DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA"

Transcript

1 DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema dell energia cinetica, in cui interviene solo la potenza delle forze attive. Infatti, se i vincoli sono fissi, tra gli infiniti atti di moto virtuali, vi è quello effettivo. Fatta questa scelta, cioè posto v i = v i, si ottiene (m i a i F i ) v i = 0 m i a i v i = F i v i cioè ( m i v 2 i ) = π (a) Su un intervallo di tempo finito, si ha: T = L (a) Osservazione: se un sistema passa dalla quiete al moto, T > 0 e quindi L (a) > 0. Cioè per vincoli fissi e lisci, nel passaggio dalla quiete al moto, le forze attive compiono lavoro positivo. Nel caso di forze conservative, L (a) = U e quindi T = U, da cui: T - U (a) = E Questo teorema dell energia meccanica vale quindi anche per sistemi vincolati, purché i vincoli siano lisci, fissi (bilaterali). ESEMPIO Un disco di massa M e raggio r, rotola senza strisciare su di una circonferenza fissa di raggio R+r. Il disco parte da fermo con θ 0 = 0. Con che valore di arriva nella posizione finale θ =? relazione cinematica: v G = r = R T U = E M R2 - Mg R = E per t=0; T 0 = 0; U 0 = 0 da cui E = 0 nella posizione θ F = M R2 - Mg R = 0 = sin θ F = 1 = 2 da cui: Si poteva risolvere senza passare attraverso la posizione intermedia θ.

2 EQUAZIONI DI LAGRANGE PER SISTEMI OLONOMI Deduzione dell equazione simbolica della Dinamica. Partiamo da: (F i m i a i ) v i = 0 dove: v i = (q k sono le coordinate libere; k = 1,..., n) sostituendo: (F i m i a i ) = 0 Si tratta di sommatorie su di un numero finito di termini, e non di serie. Quindi posso invertire l ordine delle sommatorie. [ (F i m i a i ) ] q k = 0 La sommatoria interna dipende solo dall indice k, mentre i è un indice di lavoro, che serve ad eseguire la sommatoria su i. Abbiamo già definito: Q k = F i Ora definiamo: τ k = m i a i Rimane: (Q k τ k ) δq k = 0 Ma le δq k sono tra loro tutte indipendenti (q k sono coordinate libere). Per cui, scegliendo ad esempio: δq 1 0; δq 2 =... δq n = 0 otteniamo τ 1 = Q 1 Si ripete il discorso per gli altri indici, uno alla volta e si ottiene: τ k = Q k (k = 1,..., n) Queste si dicono equazioni di Lagrange. Le τ k sono funzioni delle,,,. La dipendenza dalla è lineare. Si tratta di n equazioni differenziali indipendenti del 2 ordine, nelle n funzioni incognite q k = q k (t). Vanno associate alle condizioni iniziali, cioè 2n costanti arbitrarie, che si assegnano dando in un istante le q k e le. Le equazioni della statica dei sistemi olonomi (dal Principio dei Lavori Virtuali) si ottengono come caso particolare, quando τ k = 0. Notare la differenza tra l espressione analitica della velocità effettiva e della velocità virtuale. Se P i = P i (q 1,..., q n t) = P i (q k t) e il movimento è dato da q k = q k (t). La velocità effettiva del punto P i è data da: v i = + (1)

3 La velocità virtuale, che si fa a vincolo fisso, è data da: v i = dove δp i è uno spostamento virtuale qualsiasi e δt è un tempo campione, che dà le dimensioni giuste, per cui: v i = Notare che è un vettore (2) Ad esempio, essendo l espressione di v i lineare nelle, è il coefficiente nella (1) di, cioè: = sono vettori ESEMPIO Punto vincolato a una circonferenza di raggio variabile nel tempo R = R(t). cos sin P(t) = R(t) cos i + R(t) sin j (1) cos sin sin cos v = i + j = (R (t) cos - sin ) i + (R (t) sin + cos ) j (2) δp = - R() sin δ i + R() cos δ j v = = (- R() sin i + R() cos j) = - R(t) sin i + R(t) cos j dalla (2) = - R(t) sin i + R() cos j dalla (1) = sono vettori =

4 L energia cinetica T è data da: T = m i v i v i (essa è costruita con la velocità effettiva) Nell esempio precedente: v 2 = R (t) cos - sin ] 2 + [R (t) sin + cos ] 2 = R 2 (t) + [R (t)] 2 perché i termini in si sono annullati a vicenda. In generale, poiché v i = + T risulta funzione delle q k, delle e di t e la dipendenza dalle è quadratica. T = a hk + dove a hk = a kh = m i a k = m i a = m i a k + a I coefficienti a hk, a k, a sono funzioni conosciute delle q k di t; se i vincoli sono fissi a k = 0, a = 0 e a hk non dipende da t. Quindi T risulta essere una forma quadratica (omogenea) nella, i cui coefficienti non dipendono dal tempo. Se si ha una sola coordinata libera, T è quadratica nella. Nell esempio di prima, se fissiamo il raggio υ 2 = R 2 ; T = m R2 Da quanto è detto si constata che è sensato parlare di variabili indipendenti. Si dimostra che valgono le espressioni (non è richiesta la dimostrazione): τ k = - binomi Lagrangiani - = Q k (k = 1,..., n) (1) per cui: valide per vincoli lisci, anche mobili. e, dove e q k sono considerate come Nel caso di forze conservative si è visto che: Q k = per cui: - = In genere U non dipende dalle, per cui - = 0 = 0 e posso aggiungerla senza turbare l equazione. Definiamo l equazione di Lagrange: L T U (2) L - L = 0 equazioni di Lagrange in forma conservativa

5 Ad esempio, consideriamo il sistema La lamina triangolare di massa M scorre senza attrito lungo l asse x, mentre il punto di massa m, scende lungo la lamina, senza staccarsi. α è costante. Le coordinate libere (2) sono X e s. Le coordinate del punto P sono: cos da cui cos T = M + m ( + 2 ) cos = 0 = 0 (in questo particolare problema) Usiamo le equazioni di Lagrange nella forma - = Q k Per trovare le Q k consideriamo il lavoro virtuale. Il baricentro della lamina si sposta orizzontalmente, per cui il suo peso non lavora. Il lavoro virtuale del peso del punto è dato da: δ * L = mg δs Per cui, essendo: δ * L = Q x δ x + Q s δs abbiamo: Q x = 0; Q s = mg

6 allora: sin 0 (M + m) + m cos = 0 m ( + cos ) = mg sin Ricavo dalla prima equazione e la sostituisco nella seconda = m ( - cos cos2 α ) = mg = g sin 2 sin cos 2 Otteniamo un moto uniformemente accelerato, in cui l accelerazione è proporzionale a g x 0 è indifferente e lo poniamo uguale a 0 poniamo anche s 0 uguale a 0 se il sistema parte da fermo anche: = 0; = 0 s(t) = β g x(t) = γ g Se usiamo le equazioni di Lagrange in forma conservativa abbiamo: U = mg s L = M + m ( ) + mg s L L = M + m + m + = m ( + ) L = mg L = 0 Si ottiene agevolmente lo stesso sistema di prima cos 0 cos

7 MOMENTI CINETICI Si dicono momenti cinetici le quantità p k = (nel caso conservativo p k = L ) ESEMPI 1) Punto libero: T = m sono le componenti della quantità di moto 2) Corpo rigido con asse fisso: T = I P 1 = P φ = I è il momento rispetto all asse fisso delle quantità di moto 3) Esempio del sistema esaminato precedentemente T = M + m 2 p 1 = p x = (M + m) + m è la quantità di moto Se la funzione di Lagrange non dipende da una coordinata, ad esempio q 1, allora abbiamo L = 0 L = 0 p 1 = L = C 1 = costante Abbiamo trovato un integrale primo del moto (p 1 dipende da q, ). Questi integrali si dicono momenti cinetici. Essi sono delle costanti del moto: non sempre hanno il significato semplice di quantità di moto o momento delle quantità di moto.

8 ESEMPIO Trovare un momento cinetico che si conserva. In un piano verticale, un disco di massa M e raggio R, rotola senza strisciare sull asse x orizzontale. Un asta è collegata a snodo al centro del disco e vincolata con carrello bilatero all asse x. La sua lunghezza l è tale che l angolo tra asse x e asta è uguale a α. Lungo l asta scorre senza attrito un anellino di massa m. Soluzione: + υ 2 = R + 2 L U = mg s L = T + U = 0 p θ = L = + m + m R = costante Questa quantità non è né la quantità di moto, né il momento delle quantità di moto. ESEMPIO In un piano orizzontale, un asta di lunghezza l e massa m è libera di ruotare attorno all estremo O. Un anellino è infilato nell asta ed è collegato ad O da una molla di costante k. La massa dell anellino è m. Inizialmente la coordinata radiale ρ dell anellino è ρ 0. L asta ruota con velocità angolare iniziale ω 0, mentre la velocità radiale iniziale dell anellino è nulla. Trovare un momento cinetico che si conserva. Soluzione: U = 1 2 k ρ2 L = 0 p θ = + m ( + ) L = T + U + m ρ 2 = costante p θ = L = C 1 = costante p θ ha il significato di momento della quantità di moto del sistema; è stato determinato facilmente mediante la Lagrangiana. OSSERVAZIONE! Un'altra quantità che si conserva è l energia meccanica T U = E

9 Altre osservazioni: 1) Ottenuto un momento cinetico p c = C 1 che si conserva si può introdurre la Lagrangiana ridotta : L* = L C 1 Da essa si deducono n 1 equazioni per k = 2,..., n La coordinata q 1 si dice ignorabile, perché chiaramente L* dipende solo da q 2,..., q n,,..., (NON SI DÁ DIMOSTRAZIONE) 2) Se i vincoli sono FISSI, dalle n equazioni di Lagrange si deduce la conservazione dell energia meccanica T U = E, che quindi non è un equazione in più rispetto alle equazioni di Lagrange, anche se può essere un equazione comoda, che, in alcuni casi può rimpiazzare vantaggiosamente una equazione di Lagrange. Vedi l esempio precedente in cui si conservano: 1) Il momento cinetico (momento delle quantità di moto) 2) L energia meccanica

EQUAZIONI DI LAGRANGE E STAZIONARIETÀ DEL POTENZIALE

EQUAZIONI DI LAGRANGE E STAZIONARIETÀ DEL POTENZIALE EQUAZIONI DI LAGRANGE E STAZIONARIETÀ DEL POTENZIALE Equazioni di Lagrange in forma non conservativa Riprendiamo l equazione simbolica della dinamica per un sistema olonomo a vincoli perfetti nella forma

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Meccanica analitica II parte Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

DINAMICA E STATICA RELATIVA

DINAMICA E STATICA RELATIVA DINAMICA E STATICA RELATIVA Equazioni di Lagrange in forma non conservativa La trattazione della dinamica fin qui svolta è valida per un osservatore inerziale. Consideriamo, ora un osservatore non inerziale.

Dettagli

Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h

Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h Prova intermedia del 23 novembre 2012 durata della prova: 2h CINEMTIC E CLCL DI QUNTITÀ MECCNICHE Nelsistemadifiguraildiscodicentro ruoy ta intorno al suo centro; il secondo disco rotola senza strisciare

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

PRINCIPIO DEI LAVORI VIRTUALI

PRINCIPIO DEI LAVORI VIRTUALI PRINCIPIO DEI LAVORI VIRTUALI Velocità possibili e velocità virtuali Ciponiamoilproblemadideterminareequazionipuredimoto,ovveroequazioni che non introducono incognite di reazioni. Consideriamo il seguente

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Meccanica analitica I parte Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 )

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 ) 1 Esercizio Una ruota di raggio R e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

Compito del 14 giugno 2004

Compito del 14 giugno 2004 Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica

Dettagli

Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007

Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 y Nel sistema di figura posto in un piano verticale il carrello A scorre con vinco- q, R M lo liscio lungo l asse verticale. Il

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

Esercizio 1 Meccanica del Punto

Esercizio 1 Meccanica del Punto Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa

Dettagli

M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno.

M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Problema 1: Si consideri un corpo rigido formato da una sfera omogenea di raggio R e massa M 1 e da una sbarretta omogenea di lunghezza L, massa M

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

1 Cinematica del punto Componenti intrinseche di velocità e accelerazione Moto piano in coordinate polari... 5

1 Cinematica del punto Componenti intrinseche di velocità e accelerazione Moto piano in coordinate polari... 5 Indice 1 Cinematica del punto... 1 1.1 Componenti intrinseche di velocità e accelerazione... 3 1.2 Moto piano in coordinate polari... 5 2 Cinematica del corpo rigido... 9 2.1 Configurazioni rigide......

Dettagli

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti];

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti]; 1 Esercizio Una ruota di raggio e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

EQUAZIONI DIFFERENZIALI

EQUAZIONI DIFFERENZIALI Indice 1 EQUAZIONI DIFFERENZIALI 3 1.1 Equazioni fisicamente significative...................... 3 1.1.1 A cosa servono?............................. 3 1.1.2 Legge di Newton............................

Dettagli

8 Sistemi vincolati e coordinate lagrangiane

8 Sistemi vincolati e coordinate lagrangiane 8 Sistemi vincolati e coordinate lagrangiane 8.1 L aspetto geometrico Consideriamo n punti materiali (P 1,..., P n ) con masse rispettivamente (m 1,..., m n ). Il vettore X = (x 1, y 1, z 1,..., x n, y

Dettagli

EQUAZIONI DIFFERENZIALI

EQUAZIONI DIFFERENZIALI Indice 1 EQUAZIONI DIFFERENZIALI 3 1.1 Equazioni fisicamente significative...................... 3 1.1.1 A cosa servono?............................. 3 1.1.2 Legge di Newton............................

Dettagli

PROVA SCRITTA DI MECCANICA RAZIONALE (9 gennaio 2015) (C.d.L. Ing. Civile [L-Z] e C.d.L. Ing. Edile/Architettura Prof. A.

PROVA SCRITTA DI MECCANICA RAZIONALE (9 gennaio 2015) (C.d.L. Ing. Civile [L-Z] e C.d.L. Ing. Edile/Architettura Prof. A. PRV SCRITT DI MECCNIC RZINLE (9 gennaio 2015) In un piano verticale, un disco D omogeneo (massa m, raggio r), rotola senza strisciare sull asse ; al suo centro è incernierata un asta omogenea (massa m,

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

Esercitazione 6 - Dinamica del punto materiale e. del corpo rigido

Esercitazione 6 - Dinamica del punto materiale e. del corpo rigido Università degli Studi di Bergamo Corso di Laurea in Ingegneria essile Corso di Elementi di Meccanica Esercitazione 6 - Dinamica del punto materiale e Esercizio n. del corpo rigido Studiare la dinamica

Dettagli

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017 Esercizio n. 1 Un punto materiale di massa m è vincolato a muoversi sotto l azione della gravità su un vincolo bilaterale (vedi figura) formato da un arco di circonferenza, AB, sotteso ad un angolo di

Dettagli

Φ D 2 L. k > 0. M O=A s. sistema (che è rappresentato in figura ). Infine, vogliamo calcolare le reazioni vincolari sul sistema.

Φ D 2 L. k > 0. M O=A s. sistema (che è rappresentato in figura ). Infine, vogliamo calcolare le reazioni vincolari sul sistema. Esercizio 1. Un sistema materiale è costituito da una lamina piana omogenea di massa M e lato L e da un asta AB di lunghezza l e massa m. La lamina scorre con un lato sull asse x ed è soggetta a una forza

Dettagli

CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica.

CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica. CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica. Questo capitolo vuole fornire una serie di esempi pratici dei concetti illustrati nei capitoli precedenti con qualche approfondimento. Vediamo subito

Dettagli

Lezione 8 Dinamica del corpo rigido

Lezione 8 Dinamica del corpo rigido Lezione 8 Dinamica del corpo rigido Argomenti della lezione:! Corpo rigido! Centro di massa del corpo rigido! Punto di applicazione della forza peso! Punto di applicazione della forza peso! Momento della

Dettagli

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema Esercizio 1 Una trave omogenea di lunghezza L e di massa M è appoggiata in posizione orizzontale su due fulcri lisci posti alle sue estremità. Una massa m è appoggiata sulla trave ad una distanza L/3 da

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Svincolamento statico Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale

Dettagli

UNIVERSITÀ DEGLI STUDI DI FIRENZE. Registro dell'insegnamento

UNIVERSITÀ DEGLI STUDI DI FIRENZE. Registro dell'insegnamento UNIVERSITÀ DEGLI STUDI DI FIRENZE Registro dell'insegnamento Anno accademico 2012/2013 Prof. ETTORE MINGUZZI Settore inquadramento MAT/07 - FISICA MATEMATICA Facoltà INGEGNERIA Insegnamento MECCANICA RAZIONALE

Dettagli

ESERCIZI SULLA DINAMICA DI CORPI RIGIDI:

ESERCIZI SULLA DINAMICA DI CORPI RIGIDI: ESERCIZI SULLA DINAMICA DI CORPI RIGIDI: risoluzione mediante le euazioni cardinali della dinamica Esercizio n.11 Siadatounpianoinclinatofisso e posto in un piano verticale. Su di esso rotola senza strisciare

Dettagli

Laurea Triennale in Matematica Fisica Matematica Primo compitino 28 aprile 2016

Laurea Triennale in Matematica Fisica Matematica Primo compitino 28 aprile 2016 Laurea Triennale in Matematica Fisica Matematica Primo compitino 8 aprile 016 Attenzione: Siete invitati a consegnare DUE soli fogli (protocollo bianchi, a 4 facciate), su entrambi scrivete chiaramente

Dettagli

0.6 Moto rotazionale intorno ad un asse fisso

0.6 Moto rotazionale intorno ad un asse fisso 0.6.0. Moto rotazionale intorno ad un asse fisso 25 0.6 Moto rotazionale intorno ad un asse fisso Premessa Questa esperienza riguarda lo studio del comportamento di un corpo (volano) libero di ruotare

Dettagli

PROVA SCRITTA DI MECCANICA RAZIONALE (11 giugno 2005) (C.d.L. Ing. Edile - Architettura. Prof. A. Muracchini)

PROVA SCRITTA DI MECCANICA RAZIONALE (11 giugno 2005) (C.d.L. Ing. Edile - Architettura. Prof. A. Muracchini) RV SRITT DI MENI RZINLE (11 giugno 2005) (.d.l. Ing. Edile - rchitettura. rof.. Muracchini) Il sistema rappresentato in figura, mobile in un piano verticale z, è costituito di un disco circolare pesante

Dettagli

Laurea Triennale in Matematica Fisica Matematica ore 14:30 15 Giugno 2017 Durata: 3 ore

Laurea Triennale in Matematica Fisica Matematica ore 14:30 15 Giugno 2017 Durata: 3 ore Laurea Triennale in Matematica Fisica Matematica ore 14:30 15 Giugno 2017 Durata: 3 ore Attenzione: Riconsegnerete DUE fogli (protocollo bianco, a 4 facciate), scriverete chiaramente cognome e nome, data

Dettagli

Il vettore velocità angolare (avendo scelto θ come in Figura) si scrive come:

Il vettore velocità angolare (avendo scelto θ come in Figura) si scrive come: 9 Moti rigidi notevoli In questo capitolo consideriamo alcuni esempi particolarmente significativi di moto di un sistema rigido. Quelle che seguono sono applicazioni delle equazioni cardinali di un sistema

Dettagli

A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1

A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1 Esercizio 1 Un asta di lunghezza L e massa trascurabile, ai cui estremi sono fissati due corpi uguali di massa M (si veda la figura) giace ferma su un piano orizzontale privo di attrito. Un corpo di dimensioni

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Cinematica Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale - a.a.

Dettagli

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare Moto di rotazione Rotazione dei corpi rigidi ϑ(t) ω z R asse di rotazione v m

Dettagli

MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA prova del Problema N.1. Problema N.2

MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA prova del Problema N.1. Problema N.2 MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA.2011-2012 prova del 01-02-2013 Problema N.1 Il sistema meccanico illustrato in figura giace nel piano verticale. L asta AB con baricentro G 2 è incernierata

Dettagli

1. Considerare il seguente sistema di vettori applicati:

1. Considerare il seguente sistema di vettori applicati: 1 Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Industriale Correzione prova scritta Esame di Fisica Matematica febbraio 011 1. Considerare il seguente sistema di vettori applicati:

Dettagli

ESERCIZI SULLA DINAMICA DI CORPI RIGIDI.

ESERCIZI SULLA DINAMICA DI CORPI RIGIDI. ESERCIZI SULL DINMIC DI CRPI RIIDI. Risoluzione mediante equazioni di Lagrange, equilibrio relativo (forze aarenti), stazionarietà del otenziale U; stabilità dell equilibrio e analisi delle iccole oscillazioni.

Dettagli

Meccanica. 10. Pseudo-Forze. Domenico Galli. Dipartimento di Fisica e Astronomia

Meccanica. 10. Pseudo-Forze.  Domenico Galli. Dipartimento di Fisica e Astronomia Meccanica 10. Pseudo-Forze http://campus.cib.unibo.it/2429/ Domenico Galli Dipartimento di Fisica e Astronomia 17 febbraio 2017 Traccia 1. Le Pseudo-Forze 2. Esempi 3. Pseudo-Forze nel Riferimento Terrestre

Dettagli

Esame scritto del corso di Fisica 2 del Corso di laurea in Informatica A.A (Prof. Anna Sgarlata)

Esame scritto del corso di Fisica 2 del Corso di laurea in Informatica A.A (Prof. Anna Sgarlata) Esame scritto del corso di Fisica 2 del 2.09.20 Corso di laurea in Informatica A.A. 200-20 (Prof. Anna Sgarlata) COMPITO A Problema n. Un asta pesante di massa m = 6 kg e lunga L= m e incernierata nel

Dettagli

Prova scritta di Meccanica Razionale

Prova scritta di Meccanica Razionale Prova scritta di Meccanica Razionale - 0.07.013 ognome e Nome... N. matricola....d.l.: MLT UTLT IVLT MTLT MELT nno di orso: altro FIL 1 Esercizio 1. Nel riferimento cartesiano ortogonale, si consideri

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

LAVORO ED ENERGIA. Dott.ssa Silvia Rainò

LAVORO ED ENERGIA. Dott.ssa Silvia Rainò 1 LAVORO ED ENERGIA Dott.ssa Silvia Rainò Lavoro ed Energia 2 Consideriamo il moto di un oggetto vincolato a muoversi su una traiettoria prestabilita, ad esempio: Un treno vincolato a muoversi sui binari.

Dettagli

IV ESERCITAZIONE. Esercizio 1. Soluzione

IV ESERCITAZIONE. Esercizio 1. Soluzione Esercizio 1 IV ESERCITAZIONE Un blocco di massa m = 2 kg è posto su un piano orizzontale scabro. Una forza avente direzione orizzontale e modulo costante F = 20 N agisce sul blocco, inizialmente fermo,

Dettagli

UNIVERSITA DEL SANNIO CORSO DI FISICA 1

UNIVERSITA DEL SANNIO CORSO DI FISICA 1 UNIVESITA DEL SANNIO COSO DI FISICA 1 ESECIZI Dinamica dei corpi rigidi 1 La molecola di ossigeno ha una massa di 5,3 1-6 Kg ed un momento di inerzia di 1,94 1-46 Kg m rispetto ad un asse passante per

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

ESERCIZI DI DINAMICA DEL PUNTO MATERIALE

ESERCIZI DI DINAMICA DEL PUNTO MATERIALE ESERCIZI DI DINAMICA DEL PUNTO MATERIALE Per un pendolo semplice di lunghezza l=5 m, determinare a quale altezza può essere sollevata la massa m= g sapendo che il carico di rottura è T max =5 N. SOL.-

Dettagli

Robotica industriale. Richiami di statica del corpo rigido. Prof. Paolo Rocco

Robotica industriale. Richiami di statica del corpo rigido. Prof. Paolo Rocco Robotica industriale Richiami di statica del corpo rigido Prof. Paolo Rocco (paolo.rocco@polimi.it) Sistemi di forze P 1 P 2 F 1 F 2 F 3 F n Consideriamo un sistema di forze agenti su un corpo rigido.

Dettagli

EL. Equazioni di Lagrange

EL. Equazioni di Lagrange EL. Equazioni di Lagrange Abbiamo seguito, finora, un certo parallelismo fra il modo di trattare la statica e la dinamica: siamo riusciti a stabilire, per il punto materiale, la condizione di equilibrio

Dettagli

M? La forza d attrito coinvolta è quella tra i due blocchi occorre quindi visualizzare la reazione normale al piano di contatto Il diagramma delle

M? La forza d attrito coinvolta è quella tra i due blocchi occorre quindi visualizzare la reazione normale al piano di contatto Il diagramma delle 6.25 (6.29 VI ed) vedi dispense cap3-mazzoldi-dinamica-part2 Dueblocchisonocomeinfiguraconm=16kg, M=88kgeconcoeff. d attrito statico tra i due blocchi pari a = 0.38. La superficie su cui poggia M è priva

Dettagli

FISICA GENERALE Ingegneria edile/architettura

FISICA GENERALE Ingegneria edile/architettura FISICA GENERALE Ingegneria edile/architettura Tutor: Enrico Arnone Dipartimento di Chimica Fisica e Inorganica arnone@fci.unibo.it http://www2.fci.unibo.it/~arnone/teaching/teaching.html Bologna 3 Giugno

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAMICA DI SISTEMI AEROSPAZIALI Esercizio 1. Un corsoio di massa m scorre su un piano orizzontale con attrito radente di coefficiente f d. Al corsoio, in C, è collegata la biella B C, di lunghezza b e

Dettagli

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo.

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo. Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): 04-02-2016 Problema 1. Un punto materiale si muove nel piano su una guida descritta dall equazione y = sin kx [ = 12m, k

Dettagli

Esercizi sul corpo rigido.

Esercizi sul corpo rigido. Esercizi sul corpo rigido. Precisazioni: tutte le figure geometriche si intendono omogenee, se non è specificato diversamente tutti i vincoli si intendono lisci salvo diversamente specificato. Abbreviazioni:

Dettagli

Prova scritta del corso di Fisica e Fisica 1 con soluzioni

Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prof. F. Ricci-Tersenghi 17/02/2014 Quesiti 1. Un frutto si stacca da un albero e cade dentro una piscina. Sapendo che il ramo da cui si è staccato

Dettagli

Compito di Fisica Generale (Meccanica) 16/01/2015

Compito di Fisica Generale (Meccanica) 16/01/2015 Compito di Fisica Generale (Meccanica) 16/01/2015 1) Un cannone spara un proiettile di massa m con un alzo pari a. Si calcoli in funzione dell angolo ed in presenza dell attrito dell aria ( schematizzato

Dettagli

COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1

COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1 COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1 COSA E LA MECCANICA? Viene tradizionalmente suddivisa in: CINEMATICA DINAMICA STATICA

Dettagli

b) DIAGRAMMA DELLE FORZE

b) DIAGRAMMA DELLE FORZE DELLO SCRITTO DELL SETTEMBRE 5 - ESERCIZIO - Un corpo di massa m = 9 g e dimensioni trascurabili è appeso ad uno dei capi di una molla di costante elastica k = 5 N/m e lunghezza a riposo L = cm. L'altro

Dettagli

Lezione mecc n.21 pag 1. Argomenti di questa lezione (esercitazione) Macchina di Atwood Moti kepleriani Urti, moti armonici Moto di puro rotolamento

Lezione mecc n.21 pag 1. Argomenti di questa lezione (esercitazione) Macchina di Atwood Moti kepleriani Urti, moti armonici Moto di puro rotolamento Lezione mecc n.21 pag 1 Argomenti di questa lezione (esercitazione) Macchina di Atwood Moti kepleriani Urti, moti armonici Moto di puro rotolamento Lezione mecc n.21 pag 2 28 aprile 2006 Esercizio 2 Nella

Dettagli

parametri della cinematica

parametri della cinematica Cinematica del punto Consideriamo il moto di una particella: per particella si intende sia un corpo puntiforme (ad es. un elettrone), sia un qualunque corpo esteso che si muove come una particella, ovvero

Dettagli

approfondimento Lavoro ed energia

approfondimento Lavoro ed energia approfondimento Lavoro ed energia Lavoro compiuto da una forza costante W = F. d = F d cosθ dimensioni [W] = [ML T - ] Unità di misura del lavoro N m (Joule) in MKS dine cm (erg) in cgs N.B. Quando la

Dettagli

Esercizi da fare a casa

Esercizi da fare a casa apitolo 1 Esercizi da fare a casa 1.1 Premesse I seguenti esercizi sono risolubili nella seconda settimana di corso. Per quelli del primo gruppo le soluzioni si possono estrarre dal mio libro di Esercizi

Dettagli

7. Forze elastiche. Nella figura 1 il periodo è T = 2s e corrisponde ad un moto unidimensionale limitato tra i valori x = 0 ed x = 1.

7. Forze elastiche. Nella figura 1 il periodo è T = 2s e corrisponde ad un moto unidimensionale limitato tra i valori x = 0 ed x = 1. 1 Moti periodici 7. Forze elastiche Un caso particolare di moto accelerato è un moto periodico. In figura 1 è riportato un esempio di moto periodico unidimensionale. Un moto periodico si ripete identicamente

Dettagli

Studio delle oscillazioni di un pendolo fisico

Studio delle oscillazioni di un pendolo fisico Studio delle oscillazioni di un pendolo fisico Materiale occorrente: pendolo con collare (barra metallica), supporto per il pendolo, orologio, righello. Richiami di teoria Un pendolo fisico è costituito

Dettagli

Alcuni problemi di meccanica

Alcuni problemi di meccanica Alcuni problemi di meccanica Giuseppe Dalba Sommario Questi appunti contengono cinque problemi risolti di statica e dinamica del punto materiale e dei corpi rigidi. Gli ultimi quattro problemi sono stati

Dettagli

Fisica 1 Anno Accademico 2011/2012

Fisica 1 Anno Accademico 2011/2012 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (7 Maggio - 11 Maggio 2012) Sintesi Abbiamo introdotto riformulato il teorema dell energia cinetica in presenza di forze non conservative,

Dettagli

Esercizio (tratto dal Problema 4.28 del Mazzoldi 2)

Esercizio (tratto dal Problema 4.28 del Mazzoldi 2) Esercizio (tratto dal Problema 4.28 del Mazzoldi 2) Un punto materiale di massa m = 20 gr scende lungo un piano inclinato liscio. Alla fine del piano inclinato scorre su un tratto orizzontale scabro (µ

Dettagli

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente 1 Definizione di lavoro 8. Energia e lavoro Consideriamo una forza applicata ad un corpo di massa m. Per semplicità ci limitiamo, inizialmente ad una forza costante, come ad esempio la gravità alla superficie

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 6 Dinamica del punto materiale II Prof.ssa Stefania Petracca 1 Lavoro, energia cinetica, energie potenziali Le equazioni della dinamica permettono di determinare

Dettagli

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO Sappiamo che mettendo una carica positiva q chiamata carica di prova o carica esploratrice in un punto vicino all oggetto carico si manifesta un vettore campo

Dettagli

Esercizio (tratto dal Problema 2.8 del Mazzoldi 2)

Esercizio (tratto dal Problema 2.8 del Mazzoldi 2) 1 Esercizio (tratto dal Problema.8 del Mazzoldi ) Una particella si muove lungo una circonferenza di raggio R 50 cm. Inizialmente parte dalla posizione A (θ 0) con velocità angolare nulla e si muove di

Dettagli

Analisi del moto dei proietti

Analisi del moto dei proietti Moto dei proietti E il moto di particelle che vengono lanciate con velocità iniziale v 0 e sono soggette alla sola accelerazione di gravità g supposta costante. La pallina rossa viene lasciata cadere da

Dettagli

Teorema dell energia cinetica

Teorema dell energia cinetica Teorema dell energia cinetica L. P. 23 Marzo 2010 Il teorema dell energia cinetica Il teorema dell energia cinetica è una relazione molto importante in Meccanica. L enunceremo nel caso semplice di un punto

Dettagli

La fisica di Feynmann Meccanica

La fisica di Feynmann Meccanica La fisica di Feynmann Meccanica 1.1 CINEMATICA Moto di un punto Posizione r = ( x, y, z ) = x i + y j + z k Velocità v = dr/dt v = vx 2 + vy 2 + vz 2 Accelerazione a = d 2 r/dt 2 Moto rettilineo Spazio

Dettagli

Meccanica Applicata alle Macchine

Meccanica Applicata alle Macchine Meccanica Applicata alle Macchine 06-11-013 TEMA A 1. Un cilindro ed una sfera omogenei di uguale massa m ed uguale raggio r sono collegati tra loro da un telaio di massa trascurabile mediante coppie rotoidali

Dettagli

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8. Generalizziamo, considerando due particelle interagenti.

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8. Generalizziamo, considerando due particelle interagenti. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8 Esempio arciere su una superficie ghiacciata che scocca la freccia: l arciere (60 kg) esercita una forza sulla freccia 0.5 kg (che parte in avanti con

Dettagli

Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A

Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A I vettori 1) Cosa si intende per grandezza scalare e per grandezza vettoriale? 2) Somma graficamente due vettori A, B. 3) Come è definito

Dettagli

Esercitazione VI - Leggi della dinamica III

Esercitazione VI - Leggi della dinamica III Esercitazione VI - Leggi della dinamica III Esercizio 1 I corpi 1, 2 e 3 rispettivamente di massa m 1 = 2kg, m 2 = 3kg ed m 3 = 4kg sono collegati come in figura tramite un filo inestensibile. Trascurando

Dettagli

Opera rilasciata sotto licenza CC BY-NC-SA 3.0 Italia da Studio Bells (www.studiobells.it)

Opera rilasciata sotto licenza CC BY-NC-SA 3.0 Italia da Studio Bells (www.studiobells.it) Esercizio 001 Si consideri un piano inclinato di un angolo = 30 rispetto all orizzontale e di lunghezza L = 1 m. Sul piano è posta una massa m = 5, 0 kg collegata alla cima del piano tramite una molla

Dettagli

RISOLUZIONE DI PROBLEMI DI FISICA

RISOLUZIONE DI PROBLEMI DI FISICA RISOUZIONE DI PROBEMI DI FISICA Problema 1 Una massa puntiforme m = 2 kg è soggetta ad una forza centrale con associata energia potenziale radiale U( r) 6 A =, dove A = 2 J m 6. Il momento angolare della

Dettagli

Problemi di dinamica del punto materiale

Problemi di dinamica del punto materiale Problemi di dinamica del punto materiale 1. Un corpo di massa M = 200 kg viene lanciato con velocità v 0 = 36 km/ora su un piano inclinato di un angolo θ = 30 o rispetto all orizzontale. Nel salire, il

Dettagli

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila A

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila A Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila A Massimo Vassalli 1 Dicembre 007 NB: dal momento che i dati numerici degli esercizi non sono comuni a tutti i compiti, i risultati

Dettagli

Dinamica del punto materiale

Dinamica del punto materiale Dinamica del punto materiale Formule fondamentali L. P. 5 Aprile 2010 N.B.: Le relazioni riportate sono valide in un sistema di riferimento inerziale. Princìpi della dinamica Secondo principio della dinamica

Dettagli

Lavoro. Energia. Mauro Saita Versione provvisoria, febbraio Lavoro è forza per spostamento

Lavoro. Energia. Mauro Saita   Versione provvisoria, febbraio Lavoro è forza per spostamento Lavoro. Energia. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, febbraio 2015. Indice 1 Lavoro è forza per spostamento 1 1.1 Lavoro compiuto da una forza variabile. Caso bidimensionale..........

Dettagli

) 2 + β 2. Il primo membro si semplifica tenendo conto che

) 2 + β 2. Il primo membro si semplifica tenendo conto che Calcolo vettoriale 1) Sono dati due vettori uguali in modulo a e b e formanti un certo angolo θ ab. Calcolare m = a = b sapendo che il modulo della loro somma vale 8 e che il modulo del loro prodotto vettoriale

Dettagli

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto SBarbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie Cap 2 Cinematica del punto 21 - Posizione, velocitá e accelerazione di una particella La posizione di una particella puó essere definita, ad

Dettagli

FAM. m i m x i. m i x i = i=1. 1. Le coordinate del centro di massa G sono le componenti del vettore OG. Si ottiene 3,1m

FAM. m i m x i. m i x i = i=1. 1. Le coordinate del centro di massa G sono le componenti del vettore OG. Si ottiene 3,1m Serie 11: Soluzioni FM C. Ferrari Esercizio 1 Centro di massa: sistemi discreti Il centro di massa G di un sistema formato da k punti materiali P i è definito da OG = 1 m k m i x i = i=1 k i=1 m i m x

Dettagli

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia Moto circolare uniforme Il moto circolare uniforme è il moto di un corpo che si muove con velocità di modulo costante lungo una traiettoria circolare di raggio R. Il tempo impiegato dal corpo per compiere

Dettagli

Fisica Generale 1 per Chimica Formulario di Meccanica

Fisica Generale 1 per Chimica Formulario di Meccanica Fisica Generale 1 per Chimica Formulario di Meccanica Vettori : operazioni elementari: Nota: un vettore verra' qui rappresentato in grassetto es: A = ( A x, A y, A z ) Prodotto scalare A. B = A B cos θ,

Dettagli

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla

Dettagli