Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24"

Transcript

1 Contenuto Endomorfismi auto-aggiunti. Matrici simmetriche. Il teorema spettrale Gli autovalori di una matrice simmetrica sono tutti reali. (Dimostrazione fatta usando i numeri complessi). Dimostrazione del teorema spettrale. Forme quadratiche. Riduzione a forma diagonale. Forme quadratiche definite, semidefinite, indefinite. Applicazioni geometriche: Riduzione di una conica agli assi principali. (Complementi) Decomposizione polare. Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24

2 Operatori auto-aggiunti. Matrici simmetriche Definizione V spazio vettoriale euclideo. Un endomorfismo F : V V si dice auto-aggiunto o simmetrico se, per ogni v, w V, (Fv) w = v (Fw) (1) Si dimostra facilmente il seguente: Teorema Se B = (v 1,..., v n ) è una base ortonormale, un endomorfismo F è auto-aggiunto se e solo se la sua matrice rispetto a B è simmetrica, cioè A = A t. Se A = A t è una matrice simmetrica, per ogni X, Y R n si ha AX Y = X AY (2) Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 2/24

3 Il teorema spettrale Teorema (Teorema spettrale) Sia A = A t una matrice reale simmetrica n n. Allora: 1 Tutti gli autovalori λ 1,..., λ n di A sono reali. 2 Autovettori relativi ad autovalori distinti sono ortogonali. 3 A è ortogonalmente diagonalizzabile. Questo significa che esiste una base ortonormale B di R n che è formata da autovettori di A. Dunque, esiste una matrice invertibile P per la quale A = P 1 AP = diag (λ 1,..., λ n ) (3) P è ortogonale (P 1 = P t ), perché le sue colonne sono i vettori della base ortonormale B. Dunque si può scrivere anche A = P 1 AP = P t AP = diag (λ 1,..., λ n ) (4) Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 3/24

4 Conseguenze della proprietà di simmetria Lemma 1 Gli autovalori di un operatore auto-aggiunto sono reali. Lemma 2 Autovettori di un operatore auto-aggiunto (o di una matrice simmetrica), relativi ad autovalori distinti, sono ortogonali. Lemma 3 Sia v un autovettore di un operatore auto-aggiunto F. Allora F trasforma il complemento ortogonale V 0 = v in sé. Dunque è definita la restrizione F V 0 F V 0 : V 0 V 0 In breve: il sottospazio V 0 = v è F-invariante. Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 4/24

5 Lemma 1: Gli autovalori di una matrice simmetrica sono reali. (Uso dei numeri complessi). Per il teorema fondamentale dell algebra, esiste un numero complesso λ = α + iω per il quale P A (λ) = 0. Ora proviamo che λ è reale (cioè, ω = 0). Idea: pensiamo alla matrice A come a un endomorfismo C n A C n Il numero λ è autovalore di A. Dunque, esiste un autovettore Z = X + iy in C n (X, Y R n ), z 1 x 1 + iy 1 Z = = Cn z n x n + iy n Si ha AZ = λz, ossia A(X + iy ) = (α + iω)(x + iy ) Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 5/24

6 Separando le parti reali e immaginarie, AX = αx ωy, AY = αy + ωx (5) Ricordare: la condizione di simmetria A = A t equivale a: AX Y = X AY (6) Allora, da (5) e (6) segue (αx ωy ) Y = X (αy + ωx) ossia ovvero α(x Y ) ω(y Y ) = α(x Y ) + ω(x X) ω ( X 2 + Y 2) = 0 Poiché X + iy = Z 0 (e quindi X 2 + Y 2 0), deve essere ω = 0. Conclusione: λ = α è un numero reale. Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 6/24

7 Lemma 2: Autovettori relativi ad autovalori distinti di una matrice simmetrica, sono ortogonali Siano X 1, X 2 autovettori della matrice simmetrica A, AX 1 = λ 1 X 1, AX 2 = λ 2 X 2, con autovalori distinti: λ 1 λ 2. Poiché A è simmetrica, (AX 1 ) X 2 = X 1 (AX 2 ) Quindi (λ 1 X 1 ) X 2 = X 1 (λ 2 X 2 ) ossia (λ 1 λ 2 )(X 1 X 2 ) = 0 Poiché λ 1 λ 2 0, si deve avere X 1 X 2 = 0. Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 7/24

8 Lemma 3: Se v è autovettore di F auto-aggiunto, il complemento ortogonale v è F-invariante Ipotesi: v V autovettore dell operatore autoaggiunto F, e w v, cioè Tesi: Fv = λv v w = 0 Fw appartiene a v, cioè La dimostrazione è semplice: (Fw) v = 0 (Fw) v = w (Fv) = w (λv) = λ(w v) = 0 Dunque, posto V 0 = v, la restrizione F V 0 trasforma V 0 in sé: F V 0 : V 0 V 0 Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 8/24

9 Dimostrazione del teorema spettrale Teorema spettrale Ogni endomorfismo auto-aggiunto su uno spazio vettoriale euclideo V ha una base ortonormale di autovettori. In breve: Ogni endomorfismo auto-aggiunto è ortogonalmente diagonalizzabile. Dimostrazione (Per induzione sulla dimensione n di V ) Base dell induzione: caso n = 1. Banale. Un qualunque vettore non nullo è autovettore. Per ottenere una base ortonormale, basta normalizzarlo. Supponiamo l enunciato vero in dimensione n 1. Sia F : V V auto-aggiunto, dim V = n. Abbiamo dimostrato che F possiede un autovettore v (che possiamo pensare unitario). Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 9/24

10 Dimostrazione del teorema spettrale (Continuazione). Dimostrazione (Continuazione) Il complemento ortogonale V 0 = v ha dimensione n 1 ed è F-invariante (Fatto 3). Consideriamo allora la restrizione F V 0 di F a V 0 : F V 0 : V 0 V 0 Per l ipotesi induttiva, l operatore autoaggiunto F V 0 possiede una base ortonormale v 1,..., v n 1 di autovettori. Allora v 1,..., v n 1, v è una base ortonormale di V formata da autovettori di F. Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 10/24

11 Operatore auto-aggiunto F Assi principali: V λ1, V λ2, (λ 1 λ 2 ) Fv 1 = λ 1 v 1 v 1 v 2 Base o.n. di autovettori Fv 2 = λ 2 v 2 S 1 F(S 1 ) Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 11/24

12 Forme quadratiche in due variabili Forma quadratica in due variabili La forma quadratica associata alla matrice simmetrica (A t = A) A = a b b c è il polinomio omogeneo di secondo grado in x 1, x 2 q(x) = X t AX = (AX) X dove X = x 1 x 2. Esplicitamente: X t AX = x 1 x 2 a b b c x 1 x 2 = ax bx 1x 2 + cx 2 2 Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 12/24

13 Forme quadratiche in n variabili Definizione (Forme quadratiche su R n ) La forma quadratica in n variabili associata alla matrice simmetrica A, n n, è il polinomio omogeneo di secondo grado: R n q R, q(x) = X t AX = i,j=1,...,n a ij x i x j In modo equivalente, si può anche scrivere: q(x) = (AX) X Esempio: q(x 1, x 2, x 3 ) = x x x 2 3 è una forma quadratica in tre variabili. Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 13/24

14 Cambio di coordinate in una forme quadratica X = (x 1,..., x n ) t : Coordinate rispetto alla base canonica q(x) = X t AX: Forma quadratica. Cambio di variabili: X = PX. Il polinomio X t AX diventa (PX ) t A(PX ) = X t (P t AP) X Quindi la matrice A che rappresenta la forma quadratica, si trasforma in A = P t AP Una matrice A si dice congruente a A se esiste una P invertibile per la quale A = P t AP. (E una relazione di equivalenza). Dunque, la matrice A rappresentativa di una forma quadratica si trasforma per congruenza. Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 14/24

15 Diagonalizzazione di forme quadratiche Se A è una matrice diagonale diag (λ 1,..., λ n ), la forma quadratica q(x) = X t AX si scrive nella forma diagonale q(x 1,..., x n ) = λ 1 x λ n x 2 n Teorema (Ogni forma quadratica può essere scritta in forma diagonale) Sia q una forma quadratica su R n. Allora esiste una base ortonormale B di R n che diagonalizza q. Questo significa che, dette (x 1,..., x n) le coordinate rispetto a tale base, si ha q(x 1,..., x n) = λ 1 (x 1 )2 + + λ n (x n) 2 Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 15/24

16 Dimostrazione Per il teorema spettrale, esiste una matrice ortogonale P (di cambio di base) che diagonalizza A: A = P 1 AP = P t AP = diag (λ 1,..., λ n ) (7) Con il cambio di coordinate X = PX, la matrice rappresentativa della forma quadratica q si trasforma proprio nella matrice diagonale A = P t AP. Dunque, nelle coordinate X la forma quadratica si scrive in forma diagonale. Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 16/24

17 Classificazione: forme quadratiche definite e indefinite Definizione Una forma quadratica q(x) si dice: Definita positiva, se q(x) > 0 per ogni X 0. Esempio: q(x 1, x 2 ) = λ 1 x λ 2x 2 2, λ 1, λ 2 > 0 Definita negativa, se q(x) < 0 per ogni X 0. Esempio: q(x 1, x 2 ) = λ 1 x λ 2x 2 2, λ 1, λ 2 < 0 Indefinita, se assume sia valori positivi che valori negativi. Esempio: q(x 1, x 2 ) = λ 1 x λ 2x 2 2, λ 1 > 0, λ 2 < 0 Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 17/24

18 Classificazione: forme quadratiche semidefinite Definizione Una forma quadratica q(x) si dice: Semidefinita positiva, se q(x) 0. Esempio: q(x 1, x 2 ) = λ 1 x 2 1, λ 1 > 0, λ 2 = 0 Semidefinita negativa, se q(x) 0. Esempio: q(x 1, x 2 ) = λ 1 x 2 1, λ 1 < 0, λ 2 = 0 Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 18/24

19 Segnatura di una forma quadratica Una riduzione in foma diagonale di q sia: q(x 1,..., x n ) = λ 1 x λ n x 2 n, La segnatura di q(x) è la sequenza (+,.., +,,..,, 0,.., 0), dove i segni + (risp., i segni ) sono quanti i λ positivi (risp., negativi), e gli zeri quanti i λ nulli. Esempi: q(x 1, x 2, x 3 ) = x1 2 x 2 2 (+,, 0). q(x 1, x 2, x 3 ) = x1 2 + x 2 2 x 3 2 (+, +, ). La segnatura non dipende dalla particolare scrittura in forma diagonale (Teorema di inerzia, di Sylvester) e determina il tipo della forma quadratica q: Se i segni sono tutti +, è definita positiva; Se i segni sono tutti, è definita negativa; Se ci sono sia segni + che segni, è indefinita; Se ci sono solo segni + (o solo ) e almeno uno 0, è semidefinita. Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 19/24

20 Applicazione: studio di coniche Problema Classificare la conica (del piano) di equazione 3x x 1x 2 + 3x2 2 = 1 ( ) La matrice di q(x 1, x 2 ) = 3x x 1x 2 + 3x è A =. 1 3 Gli autovalori sono entrambi positivi: λ 1 = 2, λ 2 = 4. Con una opportuna rotazione degli assi, la forma quadratica si trasforma nella forma diagonale 2x x 2 = 1, o Si tratta di un ellisse. x 1 2 (1/ 2) + x (1/2) 2 = 1 Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 20/24

21 Riduzione di una conica agli assi principali y y v 2 x v 1 Assi principali di simmetria x ( ) 3x 2 + 2xy + 3y = 1, A =. λ = 2, λ 2 = 4, P = [ ( ) ] 2/2 2/2 v 1, v 2 = 2/2, (P t = P 1 ), X = PX. 2/2 Forma canonica: 2x 2 + 4y 2 = 1, ossia x 1 2 (1/ 2) + x (1/2) 2 = 1 Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 21/24

22 Applicazione: studio di quadriche Problema Classificare la quadrica (dello spazio) di equazione 2x x x x 2x 3 = 1 La matrice di q(x 1, x 2, x 3 ) = 2x x x x 2x 3 è A = Gli autovalori sono tutti positivi: λ 1 = 2, λ 2 = 4, λ 3 = 6. Con una opportuna rotazione degli assi, la forma quadratica si trasforma nella forma diagonale 2x x x 3 2 = 1, o x 2 1 (1/ 2) + x (1/2) 2 + x1 2 (1/ 6) = 1 2 È un ellissoide. Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 22/24

23 Decomposizione polare Teorema (Decomposizione polare) Sia T un operatore lineare invertibile di uno spazio vettoriale euclideo. Allora esistono, e sono unici, un operatore autoaggiunto S positivo (cioè, con autovalori positivi) e un operatore ortogonale Q (cioè, una isometria lineare), per i quali T = QS (8) Esistono anche, e sono unici, un operatore autoaggiunto positivo S e un operatore ortogonale Q, per i quali Si ha Q = Q e S = QSQ 1. T = S Q (9) Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 23/24

24 Decomposizione polare (Idea della dimostrazione) La dimostrazione si basa sul seguente fatto notevole (n = 2): Per ogni operatore lineare invertibile R 2 T R 2, esistono sempre due vettori unitari v 1, v 2 ortogonali tra loro, tali che i loro trasformati T (v 1 ), T (v 2 ) siano anch essi ortogonali tra loro. v 1 T v2 T v 1 v 2 T S 1 T (S 1 ) S: Operatore simmetrico che dilata gli assi di v 1, v 2, portando questi vettori a essere lunghi quanto T v 1, T v 2 ; Q: Isometria lineare che porta Sv 1, Sv 2 su T v 1, T v 2, rispettivamente. Allora, si ha T = QS. Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 24/24

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b :

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b : Forme bilineari e prodotti scalari Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione b : { V V K ( v, w) b( v, w), si dice forma bilineare su V se per ogni u, v, w V e per ogni k K:

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

3. SPAZI VETTORIALI CON PRODOTTO SCALARE

3. SPAZI VETTORIALI CON PRODOTTO SCALARE 3 SPAZI VETTORIALI CON PRODOTTO SCALARE 31 Prodotti scalari Definizione 311 Sia V SV(R) Un prodotto scalare su V è un applicazione, : V V R (v 1,v 2 ) v 1,v 2 tale che: i) v,v = v,v per ogni v,v V ; ii)

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2)) Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Applicazioni Lineari 1. Sia f : R 3 R 3 l applicazione lineare definita da f(x, y, z) = (x + ky + z, x y + 2z, x + y z) per ogni (x,

Dettagli

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f).

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f). Due Matrici A,B. Ker f = ker g. 1- Ridurre a scala A e B e faccio il sistema. 2 Se Vengono gli stessi valori allora, i ker sono uguali. Cauchy 1 autovalore, 1- Metto a matrice x1(0),x2(0),x3(0) e la chiamo

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

Numeri complessi e polinomi

Numeri complessi e polinomi Numeri complessi e polinomi 1 Numeri complessi L insieme dei numeri reali si identifica con la retta della geometria: in altri termini la retta si può dotare delle operazioni + e e divenire un insieme

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

LEZIONE 17. B : kn k m.

LEZIONE 17. B : kn k m. LEZIONE 17 17.1. Isomorfismi tra spazi vettoriali finitamente generati. Applichiamo quanto visto nella lezione precedente ad isomorfismi fra spazi vettoriali di dimensione finita. Proposizione 17.1.1.

Dettagli

Esercizi su Autovalori e Autovettori

Esercizi su Autovalori e Autovettori Esercizi su Autovalori e Autovettori Esercizio n.1 5 A = 5, 5 5 5 Esercizio n.6 A =, Esercizio n.2 4 2 9 A = 2 1 8, 4 2 9 Esercizio n.7 6 3 3 A = 6 3 6, 3 3 6 Esercizio n.3 A = 4 6 6 2 2, 6 6 2 Esercizio

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE 2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 INTRODUZIONE Il problema agli autovalori di un operatore La trattazione del problema agli autovalori di un operatore fatta negli spazi finitodimensionali

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

Richiami di algebra lineare e geometria di R n

Richiami di algebra lineare e geometria di R n Richiami di algebra lineare e geometria di R n combinazione lineare, conica e convessa spazi lineari insiemi convessi, funzioni convesse rif. BT.5 Combinazione lineare, conica, affine, convessa Un vettore

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

FOGLIO 4 - Applicazioni lineari. { kx + y z = 2 x + y kw = k. 2 k 1

FOGLIO 4 - Applicazioni lineari. { kx + y z = 2 x + y kw = k. 2 k 1 FOGLIO 4 - Applicazioni lineari Esercizio 1. Si risolvano i seguenti sistemi lineari al variare di k R. { x y + z + 2w = k x z + w = k 2 { kx + y z = 2 x + y kw = k Esercizio 2. Al variare di k R trovare

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Come evidenziare l informazione contenuta nei dati S. Marsili-Libelli: Calibrazione di Modelli Dinamici pag. Perche PCA? E un semplice metodo non-parametrico per estrarre

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

Teoremi di struttura dei moduli finitamente generati su un dominio euclideo

Teoremi di struttura dei moduli finitamente generati su un dominio euclideo Teoremi di struttura dei moduli finitamente generati su un dominio euclideo Appunti al corso di Algebra Anno accademico 23-24 1 Prodotti diretti. Siano M e N due moduli sullo stesso anello A, non necessariamente

Dettagli

Equazioni alle differenze finite (cenni).

Equazioni alle differenze finite (cenni). AL 011. Equazioni alle differenze finite (cenni). Sia a n } n IN una successione di numeri reali. (Qui usiamo la convenzione IN = 0, 1,,...}). Diremo che è una successione ricorsiva o definita per ricorrenza

Dettagli

OGNI SPAZIO VETTORIALE HA BASE

OGNI SPAZIO VETTORIALE HA BASE 1 Mimmo Arezzo OGNI SPAZIO VETTORIALE HA BASE CONVERSAZIONE CON ALCUNI STUDENTI DI FISICA 19 DICEMBRE 2006 2 1 Preliminari Definizione 1.0.1 Un ordinamento parziale (o una relazione d ordine parziale)

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Capitolo 2 Equazioni differenziali ordinarie 2.1 Formulazione del problema In questa sezione formuleremo matematicamente il problema delle equazioni differenziali ordinarie e faremo alcune osservazioni

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Note integrative ed Esercizi consigliati

Note integrative ed Esercizi consigliati - a.a. 2006-07 Corso di Laurea Specialistica in Ingegneria Civile (CIS) Note integrative ed consigliati Laura Poggiolini e Gianna Stefani Indice 0 1 Convergenza uniforme 1 2 Convergenza totale 5 1 Numeri

Dettagli

Analisi delle Corrispondenze Multiple Prof. Roberto Fantaccione

Analisi delle Corrispondenze Multiple Prof. Roberto Fantaccione Analisi delle Corrispondenze Multiple Prof. Roberto Fantaccione Consideriamo il nostro dataset formato da 468 individui e 1 variabili nominali costituite dalle seguenti modalità : colonna D: Age of client

Dettagli

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p =

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p = 5. Rette e piani in R 3 ; sfere. In questo paragrafo studiamo le rette, i piani e le sfere in R 3. Ci sono due modi per desrivere piani e rette in R 3 : mediante equazioni artesiane oppure mediante equazioni

Dettagli

GRUPPI TOPOLOGICI. 1 Gruppi Un gruppo è un insieme G, che contiene un elemento distinto e e su cui è definita un operazione binaria

GRUPPI TOPOLOGICI. 1 Gruppi Un gruppo è un insieme G, che contiene un elemento distinto e e su cui è definita un operazione binaria CAPITOLO I GRUPPI TOPOLOGICI 1 Gruppi Un gruppo è un insieme G, che contiene un elemento distinto e e su cui è definita un operazione binaria (1.1) G G (a, b) a b G con le proprietà: (i) a e = e a = a

Dettagli

L. Pandolfi. Lezioni di Analisi Matematica 2

L. Pandolfi. Lezioni di Analisi Matematica 2 L. Pandolfi Lezioni di Analisi Matematica 2 i Il testo presenta tre blocchi principali di argomenti: A Successioni e serie numeriche e di funzioni: Cap., e 2. B Questa parte consta di due, da studiarsi

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

Appunti ed esercizi. di Meccanica Razionale

Appunti ed esercizi. di Meccanica Razionale Appunti ed esercizi di Meccanica Razionale Università degli Studi di Trieste - Sede di Pordenone Facoltà di Ingegneria Appunti ed esercizi di Meccanica Razionale Luciano Battaia Versione del 29 dicembre

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA

QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA Michele Impedovo Bollettino dei Docenti di Matematica del Canton Ticino (CH) n 36, maggio 98. Il problema Il lavoro che

Dettagli

Capitolo Dodicesimo CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI

Capitolo Dodicesimo CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI Capitolo Dodicesimo CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI CAMPI SCALARI Sono dati: un insieme aperto A Â n, un punto x = (x, x 2,, x n )T A e una funzione f : A Â Si pone allora il PROBLEMA

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Anello commutativo. Un anello è commutativo se il prodotto è commutativo. Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e

Dettagli

Terne pitagoriche e teorema di Pitagora, numeri e triangoli. Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it

Terne pitagoriche e teorema di Pitagora, numeri e triangoli. Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it 3 4 5 Terne pitagoriche e teorema di Pitagora, numeri e triangoli Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it Qualche osservazione preliminare sul Teorema di Pitagora e le terne

Dettagli

Approssimazione polinomiale di funzioni e dati

Approssimazione polinomiale di funzioni e dati Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell

Dettagli

5 Radici primitive dell unità e congruenze del tipo

5 Radici primitive dell unità e congruenze del tipo 5 Radici primitive dell unità e congruenze del tipo X m a (mod n ) Oggetto di questo paragrafo è lo studio della risolubilità di congruenze del tipo: X m a (mod n) con m, n, a Z ed m, n > 0. Per l effettiva

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli I numeri complessi Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli 1 Introduzione Studiare i numeri complessi può sembrare inutile ed avulso dalla realtà;

Dettagli

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i NA. Operatore nabla Consideriamo una funzione scalare: f : A R, A R 3 differenziabile, di classe C (2) almeno. Il valore di questa funzione dipende dalle tre variabili: Il suo differenziale si scrive allora:

Dettagli

Lezione del 28-11-2006. Teoria dei vettori ordinari

Lezione del 28-11-2006. Teoria dei vettori ordinari Lezione del 8--006 Teoria dei vettori ordinari. Esercizio Sia B = {i, j, k} una base ortonormale fissata. ) Determinare le coordinate dei vettori v V 3 complanari a v =,, 0) e v =, 0, ), aventi lunghezza

Dettagli

f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire.

f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire. Consideriamo l insieme P dei punti del piano e una f funzione biiettiva da P in P: f : { P P A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

Il problema della fattorizzazione nei domini di Dedekind

Il problema della fattorizzazione nei domini di Dedekind Il problema della fattorizzazione nei domini di Dedekind Stefania Gabelli Dipartimento di Matematica, Università degli Studi Roma Tre Note per i corsi di Algebra Commutativa a.a. 2010/2011 1 Indice 1 Preliminari

Dettagli

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz:

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz: FUNZIONI DI PIU VARIABILI Esercizi svolti. Determinare il dominio delle seguenti funzioni e rappresentarlo graficamente : (a) f log( x y ) (b) f log(x + y ) (c) f y x 4 (d) f sin(x + y ) (e) f log(xy +

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado I quesiti sono distribuiti negli ambiti secondo la tabella seguente Ambito

Dettagli

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano PPUNTI DI SCIENZ DEE COSTRUZIONI Giulio lfano nno ccademico 004-005 ii Indice 1 TRVTURE PINE 1 1.1 Geometria, equilibrio e vincoli...................... 1 1.1.1 Piani di simmetria........................

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Introduzione allo Scilab Parte 3: funzioni; vettori.

Introduzione allo Scilab Parte 3: funzioni; vettori. Introduzione allo Scilab Parte 3: funzioni; vettori. Felice Iavernaro Dipartimento di Matematica Università di Bari http://dm.uniba.it/ iavernaro felix@dm.uniba.it 13 Giugno 2007 Felice Iavernaro (Univ.

Dettagli

Particelle identiche : schema (per uno studio più dettagliato vedi lezione 2) φ 1

Particelle identiche : schema (per uno studio più dettagliato vedi lezione 2) φ 1 Particelle identiche : schema (per uno studio più dettagliato vedi lezione ) Funzioni d onda di un sistema composto Sistema costituito da due particelle (eventualmente identiche) H φ q H φ H ψ φ φ stato

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

FONDAMENTI DI MECCANICA QUANTISTICA

FONDAMENTI DI MECCANICA QUANTISTICA FONDAMENTI DI MECCANICA QUANTISTICA Appunti raccolti nel Dipartimento di Fisica dell Università La Sapienza di Roma a cura di Stefano Patrì. Indirizzo e-mail dell autore: seriegeo@yahoo.it 5 ottobre 008

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

IL TEOREMA FONDAMENTALE DELL ARITMETICA: FATTORIZZAZIONE IN NUMERI PRIMI.

IL TEOREMA FONDAMENTALE DELL ARITMETICA: FATTORIZZAZIONE IN NUMERI PRIMI. IL TEOREMA FONDAMENTALE DELL ARITMETICA: FATTORIZZAZIONE IN NUMERI PRIMI. PH. ELLIA Indice Introduzione 1 1. Divisori di un numero. 2 2. Numeri primi: definizioni. 4 2.1. Fare la lista dei numeri primi.

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

Nota: Eventi meno probabili danno maggiore informazione

Nota: Eventi meno probabili danno maggiore informazione Entropia Informazione associata a valore x avente probabilitá p(x é i(x = log 2 p(x Nota: Eventi meno probabili danno maggiore informazione Entropia di v.c. X P : informazione media elementi di X H(X =

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

PROBLEMI AGLI AUTOVALORI...1

PROBLEMI AGLI AUTOVALORI...1 Indice PBEMI AGI AUVAI... Generalità... Proprietà... Significato fisico dei problemi agli autovalori... 3 ) Sforzi principali e loro orientazione.... 3 ) Caratteristiche modali di un sistema dinamico...

Dettagli