Esercizi di Informatica Teorica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi di Informatica Teorica"

Transcript

1 03-utomi--stti-finiti-0 Esercizi di Informtic Teoric Automi stti finiti Autom stti finiti (ASF) richimi utom stti finiti ASF = <Σ,K,δ,,F> dove Σ = {σ, σ 2,, σ n } è un lfeto (finito) di input K= {, q,, q m } è un insieme (finito e non vuoto) di stti èlo stto inizile F K è l insieme degli stti finli δ : K Σ K è l funzione (totle) di trnsizione si può rppresentre grficmente trmite un tell di trnsizione oundigrmm di stto 2

2 03-utomi--stti-finiti-0 Linguggio riconosciuto d un ASF richimi si definisce ricorsivmente l funzione di trnsizione estes lle stringhe δ : K Σ * K nel seguente modo: δ (q, ε) = q se Σ e w Σ * δ (q, w) = δ(δ(q, ),w) linguggio riconosciuto d A : L = {w Σ * : δ (, w) F } 3 Automi stti finiti deterministici esercizio descrivere il linguggio riconosciuto dl seguente ASF e trovre l corrispondente espressione regolre q,, 4 2

3 03-utomi--stti-finiti-0 Automi stti finiti deterministici esercizio 2 si consideri il seguente AFS: q, 2. mostrre le computzioni sulle stringhe e 2. dire qul è il linguggio riconosciuto dll utom 2.c descrivere il linguggio ttrverso un espressione regolre 5 Automi stti finiti deterministici esercizio 3 costruire un AFS che riconosce il linguggio dei numeri nturli pri in se 3, compres l string vuot; si modifichi poi l utom in modo che non ccetti l string vuot. esercizio 4 scrivere l tell di trnsizione per l utom dell esercizio 3 6 3

4 03-utomi--stti-finiti-0 Automi stti finiti deterministici esercizio 5 costruire gli AFS che riconoscono i seguenti linguggi 5. L ={w {,} * : w non contiene mi tre consecutive} 5. L 2 ={w {,} * : w contiene tre consecutive} 5.c L 3 ={w {,} * : w contiene lmeno tre } 7 Automi deterministici esercizio 6 costruire un ASF che riconosce il linguggio delle stringhe su {,} con un numero dispri di e un numero pri di esercizio 7 modificre l utom in modo che riconosc le stringhe con un numero dispri di o un numero pri di 8 4

5 03-utomi--stti-finiti-0 Automi non deterministici richimi utom stti finiti non deterministico ASFND=< Σ, K, δ N,, F > dove: Σ = {σ, σ 2,, σ n } è un lfeto (finito) di input K= {, q,, q m } è un insieme (finito e non vuoto) di stti èlo stto inizile F K è l insieme degli stti finli δ N : K Σ P(K) è l funzione (totle) di trnsizione 9 Linguggio riconosciuto d un ASFND richimi si definisce ricorsivmente l funzione di trnsizione estes lle stringhe δ N : K Σ * P(K) nel seguente modo: δ N (q, ε) = {q} se Σ e w Σ * δ N (q, w) = U δ N (p, w) p δ N (q,) linguggio riconosciuto d A : L = {w Σ * : δ N (, w) F } 0 5

6 03-utomi--stti-finiti-0 Automi non deterministici esercizio 8 costruire un ASFND che riconosce il linguggio descritto dll espressione regolre (+) * esercizio 9 costruire un ASF che riconosce lo stesso linguggio dell esercizio 8 Automi non deterministici esercizio 0 costruire un ASFND che riconosce il linguggio L = ()*()* esercizio mostrre l computzione sull string dell utom soluzione dell esercizio 0 2 6

7 03-utomi--stti-finiti-0 Automi non deterministici esercizio 2 quli stringhe tr,, ed sono riconosciute dl seguente ASFND? qule linguggio riconosce? q 0 q 3 Esercizi sugli utomi esercizio 3 costruire degli utomi stti finiti (deterministici o non deterministici) che riconoscono i seguenti linguggi: 3. L = (*)* 3. L = (**)* 3.c L = **( + ) 3.d L = (c)* 3.e stringhe su {,} terminnti con o con 3.f stringhe su {,} terminnti con un numero dispri di esercizio 4 dimostrre che per ogni linguggio regolre L che non contiene l string vuot ε esiste un ASFND con un solo stto finle che riconosce L 4 7

8 03-utomi--stti-finiti-0 richimi Algoritmo: ASFND ASF input: un ASFND < Σ, K, δ N,, F > ouput: un ASF < Σ, K, δ,q 0, F > costruzione: Σ = Σ K = contiene un superstto [q i...q j ] per ciscun elemento {q i,..,q j } di P(K) q 0 = [ ] F K è l insieme dei superstti che contengono lmeno uno stto di F δ ([q i...q j ], ) = [q h...q k ] dove {q h...q k } = δ N (q i,)... δ N (q j,) semplificzione: per costruire K si considerno solo superstti rggiungiili prtire dl superstto [ ] 5 ASFND ASF esercizio 5 costruire un ASF che riconosce lo stesso linguggio del seguente ASFND: δ N q {, } {q } { } { } {q } q esercizio 6 utilizzndo l lgoritmo ASFND ASF, costruire un ASF che riconosc lo stesso linguggio riconosciuto dll AFSND dell esercizio 0 6 8

9 03-utomi--stti-finiti-0 Algoritmo: ASFND grmmtic regolre richimi input: un ASFND < Σ, K, δ N,, F > (oppure un ASF < Σ, K, δ,, F > ) ouput: un grmmtic regolre <V T,V N,P, S> costruzione: V T = Σ V N contiene un non terminle A i per ogni stto q i K S = A 0 P contiene le seguenti produzioni q k δ N (q i,) (o se δ(q i,) = q k ), A i A k q k F, A k ε 7 ASFND grmmtic regolre esercizio 7 determinre un grmmtic regolre equivlente l seguente ASFND q 0 q 8 9

10 03-utomi--stti-finiti-0 ASFND grmmtic regolre esercizio 8 determinre un grmmtic regolre equivlente l seguente ASF q p q d 0, 2 0, 2 9 Algoritmo: grmmtic regolre ASFND richimi input: un grmmtic regolre G = <V T,V N,P, S> ouput: un ASFND <, K, δ N,, F > costruzione: trsformo G in G che non h produzioni elementri (A ) = V T K contiene uno stto q A per ogni A V N = q S F contiene uno stto q B per ogni ε-produzione B ε δ N (q B,) contiene q C per ogni B C 20 0

11 03-utomi--stti-finiti-0 Grmmtic regolre ASFND esercizio 9 9. determinre un ASFND equivlente ll seguente grmmtic regolre: V T = {,, c} V N = {S, A, C}, dove S è l ssiom produzioni () S A (2) S C (3) A A (4) A C (5) C cc (6) C c 9. descrivere il linguggio riconosciuto dll ASFND 2 soluzione esercizio L={ n : n 0} l espressione regolre corrispondente è * q,, 22

12 03-utomi--stti-finiti-0 soluzione esercizio 2 2. computzioni sulle stringhe e (nel seguito <q i s> indic un utom nello stto q i che deve ncor processre l string s) <,> <q,> <,> <,> <,ε> (non ccettnte) <,> <q,> <,> <q,> <,> <q,> <,ε> (ccettnte) 2. linguggio riconosciuto dll utom: stringhe su {,} tli che: numero di = numero di sottosequenze mssimli di sole o di sole di lunghezz l più 2 inizino per e finiscono per in ogni punto, l sequenz è silncit di l più due più l string vuot 2.c espressione regolre: (()*)* 23 soluzione esercizio 3 AFS che riconosce il linguggio dei numeri nturli in se 3, compres l string vuot q p = {0,, 2 } K = {q p, q p } F = {q p } = q p δ q p q d 0 2 q p q p q d q d q p q d q d 0, 2 0, 2 AFS che riconosce il linguggio dei numeri nturli pri in se 3, esclus l string vuot 0, 2 q p q d 0, 2 0,

13 03-utomi--stti-finiti-0 soluzione esercizio 5 5. ASF che riconosce L q 0 q, 5. ASF che riconosce L 2 q 0 q, 5.c ASF che riconosce L 3 q 0 q, 25 soluzione esercizio 6 logic costruttiv: si usno quttro stti con i seguenti significti = pri e pri, q = dispri e pri, = dispri e dispri, = pri e dispri ; si costruisce l funzione di trnsizione, osservndo che d ciscuno stto si può pssre direttmente solo stti dicenti; si decidono gli stti ccettnti sull se dell clssificzione ftt e delle stringhe che si vogliono riconoscere 26 3

14 03-utomi--stti-finiti-0 soluzione esercizio 8 δ N q {q } {, } { } q 27 esempio di computzione sull string <{ },> <{q },> <{, }, > <{,q }, > <{, }, > <{,q }, ε> lero delle trnsizioni per l string q q q stti l termine dell computzione 28 4

15 03-utomi--stti-finiti-0 soluzione esercizio 0 δ N q {q, } { } { } {q } q soluzione esercizio 2 L = ( * + * * ) = * (+ * ) 29 soluzione esercizio 4 considerimo un ASFND A che riconosce il linguggio se ε non pprtiene l linguggio lo stto inizile non è nche uno stto finle per ogni stto finle q i creimo un nuovo stto finle q if che h tutti gli rchi entrnti di q i il nuovo utom A riconosce lo stesso linguggio di A identifichimo tutti gli stti q if il nuovo utom A riconosce lo stesso linguggio di A ed A A h un solo stto finle 30 5

16 03-utomi--stti-finiti-0 soluzione esercizio 5 costruzione incrementle dell funzione di trnsizione δ dell ASF δ N q {, } {q } { } { } {q } δ([ ],) = [ ] δ([ ],) = [q ] δ([ ],) = [ ] δ([ ],) = [q ] δ([q ],) = [] δ([q ],) = [] δ([ ],) = [ q ] δ([ ],) = [q ] δ([q ],) = [ ] δ([q ],) = [ ] δ([ q ],) = [ q ] δ([ q ],) = [q ] δ([ ],) = [q ] δ([ ],) = [] δ([ ],) = [ ] δ([ ],) = [ ] 3 grfo dell ASF con funzione di trnsizione δ (per semplicità si scrive [q i... q j ]= [q i...j ] q q 2 q, q 2 q, 32 6

17 03-utomi--stti-finiti-0 soluzione esercizio 7 V T ={,} V N ={A 0, A, A 2, A 3 } S = A 0 insieme P delle produzioni produzioni per A 0 : A 0 A 0 A 0 A 2 A 0 A produzioni per A : A ε produzioni per A 2 : A 2 A 3 A 2 A 2 produzioni per A 3 : A 3 A osservzione: l grmmtic può essere semplifict nel modo seguente A 0 A 0 A 2 A A 0 A 0 A 2 A 2 A 3 A 2 A 2 A 3 A 2 A 3 A A 3 33 soluzione esercizio 8 V T ={0,,2} V N ={A p, A d } S = A p q p q d insieme P delle produzioni 0, 2 0, 2 produzioni per A p : A p 0A p A p 2A p A p A d A p ε produzioni per A d : A d 0A d A d 2A d A d A p 34 7

18 03-utomi--stti-finiti-0 soluzione esercizio 9 9. Riscrivo l grmmtic S A C A A C C cc c q S q A S A C A A C C cc cf F ε q C c c q F 9. il linguggio riconosciuto è L = * c * c 35 8

ESERCITAZIONE I. Linguaggi Regolari

ESERCITAZIONE I. Linguaggi Regolari ESERCITAZIONE I Linguggi Regolri 2 INTRODUZIONE TIPI DI TRASFORMAZIONI ASFD ASFND ER GR Il percorso di trsformzioni in grigio srà il primo d essere nlizzto, mentre il rosso verrà trttto in seguito. Il

Dettagli

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 curdi Luc Cio e Wlter Didimo Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 1 espressioni regolri e grmmtiche regolri proprietà decidiili dei linguggi regolri teorem di Myhill-Nerode notzioni sul

Dettagli

LINGUAGGI FORMALI Esercizi

LINGUAGGI FORMALI Esercizi LINGUAGGI FORMALI Esercizi PPPPPP Nicol Fnizzi LINGUAGGI DI PROGRAMMAZIONE Corso di Informtic T.P.S. Diprtimento di Informtic Università di Bri Aldo Moro [2014/01/28-13:30:23] [ 2 / 14 ] Indice 1 Introduzione

Dettagli

LINGUAGGI FORMALI E AUTOMI

LINGUAGGI FORMALI E AUTOMI LINGUAGGI FORMALI E AUTOMI (DISPENSE) ALBERTO BERTONI, BEATRICE PALANO 1 Cpitolo 1: Linguggi e Grmmtiche 1. Monoide delle prole, Linguggi e operzioni tr linguggi In generle, con linguggio si intende l

Dettagli

Esercizi di Informatica Teorica

Esercizi di Informatica Teorica Esercizi di Informtic Teoric M.S.Pini, C.Pizzi Diprtimento di Ingegneri dell Informzione Università degli Studi di Pdov Esercizio 14 1. Costruire un PDA che riconosc il linguggio L = {0 n 1 n, n 1} per

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Secondo Modulo di Ricerca Operativa Prova in corso d anno 12 giugno 2000

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Secondo Modulo di Ricerca Operativa Prova in corso d anno 12 giugno 2000 A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneri Informtic Secondo Modulo di Ricerc Opertiv Prov in corso d nno giugno Nome: Cognome: Brrre l csell corrispondente: Diplom t Lure t Esercizio

Dettagli

Strumenti per la Definizione della Sintassi dei Linguaggi di Programmazione 1

Strumenti per la Definizione della Sintassi dei Linguaggi di Programmazione 1 Strumenti per l Definizione dell Sintssi dei Linguggi di Progrmmzione 1 Docente: Luc Tesei Scuol di Scienze e Tecnologie Università di Cmerino Anno Accdemico 2012/2013 1 Queste note intendono coprire gli

Dettagli

SCOMPOSIZIONE IN FATTORI

SCOMPOSIZIONE IN FATTORI Sintesi di Mtemtic cur di Griell Grzino SCOMPOSIZIONE IN FATTORI ) Rccoglimento fttore comune ( Applicile d un polinomio di un numero qulunque di termini purchè i termini presentino lmeno un letter o un

Dettagli

C PITOLO 2. nalisi Lessicale

C PITOLO 2. nalisi Lessicale C PITOLO 2 nlisi Lessicle Il compito dell fse di nlisi lessicle è quello di fornire uno strem di token prtire dll sequenz di crtteri che rppresent il progrmm che si vuole compilre. Lo strem di token prodotto

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE II

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE II Ingegneri Elettric Politecnico di Torino Luc Crlone ControlliAutomticiI LEZIONE II Sommrio LEZIONE II Sistemi lineri e proprietà di unicità Concetto di Stilità Stilità intern ed estern Criterio di Routh

Dettagli

INTERVALLI NELL INSIEME R

INTERVALLI NELL INSIEME R INTEVALLI NELL INSIEME Lo studio dell topologi (1) (dl greco "nlysis situs" ossi "studio del luogo") dell'insieme è di fondmentle importnz per gli rgomenti e i prolemi di nlisi infinitesimle. Il "luogo"

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

ESERCIZIO DI ASD DEL 27 APRILE 2009

ESERCIZIO DI ASD DEL 27 APRILE 2009 ESERCIZIO DI ASD DEL 27 APRILE 2009 Dimetro Algoritmi. Ricordimo che un grfo non orientto, ciclico e connesso è un lero. Un lero può essere pensto come lero rdicto un volt che si si fissto un nodo come

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Ambiguità D 11 = SS ( S S S ( S (S ) S ( S ((S )) S ( + S (( )) S (S (( )) (S) (S (( )) ( ) ( (( )) ( )

Ambiguità D 11 = SS ( S S S ( S (S ) S ( S ((S )) S ( + S (( )) S (S (( )) (S) (S (( )) ( ) ( (( )) ( ) Amiguità D 11 = ( ( ( ) ( (( )) ( (( )) ( (( )) () ( (( )) ( ) ( (( )) ( )! ( ) ( )! Un Grmmti si die migu se medesime stringhe sono generte d leri sintttii di differente struttur ovvero on due distinte

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

Proprietà dei linguaggi regolari

Proprietà dei linguaggi regolari Proprietà dei linguaggi regolari Argomenti della lezione Relazione tra automi, grammatiche ed espressioni regolari Pumping lemma per i linguaggi regolari Equivalenza di automi a stati finiti Le seguenti

Dettagli

Aniello Murano Problemi non decidibili e riducibilità

Aniello Murano Problemi non decidibili e riducibilità Aniello Murno Problemi non decidibili e riducibilità 9 Lezione n. Prole chive: LBA e PCP Corso di Lure: Informtic Codice: Emil Docente: murno@ n.infn.it A.A. 2008-2009 LBA Liner bounded utomton DEFINIZIONE:

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi

Dettagli

Erasmo Modica. : K K K

Erasmo Modica.  : K K K L insieme dei numeri reli L INSIEME DEI NUMERI REALI Ersmo Modic helthinsurnce@tin.it www.glois.it Per introdurre l insieme dei numeri reli si hnno disposizione diversi modi. Generlmente l iennio si preferisce

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione ll lgebr E. Modic ersmo@glois.it Liceo Scientifico Sttle S. Cnnizzro Corso P.O.N. Modelli mtemtici e reltà A.S. 2010/2011 Premess Codificre e Decodificre Nell vit quotidin ci cpit spesso di

Dettagli

24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze

24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze Alunno/.. Alunno/ Pgin Esercitzione in preprzione ll PROVA d ESAME Buon Lvoro Prof.ss Elen Sper. Il piccolo fermcrte dell figur è relizzto nel seguente modo. Si prende un cubo di lto cm e su un fcci si

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

Calcolo letterale. 1) Operazioni con i monomi. a) La moltiplicazione. b) La divisione. c) Risolvi le seguenti espressioni con i monomi.

Calcolo letterale. 1) Operazioni con i monomi. a) La moltiplicazione. b) La divisione. c) Risolvi le seguenti espressioni con i monomi. Clcolo letterle. ) Operzioni con i monomi. ) L moltipliczione. ) L divisione. c) Risolvi le seguenti espressioni con i monomi. ) I polinomi. ) Clcol le seguenti somme di polinomi. ) Applic l proprietà

Dettagli

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA Liceo Scientifico G. Slvemini Corso di preprzione per l gr provincile delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA PROPRIETA DELLE POTENZE PRODOTTI NOTEVOLI QUESITO SUGGERIMENTO y è un espressione non

Dettagli

Rendite (2) (con rendite perpetue)

Rendite (2) (con rendite perpetue) Rendite (2) (con rendite perpetue) Esercizio n. Un ziend industrile viene vlutt ttulizzndo i redditi futuri dell gestione l tsso del 9% con inflzione null. I redditi prospettici vengono stimnti nell misur

Dettagli

Ottica ondulatoria. Interferenza e diffrazione

Ottica ondulatoria. Interferenza e diffrazione Ottic ondultori Interferenz e diffrzione Interferenz delle onde luminose Sorgenti coerenti: l differenz di fse rest costnte nel tempo Ond luminos pin che giunge su uno schermo contenente due fenditure

Dettagli

Linguaggi Regolari e Linguaggi Liberi

Linguaggi Regolari e Linguaggi Liberi Linguaggi Regolari e Linguaggi Liberi Potenza espressiva degli automi Potenza espressiva delle grammatiche 9/11/2004 Programmazione - Luca Tesei 1 Linguaggi Regolari Tutti i linguaggi che possono essere

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

Progettazione strutturale per elementi finiti Sergio Baragetti

Progettazione strutturale per elementi finiti Sergio Baragetti Progettzione strutturle per elementi finiti Sergio Brgetti Fcoltà di Ingegneri Università degli Studi di Bergmo Il metodo degli Elementi Finiti permette di risolvere il problem dell determinzione dello

Dettagli

Principi di economia Microeconomia. Esercitazione 3. Teoria del Consumatore

Principi di economia Microeconomia. Esercitazione 3. Teoria del Consumatore Principi di economi Microeconomi Esercitzione 3 Teori del Consumtore Novembre 1 1. Considerimo uno studente indifferente tr il consumo di penne nere (x n ) e blu (x b ), e che cquist ogni nno un pniere

Dettagli

CORSO ANALISI MATEMATICA 1 A.A. 2015/2016. Testo consigliato

CORSO ANALISI MATEMATICA 1 A.A. 2015/2016. Testo consigliato Università degli studi di Cgliri CORSO ANALISI MATEMATICA 1 A.A. 2015/2016 Docente: Monic Mrrs 1 Anlisi Mtemtic 1 Testo consiglito con elementi di geometri e lgebr linere. M. Brmnti, C.D. Pgni, S. Sls

Dettagli

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali.

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali. I rdicli Cos è un rdicle? Il simbolo si chim rdicle e si legge rdice ennesim di. - n si chim indice dell rdice e deve essere un numero nturle mggiore di zero. Qundo l indice si sottintende e il rdicle

Dettagli

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale.

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale. 1 Integrli dipendenti d un prmetro e derivzione sotto il segno di integrle. Considerimo l funzione f(x, t) : A [, b] R definit nel rettngolo A [, b], essendo A un sottoinsieme perto di R e [, b] un intervllo

Dettagli

TITOLAZIONI ACIDO-BASE

TITOLAZIONI ACIDO-BASE TITOLAZIONI ACIDO-BASE Soluzioni stndrd Le soluzioni stndrd impiegte nelle titolzioni di neutrlizzzione sono cidi forti o bsi forti poiché queste sostnze regiscono completmente con l nlit, fornendo in

Dettagli

Gianluca Occhetta. Note di Geometria. IV unità didattica. Università di Trento Dipartimento di Matematica Via Sommarive Povo (TN)

Gianluca Occhetta. Note di Geometria. IV unità didattica. Università di Trento Dipartimento di Matematica Via Sommarive Povo (TN) Ginluc Occhett Note di Geometri IV unità didttic Università di Trento Diprtimento di Mtemtic Vi Sommrive 14 38050 - ovo (TN) refzione Le presenti note rissumono gli rgomenti trttti nel corso di Geometri

Dettagli

Linguaggi Regolari e Linguaggi Liberi

Linguaggi Regolari e Linguaggi Liberi Linguaggi Regolari e Linguaggi Liberi Linguaggi regolari Potere espressivo degli automi Costruzione di una grammatica equivalente a un automa Grammatiche regolari Potere espressivo delle grammatiche 1

Dettagli

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA Nome.Cognome. 8 Dicembre 008 Clsse G VERIFICA di MATEMATICA A) Risolvi le seguenti disequzioni goniometriche sin ) sin + ) 0 6 tn cos + sin ) 0 (punti:0,5) ) tn + tn > 0 sin 5) sin > cos (punti: ) 6) sin

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

Disequazioni di primo grado

Disequazioni di primo grado Cpitolo Disequzioni i primo gro Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE

PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE Nel pino di lvoro sono indicte con i numeri d 1 5 le competenze di bse che ciscun unit' didttic concorre sviluppre, secondo l legend riportt di seguito.

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Sistemi Intelligenti Reinforcement Learning: Sommario

Sistemi Intelligenti Reinforcement Learning: Sommario Sistemi Intelligenti Reinforcement Lerning: Itertive policy evlution Alberto Borghese Università degli Studi di Milno Lbortorio di Sistemi Intelligenti Applicti (AIS-Lb) Diprtimento di Scienze dell Informzione

Dettagli

Politecnico di Milano Facoltà di Ingegneria dell Automazione INFORMATICA INDUSTRIALE Appello COGNOME E NOME. 11 febbraio 2008 RIGA COLONNA MATRICOLA

Politecnico di Milano Facoltà di Ingegneria dell Automazione INFORMATICA INDUSTRIALE Appello COGNOME E NOME. 11 febbraio 2008 RIGA COLONNA MATRICOLA Politecnico i Milno Fcoltà i Ingegneri ell Automzione INFORMATICA INDUSTRIALE Appello COGNOME E NOME ebbrio 2008 RIGA COLONNA MATRICOLA Il presente plico pinzto, composto i quttro ogli (ronte/retro)eve

Dettagli

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI Considerimo un funzione f : I R, dove I è un intervllo di R. Si c un punto interno I in cui f è discontinu. Diremo che c è un punto di discontinuità di prim

Dettagli

INTEGRAZIONE NUMERICA

INTEGRAZIONE NUMERICA INTEGRAZIONE NUMERICA Frncesc Pelosi Diprtimento di Mtemtic, Università di Rom Tor Vergt CALCOLO NUMERICO.. 008 009 http://www.mt.unirom.it/ pelosi/ INTEGRAZIONE NUMERICA p.1/0 INTEGRAZIONE NUMERICA Dt

Dettagli

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a.

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a. Prof. Mrgherit Fochi Esercizi per il precorso.- Esercizi sui polinomi Semplificre le seguenti espressioni utilizzndo i prodotti notevoli:. ) ) ) ) ) 8 [ ] 8. ) ) ) ) ] [. ) ) ) [ ] { } y y y y y [ ] 8

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

Lezione 1 Insiemi e numeri

Lezione 1 Insiemi e numeri Lezione Insiemi e numeri. Nozione di insieme, sottoinsieme, pprtenenz Con l prol insieme intendimo un collezione di oggetti detti suoi elementi. Ogni insieme è denotto con lettere miuscole e i suoi elementi

Dettagli

Esercizio 1. Dimostrare che se (X, d) è uno spazio metrico anche (X, d ) lo è, dove d =

Esercizio 1. Dimostrare che se (X, d) è uno spazio metrico anche (X, d ) lo è, dove d = I seguenti esercizi sono stti proposti, e qusi tutti risolti, ttrverso l miling list del corso di Geometri IV durnte l nno ccdemico 2004/2005. Esercizio 1. Dimostrre che se (X, d) è uno spzio metrico nche

Dettagli

5. Funzioni elementari trascendenti

5. Funzioni elementari trascendenti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 5. Funzioni elementri trscendenti A. A. 2013-2014 1 FUNZIONI ESPONENZIALI Le più semplici funzioni esponenzili sono le funzioni f: R R definite

Dettagli

10.2 EQUIVALENZA TRA ESPRESSIONI REGOLARI, GRAMMATICHE REGOLARI E AUTOMI

10.2 EQUIVALENZA TRA ESPRESSIONI REGOLARI, GRAMMATICHE REGOLARI E AUTOMI 10.2 EQUIVALENZA TRA ESPRESSIONI REGOLARI, GRAMMATICHE REGOLARI E AUTOMI Sono computazionalmente più potenti gli ASF o gli ASFND? In altre parole, se con L(ASF) indichiamo la classe dei linguaggi riconoscibili

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

Progettazione strutturale per elementi finiti Sergio Baragetti

Progettazione strutturale per elementi finiti Sergio Baragetti Progettzione strutturle per elementi finiti Sergio Brgetti Fcoltà di Ingegneri Università degli Studi di Bergmo Il metodo degli Elementi Finiti permette di risolvere il problem dell determinzione dello

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

10. Completare la seguente tabella, in cui sono riportate le produzioni assolute e relative di tre colture altamente diffuse in Italia.

10. Completare la seguente tabella, in cui sono riportate le produzioni assolute e relative di tre colture altamente diffuse in Italia. ESERCIZI DI BASE 1. I soci proprietri di un piccol compgni gricol sono tre: i signori A, B, C. Mentre i signori A e C hnno l stess quot di prtecipzione ll ziend, il signor B h solo il 50% dell quot degli

Dettagli

1 Integrali generalizzati su intervalli illimitati

1 Integrali generalizzati su intervalli illimitati Lezioni per il corso di Anlisi 2, AA 07-08. Dott.ss Sndr Lucente Argomento: Integrli generlizzti 1 1 Integrli generlizzti su intervlli ilitti Definizione 1.1. Si f : [,[ R un funzione continu. Se esiste

Dettagli

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico Second prov mturit 06 soluzione secondo problem di mtemtic scientifico Skuol.net June, 06 Primo Problem Le tre funzioni proposte sono f () ( ) k f () 6 + 9k + f () cos( π k ). Punto Affinche l funzione

Dettagli

Università degli Studi di Udine. 1 Automi e Linguaggi. Prova Scritta di Fondamenti dell Informatica II Alcune Soluzioni

Università degli Studi di Udine. 1 Automi e Linguaggi. Prova Scritta di Fondamenti dell Informatica II Alcune Soluzioni Università degli Studi di Udine Prova Scritta di Fondamenti dell Informatica II Alcune Soluzioni 1 Automi e Linguaggi 1. Sia dato p N, p > 0 dimostri che il linguaggio è regolare. L p = { a 0 a 1... a

Dettagli

Siano A e B due insiemi non vuoti. Una funzione f da A a B è un assegnamento di esattamente un elemento di B ad ogni elemento di A

Siano A e B due insiemi non vuoti. Una funzione f da A a B è un assegnamento di esattamente un elemento di B ad ogni elemento di A Funzioni Definizione di funzione: Sino A e B due insiemi non vuoti. Un funzione f d A B è un ssegnmento di esttmente un elemento di B d ogni elemento di A Scrivimo f() = b se b è l unico elemento dell

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

1 Il problema del calcolo dell area di una regione piana limitata

1 Il problema del calcolo dell area di una regione piana limitata Anlisi Mtemtic 2 1 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 1 INTEGRALI DI FUNZIONI DI UNA VARIABILE REALE 1 Il problem del clcolo dell re di un regione pin limitt Se si consider un

Dettagli

Elementi grafici per Matematica

Elementi grafici per Matematica Elementi grfici per Mtemtic Sommrio: Sistemi di coordinte crtesine... Grfici di funzioni... 4. Definizione... 4. Esempi... 5.3 Verificre iniettività e suriettività dl grfico... 8.4 L rett... 9.5 Esempi

Dettagli

TOPOLOGIA GENERALE. Gianluca Occhetta. e primi elementi di topologia algebrica. Note di

TOPOLOGIA GENERALE. Gianluca Occhetta. e primi elementi di topologia algebrica. Note di Ginluc Occhett Note di TOOLOGIA GENERALE e primi elementi di topologi lgeric Diprtimento di Mtemtic Università di Trento Vi Sommrive 14 38050 - ovo (TN) Not per l lettur Queste note rccolgono gli rgomenti

Dettagli

Sorgenti di campo magnetico. Esempio 1. Soluzione 1. Campo magnetico generato da un lungo filo rettilineo percorso da corrente

Sorgenti di campo magnetico. Esempio 1. Soluzione 1. Campo magnetico generato da un lungo filo rettilineo percorso da corrente Cmpo mgnetico generto d un lungo filo rettilineo percorso d corrente Sorgenti di cmpo mgnetico Ingegneri Energetic Docente: Angelo Crone Il cmpo mgnetico dovuto d un filo rettilineo è inversmente proporzionle

Dettagli

Funzioni 1. 3) una legge che ad un elemento x di X associa al più un unico elemento ( x)

Funzioni 1. 3) una legge che ad un elemento x di X associa al più un unico elemento ( x) Funzioni Un funzione f d X in Y è costituit d un tern di elementi ) un insieme X, detto dominio di f 2) un insiemey, detto codominio di f f di Y. Nel cso, in cui X,Y sino sottinsiemi di R, generlmente

Dettagli

Aritmetica Definizioni di concetti, regole e proprietà per il 1 anno della scuola media

Aritmetica Definizioni di concetti, regole e proprietà per il 1 anno della scuola media Aritmetic Definizioni di concetti, regole e proprietà per il nno dell scuol medi ) INSIEMI Concetto primitivo Un concetto primitivo è un concetto che non viene definito con precisione, m solo descritto

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le Sched Sei ESPONENZIALI E LOGARITMI L funzione esponenzile Assegnto un numero rele >0, si dice funzione esponenzile in bse l funzione Grfici dell funzione esponenzile Se = l funzione esponenzile è costnte:

Dettagli

Macchine elettriche in corrente continua

Macchine elettriche in corrente continua cchine elettriche in corrente continu Generlità Può essere definit mcchin un dispositivo che convert energi d un form un ltr. Le mcchine elettriche in prticolre convertono energi elettric in energi meccnic

Dettagli

CALCOLO LETTERALE. Prof. Katia Comandi Dispensa per la classe III ITI Informatico. a.s 2006/2007

CALCOLO LETTERALE. Prof. Katia Comandi Dispensa per la classe III ITI Informatico. a.s 2006/2007 CLCOLO LETTERLE Prof. Kti Comndi Dispens per l clsse III ITI Informtico.s 00/007 Indice Il Clcolo letterle Introduzione pg. Scopo del Clcolo letterle pg. Monomi pg. Polinomi pg.. Prodotti notevoli pg.

Dettagli

Convenzione europea relativa al risarcimento delle vittime di reati violenti

Convenzione europea relativa al risarcimento delle vittime di reati violenti Serie dei Trttti Europei - n 116 Convenzione europe reltiv l risrcimento delle vittime di reti violenti Strsurgo, 24 novemre 1983 Trduzione ufficile dell Cncelleri federle dell Svizzer Gli Stti memri del

Dettagli

Il sottoscritto codice fiscale in qualità di 1 dell impresa/società con sede legale in 2

Il sottoscritto codice fiscale in qualità di 1 dell impresa/società con sede legale in 2 ALLEGATO 3 Dimensioni dell impres Dichirzione sostitutiv dell tto di notorietà (rt. 47 DPR 445 del 28 dicembre 2000) Il sottoscritto codice fiscle in qulità di 1 dell impres/società con sede legle in 2

Dettagli

Appunti di Analisi matematica 1. Paolo Acquistapace

Appunti di Analisi matematica 1. Paolo Acquistapace Appunti di Anlisi mtemtic Polo Acquistpce 23 febbrio 205 Indice Numeri 4. Alfbeto greco................................. 4.2 Insiemi..................................... 4.3 Funzioni....................................

Dettagli

Introduzione e strumenti

Introduzione e strumenti Controlli utomtici Introduzione e strumenti Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2

Dettagli

Esercizi di Fondamenti di Informatica per la sicurezza. Stefano Ferrari

Esercizi di Fondamenti di Informatica per la sicurezza. Stefano Ferrari Esercizi di Fondamenti di Informatica per la sicurezza tefano Ferrari 23 dicembre 2003 2 Argomento 1 Grammatiche e linguaggi Esercizi Es. 1.1 Definiti i linguaggi: L 1 = {aa, ab, bc, c} L 2 = {1, 22, 31}

Dettagli

Contenuti di matematica classe prima liceo scientifico di ordinamento e delle scienze applicate.

Contenuti di matematica classe prima liceo scientifico di ordinamento e delle scienze applicate. Contenuti di mtemtic clsse prim liceo scientifico di ordinmento e delle scienze pplicte. SAPERE Sper definire, rppresentre e operre con gli insiemi. Conoscere gli insiemi numerici N, Z, Q e sperci operre

Dettagli

COMBINAZIONI DI CARICO SOLAI

COMBINAZIONI DI CARICO SOLAI COMBINAZIONI DI CARICO SOLAI (ppunti di Mrio Zfonte in fse di elorzione) Ai fini delle verifihe degli stti limite, seondo unto indito dll normtiv, in generle le ondizioni di rio d onsiderre, sono uelle

Dettagli

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x) Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)

Dettagli

Strutture algebriche

Strutture algebriche Strutture lgeriche Leggi di composizione L operzione di ddizione nell insieme dei nturli ssoci ogni coppi (m; n) di numeri nturli ncor un numero nturle s, risultto dell operzione. L ddizione costituisce

Dettagli

Integrazione numerica. I(f) := Non sempre si riesce a trovare la forma esplicita della primitiva.

Integrazione numerica. I(f) := Non sempre si riesce a trovare la forma esplicita della primitiva. Approssimzione numeric di: Motivzioni. Integrzione numeric I(f) = f(x)dx. Non sempre si riesce trovre l form esplicit dell primitiv. Vlutzione costos dell primitiv. L funzione d integrre può essere dt

Dettagli

Codici di Huffman. Codici prefissi. Sia dato un file di 120 caratteri con frequenze:

Codici di Huffman. Codici prefissi. Sia dato un file di 120 caratteri con frequenze: Codii di Huffmn Codii di Huffmn I odii di Huffmn vengono mpimente usti nell ompressione dei dti (pkzip, jpeg, mp3). Normlmente permettono un risprmio ompreso tr il 2% ed il 9% seondo il tipo di file. Sull

Dettagli

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z Controlli Automtici Trsformte L e Z e schemi blocchi Esercizi sulle trsformte L e Z Esercizi sulle trsformte L e Z Proposte di esercizi e soluzioni in tempo rele trsformt L di y(t) dt trsformt Z di y(i)

Dettagli

APPLICAZIONI LINEARI e MATRICI ASSOCIATE

APPLICAZIONI LINEARI e MATRICI ASSOCIATE APPLICAZIONI LINEARI e MATRICI ASSOCIATE Dt un ppliczione f: V W con V e W spzi vettorili si dice che f è un ppliczione linere o omomorfismo f(v + v 2 ) = f(v ) + f(v 2 ) v, v 2 V f(αv) = α f(v) v V e

Dettagli

Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO

Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO Ai gentili Clienti Loro sedi Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO Al termine di ciscun periodo d impost, dopo ver effettuto le scritture di ssestmento e rettific,

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio Scomposizione di un polinomio in fttori Scomporre in fttori primi un polinomio signific esprimerlo come il prodotto di due più polinomi non più scomponibili Ad esempio 9 = ( 3) fttore 1 ( + 3) fttore +

Dettagli

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, } Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe I H

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe I H Istituto Professionle di Stto per l Industri e l Artiginto Gincrlo Vlluri Clsse I H ALUNNO CLASSE Ulteriore ripsso e recupero nche nei siti www.vlluricrpi.it (dip. mtemtic recupero). In vcnz si può trovre

Dettagli

Teoremi di geometria piana

Teoremi di geometria piana l congruenz teoremi sugli ngoli γ teorem sugli ngoli complementri Se due ngoli sono complementri di uno stesso ngolo α β In generle: Se due ngoli sono complementri di due ngoli congruenti α γ β teorem

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1 Prolemi e rppresentzione di prolemi di geometri dello spzio - ludio ered ferio 00 pg. onvenzioni di disegno e di rppresentzione Nel corso dell trttzione si dotternno le seguenti convenzioni simoliche:

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli