COPPIE DI VARIABILI ALEATORIE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "COPPIE DI VARIABILI ALEATORIE"

Transcript

1 COPPIE DI VAIABILI ALEATOIE E DI NADO 1 Funzioni di ripartizione congiunte e marginali Definizione 11 Siano X, Y va definite su uno stesso spazio di probabilità (Ω, F, P La coppia (X, Y viene detta va bidimensionale Si osservi che per ogni coppia di numeri reali (x, y si ha {ω Ω : X(ω x, Y (ω y} {ω Ω : X(ω x} {ω Ω : Y (ω y}, tale evento, essendo intersezione di elementi in F, appartiene ancora ad F Definizione 12 Si dice funzione di ripartizione congiunta delle va (X, Y la funzione F X,Y : 2 [0, 1] così definita F X,Y (x, y P (X x, Y y P ({ω Ω : X(ω x, Y (ω y} Si noti che mentre F X,Y (x, y F Y (y x F X,Y (x, y 0 x F X,Y (x, y F X (x y F X,Y (x, y 0 y F X,Y (x, y 1 x,y Le funzioni di ripartizione F X (x e F Y (y vengono dette marginali La funzione di ripartizione congiunta è non decrescente Trattandosi di una funzione in due variabili, questo equivale a dire che se x 1 < x 2 e y 1 < y 2 allora la variazione della funzione F X,Y (x, y sul rettangolo [x 1, x 2 ] [y 1, y 2 ] è non negativa Infatti una variazione semplice della F X,Y è l incremento della F X,Y lungo una delle sue due variabili, ossia F X,Y (x 2, y F X,Y (x 1, y per x 1 < x 2 oppure F X,Y (x, y 2 F X,Y (x, y 1 per y 1 < y 2 La variazione doppia si ottiene variando la F X,Y prima lungo una variabile e poi lungo l altra, ossia x2,y2 x 1,y 1 F X,Y (x, y [F X,Y (x 2, y 2 F X,Y (x 2, y 1 ] [F X,Y (x 1, y 2 F X,Y (x 1, y 1 ] Si tratta allora di provare che x2,y2 x 1,y 1 F X,Y (x, y P (x 1 < X x 2, y 1 < Y y 2 0 E infatti per l additività della probabilità P (x 1 < X x 2, y 1 < Y y 2 P (x 1 < X x 2, Y y 2 P (x 1 < X x 2, Y y 1 essendo poi P (x 1 < X x 2, Y y 2 P (X x 2, Y y 2 P (X x 1, Y y 2 F X,Y (x 2, y 2 F X,Y (x 1, y 2 Ad integrazione della Lezione 10 - Calcolo delle Probabilità e Statistica Matematica II 1

2 2 E DI NADO e P (x 1 < X x 2, Y y 1 P (X x 2, Y y 1 P (X x 1, Y y 1 segue l asserto In particolare risulta F X,Y (x 2, y 1 F X,Y (x 1, y 1 x 1 < x 2 F X,Y (x 1, y F X,Y (x 2, y y 1 < y 2 F X,Y (x, y 1 F X,Y (x, y 2 Anche nel caso bidimensionale, è possibile utilizzare l integrale di iemann-stieltjes per unificare la notazione tra coppie di va discrete e coppie di va assolutamente continue Pertanto per ogni B B( 2 scriveremo P [(X, Y B] df X,Y (x, y 11 Caso discreto Data una va doppia discreta (X, Y si definisce p r,s P (X x r, Y y s r 1, 2,, s 1, 2, massa di probabilità congiunta Ovviamente risulta p r,s 0 e r,s p r,s 1 I valori B p r s p r,s s P (X x r, Y y s P (X x r p s r p r,s r P (X x r, Y y s P (Y y s sono detti probabilità marginali della coppia (X, Y Si ha inoltre P [(X, Y B] p r,s (x r,y s B 12 Caso assolutamente continue La coppia di va (X, Y si dice assolutamente continua se esiste una funzione f(x, y detta funzione densità congiunta tale che F X,Y (x, y x y f(u, vdudv Ovviamente risulta 2 x y F X,Y (x, y f(x, y ed in particolare f(x, y 0 per ogni (x, y 2 ed inoltre Si ha inoltre + + P [(X, Y B] f(x, ydxdy 1 B f(x, ydxdy Un cenno a parte meritano le densità marginali Poiché F X (x y F X,Y (x, y dall essere e F X (x x x F X,Y (x, y y f X (udu ( f(u, vdv du

3 COPPIE DI VAIABILI ALEATOIE 3 segue che f X (u f(u, vdv 2 elazioni tra due variabili aleatorie Avendo definito le va come funzioni sullo spazio campione Ω esse sono uguali quando X(ω Y (ω per ogni ω Ω Dall uguaglianza di due va segue che F X (z F Y (z per ogni z Quando vale questa relazione, ossia quando le funzioni di ripartizione sono uguali, diremo che X è somigliante a Y e scriveremo X d Y Ovviamente la somiglianza non implica l uguaglianza Esiste poi il concetto di va uguali quasi certamente In tal caso l evento {ω Ω : X(ω Y (ω} ha probabilità di occorrenza pari ad 1, ossia P (X Y 1, in tal caso scriveremo X qc Y Pertanto si ha X Y X qc Y X d Y 21 Indipendenza Definizione 21 Due va X e Y si dicono indipendenti se e solo se F X,Y (x, y F X (xf Y (y (x, y 2 Proposizione 22 Due va X e Y sono indipendenti se e solo se P [(X, Y A B] P (X AP (Y B A, B B( Proof Scegliendo A (, x] e B (, y] è immediato dimostrare che X e Y sono indipendenti L implicazione inversa segue osservando che P [(X, Y A B] df X,Y (x, y df X (x df Y (y A B Se le va sono discrete, risultano indipendenti se e solo se P (X x r, Y y s P (X x r P (Y y s, mentre se sono assolutamente continue sono indipendenti se e solo se f(x, y f X (xf Y (y (x, y 2, dove f X e f Y rappresentano le densità marginali di X e Y 22 Condizionamento Sia (X, Y una coppia di va discrete È possibile considerare la probabilità condizionata P (X x r Y y s P (X x r, Y y s P (Y y s Tenendo fisso y s le probabilità P (X x r Y y s forniscono una distribuzione di probabilità poiché si può dimostrare che P (X x r Y y s 0 P (X x r Y y s 1 Tale distribuzione di probabilità prende il nome di distribuzione di probabilità di X condizionata da Y Nel caso di va assolutamente continue la costruzione della distribuzione di probabilità condizionata è molto più delicata, poichè in tal caso P (X x 0 r A B

4 4 E DI NADO Dati due numeri reali h, k si definisca l evento A h,k {ω Ω : x h < X(ω x + k} Si scelga l intervallo (x k, x + k] in modo tale che P (A h,k > 0 Pertanto ha senso definire P (B A h,k P (B A h,k P (A h,k P (B A h,k F X (x + k F X (x h Definizione 23 Assegnata una va X con funzione di ripartizione F X (x e un evento B F si definisce probabilità condizionata di B dato il valore x assunto dalla va X il seguente ite (se esiste: P (B x h,k 0 P (B A h,k F X (x + k F X (x h Sia ora Y una seconda va definita sullo stesso spazio di probabilità di X e sia B {ω Ω : Y (ω y} In tale caso P (B A h,k F X,Y (x + k, y F X,Y (x h, y Se allora esiste il ite di F X,Y (x + k, y F X,Y (x h, y h,k 0 F X (x + k F X (x h esso prende il nome di funzione di ripartizione di Y dato X e viene indicato con F Y X (y x P (Y y X x Proposizione 24 Se esiste P (B x e se è integrabile rispetto allla funzione F X (x si ha: P (B P (B xdf X (x Proof Dati n 1 reali x 1 < x 2 < < x n 1 e posto x 0 e x n consideriamo gli eventi A k {ω Ω : x k 1 < X(ω x k } per k 1, 2,, n Questi eventi costituiscono un sistema completo di ipotesi, e per il teorema delle alternative, tali che P (B k P (B A k P (A k k P (B A k [F X (x k F X (x k 1 ] da cui il risultato passando al ite e ricordando la definizione dell integrale di iemann-stieltjes In particolare posto B {ω Ω : Y (ω y} si ha F Y (y F Y X (y xdf X (x Supponiamo ora che X e Y siano va assolutamente continue e quindi dotate di funzione densità rispettivamente f X (x e f Y (y Scelto h 0 e k ε si ha F Y X (y x F X,Y (x + ε, y F X,Y (x, y ε 0 F X (x + ε F X (x F X,Y (x + ε, y F X,Y (x, y ε ε 0 ε F X (x + ε F X (x 1 f X (x x F X,Y (x, y

5 COPPIE DI VAIABILI ALEATOIE 5 e passando alle derivate parziali Posto y F Y X(y x 1 f X (x 2 x y F X,Y (x, y f Y X (y x y F Y X(y x f(x, y f X (x tale funzione prende il nome di densità di probabilità di Y condizionata da X È ovvio che f Y X (y x 0 e f Y X(y xdy 1 I ruoli di X e di Y si possono scambiare e quindi è possibile definire anche f X Y (x y ossia la densità di probabilità di X condizionata da Y isulta poi e dunque f Y X (y x y F Y X(y x f Y (y f(x, ydx f(x, y f X (x f(x, y f Y X(y xf X (x f Y X (y xf X (xdx Sussiste anche un analogo del teorema di Bayes al caso continuo, ossia: Vale il seguente teorema f X Y (x y f Y X(y xf X (x f Y (y f Y X (y xf X (x f Y X(y xf X (xdx Teorema 25 Se X e Y sono va indipendenti, le seguenti relazioni sono equivalenti i f X,Y (x, y f X (xf Y (y; ii f Y X (y x f Y (y; iii f X Y (x y f X (x In particolare si ha F Y X (y x 1 f X (x x F X,Y (x, y 1 f X (x x [F X(xF Y (y] F Y (y e scambiando il ruolo di X e Y segue F X Y (x y F X (x 3 Funzioni di due variabili aleatorie Nel caso (X, Y siano va discrete, la va U g(x, Y viene studiata esattamente come nel caso discreto, osservando che P (U u P (X x r, Y y s r,s:g(x r,y su Nel caso (X, Y siano assolutamente continue, esiste un teorema che consente di caratterizzare la legge di probabilità della coppia (U, V in funzione di (X, Y attraverso le relazioni U g 1 (X, Y e V g 2 (X, Y Premettiamo il seguente risultato Teorema 31 Sia g : 2 integrabile e sia O 2 un insieme aperto tale che g(x, y 0 per (x, y O c Sia poi φ : O φ(o 2 un diffeomorfismo di classe C 1 Allora per ogni A B( 2 si ha g(x, ydxdy g[φ 1 (u, v] det(dφ 1 (u, v dudv A φ(o A

6 6 E DI NADO dove Dφ 1 è la matrice iacobiana di φ 1 Corollario 32 Sia (X, Y una coppia di va assolutamente continue e g : 2 2 un diffeomorfismo tale che esiste un aperto U per il quale P [(X, Y U] 1 Allora la coppia di va (U, V g(x, Y è assolutamente continua ed ha funzione densità di probabilità congiunta data da f U,V (u, v f X,Y (x, y (x,yg 1 (u,v det(dg 1 (u, v mentre è nulla al di fuori (u, v g(u Proof Essendo P [(X, Y U] 1 si può assumere f X,Y (x, y 0 per (x, y U c Allora se I I 1 I 2 per il teorema precedente si ha P [(U, V I] P [(X, Y g 1 (I] f(x, ydxdy da cui la conclusione segue immediatamente I g 1 (I f X,Y (x, y (x,yg 1 (u,v det(dg 1 (u, v dudv Un caso particolare è quando g(x, y A (x, y T + b, dove A è una matrice quadrata di dimensione 2 invertibile e b è un vettore di dimensione 2 L inversa di g è g 1 (u, v A 1 [(u, v T b] e quindi det(dg 1 (u, v det A 1 (det A 1 Pertanto si ha f U,V (u, v f X,Y (A 1 [(u, v T b] det A 31 Somme Siano X ed Y due va assolutamente continue e sia Z X + Y Si vuole conoscere la funzione densità di Z La tecnica da utilizzare consiste nel completare la trasformazione (X, Y X + Y in una trasformazione invertibile alla quale applicare il risultato del corollario precedente Ad esempio consideriamo la funzione g : (x, y (x + y, y Siamo nel caso in cui Si noti che det A 1 e si ha ( x g(x, y A y A 1 dove A ( Essendo g(x, Y (Z, Y dal corollario segue che ( f Z,Y (z, y f X,Y (g 1 (z, y f X,Y (z y, y La funzione densità di Z si calcola come marginale di (Z, Y pertanto f Z (z f X,Y (z y, ydy Se X ed Y sono indipendenti, si ha f Z (z f X (z yf Y (ydy Spesso questa ultima formula si scrive f X+Y f X f Y dove denota il prodotto di convoluzione definito da g h(y g(z yh(ydy

7 COPPIE DI VAIABILI ALEATOIE 7 Ovviamente per il caso Z X Y si ha f Z (z f X,Y (z + y, ydy Esercizio Siano X e Y va esponenziali indipendenti Studiare la va X + Y Esercizio Siano X e Y va gaussiane standard indipendenti Studiare la va X 2 + Y 2 32 Prodotti Siano X ed Y due va assolutamente continue e sia Z XY Si vuole conoscere la funzione densità di Z La tecnica da utilizzare consiste nel completare la trasformazione (X, Y XY in una trasformazione invertibile alla quale applicare il risultato del corollario precedente Ad esempio consideriamo la funzione g : (x, y (xy, y La g è un diffeomorfismo e la sua inversa g 1 : (u, v (u/v, v Lo iacobiano di tale trasformazione è ( Dg 1 1/v u/v Dal corollario segue che tale che det Dg 1 (u, v 1 v f Z,Y (u, v 1 ( u v f X,Y v, v e quindi 1 ( z f Z (z v f X,Y v, v dv In modo del tutto analogo si dimostra che f X/Y (z v f X,Y (zv, v dv Esercizio Siano X e Y va gaussiane standard indipendenti Studiare la va X/Y

I VETTORI GAUSSIANI E. DI NARDO

I VETTORI GAUSSIANI E. DI NARDO I VETTOI GAUSSIANI E. DI NADO. L importanza della distribuzione gaussiana I vettori di v.a. gaussiane sono senza dubbio uno degli strumenti più utili in statistica. Nell analisi multivariata, per esempio,

Dettagli

Distribuzioni di due variabili aleatorie

Distribuzioni di due variabili aleatorie Statistica e analisi dei dati Data: 6 Maggio 206 Distribuzioni di due variabili aleatorie Docente: Prof. Giuseppe Boccignone Scriba: Noemi Tentori Distribuzioni congiunte e marginali Consideriamo due variabili

Dettagli

Variabili casuali multidimensionali

Variabili casuali multidimensionali Capitolo 1 Variabili casuali multidimensionali Definizione 1.1 Le variabili casuali multidimensionali sono k-ple ordinate di variabili casuali unidimensionali definite sullo stesso spazio di probabilità.

Dettagli

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea)

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea) 10.4 Convergenze 166 10.4.3. Convergenza in Probabilità. Definizione 10.2. Data una successione X 1, X 2,...,,... di vettori aleatori e un vettore aleatorio X aventi tutti la stessa dimensione k diremo

Dettagli

CAPITOLO 9. Vettori Aleatori

CAPITOLO 9. Vettori Aleatori CAPITOLO 9 Vettori Aleatori 9 9 Vettori Aleatori 3 9 Vettori Aleatori In molti esperimenti aleatori, indicando con Ω l insieme dei possibili risultati, al generico risultato dell esperimento, ω Ω, sono

Dettagli

Traccia della soluzione degli esercizi del Capitolo 3

Traccia della soluzione degli esercizi del Capitolo 3 Traccia della soluzione degli esercizi del Capitolo 3 Esercizio 68 Sia X una v.c. uniformenente distribuita nell intervallo ( π, π, cioè f X ( = π ( π, π (. Posto Y = cos(x, trovare la distribuzione di

Dettagli

3. Successioni di insiemi.

3. Successioni di insiemi. 3. Successioni di insiemi. Per evitare incongruenze supponiamo, in questo capitolo, che tutti gli insiemi considerati siano sottoinsiemi di un dato insieme S (l insieme ambiente ). Quando occorrerà considerare

Dettagli

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17 Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale aa 6/ Punteggi: : 3 + 6; : + + + ; 3: + Una scatola contiene monete; 8 di queste sono equilibrate, mentre le

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

Probabilità e Statistica per l Informatica Esercitazione 4

Probabilità e Statistica per l Informatica Esercitazione 4 Probabilità e Statistica per l Informatica Esercitazione 4 Esercizio : [Ispirato all Esercizio, compito del 7/9/ del IV appello di Statistica e Calcolo delle probabilità, professori Barchielli, Ladelli,

Dettagli

Statistica ARGOMENTI. Calcolo combinatorio

Statistica ARGOMENTI. Calcolo combinatorio Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014. I Esonero - 29 Ottobre Tot.

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014. I Esonero - 29 Ottobre Tot. UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014 I Esonero - 29 Ottobre 2013 1 2 3 4 5 6 7 8 Tot. Avvertenza: Svolgere ogni esercizio nello spazio assegnato,

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Esercitazione 6 maggio 04 Calcolo delle Probabilità Davide Petturiti e-mail: davide.petturiti@sbai.uniroma.it web: https://sites.google.com/site/davidepetturiti Esercizio. Siano X e Y due variabili aleatorie

Dettagli

Calcolo delle Probabilità 2

Calcolo delle Probabilità 2 Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale

Dettagli

Alcune nozioni di calcolo differenziale

Alcune nozioni di calcolo differenziale Alcune nozioni di calcolo differenziale G. Mastroeni, M. Pappalardo 1 Limiti per funzioni di piu variabili Supporremo noti i principali concetti algebrici e topologici relativi alla struttura dello spazio

Dettagli

Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni. 12 luglio 2004

Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni. 12 luglio 2004 Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni luglio 4 Esercizio Un sacchetto A contiene caramelle ai gusti fragola, limone e lampone. Un sacchetto B contiene caramelle

Dettagli

1. Funzioni implicite

1. Funzioni implicite 1. Funzioni implicite 1.1 Il caso scalare Sia X R 2 e sia f : X R. Una funzione y : (a, b) R si dice definita implicitamente dall equazione f(x, y) = 0 in (a, b) quando: 1. (x, y(x)) X x (a, b); 2. f(x,

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013 CORSO DI ANALISI MATEMATICA SOLUZIONI ESERCIZI PROPOSTI 8/03/03 D.BARTOLUCCI, D.GUIDO. La continuità uniforme I ESERCIZIO: Dimostrare che la funzione f(x) = x 3, x A = (, ] non è uniformemente continua

Dettagli

Statistica descrittiva I. La frequenza

Statistica descrittiva I. La frequenza Statistica descrittiva I. La frequenza Supponiamo di ripetere n volte un esperimento che può dare esito 0 o 1, il numero di uni su n ripetizioni è detto frequenza di 1: f 1,n = #{esperimenti con esito

Dettagli

1-Forme Differenziali

1-Forme Differenziali 1-Forme Differenziali 30 novembre 2011 1 Definizioni di base Siano n N e A R n un insieme aperto. Con (R n ) denotiamo il duale topologico di R n, cioè l insieme (R n ) = {p : R n R : R-lineari e continue}.

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI Assumiamo come primitivo il concetto di insieme e quello di appartenenza di un elemento a un insieme. La notazione x A indica

Dettagli

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI Giovanni Villani FUNZIONI Definizione 1 Assegnati due insiemi A e B, si definisce funzione

Dettagli

Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente

Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente Firenze - Dip. di Fisica 2 agosto 2008 Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente In questa dispensa, che presentiamo a semplice titolo di esercizio e applicazione

Dettagli

25 IL RAPPORTO INCREMENTALE - DERIVATE

25 IL RAPPORTO INCREMENTALE - DERIVATE 25 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2013/2014 M. Tumminello, V. Lacagnina e

Dettagli

Variabili aleatorie: parte 1. 1 Definizione di variabile aleatoria e misurabilitá

Variabili aleatorie: parte 1. 1 Definizione di variabile aleatoria e misurabilitá Statistica e analisi dei dati Data: 11 Aprile 2016 Variabili aleatorie: parte 1 Docente: Prof. Giuseppe Boccignone Scriba: Noemi Tentori 1 Definizione di variabile aleatoria e misurabilitá Informalmente,

Dettagli

1 Eventi. Operazioni tra eventi. Insiemi ed eventi. Insieme dei casi elementari. Definizione di probabilità.

1 Eventi. Operazioni tra eventi. Insiemi ed eventi. Insieme dei casi elementari. Definizione di probabilità. Quella che segue e la versione compatta delle slides usate a lezioni. NON sono appunti. Come testo di riferimento si può leggere Elementi di calcolo delle probabilità e statistica Rita Giuliano. Ed ETS

Dettagli

FUNZIONI. }, oppure la

FUNZIONI. }, oppure la FUNZIONI 1. Definizioni e prime proprietà Il concetto di funzione è di uso comune per esprimere la seguente situazione: due grandezze variano l una al variare dell altra secondo una certa legge. Ad esempio,

Dettagli

Esame di AM2 & EAP (270/04) a.a. 2009/10

Esame di AM2 & EAP (270/04) a.a. 2009/10 Quarto appello del 16 Luglio 2010 1. Un urna contiene delle palline numerate e distribuite in seguente maniera: Vengono estratte due palline senza rimpiazzo e siano X e Y rispettivamente il numero della

Dettagli

2. la ricerca di funzioni che hanno una derivata assegnata.

2. la ricerca di funzioni che hanno una derivata assegnata. INTEGRALI PER FUNZIONI DI UNA VARIABILE Il calcolo integrale per funzioni reali di una variabile reale si occupa di risolvere due problemi:. il calcolo dell area di parti di piano qualsiasi, 2. la ricerca

Dettagli

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale Funzione derivabile. La derivata. Dati: f I R funzione; I R intervallo aperto ; x 0 I. Definizione (Derivata come ite del rapporto incrementale) Se esiste finito (cioè, non + o ) il ite del rapporto incrementale

Dettagli

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 4 febbraio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

SUCCESSIONI E SERIE NUMERICHE E DI FUNZIONI

SUCCESSIONI E SERIE NUMERICHE E DI FUNZIONI SERIE NUMERICHE Si consideri una successione di elementi. Si definisce serie associata ad la somma Per ogni indice della successione, si definisce successione delle somme parziali associata a la somma

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

11. Misure con segno.

11. Misure con segno. 11. Misure con segno. 11.1. Misure con segno. Sia Ω un insieme non vuoto e sia A una σ-algebra in Ω. Definizione 11.1.1. (Misura con segno). Si chiama misura con segno su A ogni funzione ϕ : A R verificante

Dettagli

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y.

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y. Funzioni di più variabili Derivate parziali Qui saranno considerate soltanto funzioni di due variabili, ma non c è nessuna difficoltà ad estendere le nuove nozioni a funzioni di n ( > variabili ( Definizione:

Dettagli

Quesiti della seconda prova scritta per Matematica. MCD(x, y) = 10 xy = 30000

Quesiti della seconda prova scritta per Matematica. MCD(x, y) = 10 xy = 30000 Quesiti della seconda prova scritta per Matematica Problema 1. (i) Dire quante e quali sono le coppie ordinate (x, y) di numeri naturali che sono soluzioni del sistema { MCD(x, y) = 10 xy = 30000 Qui MCD(x,

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fondamenti di Telecomunicazioni Prof. Mario Barbera [parte ] Variabili aleatorie Esempio: sia dato l esperimento: Scegliere un qualunque giorno non festivo della settimana, per verificare casualmente

Dettagli

Teorema delle Funzioni Implicite

Teorema delle Funzioni Implicite Teorema delle Funzioni Implicite Sia F una funzione di due variabili definita in un opportuno dominio D di R 2. Consideriamo l equazione F (x, y) = 0, questa avrà come soluzioni coppie di valori (x, y)

Dettagli

14. Confronto tra l integrale di Lebesgue e l integrale di Riemann.

14. Confronto tra l integrale di Lebesgue e l integrale di Riemann. 4. Confronto tra l integrale di Lebesgue e l integrale di Riemann. Lo scopo di questo capitolo è quello di mettere a confronto i vari tipi di integrale (di Riemann, generalizzato e improprio) di funzioni

Dettagli

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioni di Complementi di Analisi Matematica ed Elementi di Calcolo delle probabilità per il corso di Laurea in Ingegneria per la parte di Elementi

Dettagli

Funzioni vettoriali di variabile scalare

Funzioni vettoriali di variabile scalare Capitolo 11 Funzioni vettoriali di variabile scalare 11.1 Curve in R n Abbiamo visto (capitolo 2) come la posizione di un punto in uno spazio R n sia individuata mediante le n coordinate di quel punto.

Dettagli

ESERCITAZIONE SUI PUNTI STAZIONARI DI FUNZIONI LIBERE E SULLE FUNZIONI OMOGENEE

ESERCITAZIONE SUI PUNTI STAZIONARI DI FUNZIONI LIBERE E SULLE FUNZIONI OMOGENEE ESERCITAZIONE SUI PUNTI STAZIONARI DI FUNZIONI LIBERE E SULLE FUNZIONI OMOGENEE 1 Funzioni libere I punti stazionari di una funzione libera di più variabili si ottengono risolvendo il sistema di equazioni

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 5 Abbiamo visto: Modelli probabilistici nel continuo Distribuzione uniforme continua Distribuzione

Dettagli

LEZIONE 5. AX = 0 m,1.

LEZIONE 5. AX = 0 m,1. LEZIONE 5 5 isoluzione di sistemi Supponiamo che AX = B sia un sistema di equazioni lineari Ad esso associamo la sua matrice completa (A B Per quanto visto nella precedente lezione, sappiamo di poter trasformare,

Dettagli

Dato un intervallo limitato A di estremi a e b con a b, si definisce misura dell intervallo il numero b a e si indica con :

Dato un intervallo limitato A di estremi a e b con a b, si definisce misura dell intervallo il numero b a e si indica con : E-school di Arrigo Amadori Analisi I Integrali di Riemann 01 Introduzione. L integrale è, oltre alla derivata, l altro oggetto fondamentale che sta alla base del calcolo differenziale. Con gli integrali

Dettagli

c i χ Ai (x) f(x) = f(x)dx = c i m(a i ) R

c i χ Ai (x) f(x) = f(x)dx = c i m(a i ) R 1. Integrale di Lebesgue in La differenza fondamentale tra integrale di Lebesgue e integrale di iemann consiste nella diversa scelta delle decomposizioni su cui sostanzialmente si basa ogni integrale:

Dettagli

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile

Dettagli

Esercitazioni di statistica

Esercitazioni di statistica Esercitazioni di statistica Misure di associazione: Indipendenza assoluta e in media Stefania Spina Universitá di Napoli Federico II stefania.spina@unina.it 22 ottobre 2014 Stefania Spina Esercitazioni

Dettagli

Modelli probabilistici variabili casuali

Modelli probabilistici variabili casuali Modelli probabilistici variabili casuali Le variabili casuali costituiscono il legame tra il calcolo della probabilità e gli strumenti di statistica descrittiva visti fino ad ora. Idea: pensiamo al ripetersi

Dettagli

Osservazioni sulle funzioni composte

Osservazioni sulle funzioni composte Osservazioni sulle funzioni composte ) 30 dicembre 2009 Scopo di questo articolo è di trattare alcuni problemi legati alla derivabilità delle funzioni composte nel caso di funzioni di R n in R m Non si

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando

Dettagli

1 Successioni di funzioni

1 Successioni di funzioni Analisi Matematica 2 Successioni di funzioni CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 6 SERIE DI POTENZE Supponiamo di associare ad ogni n N (rispettivamente ad ogni n p, per qualche

Dettagli

4.1 Variabili casuali discrete e continue, e loro distribuzioni

4.1 Variabili casuali discrete e continue, e loro distribuzioni 4 Variabili casuali 4.1 Variabili casuali discrete e continue, e loro distribuzioni Nel Capitolo di Statistica Descrittiva abbiamo chiamato variabile una quantità numerica che vegna rilevata o misurata.

Dettagli

Funzioni reali di variabile reale

Funzioni reali di variabile reale Funzioni reali di variabile reale Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni reali di variabile reale 1 / 50 Funzioni Definizione Sia A un sottoinsieme di R.

Dettagli

LeLing12: Ancora sui determinanti.

LeLing12: Ancora sui determinanti. LeLing2: Ancora sui determinanti. Ārgomenti svolti: Sviluppi di Laplace. Prodotto vettoriale e generalizzazioni. Rango e determinante: i minori. Il polinomio caratteristico. Ēsercizi consigliati: Geoling

Dettagli

OPERAZIONI SU SPAZI DI HILBERT. Nel seguito introdurremo i concetti di prodotto diretto e somma diretta di due spazi di Hilbert.

OPERAZIONI SU SPAZI DI HILBERT. Nel seguito introdurremo i concetti di prodotto diretto e somma diretta di due spazi di Hilbert. 2/7 OPERAZIONI SU SPAZI DI HILBERT 11/12 1 OPERAZIONI SU SPAZI DI HILBERT Dati due spazi di Hilbert H (1) e H (2) si possono definire su di essi operazioni il cui risultato è un nuovo spazio di Hilbert

Dettagli

ALGEBRE DI BOOLE. (d) x, y X x y oppure y x.

ALGEBRE DI BOOLE. (d) x, y X x y oppure y x. ALGEBRE DI BOOLE Un insieme parzialmente ordinato è una coppia ordinata (X, ) dove X è un insieme non vuoto e " " è una relazione binaria definita su X tale che (a) x X x x (riflessività) (b) x, y, X se

Dettagli

Insiemi di numeri reali

Insiemi di numeri reali Capitolo 1 1.1 Elementi di teoria degli insiemi Se S è una totalità di oggetti x, si dice che S è uno spazio avente gli elementi x. Se si considerano alcuni elementi di S si dice che essi costituiscono

Dettagli

PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE

PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ SCHEDA

Dettagli

Teoria dei Segnali Trasmissione binaria casuale; somma di processi stocastici

Teoria dei Segnali Trasmissione binaria casuale; somma di processi stocastici eoria dei Segnali rasmissione binaria casuale; somma di processi stocastici Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it eoria dei Segnali rasmissione

Dettagli

Variabili aleatorie continue

Variabili aleatorie continue Variabili aleatorie continue Per descrivere la distribuzione di una variabile aleatoria continua, non si può più assegnare una probabilità positiva ad ogni valore possibile. Si assume allora di poter specificare

Dettagli

Limiti di successioni

Limiti di successioni Capitolo 5 Limiti di successioni 5.1 Successioni Quando l insieme di definizione di una funzione coincide con l insieme N costituito dagli infiniti numeri naturali 1, 2, 3,... talvolta si considera anche

Dettagli

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR.

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DERIVATA DI UNA FUNZIONE REALE 1. Definizioni. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DEFINIZIONE 1. Sia x 0 un elemento di I. Per ogni x (I \ {x 0 }) consideriamo

Dettagli

Le variabili casuali o aleatorie

Le variabili casuali o aleatorie Le variabili casuali o aleatorie Intuitivamente un numero casuale o aleatorio è un numero sul cui valore non siamo certi per carenza di informazioni - ad esempio la durata di un macchinario, il valore

Dettagli

Simmetrie e reversibilità

Simmetrie e reversibilità Capitolo 6 Simmetrie e reversibilità Come nello studio del grafico di una funzione, una simmetria elementare (funzione pari, dispari o periodica) permette di ridurre l analisi ad una opportuna porzione

Dettagli

Errori frequenti di Analisi Matematica

Errori frequenti di Analisi Matematica G.C. Barozzi Errori frequenti di Analisi Matematica http://eulero.ing.unibo.it/~barozzi/pcam Complementi/Errori.pdf [Revisione: gennaio 22] Numeri reali e complessi 1. La radice quadrata di 4 è ±2. Commento.

Dettagli

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari MATEMATICA a.a. 2014/15 8. Sistemi di equazioni lineari SISTEMI LINEARI Si definisce sistema lineare un sistema di p equazioni di primo grado in q incognite. a11x1 + a12 x2 +... + a1 qxq = k1 a21x1 + a22x2

Dettagli

Gli insiemi N, Z e Q. I numeri naturali

Gli insiemi N, Z e Q. I numeri naturali Università Roma Tre L. Chierchia 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici (si veda ad esempio 2.3 in [Giusti,

Dettagli

Nozioni preliminari... 1 Notazioni... 1 Alcunirichiamidianalisimatematica... 3 Sommeinfinite... 3

Nozioni preliminari... 1 Notazioni... 1 Alcunirichiamidianalisimatematica... 3 Sommeinfinite... 3 Indice Nozioni preliminari... 1 Notazioni... 1 Alcunirichiamidianalisimatematica... 3 Sommeinfinite... 3 1 Spazi di probabilità discreti: teoria... 7 1.1 Modelli probabilistici discreti..... 7 1.1.1 Considerazioni

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

ARGOMENTI TRATTATI NEL CORSO DI ANALISI II

ARGOMENTI TRATTATI NEL CORSO DI ANALISI II ARGOMENTI TRATTATI NEL CORSO DI ANALISI II ANALISI Limiti Curve Convergenza di una successione di punti Definizione di limite Condizione necessaria e condizione sufficiente all esistenza del limite in

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 6/02/2017

Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 6/02/2017 Corso di Laurea in Ingegneria Informatica e Automatica (M-Z Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 6/02/2017 NOME: COGNOME: MATRICOLA: Esercizio 1 Nel gioco del

Dettagli

Esercizi su leggi condizionali e aspettazione condizionale

Esercizi su leggi condizionali e aspettazione condizionale Esercizi su leggi condizionali e aspettazione condizionale. Siano X, Y, Z v.a. a valori in uno spazio misurabile (E, E) e tali che le coppie (X, Y ) e (Z, Y ) abbiano la stessa legge (in particolare anche

Dettagli

Variabili aleatorie. Variabili aleatorie e variabili statistiche

Variabili aleatorie. Variabili aleatorie e variabili statistiche Variabili aleatorie Variabili aleatorie e variabili statistiche Nelle prime lezioni, abbiamo visto il concetto di variabile statistica : Un oggetto o evento del mondo reale veniva associato a una certa

Dettagli

Topologia, continuità, limiti in R n

Topologia, continuità, limiti in R n Topologia, continuità, limiti in R n Ultimo aggiornamento: 18 febbraio 2017 1. Preliminari Prima di iniziare lo studio delle funzioni di più variabili, in generale funzioni di k variabili e a valori in

Dettagli

Leggi congiunte di variabili aleatorie

Leggi congiunte di variabili aleatorie eggi congiunte di variabili aleatorie CAPIT 6 6. FUNZINI DI DISTRIBUZINE CNGIUNTE Fino a ora abbiamo considerato unicamente le leggi di singole variabili aleatorie. Tuttavia, siamo spesso interessati a

Dettagli

Matematica Applicata L-A Definizioni e teoremi

Matematica Applicata L-A Definizioni e teoremi Definizioni e teoremi Settembre - Dicembre 2008 Definizioni e teoremi di statistica tratte dalle lezioni del corso di Matematica Applicata L- A alla facoltà di Ingegneria Elettronica e delle Telecomunicazioni

Dettagli

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo C.6 Funzioni continue Pag. 114 Dimostrazione del Corollario 4.25 Corollario 4.25 Sia f continua in un intervallo I. Supponiamo che f ammetta, per x tendente a ciascuno degli estremi dell intervallo, iti

Dettagli

Variabili aleatorie continue: la normale. Giovanni M. Marchetti Statistica Capitolo 6 Corso di Laurea in Economia

Variabili aleatorie continue: la normale. Giovanni M. Marchetti Statistica Capitolo 6 Corso di Laurea in Economia Variabili aleatorie continue: la normale Giovanni M. Marchetti Statistica Capitolo 6 Corso di Laurea in Economia 2015-16 1 / 40 Distinzione Le variabili aleatorie possono essere 1 discrete 2 continue 2

Dettagli

Complemento 1 Gli insiemi N, Z e Q

Complemento 1 Gli insiemi N, Z e Q AM110 Mat, Univ. Roma Tre (AA 2010/11 L. Chierchia) 30/9/10 1 Complemento 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici

Dettagli

MATEMATICA CORSO A IV APPELLO PROVA SCRITTA DEL 18/01/2012 SCIENZE BIOLOGICHE

MATEMATICA CORSO A IV APPELLO PROVA SCRITTA DEL 18/01/2012 SCIENZE BIOLOGICHE MATEMATICA CORSO A IV APPELLO PROVA SCRITTA DEL 18/01/2012 SCIENZE BIOLOGICHE 1-(Vale 4 punti) Per procedere all acquisto on line di un biglietto aereo è necessaria una password composta da 4 simboli che

Dettagli

Variabili casuali multidimensionali

Variabili casuali multidimensionali Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Lezioni da Matematica I Calcolo differenziale, Algebra lineare, Probabilità e statistica G. Aletti & G. Naldi & L. Pareschi

Lezioni da Matematica I Calcolo differenziale, Algebra lineare, Probabilità e statistica G. Aletti & G. Naldi & L. Pareschi Lezioni da Matematica I Calcolo differenziale, Algebra lineare, Probabilità e statistica G. Aletti & G. Naldi & L. Pareschi http://www.ateneonline.it/naldi matematica McGraw-Hill Capitolo 11, Probabilità

Dettagli

Introduzione all inferenza statistica, II lezione

Introduzione all inferenza statistica, II lezione T (X) è sufficiente? (2) Introduzione all inferenza statistica, II lezione Carla Rampichini Dipartimento di Statistica Giuseppe Parenti - Firenze - Italia carla@ds.unifi.it - www.ds.unifi.it/rampi/ TEOREMA

Dettagli

Complementi di Analisi Matematica Ia. Carlo Bardaro

Complementi di Analisi Matematica Ia. Carlo Bardaro Complementi di Analisi Matematica Ia Carlo Bardaro Capitolo 1 Elementi di topologia della retta reale 1.1 Intorni, punti di accumulazione e insiemi chiusi Sia x 0 IR un fissato punto di IR. Chiameremo

Dettagli

Forme differenziali lineari

Forme differenziali lineari Forme differenziali lineari Sia Ω R un insieme aperto e siano A, B, C: Ω R funzioni continue in Ω. Si definisce forma differenziale ω in Ω l espressione ω = A(x, y, z)dx + B(x, y, z)dy + C(x, y, z)dz Data

Dettagli

Proprietà commutativa e associativa per le serie

Proprietà commutativa e associativa per le serie Analisi Matematica 1 Trentaseiesima Trentasettesimalezione Proprietà commutativa e associativa per le serie Prodotto Serie di alla potenze Cauchy prof. Claudio Saccon Dipartimento di Matematica Applicata,

Dettagli

Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta

Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta 1. (1/10 Lu.) Generalità sugli insiemi, operazioni di unione, intersezione e prodotto cartesiano. Insiemi numerici: naturali,

Dettagli

Matematica I, Derivate e operazioni algebriche.

Matematica I, Derivate e operazioni algebriche. Matematica I, 6.0.202 Derivate e operazioni algebriche.. Prima di iniziare questa lezione, conviene rendere espliciti due fatti che sono impliciti nella definizione informale di derivata, banalmente verificabili

Dettagli

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se Lezioni di Algebra Lineare. Versione novembre 2008 VI. Il determinante Il determinante det A di una matrice A, reale e quadrata, è un numero reale associato ad A. Dunque det è una funzione dall insieme

Dettagli

ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio. A. Figà Talamanca

ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio. A. Figà Talamanca ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio A. Figà Talamanca 14 ottobre 2010 2 0.1 Ancora limiti di funzioni di variabile reale Esercizio 1 Sia f(x) = [sin x] definita nell insieme [0,

Dettagli

(P x) (P y) = x P t (P y) = x (P t P )y = x y.

(P x) (P y) = x P t (P y) = x (P t P )y = x y. Matrici ortogonali Se P è una matrice reale n n, allora (P x) y x (P t y) per ogni x,y R n (colonne) Dim (P x) y (P x) t y (x t P t )y x t (P t y) x (P t y), CVD Ulteriori caratterizzazioni delle matrici

Dettagli

Capitolo 1. Gli strumenti. 1.1 Relazioni

Capitolo 1. Gli strumenti. 1.1 Relazioni Capitolo 1 Gli strumenti Consideriamo un insieme X. In geometria siamo abituati a considerare insiemi i cui elementi sono punti ad esempio, la retta reale, il piano cartesiano. Più in generale i matematici

Dettagli

Teoria di Lebesgue. P n E = n=1

Teoria di Lebesgue. P n E = n=1 Teoria di Lebesgue 1. La misura di Peano-Jordan La misura di Peano Jordan di un insieme é quasi sempre proposta per sottoinsiemi limitati E R 2 : si tratta di quanto suggerito dalla carta quadrettata,

Dettagli