca lucidi ispirati al libro Atzeni-Ceri-Paraboschi-Torlone. SQL: il DDL Basi di Dati prof. Letizia Tanca lucidi ispirati al libro Atzeni-Ceri-Paraboschi-Torlone SQL: il DDL Parti del linguaggio SQL Definizione di basi di dati (Data Definition Language DDL) Linguaggio per modificare

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Prolog: aritmetica e ricorsione

Prolog: aritmetica e ricorsione Capitolo 13 Prolog: aritmetica e ricorsione Slide: Aritmetica e ricorsione 13.1 Operatori aritmetici In logica non vi è alcun meccanismo per la valutazione di funzioni, che è fondamentale in un linguaggio

Dettagli

Introduzione ad Access

Introduzione ad Access Introduzione ad Access Luca Bortolussi Dipartimento di Matematica e Informatica Università degli studi di Trieste Access E un programma di gestione di database (DBMS) Access offre: un supporto transazionale

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Il linguaggio SQL Basi di dati 1. Il linguaggio SQL. Angelo Montanari. Dipartimento di Matematica e Informatica Università di Udine

Il linguaggio SQL Basi di dati 1. Il linguaggio SQL. Angelo Montanari. Dipartimento di Matematica e Informatica Università di Udine Il linguaggio SQL Basi di dati 1 Il linguaggio SQL Angelo Montanari Dipartimento di Matematica e Informatica Università di Udine Il linguaggio SQL Basi di dati 2 Introduzione SQL (Structured Query Language)

Dettagli

Linguaggi del I ordine - semantica. Per dare significato ad una formula del I ordine bisogna specificare

Linguaggi del I ordine - semantica. Per dare significato ad una formula del I ordine bisogna specificare Linguaggi del I ordine - semantica Per dare significato ad una formula del I ordine bisogna specificare Un dominio Un interpretazione Un assegnamento 1 Linguaggi del I ordine - semantica (ctnd.1) Un modello

Dettagli

Lo Spettro primo di un anello. Carmelo Antonio Finocchiaro

Lo Spettro primo di un anello. Carmelo Antonio Finocchiaro Lo Spettro primo di un anello Carmelo Antonio Finocchiaro 2 Indice 1 Lo spettro primo di un anello: introduzione 5 1.1 Le regole del gioco................................ 5 1.2 Prime definizioni e risultati

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE variabile casuale (rv): regola che associa un numero ad ogni evento di uno spazio E. variabile casuale di Bernoulli: rv che può assumere solo due valori (e.g.,

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Il linguaggio SQL: transazioni

Il linguaggio SQL: transazioni Il linguaggio SQL: transazioni Sistemi Informativi T Versione elettronica: 4.8.SQL.transazioni.pdf Cos è una transazione? Una transazione è un unità logica di elaborazione che corrisponde a una serie di

Dettagli

Il caso StraSport (tratto da: Golfarelli, Rizzi. Data Warehouse. Teoria e pratica della progettazione. McGraw-Hill)

Il caso StraSport (tratto da: Golfarelli, Rizzi. Data Warehouse. Teoria e pratica della progettazione. McGraw-Hill) Il caso StraSport (tratto da: Golfarelli, Rizzi. Data Warehouse. Teoria e pratica della progettazione. cgraw-hill) Progettazione concettuale Scelta dei fatti: Fatto ORDINATO FATTURATO BUDGET Relazione

Dettagli

Logica del primo ordine

Logica del primo ordine Logica del primo ordine Sistema formale sviluppato in ambito matematico formalizzazione delle leggi del pensiero strette relazioni con studi filosofici In ambito Intelligenza Artificiale logica come linguaggio

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

Elementi di teoria degli insiemi

Elementi di teoria degli insiemi Elementi di teoria degli insiemi 1 Insiemi e loro elementi 11 Sottoinsiemi Insieme vuoto Abbiamo già osservato che ogni numero naturale è anche razionale assoluto o, in altre parole, che l insieme dei

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Progettazione di un DB....in breve

Progettazione di un DB....in breve Progettazione di un DB...in breve Cosa significa progettare un DB Definirne struttura,caratteristiche e contenuto. Per farlo è opportuno seguire delle metodologie che permettono di ottenere prodotti di

Dettagli

Abstract Data Type (ADT)

Abstract Data Type (ADT) Abstract Data Type Pag. 1/10 Abstract Data Type (ADT) Iniziamo la nostra trattazione presentando una nozione che ci accompagnerà lungo l intero corso di Laboratorio Algoritmi e Strutture Dati: il Tipo

Dettagli

Esercitazioni per il corso di Logica Matematica

Esercitazioni per il corso di Logica Matematica Esercitazioni per il corso di Logica Matematica Luca Motto Ros 14 marzo 2005 Nota importante. Queste pagine contengono appunti personali dell esercitatore e sono messe a disposizione nel caso possano risultare

Dettagli

MODBUS-RTU per. Specifiche protocollo di comunicazione MODBUS-RTU per controllo in rete dispositivi serie. Expert NANO 2ZN

MODBUS-RTU per. Specifiche protocollo di comunicazione MODBUS-RTU per controllo in rete dispositivi serie. Expert NANO 2ZN per Expert NANO 2ZN Specifiche protocollo di comunicazione MODBUS-RTU per controllo in rete dispositivi serie Expert NANO 2ZN Nome documento: MODBUS-RTU_NANO_2ZN_01-12_ITA Software installato: NANO_2ZN.hex

Dettagli

Figura 2.1. A sottoinsieme di B

Figura 2.1. A sottoinsieme di B G Sammito, ernardo, Formulario di matematia Insiemi F Cimolin, L arletta, L Lussardi Insiemi Generalità Un insieme è una ollezione distinguibile di oggetti, detti elementi dell'insieme Quando un elemento

Dettagli

Estensione di un servizo di messaggistica per telefonia mobile (per una società di agenti TuCSoN)

Estensione di un servizo di messaggistica per telefonia mobile (per una società di agenti TuCSoN) Estensione di un servizo di messaggistica per telefonia mobile (per una società di agenti TuCSoN) System Overview di Mattia Bargellini 1 CAPITOLO 1 1.1 Introduzione Il seguente progetto intende estendere

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

B9. Equazioni di grado superiore al secondo

B9. Equazioni di grado superiore al secondo B9. Equazioni di grado superiore al secondo Le equazioni di terzo grado hanno una, due o tre soluzioni, risolvibili algebricamente con formule molto più complesse di quelle dell equazione di secondo grado.

Dettagli

Verica di Matematica su dominio e segno di una funzione [COMPITO 1]

Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Esercizio 1. Determinare il dominio delle seguenti funzioni: 1. y = 16 x ;. y = e 1 x +4 + x + x + 1; 3. y = 10 x x 3 4x +3x; 4. y =

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

2 Rappresentazioni grafiche

2 Rappresentazioni grafiche asi di matematica per la MPT 2 Rappresentazioni grafiche I numeri possono essere rappresentati utilizzando i seguenti metodi: la retta dei numeri; gli insiemi. 2.1 La retta numerica Domanda introduttiva

Dettagli

Il problema della fattorizzazione nei domini di Dedekind

Il problema della fattorizzazione nei domini di Dedekind Il problema della fattorizzazione nei domini di Dedekind Stefania Gabelli Dipartimento di Matematica, Università degli Studi Roma Tre Note per i corsi di Algebra Commutativa a.a. 2010/2011 1 Indice 1 Preliminari

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense Linguaggio del calcolatore Circuiti e reti combinatorie ppendice + dispense Solo assenza o presenza di tensione: o Tante componenti interconnesse che si basano su e nche per esprimere concetti complessi

Dettagli

Dall italiano alla logica proposizionale

Dall italiano alla logica proposizionale Rappresentare l italiano in LP Dall italiano alla logica proposizionale Sandro Zucchi 2009-10 In questa lezione, vediamo come fare uso del linguaggio LP per rappresentare frasi dell italiano. Questo ci

Dettagli

Import Dati Release 4.0

Import Dati Release 4.0 Piattaforma Applicativa Gestionale Import Dati Release 4.0 COPYRIGHT 2000-2005 by ZUCCHETTI S.p.A. Tutti i diritti sono riservati.questa pubblicazione contiene informazioni protette da copyright. Nessuna

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f).

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f). Due Matrici A,B. Ker f = ker g. 1- Ridurre a scala A e B e faccio il sistema. 2 Se Vengono gli stessi valori allora, i ker sono uguali. Cauchy 1 autovalore, 1- Metto a matrice x1(0),x2(0),x3(0) e la chiamo

Dettagli

FUNZIONI DI DUE VARIABILI: graöci 3D e curve di livello

FUNZIONI DI DUE VARIABILI: graöci 3D e curve di livello FUNZIONI DI DUE VARIABILI: graöci 3D e curve di livello Una funzione di due variabili Ë una funzione in cui per ottenere un valore numerico bisogna speciöcare il valore di 2 variabili x e y, non pi di

Dettagli

LAMPADE A VAPORI DI MERCURIO AD ALTA PRESSIONE

LAMPADE A VAPORI DI MERCURIO AD ALTA PRESSIONE Pag. 1 di 20 LAMPADE A VAPORI DI MERCURIO AD ALTA PRESSIONE Funzione Responsabile Supporto Tecnico Descrizione delle revisioni 0: Prima emissione FI 00 SU 0002 0 1: Revisione Generale IN 01 SU 0002 1 2:

Dettagli

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz:

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz: FUNZIONI DI PIU VARIABILI Esercizi svolti. Determinare il dominio delle seguenti funzioni e rappresentarlo graficamente : (a) f log( x y ) (b) f log(x + y ) (c) f y x 4 (d) f sin(x + y ) (e) f log(xy +

Dettagli

Le funzioni. Funzioni. Funzioni. Funzioni. Funzioni. Funzioni

Le funzioni. Funzioni. Funzioni. Funzioni. Funzioni. Funzioni Funzioni Le funzioni Con il termine funzione si intende, in generale, un operatore che, applicato a un insieme di operandi, consente di calcolare un risultato, come avviene anche per una funzione matematica

Dettagli

Sulla monotonia delle funzioni reali di una variabile reale

Sulla monotonia delle funzioni reali di una variabile reale Liceo G. B. Vico - Napoli Sulla monotonia delle funzioni reali di una variabile reale Prof. Giuseppe Caputo Premetto due teoremi come prerequisiti necessari per la comprensione di quanto verrà esposto

Dettagli

LA CORRELAZIONE LINEARE

LA CORRELAZIONE LINEARE LA CORRELAZIONE LINEARE La correlazione indica la tendenza che hanno due variabili (X e Y) a variare insieme, ovvero, a covariare. Ad esempio, si può supporre che vi sia una relazione tra l insoddisfazione

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

Database Manager Guida utente DMAN-IT-01/09/10

Database Manager Guida utente DMAN-IT-01/09/10 Database Manager Guida utente DMAN-IT-01/09/10 Le informazioni contenute in questo manuale di documentazione non sono contrattuali e possono essere modificate senza preavviso. La fornitura del software

Dettagli

Introduzione a MySQL

Introduzione a MySQL Introduzione a MySQL Cinzia Cappiello Alessandro Raffio Politecnico di Milano Prima di iniziare qualche dettaglio su MySQL MySQL è un sistema di gestione di basi di dati relazionali (RDBMS) composto da

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Sistemi e modelli matematici

Sistemi e modelli matematici 0.0.. Sistemi e modelli matematici L automazione è un complesso di tecniche volte a sostituire l intervento umano, o a migliorarne l efficienza, nell esercizio di dispositivi e impianti. Un importante

Dettagli

Il calcolo dei predicati per R.C. Agenti logici: la logica del prim ordine. Esempio: il mondo dei blocchi. Concettualizzazione

Il calcolo dei predicati per R.C. Agenti logici: la logica del prim ordine. Esempio: il mondo dei blocchi. Concettualizzazione Il calcolo dei predicati per R.C. Agenti logici: la logica del prim ordine Sintassi, semantica, inferenza Maria Simi a.a. 2014-2015 Nella logica dei predicati abbiamo assunzioni ontologiche più ricche:

Dettagli

I numeri reali. Note per il corso di Analisi Matematica 1. G. Mauceri. a.a. 2003-04

I numeri reali. Note per il corso di Analisi Matematica 1. G. Mauceri. a.a. 2003-04 I numeri reali Note per il corso di Analisi Matematica 1 G. Mauceri a.a. 2003-04 2 I numeri reali Contents 1 Introduzione 3 2 Gli assiomi di campo 3 3 Gli assiomi dell ordine 4 4 Valore assoluto 5 5 I

Dettagli

STRUTTURE (O COSTRUTTI) DI CONTROLLO

STRUTTURE (O COSTRUTTI) DI CONTROLLO Le strutture di controllo Le strutture di controllo STRUTTURE (O COSTRUTTI) DI CONTROLLO determinano l ordine con cui devono essere eseguite le istruzioni sono indipendenti dalla natura delle istruzioni

Dettagli

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Anello commutativo. Un anello è commutativo se il prodotto è commutativo. Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina Cosa è il DSS L elevato sviluppo dei personal computer, delle reti di calcolatori, dei sistemi database di grandi dimensioni, e la forte espansione di modelli basati sui calcolatori rappresentano gli sviluppi

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Come evidenziare l informazione contenuta nei dati S. Marsili-Libelli: Calibrazione di Modelli Dinamici pag. Perche PCA? E un semplice metodo non-parametrico per estrarre

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

Informatica Industriale Modello funzionale: Informazione Progettazione concettuale

Informatica Industriale Modello funzionale: Informazione Progettazione concettuale DIIGA - Università Politecnica delle Marche A.A. 2006/2007 Informatica Industriale Modello funzionale: Informazione Progettazione concettuale Luca Spalazzi spalazzi@diiga.univpm.it www.diiga.univpm.it/~spalazzi/

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento:

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento: Capitolo 3 Serie 3. Definizione Sia { } una successione di numeri reali. Ci proponiamo di dare significato, quando possibile, alla somma a + a 2 +... + +... di tutti i termini della successione. Questa

Dettagli

Progettazione di Database

Progettazione di Database Progettazione di Database Progettazione Concettuale: strutturazione della realtà che si vuole rappresentare secondo uno schema concettuale Dallo schema concettuale si ricava lo schema del database relazionale

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori"

Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori" slide a cura di Salvatore Orlando & Marta Simeoni " Architettura degli Elaboratori 1 Interi unsigned in base 2" Si utilizza un

Dettagli

Alla pagina successiva trovate la tabella

Alla pagina successiva trovate la tabella Tabella di riepilogo per le scomposizioni Come si usa la tabella di riepilogo per le scomposizioni Premetto che, secondo me, questa tabella e' una delle pochissime cose che in matematica bisognerebbe "studiare

Dettagli

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009 ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali v.scudero www.vincenzoscudero.it novembre 009 1 1 Funzioni algebriche fratte 1.1 Esercizio svolto y = x 1 x 11x + 10 (generalizzazione)

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

Basi di Da( Presentazione del corso

Basi di Da( Presentazione del corso Basi di Da( Presentazione del corso Basi di Da( Prof. Riccardo Martoglia E- mail: riccardo.martoglia@unimo.it Home page del corso: h4p://www.isgroup.unimo.it/corsi/bda: 2 Basi di Dati - Presentazione del

Dettagli

Algebra di Boole: Concetti di base. Fondamenti di Informatica - D. Talia - UNICAL 1. Fondamenti di Informatica

Algebra di Boole: Concetti di base. Fondamenti di Informatica - D. Talia - UNICAL 1. Fondamenti di Informatica Fondamenti di Informatica Algebra di Boole: Concetti di base Fondamenti di Informatica - D. Talia - UNICAL 1 Algebra di Boole E un algebra basata su tre operazioni logiche OR AND NOT Ed operandi che possono

Dettagli

Se log a. b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b. L espressione y = log b x significa che:

Se log a. b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b. L espressione y = log b x significa che: MATEMATICA 2005 Se log a b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b L espressione y = log b x significa che: A) y é l esponente di una potenza di base b e di valore x B) x è l

Dettagli

CNC. Linguaggio ProGTL3. (Ref. 1308)

CNC. Linguaggio ProGTL3. (Ref. 1308) CNC 8065 Linguaggio ProGTL3 (Ref. 1308) SICUREZZA DELLA MACCHINA È responsabilità del costruttore della macchina che le sicurezze della stessa siano abilitate, allo scopo di evitare infortuni alle persone

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Ascrizioni di credenza

Ascrizioni di credenza Ascrizioni di credenza Ascrizioni di credenza Introduzione Sandro Zucchi 2014-15 Le ascrizioni di credenza sono asserzioni del tipo in (1): Da un punto di vista filosofico, i problemi che pongono asserzioni

Dettagli

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado I quesiti sono distribuiti negli ambiti secondo la tabella seguente Ambito

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli