Università degli studi di Roma Tor Vergata. Dipartimento di Ingegneria Civile e Ingegneria Informatica. Prof. ing. P. Sammarco

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Università degli studi di Roma Tor Vergata. Dipartimento di Ingegneria Civile e Ingegneria Informatica. Prof. ing. P. Sammarco"

Transcript

1 Università degli studi di Roma Tor Vergata Dipartimento di Ingegneria Civile e Ingegneria Informatica Prof. ing. P. Sammarco Esercitazioni del corso di Idraulica Anno Accademico

2 Ringraziamenti Dispense redatte con il supporto e contributo di: Dott. ing. S. Michele. Università degli studi di Roma Tor Vergata ; Dott. ing. E. Renzi. University college Dublin; Prof. ing. M. Di Risio. Università degli studi dell Aquila; che l autore ringrazia sentitamente. 1

3 1 Cinematica dei fluidi Riferimenti utili Prof. Ing. P. Sammarco Dipartimento di Ingegneria Civile e Ingegneria Informatica Sito ufficiale del corso: Notazione x, y, z: variabili indipendenti i x, i y, i z : terna di versori nel riferimento cartesiano v: vettore velocità a: vettore accelerazione Operatore nabla = x i x + y i y + ( z i z = x, y, ) z Gradiente del campo delle velocità Divergenza del campo delle velocità v = v x x v x y v x z v y x v y y v y z v z x v z y v z z v = v x x + v y y + v z z Rotore del campo delle velocità ( vz v = y v ) ( y vx i x + z z v ) ( z vy i y + x x v ) x i z y

4 P. Sammarco CAPITOLO 1. CINEMATICA DEI FLUIDI Ω, D, L, S: componenti tensoriali del campo delle velocità Φ: potenziale scalare della velocità A, B, C,...: costanti scalari Concetti di base Elemento fluido: Volume di fluido di dimensioni talmente ridotte rispetto al volume del corpo complessivo, che le grandezze fisiche in esso si possono ritenere costanti b(x, t)= grandezza fisica associata ad un elemento fluido che passa in x all istante t Teorema del trasporto in forma locale (derivata sostanziale) ( ) Db Dt = t + v b Teorema del trasporto in forma integrale ( ) D b b dv = Dt V V t + (bv) dv ( ) D Db b dv = Dt Dt + b v dv Esercizi svolti Esercizio n. 1 Dato il seguente campo di velocità V V v = x i x + y i y + z i z 1. Derivare le espressioni della divergenza, del rotore, del gradiente, dell accelerazione e del potenziale di v.. Derivare le espressioni delle componenti tensoriali Ω e D; scomporre quindi D = L + S. Indicare il tipo di rotazione/deformazione connessa al campo di velocità. 3. Indicare se il moto descritto è di tipo isocoro e/o irrotazionale. 4. Valutare se il moto può essere realizzato con un fluido incomprimibile e spiegarne le motivazioni. 1. v = v x x + v y y + v z z = 3. v = v = ( vz y v ) ( y vx i x + z z v ) ( z vy i y + x x v ) x i z = 0. y v x x v x y v x z v y x v y y v y z v z x v z y v z z = = I

5 P. Sammarco CAPITOLO 1. CINEMATICA DEI FLUIDI a = Dv Dt = v t + v v = 0 + [x, y, z] I = x i x + y i y + z i z. Poichè il campo di velocità ammette rotore nullo, può scriversi v = Φ, che espressa per componenti fornisce le seguenti relazioni: v x = Φ x = x v y = Φ y = y. v z = Φ z = z Dall integrazione della prima equazione in x, si ricava Φ(x, y, z) = x + f(y, z), con f(y, z) funzione da determinare. Inserendo l espressione del potenziale appena trovata nella seconda equazione del sistema, si ha Con ciò, il potenziale diventa f y = y f(y, z) = y + g(z). Φ(x, y, z) = x + y + g(z). Sostituendo questa espressione nella terza equazione del sistema, si ottiene Il potenziale quindi è: g (z) = z g(z) = z + c. Φ = x + y + z + c, definito a meno della costante di integrazione arbitraria c. Imponendo che Φ = 0 nell origine (0,0,0), si ottiene in definitiva: Φ = 1 ( x + y + z ).. D = 1 ( v + v T ) = I. Ω = 1 ( v v T ) = 0. L = 1 ( v) I = I. 3 S = D L = 0. Non esistono rotazioni rigide impresse (Ω = 0). La deformazione impressa è una dilatazione (D L). 3. Il moto descritto è irrotazionale. 4. No, per un fulido incomprimibile deve essere v = 0. 4

6 P. Sammarco CAPITOLO 1. CINEMATICA DEI FLUIDI Esercizio n. Dato il seguente campo di velocità v = Ax i x + xz i y + z ln z i z 1. Derivare le espressioni della divergenza, del rotore, del gradiente, dell accelerazione v.. Derivare le espressioni delle componenti tensoriali Ω e D; scomporre quindi D = L + S. Indicare il tipo di rotazione/deformazione connessa al campo di velocità. 3. Indicare se il moto descritto è di tipo isocoro e/o irrotazionale. 4. Valutare se il moto può essere realizzato con un fluido incomprimibile e spiegarne le motivazioni. 1. v = v x x + v y y + v z z v = v = = Ax + ln z + 1. ( vz y v ) ( y vx i x + z z v ) ( z vy i y + x x v ) x i z = x i x + z i z. y v x x v x y v x z v y x v y y v y z v z x v z y v z z = Ax z x ln z + 1. a = Dv Dt = v t + v v = 0 + (Ax, xz, z ln z) I = A x 3 i x + (zax + zx ln z) i y + z ln z(ln z + 1) i z. Ax. D = 1 ( ) v + v T z = 0 0 Ω = 1 ( ) v v T = z 0 z 0 x 0 x. ln z + 1 z 0 0 x. Resta verificato che D + Ω = v. x 0 L = 1 3 ( v) I = 1 (Ax + ln z + 1) I [4Ax (ln z + 1)] z S = D L = z 1 x (Ax + ln z + 1) 3 x 0 0. [ Ax + (ln z + 1)] 3 5

7 P. Sammarco CAPITOLO 1. CINEMATICA DEI FLUIDI Al fluido vengono impresse una rotazione rigida, una dilatazione ed una distorsione. 3. Un moto non irrotazionale. 4. Per un fluido incomprimibile, ρ v = 0 Ax + ln z + 1 = 0, x, z. Ne segue che l equazione di conservazione della massa non è rispettata, qualsiasi valore assuma A. Il moto pertanto non può realizzarsi con fluido incomprimibile. Esercizio n. 3 Le correnti di deriva sono generate dai venti che spirano sulla superficie libera dei mari e degli oceani. Se il vento spira nella direzione i y, la velocità della corrente di deriva alla profondità z è ( π z ) ( π v = V exp cos d 4 + π z ) ( π z ) ( π i x + V exp sin d d 4 + π z ) i y d nel piano (x, y), con l asse z ad esso ortogonale e rivolto verso l alto. La superficie libera del fluido ha equazione z = 0; la profondità del fondale si assume infinita. V e d si esprimono in dipendenza della viscosità del fluido e sono da assumersi note. 1. Derivare le espressioni della divergenza, del rotore, del gradiente, dell accelerazione di v.. Derivare le espressioni delle componenti tensoriali Ω e D; scomporre quindi D = L + S. Indicare il tipo di rotazione/deformazione connessa al campo di velocità. 3. Indicare se il moto descritto è di tipo isocoro e/o irrotazionale. 4. Valutare se il moto può essere realizzato con un fluido incomprimibile e spiegarne le motivazioni. 5. Calcolare la portata per unità di larghezza nelle due direzioni principali x ed y, rispettivamente q x e q y. 6. Che relazione esiste tra portate direzionali della corrente e direzione del vento? 1. v = v x x + v y y + v z z = 0. v = v = ( vz y v ) ( y vx i x + z z v ) ( z vy i y + x x v ) x i z = y = πv ( π z ) { [ D exp sin D = π V ( π z ) [ D exp cos D v x x v x y v x z v y x v y y v y z v z x v z y v z z ( π 4 + π z ) + cos D ( π z ) i x + sin D = πv D exp ( π z D ) ( π 4 + π z )] [ i x + cos D ( π z ) ] i y. D ( 0 0 π z ) ( π z ) sin cos 0 D D ( π 4 + π z ) sin D. ( π 4 + π z )] } i y = D 6

8 P. Sammarco CAPITOLO 1. CINEMATICA DEI FLUIDI a = v t + v v = 0.. D = 1 Ω = 1 ( v + v T ) = ( v v T ) = πv ( π z ) D exp D πv ( π z ) D exp D ( π z ) 0 0 sin ( D π z ) 0 0 cos ( π z ) ( π z ) D. sin cos 0 D D ( π z ) 0 0 sin ( D π z ) 0 0 cos ( π z ) ( π z ) D. sin cos 0 D D L = 0 S D. Al campo di velocità sono connesse rotazione rigida e distorsione. 3. Il moto è di tipo isocoro. 4. Sì. Per un fluido incomprimibile infatti Dρ + ρ v = ρ v = 0. Dt 5. La portata q x attraverso la superficie A x di normale i x (cfr. figura 1.1) è 1 : q x = A x v i x da = 0 v x 1 dz = 0 V exp La portata q y attraverso la superficie A y di normale i y è 1 : q y = A y v i y da = 0 v y 1 dz = 0 ( π z ) ( π cos d 4 + π z ) dz =... = d V exp ( π z ) ( π sin d 4 + π z ) d dz =... = 0. D V π. Figura 1.1: Superficie A x di normale i x per il calcolo della portata q x. Analogo schema vale in direzione y, cambiando i pedici, per il calcolo della portata q y. 6. La corrente ha flusso netto solo in direzione i x, ed è pertanto ortogonale alla direzione i y in cui invece spira il vento. 1 Risolvere l integrale sostituendo w = π z D e integrando due volte per parti. 7

9 P. Sammarco CAPITOLO 1. CINEMATICA DEI FLUIDI Esercizio n. 4 Vortice di Rankine Il moto piano e stazionario di un vortice di raggio r 0 avente centro nell origine degli assi (x, y), è descritto in coordinate polari dalle seguenti espressioni della velocità radiale v r e della velocità tangenziale v θ : v r = 0 v θ = ωr ; 0 r r 0 v r = 0 v θ = r 0 ω r r r 0 Figura 1.: Rappresentazione schematica del vortice dove con ω si è indicata la velocità angolare positiva in senso antiorario (vortice di Rankine). Assumendo il fluido ideale ed incomprimibile si richiede: 1. Scrivere le componenti della velocità in coordinate cartesiane v x (x, y) e v y (x, y).. Determinare in quali parti del dominio il campo delle velocità risulta isocoro ed irrotazionale. 3. Ricavare l espressione della funzione di corrente Ψ(x, y). 4. Discutere l esistenza del potenziale delle velocità Φ(x, y) per 0 r r 0 ed r r Derivare il tensore dei gradienti delle velocità e l accelerazione 6. Derivare le espressioni delle componenti tensoriali Ω e D; scomporre quindi D = L + S. Indicare il tipo di rotazione/deformazione connessa al campo di velocità. 1. v r = 0 r = (x + y ) 0.5 = v x = v θ sin θ = ωy v y = v θ cos θ = ωx ; 0 r r 0 v x = r 0ω sin θ (x + y ) 0.5 = r 0ωy (x + y ) v y = r 0ω cos θ (x + y ) 0.5 = r 0ωx (x + y ) r r 0 8

10 P. Sammarco CAPITOLO 1. CINEMATICA DEI FLUIDI. v = v x x + v y y + v z z v = = 0 x, y Isocoro ovunque. ( vz y v ) ( y vx i x + z z v ) ( z vy i y + x x v ) { x ω ; 0 r r0 Rotazionale i z = y 0 ; r r 0 Irrotazionale. 3. r [0, r 0 ] Integrando la Ψ y Dato che Ψ x si ottiene: Ψ(x, = ωx si ha: f(x) Imponendo Ψ(0, 0) = 0: Ψ x = ωx Ψ y = ωy y) = ωy + f(x). = ωx + cost. Ψ(x, y) = ω(x + y ) Si ottiene quindi il valore della funzione di corrente sul bordo del vortice Ψ(r 0, θ) = ωr 0. r > r 0 Si procede come nel caso precedente: Ψ x = r 0 ωx x + y Ψ y = r 0 ωy x + y Ψ(x, y) = r 0 ω ln(x + y ) Imponendo Ψ(r 0, θ) = ωr 0, si ricava il valore della costante: In definitiva si ottiene: cost. = r 0 ω ln(r 0 ) + f(x) f (x) = 0 f(x) = cost. ωr 0. ( ) r Ψ(x, y) = r 0 ω ln ωr 0 ( ) r e = r 0 ω ln r 0 r 0 9

11 P. Sammarco CAPITOLO 1. CINEMATICA DEI FLUIDI 4. Per 0 r r 0 il moto è rotazionale pertanto non esiste un potenziale scalare; ( y Per r r 0 il moto è irrotazionale ed il potenziale vale: Φ(x, y) = r 0 ω arctan. x) 5. v x v = x v x y v y x v y ; y v x a x = v x x + v v x y y v y a y = v x x + v v y y y 0 r r 0 ; v = [ o ] ω ω 0 ; { ax = ω x a y = ω y r 0 ωxy r 0 ω(y x ) r r 0 ; v = (x + y ) (x + y ) r 0 ω(y x ) (x + y ) r 0 ωxy ; (x + y ) a x = (r 0 ω) x (x + y ) a y = (r 0 ω) y (x + y ) 6. r [0, r 0 ] D = 1 ( v + v T ) = 0 ; L = 1 ( v) = 0 Ω = 1 ( v v T ) = [ o ] ω ω 0 ; { S = D L = 0 Ω 0 Al campo di velocità è connessa una rotazione rigida. r > r 0 4r 0 ωxy r 0 ω(y x ) D = 1 (x + y ) (x + y ) r 0 ω(y x ) (x + y ) 4r 0 ωxy ; Ω = 0 ; L = 0 (x + y ) { S = D L = D Ω = 0 Al campo di velocità è connessa una distorsione. Esercizio n. 5 Il moto piano e stazionario di un campo uniforme diretto secondo l asse delle x positive, con una sorgente nell origine degli assi (x, y), è descritto in coordinate polari dalla seguente funzione di corrente Ψ(r, θ): Φ(r, θ) = Ur sin θ + Qθ π dove U è il modulo della velocità del campo uniforme e Q è la portata emessa dalla sorgente. Si richiede: 10

12 P. Sammarco CAPITOLO 1. CINEMATICA DEI FLUIDI 1. Derivare le espressioni della velocità radiale v r e della velocità tangenziale v θ.. Determinare le coordinate del punto di ristagno dove la velocità si annulla. 3. Ricavare il valore di Ψ nel punto di ristagno. 4. Determinare l equazione della curva Ψ che passa per il punto di ristagno e rappresentarne qualitativamente l andamento nel piano xy. 1. Le espressioni della velocità tangenziale v θ e la velocità radiale v r risultano essere:. Nota la velocità tangenziale si ottiene: v r = 1 Ψ r θ = U cos θ + Q πr v θ = Ψ = U sin θ r v θ = 0 θ = 0 oppure θ = π. Sostituendo nell espressione della velocità radiale, si ha: v r = ±U + Q πr = 0 r = Q πu, ma r deve essere positivo, quindi θ = π. Di conseguenza, le coordinate (x P, y P ) del punto di ristagno sono: x P = Q πu ; y P = Indicando con Ψ P il valore della funzione di corrente nel punto di ristagno, otteniamo: 4. La curva Ψ = Ψ P, si scrive: Ψ(r, θ) = Ur sin θ + Qθ π Ψ P = Q = πx P U. Ur sin θ + πx P Uθ π = πx P U r = x P (θ π). sin θ L andamento della curva Ψ P insieme a quello delle altre funzioni di corrente Ψ = cost. è rappresentato nella figura successiva. Si nota che il punto di ristagno è un punto singolare, perché in corrispondenza di esso, le funzioni di corrente Ψ P si biforcano. Al crescere di x la funzione di corrente Ψ P ha asintoti orizzontali aventi coordinate: y = πx P ; θ 0 y = πx P ; θ π 11

13 P. Sammarco CAPITOLO 1. CINEMATICA DEI FLUIDI Esercizio n. 6 Dato il seguente campo di velocità v = x i x y i y 1. Derivare le espressioni della divergenza, del rotore, del gradiente e dell accelerazione.. Può essere determinato il potenziale delle velocità? Perché? 3. Ricavare le espressioni delle componenti tensoriali Ω e D; scomporre quindi D = L + S. Indicare il tipo di rotazione/deformazione connessa al campo di velocità. 4. Tracciare un grafico qualitativo delle linee di corrente e delle linee equipotenziali. 1. v = 0. v = 0. [ ] 1 0 v =. 0 1 a = Dv Dt = x i x + y i y.. Il campo di moto è irrotazionale ovunque, quindi esiste un potenziale scalare che vale: Imponendo Φ = 0 nell origine, si ha cost = 0 3. D = 1 ( ) [ ] v + v T 1 0 =. 0 1 Φ(x, y) = x y + cost. Ω = 1 ( v v T ) = 0. 1

14 P. Sammarco CAPITOLO 1. CINEMATICA DEI FLUIDI L = 1 ( v) I = 0. S = D L 0. Non esistono rotazioni rigide impresse (Ω = 0). La deformazione impressa è una distorsione. 4. La funzione di corrente Ψ(x, y), ha l espressione: Ψ(x, y) = xy + cost. imponendo Ψ = 0 in (0, 0), si ottiene cost = 0. Di conseguenza, le linee di corrente hanno asintoti coincidenti con gli assi x ed y, e la funzione di corrente ha valore nullo sugli stessi. Le linee equipotenziali invece, presentano due asintoti a 45 gradi. Sui suddetti asintoti, il potenziale ha valore nullo, infatti Φ(0, 0) = 0. Esercizio n. 7 Dato il seguente campo di velocità v = Ax i x + By i y + Cz i z 1. Derivare le espressioni della divergenza, del rotore, del gradiente, dell accelerazione e del potenziale di v.. Derivare le espressioni delle componenti tensoriali Ω e D; scomporre quindi D = L + S. Indicare il tipo di rotazione/deformazione connessa al campo di velocità. 3. Indicare se il moto descritto è di tipo isocoro e/o irrotazionale. 4. Valutare se il moto può essere realizzato con un fluido incomprimibile e spiegarne le motivazioni. 1. v = A + B + C. 13

15 P. Sammarco CAPITOLO 1. CINEMATICA DEI FLUIDI v = 0. A 0 0 v = 0 B C a = A x i x + B y i y + C z i z Φ = 1 ( Ax + By + Cz ).. D v, Ω = 0, L = distorsione. (A + B + C) 3 I, S = D L. Al campo di velocità sono collegate dilatazione e 3. Il moto è irrotazionale, A, B, C. 4. Solo se A + B + C = 0. In tal caso il campo di velocità è a divergenza nulla. Esercizio n.8 Dato il seguente campo di velocità v = A ln x i x + Be y i y 1. Derivare le espressioni della divergenza, del rotore, del gradiente, dell accelerazione e del potenziale di v.. Derivare le espressioni delle componenti tensoriali Ω e D; scomporre quindi D = L + S. Indicare il tipo di rotazione/deformazione connessa al campo di velocità. 3. Indicare se il moto descritto è di tipo isocoro e/o irrotazionale. 4. Valutare se il moto può essere realizzato con un fluido incomprimibile e spiegarne le motivazioni. 1. v = A x Be y. v = 0. A v = 0 x. 0 Be y a = A ln x x i x B e y i y i z Φ = Ax(ln x 1) Be y + c. A. D = 0 x Ω = 0. 0 Be y 14

16 P. Sammarco CAPITOLO 1. CINEMATICA DEI FLUIDI L = 1 1 S = ( ) A x Be y I. ( ) A x + Be y Dilatazione e distorsione. 3. Il moto è irrotazionale ( ) A x +. Be y 4. No (ad esclusione della soluzione banale A = B = 0), perché v = 0 non è verificata su tutto il dominio fluido (x, y, z). Esercizio n. 9 Per le onde superficiali di piccola ampiezza monodimensionali, l espressione del potenziale nel dominio fluido (x, y, z) è: Φ(x, z) = ga cosh(k(z + h)) sin(kx ωt), ω cosh(kh) con ω pulsazione dell onda, k numero d onda, A ampiezza dell onda, h profondità del fondale, tutte costanti da assumersi note. g è l accelerazione di gravità e cosh(x) = ex + e x, sinh(x) = ex e x. Si richiede: 1. Calcolare il laplaciano del potenziale, Φ.. Nell ipotesi di moto irrotazionale, calcolare le componenti del vettore velocità v. 3. Calcolare le componenti del vettore velocità in superficie (z = 0) e sul fondale (z = h). Commentare i risultati ottenuti. 4. Verificare che il rotore della velocità sia nullo su tutto il dominio fluido. 5. Calcolare la divergenza del vettore velocità. Che tipo di moto descrive v? 1. Φ = 0.. v x = ga ω k cosh(k(z + h)) cosh(kh) cos(kx ωt), v y = 0, v z = ga ω k sinh(k(z + h)) cosh(kh) sin(kx ωt). 3. Per z = 0, v = ga ω k [cos(kx ωt) i x + tanh(kh) sin(kx ωt) i z ]. Per z = h, v = ga ω k 1 cosh(kh) cos(kx ωt) i x. La componente orizzontale della velocità sul fondale si riduce di 1/ cosh(kh) rispetto al valore che assume in superficie. La componente verticale di velocità si annulla sul fondale. 4. v = v = 0, il moto è isocoro. 15

17 Statica dei fluidi Nozioni fondamentali Equazione indefinita della statica dei fluidi: ρf = p Equilibrio nel campo del geopotenziale: p z = ρg Distribuzione idrostatica delle pressioni in un fluido a densità costante p p 0 = γ(z z 0 ) ovvero la quantità h = z + p γ = cost. in tutti i punti della massa fluida. Forze idrostatiche contro superficie piana: F = γζ g Ω ζ g : affondamento del baricentro della superficie. Forze idrostatiche contro superfici gobbe: G + Π = 0 oppure: F n = (p x, p y ) n da F n : forza risultante della distribuzione idrostatica delle pressioni sulla superficie A di normale n. A 16

18 P. Sammarco CAPITOLO. STATICA DEI FLUIDI Esercizi svolti Esercizio n. 1 In un contenitore da laboratorio di profondità h è stato immesso un fluido la cui densità varia secondo la seguente legge: ( ρ = ρ α ζ ) h dove ζ è l affondamento a partire dalla superficie libera, α è un parametro noto, ρ 0 è la densità dell acqua in condizioni di riferimento, pari a 1000 kg m Partendo dall equazione indefinita della statica, derivare la distribuzione della pressione in seno al fluido.. L assetto del fluido può definirsi barotropico? 3. Un corpo a sezione rettangolare di altezza a, larghezza b e densità ρ b viene immesso nel contenitore. Derivare la profondità di affondamento d per la quale il corpo è in equilibrio 1. L equazione indefinita della statica ρ f p = 0 proiettata sugli assi x e y fornisce p x = p y = 0 p = p(z). La proiezione della stessa equazione indefinita sull asse z è pertanto: ( dp dz = ρg = ρ 0g 1 + α ζ ) = ρ 0 g (α z ) h h 1, in cui è stato usato z = ζ. La soluzione dell equazione differenziale tra z (ove p = p(z)) e 0 (ove p = p atm ), insieme con il cambio di coordinate sopra indicato, fornisce ( p p atm = ρ 0 gζ 1 + α ζ ). h 17

19 P. Sammarco CAPITOLO. STATICA DEI FLUIDI. Sì. Infatti le superfici isobare sono quelle per cui ζ = 0, ovvero piani orizzontali e coincidono con le superfici isopicnotiche. Pertanto, fissato ζ, risultano univocamente determinate p e ρ. Esiste quindi un legame diretto tra densità e pressione, f(ρ, p) = Per l equilibrio del corpo alla traslazione verticale, il peso P b = ρ b g a b dello stesso deve eguagliare il peso del volume fluido spostato: Dall eguaglianza P b = P V la cui radice positiva è. Esercizio n. P V = ρg dv = V z=0 z= d si ottiene quindi ρ 0 g (1 + α ζh ) ( b dz = ρ 0 g b d α d ) h + 1. d + h α d ρ b ρ 0 h α a = 0, d = h a [ ρ b α a ] ρ 0 h Una paratoia verticale difende un bacino di acqua dolce (altezza a, densità ρ), galleggiante su uno strato di acqua di mare (altezza b, densità ρ m ) dalle oscillazioni di marea. 1. Calcolare l altezza h del mare per la quale le spinte orizzontali lato mare e lato bacino sono in equilibrio.. Calcolare l altezza h per la quale i momenti delle spinte orizzontali rispetto al piede della paratoia sono in equilibrio. 1. Si consideri l equilibrio della paratoia a traslazione orizzontale. Con riferimento alla figura.1, l equilibrio alla traslazione in direzione x si scrive Π 1 = Π + Π 3 + Π 4, che fornisce: ρ m g h = ρ g a + ρ g a b + ρ m g b. Risolvendo l equazione rispetto ad h, si ottiene: ( ρ h = a ρ 1 + b ) + b m a. 18

20 P. Sammarco CAPITOLO. STATICA DEI FLUIDI Figura.1: Schema per il calcolo di forze e momenti agenti sulla paratoia. L equilibrio a rotazione intorno al polo O situato alla base della paratoia si scrive: b Π (b + a/3) + Π 3 + Π b 4 3 = Π h 1 3. Sostituendo le forze Π i, prima calcolate, nell espressione precedente e risolvendo rispetto ad h si ottiene: h = 3 3 ρ [a ρ b + 13 ] a + ab + b 3. m Esercizio n. 3 Lo schema in figura mostra un cassone di peso P e larghezza B che divide il piano in due regioni distinte. A sinistra sono presenti due strati di fluido di peso specifico diverso γ o e γ w rispettivamente di altezza h 1 e h. A destra è presente un unico fluido di densità γ w di altezza h 3. Il piano di imposta è costituito da materiale impermeabile per cui è possibile trascurare gli effetti di filtrazione al di sotto del cassone (assenza di sottospinte) caratterizzato da un elevato coefficiente di attrito (il cassone è stabile all traslazione orizzontale). Determinare: 1. La forza totale orizzontale F x agente sul cassone in funzione di γ o, γ w, h 1, h e h 3. il peso P min del cassone affinchè esso non si ribalti in funzione di γ o, γ w, h 1, h, h 3 e B Nel caso in cui h = h 1 = h, h 3 = h, γ o = 6/7 γ w, B = h, P = γ w Bh, il cassone si ribalta verso destra, verso sinistra oppure è stabile al ribaltamento? Perchè? 1. Utilizzando uno schema simile a quello dell Esercizio, la risultante orizzontale delle pressioni sul cassone per metro di profondità si scrive: [ F h = ρ 0 g h 1 + h + ρ ( ) w h ρ ( ) ] w h3. h 1 ρ 0 h 1 ρ 0 h 1 Oss. Se h = h 1 = h, h 3 = h e ρ 0 = ρ w, la forza F h, come ci si attende, è nulla. Si noti che, al variare dei dati iniziali, il vettore F h i x può puntare verso destra (F x > 0) oppure verso sinistra (F x < 0). 19

21 P. Sammarco CAPITOLO. STATICA DEI FLUIDI. Per l equilibrio a rotazione occorre distinguere tra i due casi F h > 0. In questo caso il ribaltamento, se c è, avviene rispetto al polo O situato nel vertice inferiore destro del cassone. Le forze agenti a sinistra del cassone generano pertanto un momento ribaltante M r, al quale si oppone il momento stabilizzante M s dato dal peso P O del cassone (con braccio B/) e dalla risultante delle pressioni agenti a sinistra dello stesso. Imponendo l equilibrio a rotazione intorno ad O (cfr. Esercizio ), si ottiene: { P O = ρ 0g h 3 1 B 3 + h ( ) [ h + + ρ (h ) 3 ( ) ]} 3 w h3. h 1 h 1 3ρ 0 h 1 h 1 F h < 0. In questo caso il ribaltamento, se c è, avviene rispetto al polo O situato nel vertice inferiore sinistro del cassone. Le forze agenti a sinistra del cassone generano pertanto un momento stabilizzante M s. Il momento dato dal peso P O del cassone (con braccio B/) è anch esso stabilizzante. Il momento ribaltante M r è dato invece soltanto dalla risultante delle pressioni agenti a sinistra del cassone. Imponendo l equilibrio a rotazione intorno ad O si ottiene: P O = ρ 0g h 3 B { h h 1 + ( h h 1 ) + ρ w 3ρ 0 [ (h ) 3 h 1 ( h3 h 1 ) 3 ]} Il peso P min del cassone deve garantire l equilibrio a rotazione in entrambi i casi, non essendo noti a priori i valori di h 1, h, h 3, ρ 0, ρ w e quindi neanche il verso di F h i x. Risulta quindi P min = max {P O, P O }. Oss. Se h = h 1 = h, h 3 = h e ρ 0 = ρ w, il peso minimo del masso per assicurare l equilibrio è nullo, essendo nulla l azione F h. 3. Con i dati assegnati, si ha F h = 3 14 ρ 0g h < 0, pertanto il ribaltamento, se c è, può avvenire solo intorno al polo O. Per evitare il ribaltamento, occorre che P P min = P O. Sostituendo i valori nei rispettivi campi, si ottiene 1 che è soddisfatta. Dunque non si verifica ribaltamento per i dati 9 assegnati. Esercizio n. 4 Si consideri la paratoia cilindrica a sezione circolare di tenuta di una diga artificiale (cfr. figura). La paratoia è costituita da un tubo di acciaio di raggio R, spessore s R e densità ρ s. Il contatto della paratoia con la. 0

22 P. Sammarco CAPITOLO. STATICA DEI FLUIDI diga avviene lungo la generatrice di traccia D così come indicato in figura. Il livello idrostatico dell acqua coincide con la generatrice di sommità di traccia A. Determinare 1. La spinta orizzontale per unità di larghezza che la paratoia esercita sulla diga.. Lo spessore s che rende la configurazione in figura di equilibrio idrostatico. 1. All equilibrio, l azione orizzontale F d della diga sulla paratoia uguaglia la risultante orizzontale delle pressioni esercitate dal fluido sulla superficie esterna della paratoia. Tale superficie si può suddividere in quattro spicchi cilindrici di profondità unitaria, rispettivamente AB, BC, CD, DA. Poichè sulla superficie DA agisce la pressione atmosferica, la risultante delle azioni su di essa è nulla. Si noti inoltre che le risultanti orizzontali sulle superfici BC e CD si annullano a vicenda, perché uguali in modulo ma opposte in verso. L azione F d equilibra quindi solamente la risultante orizzontale Π 1 delle pressioni sulla superficie AB. Quest ultima può essere calcolata considerando l equilibrio a traslazione orizzontale del volume fluido racchiuso in ABOA, che fornisce: Tornando all equilibrio della paratoia, si ha quindi Π 1 = 1 ρ g R. F d = Π 1 = 1 ρ g R.. Si studia ora l equilibrio alla traslazione verticale della paratoia. Il peso P della paratoia deve equilibrare la spinta netta S, risultante della distribuzione di pressioni sulla superficie laterale. Con la suddivisione della superficie laterale della paratoia descritta al punto precedente, è possibile calcolare le componenti verticali delle risultanti delle pressioni sulle singole facce, mediante l equilibrio dei volumi fluidi racchiusi rispettivamente in ABOA e BCDB. La somma vettoriale di tali azioni fornisce S = ρ g R ( π ). 1

23 P. Sammarco CAPITOLO. STATICA DEI FLUIDI Il peso della paratoia di spessore s è invece P = ρ acc g π R ρ acc g π(r s) ρ acc g π r s, dove l ultima approssimazione si ottiene trascurando i termini di ordine O(s ), essendo s R per ipotesi. Dall uguaglianza P = S si trova infine: s R ρ ( 1 ρ acc π + 3 ). 8 Esercizio n. 5 Una boa, assimilabile ad una sfera di raggio R e densità ρ b, galleggia in uno specchio acqueo (vedi figura). La posizione della boa è di equilibrio. In tale posizione emerge sopra la superficie libera un segmento sferico di altezza pari a R/. Calcolare la densità della boa ρ b. All equilibrio la spinta di galleggiamento S A eguaglia il peso del corpo P. La spinta vale S = γ V, dove V è il volume di fluido spostato dalla boa, pari a quello della sfera di raggio R meno il volume del segmento sferico di altezza h = R/: V = V sf V sg. Si ha: V sf = 4 3 πr3, mentre per il calcolo di V sg è necessario introdurre un sistema di riferimento in coordinate sferiche: x = r sin φ cos θ y = r sin φ sin θ, z = r cos φ con φ [0, /3 π] angolo di latitudine, θ [0, π] angolo di longitudine sul piano orizzontale (x, y). r è invece la coordinata radiale e varia tra R/( cos φ) (alla base del segmento sferico) ed R (sulla calotta). Detto J = r sin φ il determinante Jacobiano della trasformazione, il volume del segmento sferico è: /3 π π R V sg = R r sin φ dr dθ dφ. 0 0 cos φ

24 P. Sammarco CAPITOLO. STATICA DEI FLUIDI Risolvendo i due integrali in r e θ si ottiene: V sg = π /3 π 0 ( R 3 3 R 3 ) 4 cos 3 sin φ dφ. φ L ultimo integrale si risolve con la sostituzione u = cos φ, e fornisce il valore cercato: Il volume immerso è pertanto e la spinta di galleggiamento vale Il peso della boa è invece V = V sg = 5 4 π R3. ( ) π R 3 = π R3, S A = 9 8 ρ g π R3. P = 4 3 ρ b g π R 3. Dall equilibrio a traslazione verticale si ottiene quindi: Esercizio n. 6 S A = P ρ b = 0.84 ρ. Si consideri la configurazione piana in condizioni idrostatiche rappresentata in figura. Il cuneo triangolare, di peso trascurabile, è mantenuto in posizione dalla spinta verticale verso il basso che il fluido esercita lungo il tratto orizzontale di larghezza c. Calcolare il valore limite di a = a min, al diminuire di a, per il quale la forza netta esercitata dal fluido che tiene il cuneo in posizione si annulla. Le forze agenti sul cuneo in direzione verticale sono: La risultante Π 1 delle pressioni agenti sulla superficie orizzontale di base c, diretta verso il basso. 3

25 P. Sammarco CAPITOLO. STATICA DEI FLUIDI Le componenti verticali delle risultanti degli sforzi di pressione sulle superfici inclinate di sinistra e destra, rispettivamente Π e Π 3, dirette verso l alto. Data la simmetria del problema, queste forze hanno stesso modulo. Sulla superficie orizzontale la risultante (per metro di profondità del cuneo) è: Π 1 = ρ g a c. Sulla superficie inclinata di sinistra, la risultante delle pressioni vale in modulo ( S = ρ g ζ G Ω = ρ g a + b ) b cos θ, dove ζ G è l affondamento del baricentro della superficie bagnata rispetto al piano delle pressioni nulle, e Ω = b cos θ 1 è l area della superficie bagnata. La componente verticale di S è quindi Π = S sin θ = ρ g (ab tan θ + b ) tan θ. Come detto, analoga espressione si ha per l azione verticale sulla superficie inclinata di sinistra: Π 3 = Π. Il valore di a = a min in condizioni di equilibrio limite è quello per cui la somma vettoriale delle spinte verticali si annulla, cioè Π 1 Π Π 3 = Π 1 Π = 0. Sostituendo e svolgendo l algebra si ha: Esercizio n. 7 b a min = ( c ). tan θ 1 Un corpo galleggiante rettangolare di altezza a, larghezza b e profondità unitaria, viene tirato ad una profondità d dalla superficie libera di un fluido di densità ρ tramite un cavo di ancoraggio verticale (cfr. figura). La forza che bisogna applicare per mantenere il corpo a tale profondità vale T. Determinare la densità del corpo ρ b < ρ in funzione di ρ, a, b, d, T. 4

26 P. Sammarco CAPITOLO. STATICA DEI FLUIDI Il corpo è soggetto alle seguenti azioni: Peso proprio: P = ρ b a b g, diretto verso il basso. Spinta di galleggiamento: S A = ρ g b d, diretta verso l alto. Tiro T, diretto verso il basso. Per l equilibrio a traslazione verticale, da cui si ricava P + T = S A, ρ b = ρ d a T g a b. Esercizio n. 8 Una condotta sottomarina prefabbricata in calcestruzzo (densità ρ c = 300 kg /m 3 ) di diametro interno D e spessore s D viene collocata sul fondo del mare (densità ρ c = 1030 kg /m 3 ). Subito dopo la posa in opera la condotta, non ancora in uso, è vuota al suo interno. Calcolare il rapporto s/d minimo affinchè la condotta resti sul fondo. Le forze agenti sulla condotta sono: Peso proprio Spinta di galleggiamento [ (D ) P = ρ c π + s ( ) D S A = ρ gπ + s. ( ) ] D. All equilibrio S A = P, da cui si ricava, trascurando i termini O(s ): s D 1 ( ) ρ = 0.19 m. 4 ρ c ρ 5

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg. Spingete per 4 secondi una slitta dove si trova seduta la vostra sorellina. Il peso di slitta+sorella è di 40 kg. La spinta che applicate F S è in modulo pari a 60 Newton. La slitta inizialmente è ferma,

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Capitolo 2 Equazioni differenziali ordinarie 2.1 Formulazione del problema In questa sezione formuleremo matematicamente il problema delle equazioni differenziali ordinarie e faremo alcune osservazioni

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i NA. Operatore nabla Consideriamo una funzione scalare: f : A R, A R 3 differenziabile, di classe C (2) almeno. Il valore di questa funzione dipende dalle tre variabili: Il suo differenziale si scrive allora:

Dettagli

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj 61- Quand è che volumi uguali di gas perfetti diversi possono contenere lo stesso numero di molecole? A) Quando hanno uguale pressione e temperatura diversa B) Quando hanno uguale temperatura e pressione

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano PPUNTI DI SCIENZ DEE COSTRUZIONI Giulio lfano nno ccademico 004-005 ii Indice 1 TRVTURE PINE 1 1.1 Geometria, equilibrio e vincoli...................... 1 1.1.1 Piani di simmetria........................

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica Potenziale Elettrico Q V 4pe 0 R Q 4pe 0 r C R R R r r B q B r A A independenza dal cammino Superfici Equipotenziali Due modi per analizzare i problemi Con le forze o i campi (vettori) per determinare

Dettagli

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione METODO DELLE FORZE CORSO DI PROGETTZIONE STRUTTURLE a.a. 010/011 Prof. G. Salerno ppunti elaborati da rch. C. Provenzano 1. METODO DELLE FORZE PER L SOLUZIONE DI STRUTTURE IPERSTTICHE 1.1 Introduzione

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

Seconda Legge DINAMICA: F = ma

Seconda Legge DINAMICA: F = ma Seconda Legge DINAMICA: F = ma (Le grandezze vettoriali sono indicate in grassetto e anche in arancione) Fisica con Elementi di Matematica 1 Unità di misura: Massa m si misura in kg, Accelerazione a si

Dettagli

GEOTECNICA. ing. Nunziante Squeglia 13. OPERE DI SOSTEGNO. Corso di Geotecnica Corso di Laurea in Ingegneria Edile - Architettura

GEOTECNICA. ing. Nunziante Squeglia 13. OPERE DI SOSTEGNO. Corso di Geotecnica Corso di Laurea in Ingegneria Edile - Architettura GEOTECNICA 13. OPERE DI SOSTEGNO DEFINIZIONI Opere di sostegno rigide: muri a gravità, a mensola, a contrafforti.. Opere di sostegno flessibili: palancole metalliche, diaframmi in cls (eventualmente con

Dettagli

Elaborato di Meccanica delle Strutture

Elaborato di Meccanica delle Strutture Università degli Studi di Roma La Sapienza Facoltà di Ingegneria Dipartimento di Meccanica ed Aeronautica Corso di Laurea Triennale in Ingegneria Meccanica Elaborato di Meccanica delle Strutture Docente

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

1) IL MOMENTO DI UNA FORZA

1) IL MOMENTO DI UNA FORZA 1) IL MOMENTO DI UNA FORZA Nell ambito dello studio dei sistemi di forze, diamo una definizione di momento: il momento è un ente statico che provoca la rotazione dei corpi. Le forze producono momenti se

Dettagli

Dinamica dei corpi deformabili. Conservazione della quantità di moto

Dinamica dei corpi deformabili. Conservazione della quantità di moto Capitolo 2 Dinamica dei corpi deformabili. Conservazione della quantità di moto 2.1 Forze Le forze che agiscono su un elemento B n del corpo B sono essenzialmente di due tipi: a) forze di massa che agiscono

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

Esercizi e Problemi di Termodinamica.

Esercizi e Problemi di Termodinamica. Esercizi e Problemi di Termodinamica. Dr. Yves Gaspar March 18, 2009 1 Problemi sulla termologia e sull equilibrio termico. Problema 1. Un pezzetto di ghiaccio di massa m e alla temperatura di = 250K viene

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

Integrali di superficie: esercizi svolti

Integrali di superficie: esercizi svolti Integrali di superficie: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio. Calcolare i seguenti integrali superficiali sulle superfici

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

TRAVE SU SUOLO ELASTICO

TRAVE SU SUOLO ELASTICO Capitolo 3 TRAVE SU SUOLO ELASTICO (3.1) Combinando la (3.1) con la (3.2) si ottiene: (3.2) L equazione differenziale può essere così riscritta: (3.3) La soluzione dell equazione differenziale di ordine

Dettagli

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0 1 ) Un veicolo che viaggia inizialmente alla velocità di 1 Km / h frena con decelerazione costante sino a fermarsi nello spazio di m. La sua decelerazione è di circa: A. 5 m / s. B. 3 m / s. C. 9 m / s.

Dettagli

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A.

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A. Travature reticolari piane : esercizi svolti e omenico., Fuschi., isano., Sofi. SRZO n. ata la travatura reticolare piana triangolata semplice illustrata in Figura, determinare gli sforzi normali nelle

Dettagli

Esercitazioni di Meccanica Applicata alle Macchine

Esercitazioni di Meccanica Applicata alle Macchine Università degli Studi di Roma La Sapienza Facoltà di Ingegneria Dipartimento di Meccanica ed Aeronautica Corso di Laurea Triennale in Ingegneria Meccanica Esercitazioni di Meccanica Applicata alle Macchine

Dettagli

OPERE DI SOSTEGNO determinare le azioni esercitate dal terreno sulla struttura di sostegno;

OPERE DI SOSTEGNO determinare le azioni esercitate dal terreno sulla struttura di sostegno; OPERE DI SOSTEGNO Occorre: determinare le azioni esercitate dal terreno sulla struttura di sostegno; regolare il regime delle acque a tergo del muro; determinare le azioni esercitate in fondazione; verificare

Dettagli

Sistemi materiali e quantità di moto

Sistemi materiali e quantità di moto Capitolo 4 Sistemi materiali e quantità di moto 4.1 Impulso e quantità di moto 4.1.1 Forze impulsive Data la forza costante F agente su un punto materiale per un intervallo di tempo t, si dice impulso

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Corrente elettrica (regime stazionario)

Corrente elettrica (regime stazionario) Corrente elettrica (regime stazionario) Metalli Corrente elettrica Legge di Ohm Resistori Collegamento di resistori Generatori di forza elettromotrice Metalli Struttura cristallina: ripetizione di unita`

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.

Dettagli

Cognome... Nome... LE CORRENTI MARINE

Cognome... Nome... LE CORRENTI MARINE Cognome... Nome... LE CORRENTI MARINE Le correnti marine sono masse d acqua che si spostano in superficie o in profondità negli oceani: sono paragonabili a enormi fiumi che scorrono lentamente (in media

Dettagli

LA DINAMICA LE LEGGI DI NEWTON

LA DINAMICA LE LEGGI DI NEWTON LA DINAMICA LE LEGGI DI NEWTON ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA 1. La Forza Exercise 1. Se un chilogrammo campione subisce un accelerazione di 2.00 m/s 2 nella direzione dell angolo formante

Dettagli

esercitata dalle particelle del fluido sulla superficie Δ A. Definiamo (tramite una misura di forza) la pressione (grandezza scalare), come:

esercitata dalle particelle del fluido sulla superficie Δ A. Definiamo (tramite una misura di forza) la pressione (grandezza scalare), come: IL MOTO DEI FLUIDI Un fluido può essere pensato come costituito da un numero molto grande di molecole ( N 0 3 mol / cm 3 ) interagenti tra loro mediante forze di natura elettrica. La descrizione del moto

Dettagli

1 LA CORRENTE ELETTRICA CONTINUA

1 LA CORRENTE ELETTRICA CONTINUA 1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo

Dettagli

Dinamica e Misura delle Vibrazioni

Dinamica e Misura delle Vibrazioni Dinamica e Misura delle Vibrazioni Prof. Giovanni Moschioni Politecnico di Milano, Dipartimento di Meccanica Sezione di Misure e Tecniche Sperimentali giovanni.moschioni@polimi.it VibrazionI 2 Il termine

Dettagli

Corso di Fisica tecnica e ambientale a.a. 2011/2012 - Docente: Prof. Carlo Isetti

Corso di Fisica tecnica e ambientale a.a. 2011/2012 - Docente: Prof. Carlo Isetti Corso di Fisica tecnica e ambientale a.a. 0/0 - Docente: Prof. Carlo Isetti LAVORO D NRGIA 5. GNRALITÀ In questo capitolo si farà riferimento a concetto quali lavoro ed energia termini che hanno nella

Dettagli

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - II

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - II Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI Prof. Ing. Francesco Zanghì FONDAZIONI - II AGGIORNAMENTO 12/12/2014 Fondazioni dirette e indirette Le strutture di fondazione trasmettono

Dettagli

175 CAPITOLO 14: ANALISI DEI PROBLEMI GEOTECNICI IN CONDIZIONI LIMITE

175 CAPITOLO 14: ANALISI DEI PROBLEMI GEOTECNICI IN CONDIZIONI LIMITE 175 ntroduzione all analisi dei problemi di collasso. L analisi del comportamento del terreno potrebbe essere fatta attraverso dei modelli di comportamento elasto plastici, ma questo tipo di analisi richiede

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

SISTEMI VINCOLATI. 1. Punto fisso: il vincolo impedisce ogni spostamento del punto.

SISTEMI VINCOLATI. 1. Punto fisso: il vincolo impedisce ogni spostamento del punto. SISTEMI VINCOLATI Definizione 1 Si dice vincolo una qualunque condizione imposta ad un sistema materiale che impedisce di assumere una generica posizione e/o atto di moto. La presenza di un vincolo di

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

percorso fatto sul tratto orizzontale). Determinare il lavoro (minimo) e la potenza minima del motore per percorrere un tratto.

percorso fatto sul tratto orizzontale). Determinare il lavoro (minimo) e la potenza minima del motore per percorrere un tratto. Esercizio 1 Una pietra viene lanciata con una velocità iniziale di 20.0 m/s contro una pigna all'altezza di 5.0 m rispetto al punto di lancio. Trascurando ogni resistenza, calcolare la velocità della pietra

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

RELAZIONE TECNICA 1. 1 - DESCRIZIONE GENERALE DELLE LAVORAZIONI

RELAZIONE TECNICA 1. 1 - DESCRIZIONE GENERALE DELLE LAVORAZIONI RELAZIONE TECNICA 1. 1 - DESCRIZIONE GENERALE DELLE LAVORAZIONI Le lavorazioni oggetto della presente relazione sono rappresentate dalla demolizione di n 14 edifici costruiti tra gli anni 1978 ed il 1980

Dettagli

CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE

CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE Consideriamo adesso un corpo esteso, formato da più punti, e che abbia un asse fisso, attorno a cui il corpo può ruotare. In questo caso l

Dettagli

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante Circuiti Elettrici Schema riassuntivo Leggi fondamentali dei circuiti elettrici lineari Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante La conseguenza

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

Studio sperimentale della propagazione di un onda meccanica in una corda

Studio sperimentale della propagazione di un onda meccanica in una corda Studio sperimentale della propagazione di un onda meccanica in una corda Figura 1: Foto dell apparato sperimentale. 1 Premessa 1.1 Velocità delle onde trasversali in una corda E esperienza comune che quando

Dettagli

AUTOLIVELLI (orizzontalità ottenuta in maniera automatica); LIVELLI DIGITALI (orizzontalità e lettura alla stadia ottenute in maniera automatica).

AUTOLIVELLI (orizzontalità ottenuta in maniera automatica); LIVELLI DIGITALI (orizzontalità e lettura alla stadia ottenute in maniera automatica). 3.4. I LIVELLI I livelli sono strumenti a cannocchiale orizzontale, con i quali si realizza una linea di mira orizzontale. Vengono utilizzati per misurare dislivelli con la tecnica di livellazione geometrica

Dettagli

MODELLO ELASTICO (Legge di Hooke)

MODELLO ELASTICO (Legge di Hooke) MODELLO ELASTICO (Legge di Hooke) σ= Eε E=modulo elastico molla applicazioni determinazione delle tensioni indotte nel terreno calcolo cedimenti MODELLO PLASTICO T N modello plastico perfetto T* non dipende

Dettagli

BOZZA. a min [mm] A min =P/σ adm [mm 2 ]

BOZZA. a min [mm] A min =P/σ adm [mm 2 ] ezione n. 6 e strutture in acciaio Verifica di elementi strutturali in acciaio Il problema della stabilità dell equilibrio Uno degli aspetti principali da tenere ben presente nella progettazione delle

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

Forze Conservative. Il lavoro eseguito da una forza conservativa lungo un qualunque percorso chiuso e nullo.

Forze Conservative. Il lavoro eseguito da una forza conservativa lungo un qualunque percorso chiuso e nullo. Lavoro ed energia 1. Forze conservative 2. Energia potenziale 3. Conservazione dell energia meccanica 4. Conservazione dell energia nel moto del pendolo 5. Esempio: energia potenziale gravitazionale 6.

Dettagli

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t; CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

Analogia tra il circuito elettrico e il circuito idraulico

Analogia tra il circuito elettrico e il circuito idraulico UNIVERSITÁ DEGLI STUDI DELL AQUILA Scuola di Specializzazione per la Formazione degli Insegnanti nella Scuola Secondaria Analogia tra il circuito elettrico e il circuito idraulico Prof. Umberto Buontempo

Dettagli

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA ANALISI EDIANTE LO SPETTRO DI RISPOSTA arco BOZZA * * Ingegnere Strutturale, già Direttore della Federazione regionale degli Ordini degli Ingegneri del Veneto (FOIV), Amministratore di ADEPRON DINAICA

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

Note di fisica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, luglio 2012. 1 Quantità di moto.

Note di fisica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, luglio 2012. 1 Quantità di moto. Note di fisica. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, luglio 2012. Indice 1 Quantità di moto. 1 1.1 Quantità di moto di una particella.............................. 1 1.2 Quantità

Dettagli

Curve di risonanza di un circuito

Curve di risonanza di un circuito Zuccarello Francesco Laboratorio di Fisica II Curve di risonanza di un circuito I [ma] 9 8 7 6 5 4 3 0 C = 00 nf 0 5 0 5 w [KHz] RLC - Serie A.A.003-004 Indice Introduzione pag. 3 Presupposti Teorici 5

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

Verifica sismica di dighe a gravità in calcestruzzo

Verifica sismica di dighe a gravità in calcestruzzo Verifica sismica di dighe a gravità in calcestruzzo Keywords: dighe a gravità in calcestruzzo, verifica sismica, metodi semplificati, programmi di calcolo. Autore: L. Furgoni, Relatore: Prof. C. Nuti,

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

Per vedere quando è che una forza compie lavoro e come si calcola questo lavoro facciamo i seguenti casi.

Per vedere quando è che una forza compie lavoro e come si calcola questo lavoro facciamo i seguenti casi. LAVORO ED ENERGIA TORNA ALL'INDICE Quando una forza, applicata ad un corpo, è la causa di un suo spostamento, detta forza compie un lavoro sul corpo. In genere quando un corpo riceve lavoro, ce n è un

Dettagli

IL MOTO. 1 - Il moto dipende dal riferimento.

IL MOTO. 1 - Il moto dipende dal riferimento. 1 IL MOTO. 1 - Il moto dipende dal riferimento. Quando un corpo è in movimento? Osservando la figura precedente appare chiaro che ELISA è ferma rispetto a DAVIDE, che è insieme a lei sul treno; mentre

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

1 Introduzione alla dinamica dei telai

1 Introduzione alla dinamica dei telai 1 Introduzione alla dinamica dei telai 1.1 Rigidezza di un telaio elementare Il telaio della figura 1.1 ha un piano solo e i telai che hanno un piano solo, sono chiamati, in questo testo, telai elementari.

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

Precorsi 2014. Fisica. parte 1

Precorsi 2014. Fisica. parte 1 Precorsi 2014 Fisica parte 1 Programma ministeriale per il test Grandezze fisiche Una grandezza fisica è una caratteristica misurabile di un entità fisica. Sono grandezze fisiche: velocità, energia di

Dettagli

Livellazione Geometrica Strumenti per la misura dei dislivelli

Livellazione Geometrica Strumenti per la misura dei dislivelli Università degli studi di Brescia Facoltà di Ingegneria Corso di Topografia A Nuovo Ordinamento Livellazione Geometrica Strumenti per la misura dei dislivelli Nota bene: Questo documento rappresenta unicamente

Dettagli

METODO PER LA STESURA DI PROGRAMMI PER IL CENTRO DI LAVORO CNC

METODO PER LA STESURA DI PROGRAMMI PER IL CENTRO DI LAVORO CNC METODO PER LA STESURA DI PROGRAMMI PER IL CENTRO DI LAVORO CNC Riferimento al linguaggio di programmazione STANDARD ISO 6983 con integrazioni specifiche per il Controllo FANUC M21. RG - Settembre 2008

Dettagli

Figura 4. Conclusione

Figura 4. Conclusione Forza di Coriolis La forza di Coriolis é una forza che si manifesta su un corpo all interno di un sistema di riferimento (SDR) rotante, quale la terra che ruota su se stessa, quando il corpo stesso si

Dettagli

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME 6. IL CONDNSATOR FNOMNI DI LTTROSTATICA MOTO DI UNA CARICA IN UN CAMPO LTTRICO UNIFORM Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Sistemi e modelli matematici

Sistemi e modelli matematici 0.0.. Sistemi e modelli matematici L automazione è un complesso di tecniche volte a sostituire l intervento umano, o a migliorarne l efficienza, nell esercizio di dispositivi e impianti. Un importante

Dettagli

L=F x s lavoro motore massimo

L=F x s lavoro motore massimo 1 IL LAVORO Nel linguaggio scientifico la parola lavoro indica una grandezza fisica ben determinata. Un uomo che sposta un libro da uno scaffale basso ad uno più alto è un fenomeno in cui c è una forza

Dettagli

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE a cura di G. SIMONELLI Nel motore a corrente continua si distinguono un sistema di eccitazione o sistema induttore che è fisicamente

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione 1. L elettrone ha una massa di 9.1 10-31 kg ed una carica elettrica di -1.6 10-19 C. Ricordando che la forza gravitazionale

Dettagli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli I numeri complessi Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli 1 Introduzione Studiare i numeri complessi può sembrare inutile ed avulso dalla realtà;

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

24 - Strutture simmetriche ed antisimmetriche

24 - Strutture simmetriche ed antisimmetriche 24 - Strutture simmetriche ed antisimmetriche ü [.a. 2011-2012 : ultima revisione 1 maggio 2012] In questo capitolo si studiano strutture piane che presentano proprieta' di simmetria ed antisimmetria sia

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

Cuscinetti a strisciamento e a rotolamento

Cuscinetti a strisciamento e a rotolamento Cuscinetti a strisciamento e a rotolamento La funzione dei cuscinetti a strisciamento e a rotolamento è quella di interporsi tra organi di macchina in rotazione reciproca. Questi elementi possono essere

Dettagli