COMUNE DI ROMA RELAZIONE TECNICA DI CALCOLO IDRAULICO RETE PER LA RACCOLTA DELLE ACQUE METEORICHE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "COMUNE DI ROMA RELAZIONE TECNICA DI CALCOLO IDRAULICO RETE PER LA RACCOLTA DELLE ACQUE METEORICHE"

Transcript

1

2 COMUNE DI ROMA RELAZIONE TECNICA DI CALCOLO IDRAULICO RETE PER LA RACCOLTA DELLE ACQUE METEORICHE

3 CALCOLO DELLA PORTATA DELLE ACQUE METEORICHE Il calcolo per la verifica idraulica di seguito riportato è relativo al sistema di raccolta e convogliamento alla rete fognante principale delle acque meteoriche scolate dal comparto. I calcoli per il dimensionamento della rete fognante vengono svolti a partire dalle portate massime in transito lungo i tronchi della rete. Per la determinazione delle portate di punta in corrispondenza delle singole sezioni del sistema di drenaggio, è stato utilizzato il "metodo del tempo di corrivazione", il quale si basa sul presupposto che la pioggia critca per una determinata sezione, abbia una durata uguale al tempo di corrivazione (ossia il tempo che l acqua caduta nel punto più lontano del bacino impiega a raggiungere la sezione stessa). I bacini presi in considerazione per il calcolo sono 4: Bacino 1 fogna tubolare Ø 1000; Bacino 2 fogna tubolare Ø 1000; Bacino 3 fogna tubolare Ø 1200, che riceve anche le acque del tratto relativo al bacino 2; Bacino 4 fogna tubolare Ø 1500, che riceve le acque dei bacini 1,2 e 3; Bacino 5 fogna tubolare Ø 1000, che recapita nella tipo VII esistente. BACINO 1 - TRATTO Y' K W Superficie bacino 4,44 ha (A) La formula empirica adottata nel calcolo è del tipo Qz = p * r * f * A ove: Qz = portata delle acque pluviali espressa in mc/sec A = area della superficie scolante espressa in ha r = coefficiente di ritardo f = coefficiente di restituzione p = afflusso meteorico espresso in mc/sec Superficie complessiva lotto (A) ha 4,436 Superfici Intensivo (S1) ha 2,834 63,89 % Superficie a verde (S2) ha 0,161 3,62 % Superficie semintensiva (S3) ha 0,000 - % Strade e Parcheggi (S4) ha 1,441 32,49 % L h f t di lt l 622

4 r = 1/ 6 (A) r 0,68 Coefficiente di restituzione ( f ) Superfici lastricate (S1) coeff. 0,90 Aree verdi (S2) coeff. 0,10 Sup.Semintensiva(S3) coeff. 0,50 Strade e Parcheggi (S4) coeff. 1,00 f = 0,904 f = (S1*0.9+S2*0,10+S3*0,5+S4*1) / Superficie Bacino Coefficiente di afflusso meteorico ( p ) Il valore massimo dell'intensità (afflusso meteorico) si avrà per una durata di pioggia pari al tempo di corrivazione dal bacino, che equivale al tempo che l'acqua impiega a percorrere la distanza dal punto di caduta più distante nel bacino (a monte) al punto di uscita a valle del bacino stesso (sezione di uscita). Se si indica H l'altezza di pioggia (espressa in mm) caduta nel tempo T (espresso in ore), l'intensità media oraria i sarà data dall'espressione: i = H /T mm/ora Di conseguenza p sarà espresso dalla formula: (1/1000)ml * mq i p = = mc/sec ha sec 360 Il tempo T in ore, di durata della pioggia da introdurre nel calcolo, sarà determinato nel modo seguente. Si suppone una velocità media dell'acqua nella fogna di 1m/sec; di conseguenza il tempo di corrivazione, cioè il tempo che l'acqua caduta per pioggia all'inizio del bacino a monte, impiega a percorrere la distanza L e raggiungere la sezione estrema della fogna a valle, sarà dato da: T = L / sec in ore Al tempo T si aggiunge un tempo t, variabile tra 0,050 e 0,083 di ora, per tener conto del tempo che la prima acqua caduta sui tetti, cortili, strade, all'inizio del bacino, impiega per raggiongere i fognoli privati e quelli stradali per la raccolta che sono collegati alla fogna principale. Pertanto il tempo di durata della pioggia critica, che rende massima la portata Qz, risulta: Ttot = T+ t Noto Ttot in funzione della superfice del bacino, i valori di H e di i si possono ricavare o dai grafici comunemente usati, oppure direttamente dalle tabelle I e II, a seconda che Ttot 1,586 ora, oppure Ttot 1,586 ora. Noti H ed i, si può ricavare il coefficiente di afflusso meteorico p.

5 Per determinare un valore di altezza dell'acqua corrispondente ad una durata di pioggia T=Tc (valore precedentemente determinato) oltre che ai grafici sopra illustrati, si può fare ricorso, con buona approssimazione, alla formula comunemente adottata dal Comune di Roma per le verifiche H= 111,60 * T 0,73, il cui valorera corrisponde alla prima curva critica in caso di piogge intense per la zona di Roma. H = 111,6 * Tc 0,73 = 36,277 mm Per determinare l'intensità di pioggia i useremo l'espressione i = H /Tc = 159,927 mm/h Il coefficiente di afflusso meteorico p sarà p= i /360 = 0,444 mc/sec*h La portata massima delle acque di origine metrorica per il bacino in questione sarà: Portata max nella sezione ( Qz1 ) tratto Y' K W Qz1 = p * r * f * A (ha) = 1,211 mc/sec Verifica della portata max sezione Ø 1000 Si procede nel calcolo della portata e della velocità in base alle pendenze adottate mediante il metodo di Chezy- Bazin: La velocità V si può ricavare dalla formula di Chezy nella forma seguente: V = K Rm i e dalla seconda relazione di Bazin: Rm K = = γ/ Rm Rm + γ La portata Q può essere espressa nella forma Q = Ώ * V si arriva alla formula finale per ricavare la portata specifica Q a sezione piena

6 Q = 87 Ώ Rm i Rm + γ Assumendo un coefficiente di scabrezza (formula di Bazin) γ = 0,32, e ricordando che il raggio medio Rm=C/Ω, i dati per la sezione Ø 1000 saranno: Q = portata in mc/sec V = velocità in m/sec Ω = area della sezione bagnata in mq C = contorno (perimetro) della sezione bagnata in ml Rm = Raggio medio della sezione bagnata in ml i = pendenzadella condotta γ = coefficiente di scabrezza Diametro della sezione in m 1,00 ml Area della sezione A in mq Ω = 0,7850 mq Contorno bagnato C in ml C = 3,1400 ml Raggio medio idraulico Rm Rm=Ω/C= 0,250 ml Coefficiente di attrito γ 0,36 i = pendenza della condotta i = 0,005 si ottiene: V = 1,79 ml/sec ( a sezione piena ) Q = 1,40 mc/sec > 1,211 Pertanto, alla luce del valore di portata massima Q ottenuto per il bacino in questione largamente sovrastimato per tenere conto di eventuali difetti costruttivi e, tenuto conto del valore di portata massima della sezione a valle "tubolare Ø 1000", confermata dall'analisi del diagramma logaritmico per il calcolo delle velocità e delle portate delle sezioni tubolari (assumendo come pendenza la pendenza di progetto), la sezione risulta adeguatamente dimensionata.

7 BACINO 2 - TRATTO E' Q L F Superficie bacino 2,15 ha (A) La formula empirica adottata nel calcolo è del tipo Qz = p * r * f * A ove: Qz = portata delle acque pluviali espressa in mc/sec A = area della superficie scolante espressa in ha r = coefficiente di ritardo f = coefficiente di restituzione p = afflusso meteorico espresso in mc/sec Superficie complessiva lotto (A) ha 2,146 Superfici Intensivo (S1) ha 1,332 62,06 % Superficie a verde (S2) ha - % Superficie semintensiva (S3) ha - % Strade e Parcheggi (S4) ha 0,814 37,94 % Lunghezza fognatura di raccolta ml 345 r = 1/ 6 (A) r 0,83 Coefficiente di restituzione ( f ) Superfici lastricate (S1) coeff. 0,90 Aree verdi (S2) coeff. 0,10 Sup.Semintensiva(S3) coeff. 0,50 Strade e Parcheggi (S4) coeff. 1,00 f = 0,938 f = (S1*0.9+S2*0,10+S3*0,5+S4*1) / Superficie Bacino

8 Coefficiente di afflusso meteorico ( p ) Il valore massimo dell'intensità (afflusso meteorico) si avrà per una durata di pioggia pari al tempo di corrivazione dal bacino, che equivale al tempo che l'acqua impiega a percorrere la distanza dal punto di caduta più distante nel bacino (a monte) al punto di uscita a valle del bacino stesso (sezione di uscita). Se si indica H l'altezza di pioggia (espressa in mm) caduta nel tempo T (espresso in ore), l'intensità media oraria i sarà data dall'espressione: i = H /T mm/ora Di conseguenza p sarà espresso dalla formula: (1/1000)ml * mq i p = = mc/sec ha sec 360 Il tempo T in ore, di durata della pioggia da introdurre nel calcolo, sarà determinato nel modo seguente. Si suppone una velocità media dell'acqua nella fogna di 1m/sec; di conseguenza il tempo di corrivazione, cioè il tempo che l'acqua caduta per pioggia all'inizio del bacino a monte, impiega a percorrere la distanza L e raggiungere la sezione estrema della fogna a valle, sarà dato da: T = L / sec in ore Al tempo T si aggiunge un tempo t, variabile tra 0,050 e 0,083 di ora, per tener conto del tempo che la prima acqua caduta sui tetti, cortili, strade, all'inizio del bacino, impiega per raggiongere i fognoli privati e quelli stradali per la raccolta che sono collegati alla fogna principale. Pertanto il tempo di durata della pioggia critica, che rende massima la portata Qz, risulta: Ttot = T+ t Noto Ttot in funzione della superfice del bacino, i valori di H e di i si possono ricavare o dai grafici comunemente usati, oppure direttamente dalle tabelle I e II, a seconda che Ttot 1,586 ora, oppure Ttot 1,586 ora. Noti H ed i, si può ricavare il coefficiente di afflusso meteorico p. Tc = L/ ,05 = 0,146 ore Per determinare un valore di altezza dell'acqua corrispondente ad una durata di pioggia T=Tc (valore precedentemente determinato) oltre che ai grafici sopra illustrati, si può fare ricorso, con buona approssimazione, alla formula comunemente adottata dal Comune di Roma per le verifiche H= 111,60 * T 0,73, il cui valorera corrisponde alla prima curva critica in caso di piogge intense per la zona di Roma. H = 111,6 * Tc 0,73 = 26,369 mm Per determinare l'intensità di pioggia i useremo l'espressione i = H /Tc = 170,828 mm/h Il coefficiente di afflusso meteorico p sarà p= i /360 = 0,475 mc/sec*h La portata massima delle acque di origine metrorica per il bacino in questione sarà:

9 Qz2 = p * r * f * A (ha) = 0,793 mc/sec Verifica della portata max sezione Ø 1000 Si procede nel calcolo della portata e della velocità in base alle pendenze adottate mediante il metodo di Chezy- Bazin: La velocità V si può ricavare dalla formula di Chezy nella forma seguente: V = K Rm i e dalla seconda relazione di Bazin: Rm K = = γ/ Rm Rm + γ La portata Q può essere espressa nella forma Q = Ώ * V si arriva alla formula finale per ricavare la portata specifica Q a sezione piena Q = 87 Ώ Rm i Rm + γ Assumendo un coefficiente di scabrezza (formula di Bazin) γ = 0,32, e ricordando che il raggio medio Rm=C/Ω, i dati per la sezione Ø 1000 saranno: Q = portata in mc/sec V = velocità in m/sec Ω = area della sezione bagnata in mq C = contorno (perimetro) della sezione bagnata in ml Rm = Raggio medio della sezione bagnata in ml i = pendenzadella condotta

10 Diametro della sezione in m 1,00 ml Area della sezione A in mq Ω = 0,7850 mq Contorno bagnato C in ml C = 3,1400 ml Raggio medio idraulico Rm Rm=Ω/C= 0,250 ml Coefficiente di attrito γ 0,36 i = pendenza della condotta i = 0,005 si ottiene: V = 1,79 ml/sec ( a sezione piena ) Q = 1,40 mc/sec > 0,793 Pertanto, alla luce del valore di portata massima Qz ottenuto per il bacino in questione largamente sovrastimato per tenere conto di eventuali difetti costruttivi e, tenuto conto del valore di portata massima della sezione a valle "tubolare Ø 1000", confermata dall'analisi del diagramma logaritmico per il calcolo delle velocità e delle portate delle sezioni tubolari (assumendo come pendenza la pendenza di progetto), la sezione risulta adeguatamente dimensionata.

11 BACINO 3 - TRATTO A V F W Superficie bacino 3,86 ha (A) La formula empirica adottata nel calcolo è del tipo Qz = p * r * f * A ove: Qz = portata delle acque pluviali espressa in mc/sec A = area della superficie scolante espressa in ha r = coefficiente di ritardo f = coefficiente di restituzione p = afflusso meteorico espresso in mc/sec Superficie complessiva lotto (A) ha 3,856 Superfici Intensivo (S1) ha 1,304 33,81 % Superficie a verde (S2) ha 0,778 20,17 % Superficie semintensiva (S3) ha 0,556 14,43 % Strade e Parcheggi (S4) ha 1,219 31,60 % Lunghezza fognatura di raccolta ml 371 r = 1/ 6 (A) r 0,80 Coefficiente di restituzione ( f ) Superfici lastricate (S1) coeff. 0,90 Aree verdi (S2) coeff. 0,10 Sup.Semintensiva(S3) coeff. 0,50 Strade e Parcheggi (S4) coeff. 1,00 f = 0,713 f = (S1*0.9+S2*0,10+S3*0,5+S4*1) / Superficie Bacino

12 Coefficiente di afflusso meteorico ( p ) Il valore massimo dell'intensità (afflusso meteorico) si avrà per una durata di pioggia pari al tempo di corrivazione dal bacino, che equivale al tempo che l'acqua impiega a percorrere la distanza dal punto di caduta più distante nel bacino (a monte) al punto di uscita a valle del bacino stesso (sezione di uscita). Se si indica H l'altezza di pioggia (espressa in mm) caduta nel tempo T (espresso in ore), l'intensità media oraria i sarà data dall'espressione: i = H /T mm/ora Di conseguenza p sarà espresso dalla formula: (1/1000)ml * mq i p = = mc/sec ha sec 360 Il tempo T in ore, di durata della pioggia da introdurre nel calcolo, sarà determinato nel modo seguente. Si suppone una velocità media dell'acqua nella fogna di 1m/sec; di conseguenza il tempo di corrivazione, cioè il tempo che l'acqua caduta per pioggia all'inizio del bacino a monte, impiega a percorrere la distanza L e raggiungere la sezione estrema della fogna a valle, sarà dato da: T = L / sec in ore Al tempo T si aggiunge un tempo t, variabile tra 0,050 e 0,083 di ora, per tener conto del tempo che la prima acqua caduta sui tetti, cortili, strade, all'inizio del bacino, impiega per raggiongere i fognoli privati e quelli stradali per la raccolta che sono collegati alla fogna principale. Pertanto il tempo di durata della pioggia critica, che rende massima la portata Qz, risulta: Ttot = T+ t Noto Ttot in funzione della superfice del bacino, i valori di H e di i si possono ricavare o dai grafici comunemente usati, oppure direttamente dalle tabelle I e II, a seconda che Ttot 1,586 ora, oppure Ttot 1,586 ora. Noti H ed i, si può ricavare il coefficiente di afflusso meteorico p. Tc = L/ ,05 = 0,153 ore Per determinare un valore di altezza dell'acqua corrispondente ad una durata di pioggia T=Tc (valore precedentemente determinato) oltre che ai grafici sopra illustrati, si può fare ricorso, con buona approssimazione, alla formula comunemente adottata dal Comune di Roma per le verifiche H= 111,60 * T 0,73, il cui valorera corrisponde alla prima curva critica in caso di piogge intense per la zona di Roma. H = 111,6 * Tc 0,73 = 28,338 mm Per determinare l'intensità di pioggia i useremo l'espressione i = H /Tc = 185,287 mm/h Il coefficiente di afflusso meteorico p sarà

13 p= i /360 = 0,515 mc/sec*h La portata massima delle acque di origine metrorica per il bacino in questione sarà: Portata max nella sezione ( Qz1 ) tratto A V F W Qz3= p * r * f * A (ha) = 1,129 mc/sec A questa va aggiunta la portata Qz2 proveniente dalla fogna tratto E' Q L F Qz3 tot = Qz3 +Qz2 1,923 mc/sec Verifica della portata max sezione Ø 1200 Si procede nel calcolo della portata e della velocità in base alle pendenze adottate mediante il metodo di Chezy- Bazin: La velocità V si può ricavare dalla formula di Chezy nella forma seguente: V = K Rm i e dalla seconda relazione di Bazin: Rm K = = γ/ Rm Rm + γ La portata Q può essere espressa nella forma Q = Ώ * V si arriva alla formula finale per ricavare la portata specifica Q a sezione piena Q = 87 Ώ Rm i Rm + γ Assumendo un coefficiente di scabrezza (formula di Bazin) γ = 0,32, e ricordando che il raggio medio Rm=C/Ω, i dati per la sezione Ø 1000 saranno:

14 V = velocità in m/sec Ω = area della sezione bagnata in mq C = contorno (perimetro) della sezione bagnata in ml Rm = Raggio medio della sezione bagnata in ml i = pendenzadella condotta γ = coefficiente di scabrezza Diametro della sezione in m 1,20 ml Area della sezione A in mq Ω = 1,1304 mq Contorno bagnato C in ml C = 3,7680 ml Raggio medio idraulico Rm Rm=Ω/C= 0,300 ml Coefficiente di attrito γ 0,36 i = pendenza della condotta i = 0,005 si ottiene: V = 2,03 ml/sec ( a sezione piena ) Q = 2,30 mc/sec > 1,923 Pertanto, alla luce del valore di portata massima Qz ottenuto per il bacino in questione largamente sovrastimato per tenere conto di eventuali difetti costruttivi e, tenuto conto del valore di portata massima della sezione a valle "tubolare Ø 1200", confermata dall'analisi del diagramma logaritmico per il calcolo delle velocità e delle portate delle sezioni tubolari (assumendo come pendenza la pendenza di progetto), la sezione risulta adeguatamente dimensionata.

15 BACINO 4 TRATTO W B N C' Z Superficie bacino 7,66 ha (A) La formula empirica adottata nel calcolo è del tipo Qz = p * r * f * A ove: Qz = portata delle acque pluviali espressa in mc/sec A = area della superficie scolante espressa in ha r = coefficiente di ritardo f = coefficiente di restituzione p = afflusso meteorico espresso in mc/sec Superficie complessiva lotto (A) ha 7,656 Superfici Intensivo (S1) ha 0,905 11,82 % Superficie a verde (S2) ha 2,482 32,41 % Superficie semintensiva (S3) ha 2,573 33,61 % Strade e Parcheggi (S4) ha 1,697 22,16 % Lunghezza fognatura di raccolta ml 514 r = 1/ 6 (A) r 0,71 Coefficiente di restituzione ( f ) Superfici lastricate (S1) coeff. 0,90 Aree verdi (S2) coeff. 0,10 Sup.Semintensiva(S3) coeff. 0,50 Strade e Parcheggi (S4) coeff. 1,00 f = 0,528 f = (S1*0.9+S2*0,10+S3*0,5+S4*1) / Superficie Bacino

16 Coefficiente di afflusso meteorico ( p ) Il valore massimo dell'intensità (afflusso meteorico) si avrà per una durata di pioggia pari al tempo di corrivazione dal bacino, che equivale al tempo che l'acqua impiega a percorrere la distanza dal punto di caduta più distante nel bacino (a monte) al punto di uscita a valle del bacino stesso (sezione di uscita). Se si indica H l'altezza di pioggia (espressa in mm) caduta nel tempo T (espresso in ore), l'intensità media oraria i sarà data dall'espressione: i = H /T mm/ora Di conseguenza p sarà espresso dalla formula: (1/1000)ml * mq i p = = mc/sec ha sec 360 Il tempo T in ore, di durata della pioggia da introdurre nel calcolo, sarà determinato nel modo seguente. Si suppone una velocità media dell'acqua nella fogna di 1m/sec; di conseguenza il tempo di corrivazione, cioè il tempo che l'acqua caduta per pioggia all'inizio del bacino a monte, impiega a percorrere la distanza L e raggiungere la sezione estrema della fogna a valle, sarà dato da: T = L / sec in ore Al tempo T si aggiunge un tempo t, variabile tra 0, e 0, di ora, per tener conto del tempo che la prima acqua caduta sui tetti, cortili, strade, all'inizio del bacino, impiega per raggiongere i fognoli privati e quelli stradali per la raccolta che sono collegati alla fogna principale. Pertanto il tempo di durata della pioggia critica, che rende massima la portata Qz, risulta: Ttot = T+ t Noto Ttot in funzione della superfice del bacino, i valori di H e di i si possono ricavare o dai grafici comunemente usati, oppure direttamente dalle tabelle I e II, a seconda che Ttot 1,586 ora, oppure Ttot 1,586 ora. Noti H ed i, si può ricavare il coefficiente di afflusso meteorico p. Tc = L/ ,05 = 0,193 ore Per determinare un valore di altezza dell'acqua corrispondente ad una durata di pioggia T=Tc (valore precedentemente determinato) oltre che ai grafici sopra illustrati, si può fare ricorso, con buona approssimazione, alla formula comunemente adottata dal Comune di Roma per le verifiche H= 111,60 * T 0,73, il cui valorera corrisponde alla prima curva critica in caso di piogge intense per la zona di Roma. H = 111,6 * Tc 0,73 = 33,567 mm Per determinare l'intensità di pioggia i useremo l'espressione i = H /Tc = 174,037 mm/h Il coefficiente di afflusso meteorico p sarà p= i /360 = mc/sec*h

17 La portata massima delle acque di origine metrorica per il bacino in questione sarà: Portata max nella sezione ( Qz4 ) tratto W B N C' Z Qz4= p * r * f * A (ha) = 1,393 mc/sec A questa vanno aggiunte le portate Qz1, Qz2 e Qz3 ottenendo come portata totale: Qz4 tot = Qz1+Qz2+Qz3+Qz4 4,527 mc/sec Verifica della portata max sezione Ø 1500 Si procede nel calcolo della portata e della velocità in base alle pendenze adottate mediante il metodo di Chezy- Bazin: La velocità V si può ricavare dalla formula di Chezy nella forma seguente: V = K Rm i e dalla seconda relazione di Bazin: Rm K = = γ/ Rm Rm + γ La portata Q può essere espressa nella forma Q = Ώ * V si arriva alla formula finale per ricavare la portata specifica Q a sezione piena Q = 87 Ώ Rm i Rm + γ Assumendo un coefficiente di scabrezza (formula di Bazin) γ = 0,32, e ricordando che il raggio medio Rm=C/Ω, i dati per la sezione Ø 1500 saranno: Q = portata in mc/sec V = velocità in m/sec

18 C = contorno (perimetro) della sezione bagnata in ml Rm = Raggio medio della sezione bagnata in ml i = pendenzadella condotta γ = coefficiente di scabrezza Diametro della sezione in m 1,50 ml Area della sezione A in mq Ω = 1,7663 mq Contorno bagnato C in ml C = 4,7100 ml Raggio medio idraulico Rm Rm=Ω/C= 0,375 ml Coefficiente di attrito γ 0,36 i = pendenza della condotta i = 0,010 si ottiene: V = 3,36 ml/sec ( a sezione piena ) Q = 5,93 mc/sec > 4,527 Pertanto, alla luce del valore di portata massima Qz ottenuto per il bacino in questione largamente sovrastimato per tenere conto di eventuali difetti costruttivi e, tenuto conto del valore di portata massima della sezione a valle "tubolare Ø 1500", confermata dall'analisi del diagramma logaritmico per il calcolo delle velocità e delle portate delle sezioni tubolari (assumendo come pendenza la pendenza di progetto), la sezione risulta adeguatamente dimensionata.

19 BACINO 5 - TRATTO L' P' I (che recapita nella tipo VII esistente) Superficie bacino 4,52 ha (A) La formula empirica adottata nel calcolo è del tipo Qz = p * r * f * A ove: Qz = portata delle acque pluviali espressa in mc/sec A = area della superficie scolante espressa in ha r = coefficiente di ritardo f = coefficiente di restituzione p = afflusso meteorico espresso in mc/sec Superficie complessiva lotto (A) ha 4,522 Superfici Intensivo (S1) ha - % Superficie a verde (S2) ha 0,836 18,50 % Superficie semintensiva (S3) ha 2,649 58,59 % Strade e Parcheggi (S4) ha 1,036 22,91 % Lunghezza fognatura di raccolta ml 244 r = 1/ 6 (A) r 0,68 Coefficiente di restituzione ( f ) Superfici lastricate (S1) coeff. 0,90 Aree verdi (S2) coeff. 0,10 Sup.Semintensiva(S3) coeff. 0,50 Strade e Parcheggi (S4) coeff. 1,00 f = 0,541 f = (S1*0.9+S2*0,10+S3*0,5+S4*1) / Superficie Bacino

20 Coefficiente di afflusso meteorico ( p ) Il valore massimo dell'intensità (afflusso meteorico) si avrà per una durata di pioggia pari al tempo di corrivazione dal bacino, che equivale al tempo che l'acqua impiega a percorrere la distanza dal punto di caduta più distante nel bacino (a monte) al punto di uscita a valle del bacino stesso (sezione di uscita). Se si indica H l'altezza di pioggia (espressa in mm) caduta nel tempo T (espresso in ore), l'intensità media oraria i sarà data dall'espressione: i = H /T mm/ora Di conseguenza p sarà espresso dalla formula: (1/1000)ml * mq i p = = mc/sec ha sec 360 Il tempo T in ore, di durata della pioggia da introdurre nel calcolo, sarà determinato nel modo seguente. Si suppone una velocità media dell'acqua nella fogna di 1m/sec; di conseguenza il tempo di corrivazione, cioè il tempo che l'acqua caduta per pioggia all'inizio del bacino a monte, impiega a percorrere la distanza L e raggiungere la sezione estrema della fogna a valle, sarà dato da: T = L / sec in ore Al tempo T si aggiunge un tempo t, variabile tra 0,050 e 0,083 di ora, per tener conto del tempo che la prima acqua caduta sui tetti, cortili, strade, all'inizio del bacino, impiega per raggiongere i fognoli privati e quelli stradali per la raccolta che sono collegati alla fogna principale. Pertanto il tempo di durata della pioggia critica, che rende massima la portata Qz, risulta: Ttot = T+ t Noto Ttot in funzione della superfice del bacino, i valori di H e di i si possono ricavare o dai grafici comunemente usati, oppure direttamente dalle tabelle I e II, a seconda che Ttot 1,586 ora, oppure Ttot 1,586 ora. Noti H ed i, si può ricavare il coefficiente di afflusso meteorico p. Tc = L/ ,05 = 0,118 ore Per determinare un valore di altezza dell'acqua corrispondente ad una durata di pioggia T=Tc (valore precedentemente determinato) oltre che ai grafici sopra illustrati, si può fare ricorso, con buona approssimazione, alla formula comunemente adottata dal Comune di Roma per le verifiche H= 111,60 * T 0,73, il cui valorera corrisponde alla prima curva critica in caso di piogge intense per la zona di Roma. H = 111,6 * Tc 0,73 = 23,407 mm Per determinare l'intensità di pioggia i useremo l'espressione i = H /Tc = 198,859 mm/h Il coefficiente di afflusso meteorico p sarà p= i /360 = 0,552 mc/sec*h La portata massima delle acque di origine metrorica per il bacino in questione sarà:

21 Qz4 = p * r * f * A (ha) = 0,915 mc/sec Verifica della portata max sezione Ø 1000 Si procede nel calcolo della portata e della velocità in base alle pendenze adottate mediante il metodo di Chezy- Bazin: La velocità V si può ricavare dalla formula di Chezy nella forma seguente: V = K Rm i e dalla seconda relazione di Bazin: Rm K = = γ/ Rm Rm + γ La portata Q può essere espressa nella forma Q = Ώ * V si arriva alla formula finale per ricavare la portata specifica Q a sezione piena Q = 87 Ώ Rm i Rm + γ Assumendo un coefficiente di scabrezza (formula di Bazin) γ = 0,32, e ricordando che il raggio medio Rm=C/Ω, i dati per la sezione Ø 1000 saranno: Q = portata in mc/sec V = velocità in m/sec Ω = area della sezione bagnata in mq C = contorno (perimetro) della sezione bagnata in ml Rm = Raggio medio della sezione bagnata in ml i = pendenzadella condotta

22 Diametro della sezione in m 1,00 ml Area della sezione A in mq Ω = 0,7850 mq Contorno bagnato C in ml C = 3,1400 ml Raggio medio idraulico Rm Rm=Ω/C= 0,250 ml Coefficiente di attrito γ 0,36 i = pendenza della condotta i = 0,010 si ottiene: V = 2,53 ml/sec ( a sezione piena ) Q = 1,99 mc/sec > 0,915 Pertanto, alla luce del valore di portata massima Qz ottenuto per il bacino in questione largamente sovrastimato per tenere conto di eventuali difetti costruttivi e, tenuto conto del valore di portata massima della sezione a valle "tubolare Ø 1000", confermata dall'analisi del diagramma logaritmico per il calcolo delle velocità e delle portate delle sezioni tubolari (assumendo come pendenza la pendenza di progetto), la sezione risulta adeguatamente dimensionata.

PROGETTO DI UNA RETE FOGNARIA Roma Castellaccio comparto 2

PROGETTO DI UNA RETE FOGNARIA Roma Castellaccio comparto 2 Oggetto Corso Docente PROGETTO DI UNA RETE FOGNARIA Roma Castellaccio comparto 2 PROTEZIONE IDRAULICA DEL TERRITORIO (2 MODULO) Ingegneria Civile Prof. Corrado Paolo Mancini Berti Andrea Campolese Mattia

Dettagli

IMPIANTI DI PRIMA PIOGGIA. Divisione Depurazione E DISSABBIATORI DEGRASSATORI VASCHE BIOLOGICHE TIPO IMHOFF VASCHE SETTICHE FANGHI ATTIVI IMPIANTI A

IMPIANTI DI PRIMA PIOGGIA. Divisione Depurazione E DISSABBIATORI DEGRASSATORI VASCHE BIOLOGICHE TIPO IMHOFF VASCHE SETTICHE FANGHI ATTIVI IMPIANTI A DI PRIMA PIOGGIA Divisione Depurazione 87 1. - TRATT TTAMENTO DELLE ACQUE IN ACCUMULO (DA 500 A 12.000 M 2 ) 2. IPC - TRATT TTAMENTO DELLE ACQUE DI PIOGGIA IN CONTINUO (DA 270 A 7.200 M 2 ) 88 Divisione

Dettagli

VASCHE DI PRIMA PIOGGIA

VASCHE DI PRIMA PIOGGIA Criteri di progettazione, realizzazione e gestione VASCHE DI PRIMA PIOGGIA e VASCHE DI LAMINAZIONE nell ambito dei sistemi fognari GETTO FINALE gno - 1d disegno - 5d disegno - 4d GETTO FINALE ASPIRAZIONE

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

IMPIANTI DI SEPARAZIONE FANGHI E OLI DEV + NEUTRAcom DEV + NEUTRAsed + NEUTRAstar

IMPIANTI DI SEPARAZIONE FANGHI E OLI DEV + NEUTRAcom DEV + NEUTRAsed + NEUTRAstar IMPIANTI DI SEPARAZIONE FANGHI E OLI DEV + NEUTRAcom DEV + NEUTRAsed + NEUTRAstar Pozzoli depurazione s.r.l. via M.Quadrio 11, 23022 Chiavenna SO P.IVA: 01263260133, REA: 61186, Telefono 0343 37475 (3

Dettagli

CIRCOLARE DEL MINISTERO DEI LAVORI PUBBLICI, N. 11633. (Pres. Cons. Sup. - Serv. Tecn. Centrale, 7 gennaio 1974)

CIRCOLARE DEL MINISTERO DEI LAVORI PUBBLICI, N. 11633. (Pres. Cons. Sup. - Serv. Tecn. Centrale, 7 gennaio 1974) CIRCOLARE DEL MINISTERO DEI LAVORI PUBBLICI, N. 11633 (Pres. Cons. Sup. - Serv. Tecn. Centrale, 7 gennaio 1974) Istruzioni per la progettazione delle fognature e degli impianti di trattamento delle acque

Dettagli

ANALISI PREZZI AGGIUNTIVI

ANALISI PREZZI AGGIUNTIVI PA.01 Oneri di discarica valutati a mc misurato sul volume effettivo di scavo o demolizione. Oneri di discarica MC 1.000 24.76 24.76 TOTALE 24.76 PREZZO TOTALE PER MC 24.76 Pagina 1 di 11 PA.02 Fornitura

Dettagli

COMUNE DI SCARNAFIGI PROVINCIA DI CUNEO

COMUNE DI SCARNAFIGI PROVINCIA DI CUNEO COMUNE DI SCARNAFIGI PROVINCIA DI CUNEO OGGETTO : PIANO ESECUTIVO CONVENZIONATO PER L AREA D1 DELLA ZONA P1.8 DEL P.R.G.C. RIF. CATASTALI : FOGLIO 26 MAPP.NN.232(ex36/a), 233(ex37/a, 112, 130, 136, 171,

Dettagli

Manuale tecnico di progettazione

Manuale tecnico di progettazione Manuale tecnico di progettazione Informazioni tecniche, tabelle di calcolo, descrizioni di capitolato Adduzione idrica e riscaldamento Scarico e pluviali Indice Impianti di scarico Considerazioni generali

Dettagli

GEOTECNICA. ing. Nunziante Squeglia 13. OPERE DI SOSTEGNO. Corso di Geotecnica Corso di Laurea in Ingegneria Edile - Architettura

GEOTECNICA. ing. Nunziante Squeglia 13. OPERE DI SOSTEGNO. Corso di Geotecnica Corso di Laurea in Ingegneria Edile - Architettura GEOTECNICA 13. OPERE DI SOSTEGNO DEFINIZIONI Opere di sostegno rigide: muri a gravità, a mensola, a contrafforti.. Opere di sostegno flessibili: palancole metalliche, diaframmi in cls (eventualmente con

Dettagli

III.8.2 Elementi per il bilancio idrico del lago di Bracciano

III.8.2 Elementi per il bilancio idrico del lago di Bracciano III.8.2 Elementi per il bilancio idrico del lago di Bracciano (Fabio Musmeci, Angelo Correnti - ENEA) Il lago di Bracciano è un importante elemento del comprensorio della Tuscia Romana che non può non

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

GIRO DELLA MORTE PER UN CORPO CHE SCIVOLA

GIRO DELLA MORTE PER UN CORPO CHE SCIVOLA 8. LA CONSERVAZIONE DELL ENERGIA MECCANICA IL LAVORO E L ENERGIA 4 GIRO DELLA MORTE PER UN CORPO CHE SCIVOLA Il «giro della morte» è una delle parti più eccitanti di una corsa sulle montagne russe. Per

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

/ * " 6 7 -" 1< " *,Ê ½, /, "6, /, Ê, 9Ê -" 1/ " - ÜÜÜ Ìi «V Ì

/ *  6 7 - 1<  *,Ê ½, /, 6, /, Ê, 9Ê - 1/  - ÜÜÜ Ìi «V Ì LA TRASMISSIONE DEL CALORE GENERALITÀ 16a Allorché si abbiano due corpi a differenti temperature, la temperatura del corpo più caldo diminuisce, mentre la temperatura di quello più freddo aumenta. La progressiva

Dettagli

AVVISO PUBBLICO RENDE NOTO

AVVISO PUBBLICO RENDE NOTO Regione Puglia COMUNE DI VICO DEL GARGANO Provincia di Foggia - Ufficio Tecnico Comunale - III SETTORE - Largo Monastero, civ.6 e-mail aimolaelio@fastwebnet.it. e-mail aimolaelio@comune.vicodelgargano.fg.it

Dettagli

Le perdite d'acqua si definiscono con riferimento al deflusso superficiale (opportunamente definito) alla sezione di chiusura del bacino.

Le perdite d'acqua si definiscono con riferimento al deflusso superficiale (opportunamente definito) alla sezione di chiusura del bacino. Il bacino può essere inteso come volume di controllo che appoggia sulla superficie del suolo oppure sullo strato impermeabile sottostante agli acquiferi. I fenomeni di trasporto di acqua attraverso il

Dettagli

Analogia tra il circuito elettrico e il circuito idraulico

Analogia tra il circuito elettrico e il circuito idraulico UNIVERSITÁ DEGLI STUDI DELL AQUILA Scuola di Specializzazione per la Formazione degli Insegnanti nella Scuola Secondaria Analogia tra il circuito elettrico e il circuito idraulico Prof. Umberto Buontempo

Dettagli

percorso fatto sul tratto orizzontale). Determinare il lavoro (minimo) e la potenza minima del motore per percorrere un tratto.

percorso fatto sul tratto orizzontale). Determinare il lavoro (minimo) e la potenza minima del motore per percorrere un tratto. Esercizio 1 Una pietra viene lanciata con una velocità iniziale di 20.0 m/s contro una pigna all'altezza di 5.0 m rispetto al punto di lancio. Trascurando ogni resistenza, calcolare la velocità della pietra

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

OPERE DI SOSTEGNO determinare le azioni esercitate dal terreno sulla struttura di sostegno;

OPERE DI SOSTEGNO determinare le azioni esercitate dal terreno sulla struttura di sostegno; OPERE DI SOSTEGNO Occorre: determinare le azioni esercitate dal terreno sulla struttura di sostegno; regolare il regime delle acque a tergo del muro; determinare le azioni esercitate in fondazione; verificare

Dettagli

IL MOTO. 1 - Il moto dipende dal riferimento.

IL MOTO. 1 - Il moto dipende dal riferimento. 1 IL MOTO. 1 - Il moto dipende dal riferimento. Quando un corpo è in movimento? Osservando la figura precedente appare chiaro che ELISA è ferma rispetto a DAVIDE, che è insieme a lei sul treno; mentre

Dettagli

AUTOCALCOLO ONERI RELATIVI ALLA PRATICA DI:

AUTOCALCOLO ONERI RELATIVI ALLA PRATICA DI: COMUNE DI FINALE EMILIA (Provincia di Modena) P.zza Verdi, 1 41034 Finale Emilia (Mo) Tel. 0535-788111 fa 0535-788130 Sito Internet: www.comunefinale.net SERVIZIO URBANISTICA E EDILIZIA PRIVATA AUTOCALCOLO

Dettagli

ISTRUZIONI PER LA PROGETTAZIONE DEI SISTEMI DI PROTEZIONE CONTRO LE CADUTE DALL ALTO

ISTRUZIONI PER LA PROGETTAZIONE DEI SISTEMI DI PROTEZIONE CONTRO LE CADUTE DALL ALTO Dipartimento di Prevenzione SERVIZIO SPISAL Via S. Andrea, 8 32100 Belluno Tel. 0437 516927 Fax 0437 516923 e-mail: serv.spisal.bl@ulss.belluno.it Dipartimento di Prevenzione SERVIZIO SPISAL Via Borgo

Dettagli

OPERE PREFABBRICATE INDUSTRIALI

OPERE PREFABBRICATE INDUSTRIALI Cap. XIV OPERE PREFABBRICATE INDUSTRIALI PAG. 1 14.1 OPERE COMPIUTE Opere prefabbricate in cemento armato. Prezzi medi praticati dalle imprese specializzate del ramo per ordinazioni dirette (di media entità)

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Esempi introduttivi Variabili casuali Eventi casuali e probabilità

Esempi introduttivi Variabili casuali Eventi casuali e probabilità Esempi introduttivi Esempio tipico di problema della meccanica razionale: traiettoria di un proiettile. Esempio tipico di problema idraulico: altezza d'acqua corrispondente a una portata assegnata. Come

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica Potenziale Elettrico Q V 4pe 0 R Q 4pe 0 r C R R R r r B q B r A A independenza dal cammino Superfici Equipotenziali Due modi per analizzare i problemi Con le forze o i campi (vettori) per determinare

Dettagli

Filtri attivi del primo ordine

Filtri attivi del primo ordine Filtri attivi del primo ordine Una sintesi non esaustiva degli aspetti essenziali (*) per gli allievi della 4 A A T.I.E. 08-09 (pillole per il ripasso dell argomento, da assumere in forti dosi) (*) La

Dettagli

COMPUTO METRICO ESTIMATIVO DI RIFERIMENTO

COMPUTO METRICO ESTIMATIVO DI RIFERIMENTO A l l e g a t o A COMPUTO METRICO ESTIMATIVO DI RIFERIMENTO (ERRATA CORRIGE AL C.M.E. ALLEGATO ALLA GARA ED INSERITO SUL WEB) PROPRIETA ANCONAMBIENTE S.P.A. VIA DEL COMMERCIO 27, 60127 ANCONA OGGETTO OPERE

Dettagli

(Omissis) Art. 1. (Campo di applicazione).

(Omissis) Art. 1. (Campo di applicazione). DECRETO MINISTERIALE 2 aprile 1968, n. 1444 (pubblicato nella g. u. 16 aprile 1968, n. 97). Limiti inderogabili di densità edilizia, di altezza, di distanza fra i fabbricati e rapporti massimi tra spazi

Dettagli

Calcolo delle linee elettriche a corrente continua

Calcolo delle linee elettriche a corrente continua Calcolo delle linee elettriche a corrente continua Il calcolo elettrico delle linee a corrente continua ha come scopo quello di determinare la sezione di rame della linea stessa e la distanza tra le sottostazioni,

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO

MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO MECCANISMO RESISTENTE A PETTINE Un elemento di calcestruzzo tra due fessure consecutive si può schematizzare come una mensola incastrata nel corrente

Dettagli

Università degli studi di Firenze

Università degli studi di Firenze Università degli studi di Firenze Corso di Laurea Magistrale in Ingegneria per la Tutela dell Ambiente e il Territorio Anno Accademico 2010-2011 Progettazione preliminare di un sistema di casse di laminazione

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

Comune di Frascati Provincia di Roma RELAZIONE TECNICA. Progetto per la realizzazione della rete fognante interna ai L.N.F. ed il

Comune di Frascati Provincia di Roma RELAZIONE TECNICA. Progetto per la realizzazione della rete fognante interna ai L.N.F. ed il Comune di Frascati Provincia di Roma pag. 1 RELAZIONE TECNICA OGGETTO: Progetto per la realizzazione della rete fognante interna ai L.N.F. ed il suo collegamento al collettore ACEA lungo Via Enrico Fermi.

Dettagli

INDICE. 1. Recupero ambientale..pag.2. 2. Calcolo economico delle operazioni di recupero ambientale...3

INDICE. 1. Recupero ambientale..pag.2. 2. Calcolo economico delle operazioni di recupero ambientale...3 INDICE 1. Recupero ambientale..pag.2 2. Calcolo economico delle operazioni di recupero ambientale....3 M.F.G. service s.a.s. di A.L Incesso 1. Recupero ambientale Istanza di ampliamento di calcare Prima

Dettagli

IMPIANTI FOTOVOLTAICI IN CONTO ENERGIA

IMPIANTI FOTOVOLTAICI IN CONTO ENERGIA IMPIANTI FOTOVOLTAICI IN CONTO ENERGIA Un impianto solare fotovoltaico consente di trasformare l energia solare in energia elettrica. Non va confuso con un impianto solare termico, che è sostanzialmente

Dettagli

QUADRO GENERALE DELLE PARTICELLE CATASTALI RICADENTI NELLA PERIMETRAZIONE DELLA VARIANTE AL PIANO PARTICOLAREGGIATO DELL'AREA COLLINARE

QUADRO GENERALE DELLE PARTICELLE CATASTALI RICADENTI NELLA PERIMETRAZIONE DELLA VARIANTE AL PIANO PARTICOLAREGGIATO DELL'AREA COLLINARE QUADRO GENERALE DELLE PARTICELLE CATASTALI RICADENTI NELLA PERIMETRAZIONE DELLA VARIANTE AL PIANO PARTICOLAREGGIATO DELL'AREA COLLINARE foglio mappale dimensione in mq 23 42 1.388 mq 23 35 1.354 mq 23

Dettagli

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0 1 ) Un veicolo che viaggia inizialmente alla velocità di 1 Km / h frena con decelerazione costante sino a fermarsi nello spazio di m. La sua decelerazione è di circa: A. 5 m / s. B. 3 m / s. C. 9 m / s.

Dettagli

REGIMAZIONE DELLE ACQUE IN ECCESSO

REGIMAZIONE DELLE ACQUE IN ECCESSO REGIMAZIONE DELLE ACQUE IN ECCESSO Interventi tecnici per regolare il deflusso della massa idrica eccedente (senza compromettere la costituzione di adeguate riserve idriche) Problemi In pianura: flussi

Dettagli

Effetto reddito ed effetto sostituzione.

Effetto reddito ed effetto sostituzione. . Indice.. 1 1. Effetto sostituzione di Slutsky. 3 2. Effetto reddito. 6 3. Effetto complessivo. 7 II . Si consideri un consumatore che può scegliere panieri (x 1 ; ) composti da due soli beni (il bene

Dettagli

Trattasi di un edificio monopiano con sito d impianto su suolo costituito da n. 4

Trattasi di un edificio monopiano con sito d impianto su suolo costituito da n. 4 1. Descrizione della struttura portante Trattasi di un edificio monopiano con sito d impianto su suolo costituito da n. 4 terrazzamenti delimitati da preesistenti muri di sostegno. L edificio è suddiviso

Dettagli

Domanda di autorizzazione all'allacciamento e allo scarico di acque reflue domestiche nella rete fognaria

Domanda di autorizzazione all'allacciamento e allo scarico di acque reflue domestiche nella rete fognaria DOMANDA DI AUTORIZZAZIONE ALL'ALLACCIAMENTO ED AMMISSIONE AL SERVIZIO DI FOGNATURA E DEPURAZIONE PER SCARICO DI ACQUE REFLUE DOMESTICHE NELLA RETE FOGNARIA PROVENIENTI DA UN INSEDIAMENTO RESIDENZIALE (La

Dettagli

Progetto di un alimentatore con Vo = +5 V e Io = 1 A

Progetto di un alimentatore con Vo = +5 V e Io = 1 A Progetto di un alimentatore con o +5 e Io A U LM7805/TO IN OUT S F T 5 4 8 - ~ ~ + + C GND + C + C3 3 R D LED Si presuppongono noti i contenuti dei documenti Ponte di Graetz Circuito raddrizzatore duale

Dettagli

(omissis) ALLEGATO 5 - NORME TECNICHE GENERALI. (omissis)

(omissis) ALLEGATO 5 - NORME TECNICHE GENERALI. (omissis) Deliberazione Comitato per la tutela delle acque dall'inquinamento 04.02.1977 Criteri, metodologie e norme tecniche generali di cui all'art. 2, lettere b), d) ed e), della legge 10 maggio 1976, n. 319,

Dettagli

Prof. Ing. Alberto Pistocchi, Ing Davide Broccoli. Ing Stefano Bagli, PhD. Ing Paolo Mazzoli. Torino, 9-10 Ottobre 2013. Italian DHI Conference 2013

Prof. Ing. Alberto Pistocchi, Ing Davide Broccoli. Ing Stefano Bagli, PhD. Ing Paolo Mazzoli. Torino, 9-10 Ottobre 2013. Italian DHI Conference 2013 Implementazione di un modello dinamico 3D densità a dipendente all'interno di un sistema Web-GIS per la gestione e il monitoraggio della qualità delle acque di falda per un comparto di discariche Prof.

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α?

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? QUESITO 1 Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? Applicando il Teorema dei seni si può determinare il valore di senza indeterminazione, in quanto dalla

Dettagli

REGOLAMENTO DEI SERVIZI DI FOGNATURA E DEPURAZIONE

REGOLAMENTO DEI SERVIZI DI FOGNATURA E DEPURAZIONE COMUNE di SAMBUCA DI SICILIA Provincia Regionale di Agrigento REGOLAMENTO DEI SERVIZI DI FOGNATURA E DEPURAZIONE Il CAPO AREA TECNICA Geom. Maniscalco Giovanni PREMESSA In forza della sopravvenuta legge

Dettagli

SCHEMA DI NORME TECNICHE DI ATTUAZIONE SUA

SCHEMA DI NORME TECNICHE DI ATTUAZIONE SUA NTA di SUA di iniziativa privata SCHEMA DI NORME TECNICHE DI ATTUAZIONE SUA.. INDICE ART. 1 AMBITO DI APPLICAZIONE... pag. 2 ART. 2 ELABORATI DEL PIANO...» 2 ART. 3 DATI COMPLESSIVI DEL PIANO...» 2 ART.

Dettagli

MOTORI ECCITAZIONE SERIE DERIVATA COMPOSTA 2-3-4-5-6 MORSETTI MOTORI ECCITAZIONE SEPARATA 24-48

MOTORI ECCITAZIONE SERIE DERIVATA COMPOSTA 2-3-4-5-6 MORSETTI MOTORI ECCITAZIONE SEPARATA 24-48 Motori elettrici in corrente continua dal 1954 Elettropompe oleodinamiche sollevamento e idroguida 1200 modelli diversi da 200W a 50kW MOTORI ECCITAZIONE SERIE DERIVATA COMPOSTA 2-3-4-5-6 MORSETTI MOTORI

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

CADUTA DALL ALTO E LINEE VITA LA LEGGE PAROLARI

CADUTA DALL ALTO E LINEE VITA LA LEGGE PAROLARI CORSO DI AGGIORNAMENTO PER LA FORMAZIONE DELLE COMPETENZE PROFESSIONALI IN MATERIA DI SICUREZZA NEI CANTIERI EDILI ALLA LUCE DELL ENTRATA IN VIGORE DEL NUOVO TESTO UNICO SULLA SICUREZZA D.Lgs. 9 aprile

Dettagli

Relazione tecnica. Interferenze

Relazione tecnica. Interferenze Relazione tecnica L autorimessa interrata di Via Camillo Corsanego, viene realizzata nel V Municipio ai sensi della Legge 122/89 art.9 comma 4 (Legge Tognoli). Il dimensionamento dell intervento è stato

Dettagli

Domanda di autorizzazione allo scarico in corpo ricettore diverso dalla fognatura. .Sottoscritt.. nato a... il. residente/ con sede a... Via.. n..

Domanda di autorizzazione allo scarico in corpo ricettore diverso dalla fognatura. .Sottoscritt.. nato a... il. residente/ con sede a... Via.. n.. DOMANDA DI AUTORIZZAZIONE ALLO SCARICO DI ACQUE REFLUE DOMESTICHE CHE NON RECAPITANO NELLA RETE FOGNARIA (La domanda dovrà essere compilata su carta legale o resa legale). Al Signor Sindaco del Comune

Dettagli

Circolare 26 MARZO 1966 N. 12480

Circolare 26 MARZO 1966 N. 12480 Circolare 26 MARZO 1966 N. 12480 Ministero dei lavori pubblici Direzione generale edilizia statale e sovvenzionata div. XVI-bis: Norme per i collaudi dei fabbricati costruiti da cooperative edilizie fruenti

Dettagli

NUOVI STRUMENTI OTTICI PER IL CONTROLLO DI LABORATORIO E DI PROCESSO

NUOVI STRUMENTI OTTICI PER IL CONTROLLO DI LABORATORIO E DI PROCESSO NUOVI STRUMENTI OTTICI PER IL CONTROLLO DI LABORATORIO E DI PROCESSO Mariano Paganelli Expert System Solutions S.r.l. L'Expert System Solutions ha recentemente sviluppato nuove tecniche di laboratorio

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

ISTITUTO AUTONOMO PER LE CASE POPOLARI

ISTITUTO AUTONOMO PER LE CASE POPOLARI ISTITUTO AUTONOMO PER LE CASE POPOLARI DELLA PROVINCIA DI CASERTA SETTORE TECNICO UFFICIO PROGETTAZIONE INTERVENTI E.R.S. E M.O. LAVORI DI MANUTENZIONE ORDINARIA EDILE ELENCO PREZZI UNITARI RESP. UFFICIO

Dettagli

VALUTAZIONE DELLE RISERVE PRESTAZIONALI DEGLI EDIFICI IN TERRA DI CORRIDONIA (MC) RISPETTO ALL USO ATTUALE: LA SICUREZZA SISMICA

VALUTAZIONE DELLE RISERVE PRESTAZIONALI DEGLI EDIFICI IN TERRA DI CORRIDONIA (MC) RISPETTO ALL USO ATTUALE: LA SICUREZZA SISMICA VALUTAZIONE DELLE RISERVE PRESTAZIONALI DEGLI EDIFICI IN TERRA DI CORRIDONIA (MC) RISPETTO ALL USO ATTUALE: LA SICUREZZA SISMICA ISTITUTO DI EDILIZIA ISTITUTO DI SCIENZA E TECNICA DELLE COSTRUZIONI TESI

Dettagli

Macchine rotanti. Premessa

Macchine rotanti. Premessa Macchine rotanti Premessa Sincrono, asincrono, a corrente continua, brushless sono parecchi i tipi di motori elettrici. Per ognuno teoria e formule diverse. Eppure la loro matrice fisica è comune. Unificare

Dettagli

Esercitazione VIII - Lavoro ed energia II

Esercitazione VIII - Lavoro ed energia II Esercitazione VIII - Lavoro ed energia II Forze conservative Esercizio Una pallina di massa m = 00g viene lanciata tramite una molla di costante elastica = 0N/m come in figura. Ammesso che ogni attrito

Dettagli

5 I COEFFICIENTI CORRETTIVI

5 I COEFFICIENTI CORRETTIVI 5 I COEFFICIENTI CORRETTIVI In questo capitolo, dopo aver definito il concetto di «coefficienti correttivi», verranno esaminati nel dettaglio i coefficienti di riduzione previsti dalla Circolare del Ministero

Dettagli

COMUNE DI LENDINARA Provincia di Rovigo REGOLAMENTO COMUNALE PER LA DIFESA DELL ASSETTO IDRAULICO DEL TERRITORIO

COMUNE DI LENDINARA Provincia di Rovigo REGOLAMENTO COMUNALE PER LA DIFESA DELL ASSETTO IDRAULICO DEL TERRITORIO COMUNE DI LENDINARA Provincia di Rovigo REGOLAMENTO COMUNALE PER LA DIFESA DELL ASSETTO IDRAULICO DEL TERRITORIO Approvato con Delibera di Consiglio Comunale n 74 del 30.11.2009 ESECUTIVO DAL 28.12.2009

Dettagli

Associazione per l Insegnamento della Fisica Giochi di Anacleto 2014 - Soluzioni a Domande e Risposte

Associazione per l Insegnamento della Fisica Giochi di Anacleto 2014 - Soluzioni a Domande e Risposte 9ik8ujm Quesito 1 Risposta B Associazione per l Insegnamento della Fisica La formazione di una stella è dovuta alla contrazione gravitazionale di una nube di gas e polveri Da una stessa nube generalmente

Dettagli

Num.Ord. TARIFFA E L E M E N T I unitario TOTALE ANALISI DEI PREZZI

Num.Ord. TARIFFA E L E M E N T I unitario TOTALE ANALISI DEI PREZZI pag. 2 Nr. 1 CHIUSURA MASSICCIATA STRADALE eseguita con fornitura e messa in opera di materiale D.0001.3 di saturazione formato esclusivamente con pietrisco minuto di cava dello spessore di mm 0-2, rispondente

Dettagli

Oggetto SEZIONE O «ONDE. Muscoli. ciliare. Cornea. Retina. Nervo ottico. Umore acqueo. A Figura 1. Gli elementi fondamentali dell'occhio

Oggetto SEZIONE O «ONDE. Muscoli. ciliare. Cornea. Retina. Nervo ottico. Umore acqueo. A Figura 1. Gli elementi fondamentali dell'occhio SEZIONE O «ONDE Cornea Umore acqueo Muscolo ciliare Retina Nervo ottico A Figura 1. Gli elementi fondamentali dell'occhio umano. La luce entra nell'occhio attraverso la cornea e il cristallino. Viene fecalizzata

Dettagli

Soluzione degli esercizi sul moto rettilineo uniformemente accelerato

Soluzione degli esercizi sul moto rettilineo uniformemente accelerato Liceo Carducci Volterra - Classe 3 a B Scientifico - Francesco Daddi - 8 novembre 00 Soluzione degli esercizi sul moto rettilineo uniformemente accelerato Esercizio. Un corpo parte da fermo con accelerazione

Dettagli

Analisi in regime sinusoidale (parte V)

Analisi in regime sinusoidale (parte V) Appunti di Elettrotecnica Analisi in regime sinusoidale (parte ) Teorema sul massimo trasferimento di potenza attiva... alore della massima potenza attiva assorbita: rendimento del circuito3 Esempio...3

Dettagli

Introduzione Metodo POT

Introduzione Metodo POT Introduzione Metodo POT 1 Un recente metodo di analisi dei valori estremi è un metodo detto POT ( Peak over thresholds ), inizialmente sviluppato per l analisi dei dati idrogeologici a partire dalla seconda

Dettagli

Esercizi sul moto rettilineo uniformemente accelerato

Esercizi sul moto rettilineo uniformemente accelerato Liceo Carducci Volterra - Classe 3 a B Scientifico - Francesco Daddi - 8 novembre 010 Esercizi sul moto rettilineo uniformemente accelerato Esercizio 1. Un corpo parte da fermo con accelerazione pari a

Dettagli

PROGETTO DI TOMBINATURA DEL RIO SALSO IN LOC. FRATTA TERME tratto con sponde libere ( m. 65 circa ) OPERE COMPUTATE 1 - SCAVI E DEMOLIZIONI

PROGETTO DI TOMBINATURA DEL RIO SALSO IN LOC. FRATTA TERME tratto con sponde libere ( m. 65 circa ) OPERE COMPUTATE 1 - SCAVI E DEMOLIZIONI PROGETTO DI TOMBINATURA DEL RIO SALSO IN LOC. FRATTA TERME tratto con sponde libere ( m. 65 circa ) OPERE COMPUTATE 1 - SCAVI E DEMOLIZIONI N. VOCE DESCRIZIONE LAVORAZIONE QUANTITA' PREZZO UNIT. TOTALE

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

PRINCIPI BASILARI DI ELETTROTECNICA

PRINCIPI BASILARI DI ELETTROTECNICA PRINCIPI BASILARI DI ELETTROTECNICA Prerequisiti - Impiego di Multipli e Sottomultipli nelle equazioni - Equazioni lineari di primo grado e capacità di ricavare le formule inverse - nozioni base di fisica

Dettagli

F U N Z I O N I. E LORO RAPPRESENTAZIONE GRAFICA di Carmine De Fusco 1 (ANCHE CON IL PROGRAMMA PER PC "DERIVE")

F U N Z I O N I. E LORO RAPPRESENTAZIONE GRAFICA di Carmine De Fusco 1 (ANCHE CON IL PROGRAMMA PER PC DERIVE) F U N Z I O N I E LORO RAPPRESENTAZIONE GRAFICA di Carmine De Fusco 1 (ANCHE CON IL PROGRAMMA PER PC "DERIVE") I N D I C E Funzioni...pag. 2 Funzioni del tipo = Kx... 4 Funzioni crescenti e decrescenti...10

Dettagli

COMUNE DI RONCO SCRIVIA Provincia di Genova. progetto preliminare relazione di progetto elaborati grafi ci * * *

COMUNE DI RONCO SCRIVIA Provincia di Genova. progetto preliminare relazione di progetto elaborati grafi ci * * * COMUNE DI RONCO SCRIVIA Provincia di Genova progetto preliminare relazione di progetto elaborati grafi ci ina 1 L Amministrazione comunale di Ronco Scrivia (provincia di Genova) intende integrare la dotazione

Dettagli

Cuscinetti a strisciamento e a rotolamento

Cuscinetti a strisciamento e a rotolamento Cuscinetti a strisciamento e a rotolamento La funzione dei cuscinetti a strisciamento e a rotolamento è quella di interporsi tra organi di macchina in rotazione reciproca. Questi elementi possono essere

Dettagli

Gli oneri concessori

Gli oneri concessori Laboratorio di di Progettazione Esecutiva dell Architettura 2 Modulo di Estimo Integrazione al costo di produzione: gli oneri concessori Proff. Coll. Renato Da Re Federica Di Piazza Gli oneri concessori

Dettagli

LEZIONE 5 Interazione Particelle Cariche-Materia

LEZIONE 5 Interazione Particelle Cariche-Materia LEZIONE 5 Interazione Particelle Cariche-Materia Particelle alfa Le particelle alfa interagiscono intensamente con la materia attraverso collisioni/interazioni che producono lungo la traccia una elevata

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

Aprile 2007. Prevenzione dei rischi di caduta dall alto nei lavori di manutenzione in quota su pareti e coperture

Aprile 2007. Prevenzione dei rischi di caduta dall alto nei lavori di manutenzione in quota su pareti e coperture LINEE GUIDA RELATIVE ALLE MISURE PREVENTIVE E PROTETTIVE DA PREDISPORRE NEGLI EDIFICI PER L ACCESSO, IL TRANSITO E L ESECUZIONE DEI LAVORI DI MANUTENZIONE IN QUOTA IN CONDIZIONI DI SICUREZZA Aprile 2007

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Tecniche di restauro vegetazionale nei lavori forestali della Provincia Autonoma di Trento La Plagne 13 giugno 2014

Tecniche di restauro vegetazionale nei lavori forestali della Provincia Autonoma di Trento La Plagne 13 giugno 2014 Tecniche di restauro vegetazionale nei lavori forestali della Provincia Autonoma di Trento La Plagne 13 giugno 2014 Gli interventi di ripristino vegetazionale rappresentano la fase conclusiva dei lavori

Dettagli

Seconda Legge DINAMICA: F = ma

Seconda Legge DINAMICA: F = ma Seconda Legge DINAMICA: F = ma (Le grandezze vettoriali sono indicate in grassetto e anche in arancione) Fisica con Elementi di Matematica 1 Unità di misura: Massa m si misura in kg, Accelerazione a si

Dettagli

Manuale dell operatore

Manuale dell operatore Technical Publications 20 Z-30 20HD Z-30 Manuale dell operatore Modelli precedenti al numero di serie 2214 First Edition, Second Printing Part No. 19052IT Sommario Pagina Norme di sicurezza... 3 Controllo

Dettagli

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA ANALISI EDIANTE LO SPETTRO DI RISPOSTA arco BOZZA * * Ingegnere Strutturale, già Direttore della Federazione regionale degli Ordini degli Ingegneri del Veneto (FOIV), Amministratore di ADEPRON DINAICA

Dettagli

ELABORAZIONE DEL VALORE MEDIO NELLE MISURE ELETTRONICHE

ELABORAZIONE DEL VALORE MEDIO NELLE MISURE ELETTRONICHE NOTE PER IL TECNICO ELABORAZIONE DEL VALORE MEDIO NELLE MISURE ELETTRONICHE da BRUEL & KJAER Le cosiddette «application notes» pubblicate a cura della Bruel & Kjaer, nota Fabbrica danese specializzata

Dettagli

FAC SIMILE PER LA NOTIFICA AI SENSI ART.67 DEL D.LGS.R DEL 09/04/2008 N. 81

FAC SIMILE PER LA NOTIFICA AI SENSI ART.67 DEL D.LGS.R DEL 09/04/2008 N. 81 CARTA SEMPLICE FAC SIMILE PER LA NOTIFICA AI SENSI ART.67 DEL D.LGS.R DEL 09/04/2008 N. 81 ALL A.S.L. N. CN2 ALBA BRA DIPARTIMENTO DI PREVENZIONE Servizio Prevenzione Sicurezza Ambienti di Lavoro Via Vida

Dettagli

COMUNE DI DONORI Provincia di Cagliari

COMUNE DI DONORI Provincia di Cagliari COMUNE DI DONORI Provincia di Cagliari - 2 COPIA- VERBALE DI ADUNANZA DEL CONSIGLIO COMUNALE Sessione Ordinaria Seduta Pubblica N. 2 Del 21.01.2010 OGGETTO: DETERMINAZIONE QUANTITA E QUALITA DELLE AREE

Dettagli

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della RELAZIONE TRA VARIABILI QUANTITATIVE Lezione 7 a Accade spesso nella ricerca in campo biomedico, così come in altri campi della scienza, di voler studiare come il variare di una o più variabili (variabili

Dettagli

Guida alla scelta Motori tubolari per tapparelle

Guida alla scelta Motori tubolari per tapparelle Nice Guida alla scelta La linea più completa di sistemi d automazione per tende, tapparelle e serrande. Guida alla scelta Motori tubolari per tapparelle Nice mette a Vostra disposizione questa semplice

Dettagli

OPERE SPECIALI PREFABBRICATI

OPERE SPECIALI PREFABBRICATI OPERE SPECIALI PREFABBRICATI (Circ. Min. 13/82) ISTRUZIONI SCRITTE (Articolo 21) Il fornitore dei prefabbricati e della ditta di montaggio, ciascuno per i settori di loro specifica competenza, sono tenuti

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli