Analisi in Componenti Principali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Analisi in Componenti Principali"

Transcript

1 Analisi in Componenti Principali ( Esempio sul dataset Cars ) (azzurro = teoria) Introduzione Si effettuano p rilevazioni statistiche su n unità. Ciascuna unità può essere visualizzata con un punto di R p (le cui coordinate sono i risultati delle rilevazioni relative a tale unità). Esempio con tre variabili: 1

2 Notazioni: siano x 1,..., x p p vettori di dimensione n contenenti i risultati delle rilevazioni (variabili); sia X la matrice (n,p) che ha come colonne i vettori x 1,..., x p ; sia x( i) il vettore di lunghezza p contenente i valori delle p rilevazioni dell'i-esima unità (riga i-esima di X). matrice X x( 1)... x( i)... x( n) x 1 x 2... x p Problema: Come studiare una nube di punti di R p se p>3? Come ridurre la dimensione dello spazio in modo da "perdere" il minor numero di informazioni possibili? ovvero: Come sostituire alle p variabili di partenza un numero q, inferiore a p, di nuove variabili (dette componenti principali CP ) combinazioni lineari delle variabili originali in modo che queste q variabili rappresentino il più "fedelmente" possibile le p variabili iniziali? Traccia : Si centrano i dati nel baricentro e si effettua una rotazione degli assi in modo che la varianza delle proiezioni della nuvola degli n punti sul primo nuovo asse sia massima, che quella sul secondo nuovo asse sia massima una volta fissato il primo asse, e così via. Si trova che una base ortonormale per i nuovi assi che soddisfa le condizioni precedenti è quella formata dagli autovettori associati agli autovalori della matrice delle correlazioni (o covarianze) di X; indicheremo tale base con (u 1,..., x p ). Proiettando i punti di R p sullo spazio generato da (u 1,..., x q ), con q <p, si trova la "miglior" approssimazione della nuvola in uno spazio di dimensione q. 2

3 Esempio sul dataset cars I dati che esamineremo sono tratti da H.V. Henderson & P.F. Velleman, Building Multiple Regression Models Interactively, Biometrics, 1981, pag I dati riguardano : modello nazione di fabbricazione consumo (litro/km) peso (in kg) rapporto di trasmissione al ponte potenza (in HP) cilindrata (in cm3) numero cilindri ripresa (sec./1 miglio da fermo) 3

4 Dati esaminati (file cars.xls): C N C D P I R A O R O L I Z N I T I N P T I S P V E N U R O I O U E E N D M E B P N M S _ Z R _ S S O E O O R A A C A 1 Buick Estate Wagon U.S Ford Country Squire Wagon U.S Chevy Malibu Wagon U.S Chrysler LeBaron Wagon U.S Chevette U.S Toyota Corona Japan Datsun 510 Japan Dodge Omni U.S Audi 5000 Germany Volvo 240 GL Sweden Saab 99 GLE Sweden Peugeot 694 SL France Buick Century Special U.S Mercury Zephyr U.S Dodge Aspen U.S AMC Concord D/L U.S Chevy Caprice Classic U.S Ford LTD U.S Mercury Grand Marquis U.S Dodge St Regis U.S Ford Mustang 4 U.S Ford Mustang Ghia U.S Mazda GLC Japan Dodge Colt Japan AMC Spirit U.S VW Scirocco Germany Honda Accord LX Japan Buick Skylark U.S Chevy Citation U.S Olds Omega U.S Pontiac Phoenix U.S Plymouth Horizon U.S Datsun 210 Japan Fiat Strada Italy VW Dasher Germany Datsun 810 Japan BMW 320i Germany VW Rabbit Germany

5 Statistiche elementari: Libellé Effectif Poids Moyenne Ecart-type Minimum Maximum consumo peso rapportot potenza cilindrata ncilindri ripresa nazione Effectif % / Total % / Expr. U.S Japan Germany Sweden France Italy Total É possibile notare che la maggior parte delle auto analizzate viene fabbricata negli Stati Uniti. Analisi bivariata: 5

6 Dal grafico sono evidenti le correlazioni tra consumo, peso, potenza, cilindrata e il numero cilindri. La variabile ripresa risulta essere meno correlata con le altre. Matrice di correlazione: Matrice des corrélations consumo peso rapporto potenza cilindrat ncilindri ripresa t a consumo 1.00 peso rapportot potenza cilindrata ncilindri ripresa Matrice des valeurs-tests consumo peso rapporto potenza cilindrat ncilindri ripresa t a consumo peso rapportot potenza cilindrata ncilindri ripresa Utilizzando la matrice dei valori Test si osserva che la variabile ripresa é meno correlata con le altre variabili. Cambiamento di coordinate Traslazione dell'origine nel baricentro Sia = ( 1,..., p ) il baricentro della nuvola. Sia Y la matrice dei punti centrati nel baricentro: Y = X - 1 n1 '. La matrice di varianza/covarianza di X e di Y è Y' Y. Per ottenere un'analisi indipendente dall'unità di misura di ciascuna variabile, i dati della matrice Y, oltre che centrati, vanno anche "standardizzati", ponendo: y i =. In questo caso la matrice = Y' Y è la matrice di correlazione. 6

7 Rotazione degli assi Viene effettuata quella rotazione tale che: la maggior intensità della dispersione dei punti coincida con la direzione del primo asse; lungo la direzione del secondo asse vi sia una dispersione maggiore di tutti i successivi, e così via. Esempio con due variabili Proiezione dei punti su un vettore Se v è un vettore di R p, v = (v 1,..., v p ), di lunghezza 1 (cioè v i 2 = 1) allora: - y( i)' v è la "lunghezza" della proiezione di y( i) sulla retta che ha la direzione di v - Y v è il vettore contenente le n proiezioni. Nuovi assi Come nuovo sistema di coordinate consideriamo la base ortonormale costituita dagli autovettori u 1,...,u p della matrice associati agli autovalori 1... p. Indichiamo con c j = Y u j il vettore delle proiezioni degli n punti y( i) sull'asse u j ; Questa base ha i requisiti voluti, infatti: i. 2 (c j) = j la varianza dei punti proiettati "lungo" il j-esimo vettore u j è uguale al j- esimo autovalore j ii. (c i, c j ) = 0 i vettori delle proiezioni dei punti sugli u 1,...,u p sono a due a due non correlati iii. Se v R p, v' v = 1 a. 2 (c 2 1) = sup v { (Y v) } la varianza dei punti proiettati "lungo" u 1 è la più grande fra le varianze dei punti proiettati "lungo" un generico vettore di R p b. 2 (c j) = sup v { Y v t.c. Y v è non correlato con c 1,..., c j-1 } la varianza dei punti proiettati lungo u j è la più grande fra le varianze dei punti proiettati lungo un generico vettore non correlato con c 1,..., c j-1 7

8 Autovalori della matrice di correlazione Tableau des valeurs propres Trace de la matrice: Numéro Valeur propre Pourcent age Pourcent age cumulé Intervalles laplaciens d'anderson (seuil: 0.95) Numéro Borne inférieur e Valeur propre Borne supérieu re IC Autovalori 95% Autovalore Ordine Autovalore Borne inférieure Valeur propre Borne supérieure Le prime due componenti spiegano l 88% della varianza presente nei dati. Possiamo ridurre il problema originale da 7 a 2 variabili con solamente il 22% di variabilitá non spiegata. 8

9 Autovettori Anciens axes unitaires Libellé de la Axe 1 Axe 2 Axe 3 Axe 4 Axe 5 variable consumo peso rapportot potenza cilindrata ncilindri ripresa Gli autovettori u j vengono detti assi principali (o assi fattoriali) della nuvola. Il vettore c j viene detto j-esima componente principale (o fattore principale) ed è determinata in modo univoco a meno del segno se j è un autovalore semplice. Le componenti principali c j possono essere interpretate come nuove variabili, essendo combinazioni lineari delle variabili di partenza. Ad esempio il valore della j-esima componente principale per la i-esima unità è: c j ( i) = y 1 ( i) u 1j + y 2 ( i) u 2j y p ( i) u pj Come già osservato le componenti principali c 1,..., c p hanno le seguenti proprietà: hanno media 0 hanno varianza 1,..., p decrescente, 1... p sono tra loro a due a due non correlate Fedeltà della rappresentazione in uno spazio di dimensione minore. La dispersione della nuvola attorno al baricentro, detta anche inerzia, è: I = x( i) - 2 = y( i) 2 = (y( i). u j ) 2 = 2 (c j) = j = traccia ( ) Se si rimpiazza la nuvola di punti y( i) con la sua proiezione nel sottospazio generato da (u 1,...,u q ), con q<p, la dispersione della nuvola proiettata è q. Se questa somma è grande in rapporto a q p si può dire che la proiezione è una buona rappresentazione della nuvola. 9

10 Più precisamente: si chiama fedeltà di una proiezione il rapporto fra la dispersione della nuvola proiettata e la dispersione della nuvola originale. Per quanto visto precedentemente, lo spazio generato da (u 1,...,u q ) è lo spazio di dimensione q più fedele possibile. La fedeltà della proiezione su tale spazio è: cioè il rapporto dell'inerzia nello spazio di dimensione minore rispetto all'inerzia originale. Per avere una rappresentazione piana delle proiezioni dei punti nello spazio generato da (u 1,...,u q ) in genere si proiettano i punti (c 1 ( i), c j ( i)), con j = 2,...,q. Tali rappresentazioni sono anche chiamate carte degli individui. (Proiezione degli individui) Carta degli individui carta degli individui sul primo piano fattoriale (perc.var. 88%) con indicata la nazione di fabbricazione 10

11 Dalle tabelle seguenti si puó osservare che é forte la rappresentazione nella prima CP della nazione di fabbricazione. Valeurs-Tests des modalités illustratives Libellé Effectif Poids absolu Distance à l'origine nazione U.S Japan Germany Sweden France Italy Axe 1 Axe 2 Axe 3 Axe 4 Axe 5 COORDONNEES, CONTRIBUTIONS ET COSINUS CARRES DES INDIVIDUS AXES 1 A INDIVIDUS COORDONNEES CONTRIBUTIONS COSINUS CARRES IDENTIFICATEUR P.REL DISTO Buick Estate Wagon Ford Country Squire Wago Chevy Malibu Wagon Chrysler LeBaron Wagon Chevette Toyota Corona Datsun Dodge Omni Audi Volvo 240 GL Saab 99 GLE Peugeot 694 SL Buick Century Special Mercury Zephyr Dodge Aspen AMC Concord D/L Chevy Caprice Classic Ford LTD Mercury Grand Marquis Dodge St Regis Ford Mustang Ford Mustang Ghia Mazda GLC Dodge Colt AMC Spirit VW Scirocco Honda Accord LX Buick Skylark Chevy Citation Olds Omega Pontiac Phoenix Plymouth Horizon Datsun Fiat Strada VW Dasher Datsun BMW 320i VW Rabbit

12 Correlazione fra le variabili e le componenti principali Supponiamo, per semplicità, di lavorare con variabili "standardizzate". La correlazione fra la variabile i-esima e la componente principale j-esima è: Consideriamo la matrice P = U ( ) 1/2 : (y i,c j ) = u ij j u 1 1 u u p p u ij j Nella colonna j-esima si può leggere quali variabili sono meglio correlate con la j-esima componente principale e quindi quali sono meglio rappresentate sul j-esimo asse principale. Nella riga i-esima si può leggere su quali assi principali è meglio rappresentata la i-esima variabile. Corrélations des variables actives avec les facteurs Libellé de la variable Axe 1 Axe 2 Axe 3 Axe 4 Axe 5 consumo peso rapportot potenza cilindrata ncilindri ripresa Commento: lettura per colonne: sul primo asse fattoriale sono ben rappresentate le variabili peso, potenza, cilindrata e numero cilindri (orientamento negativo per l'algoritmo utilizzato) e in misura minore le variabili consumo e drive ratio (orientamento positivo). sul secondo asse fattoriale è ben rappresentata la variabile ripresa (orientamento negativo) sul terzo asse la variabile rapporto di trasmissione al ponte, sul quarto il numero dei cilindri. 12

13 lettura per righe: il consumo, il peso, la potenza, la cilindrata e il numero cilindri sono meglio rappresentati sul primo asse la ripresa sul secondo il drive ratio sul terzo. Correlazione fra due variabili Indicando con p i una riga della matrice P precedente, la correlazione fra la variabile h-esima e la variabile k-esima sarà: (y h, y k ) = p h ' p k cioè il prodotto scalare fra le due righe di P. Disegnando i punti p ij = ( u i1 1, u ij j ), con j = 2,...,p si ottengono le cosiddette carte delle variabili (o cerchio delle correlazioni) che visualizzano la correlazione fra le variabili e le componenti principali 1 e j. Attraverso tali grafici (in particolare se j = 2) si può in qualche modo anche interpretare la correlazione fra le variabili, essendo p hj ' p hj una approssimazione di p h ' p k. L'analisi comparata delle carte degli individui e delle carte dei caratteri permette una descrizione delle rilevazioni statistiche considerate. Carta delle variabili o cerchio delle correlazioni 13

14 Commento: Essendo l'analisi in componenti normalizzate, le coordinate dei punti nella carta dei caratteri sono inferiori a 1 in valore assoluto; in effetti i punti sono a distanza 1 dall'origine in R 7 e l'operazione di proiezione non può che diminuire le distanze. Peso, potenza, cilindrata, numero cilindri e Consumo si trovano da uno stesso lato del primo asse fattoriale (e sono ben rappresentate su questo come visto precedentemente); una tale disposizione traduce il fatto che tali variabili sono in effetti ben correlate positivamente fra loro: se per un auto una variabile assume un valore elevato, tutte le altre assumono un valore elevato. drive ratio si trova ben rappresentavo dall'altro lato del primo perché correlato negativamente con le variabili precedenti. Questa caratteristica di numerosi dati sperimentali di avere molte variabili ben rappresentate sul primo asse viene detto fattore di scala. Qui il fattore di scala oppone le auto "grosse" dalle auto "medie". La ripresa si trova sul secondo asse (ed è ben rappresentata su questo come visto precedentemente) e ha in effetti una correlazione bassa con tutte le altre variabili e pertanto é rappresentata su un asse ortogonale alle precedenti. 14

15 Carta degli individui sul primo piano fattoriale La dimensione del cerchio é proporzionale al consumo (litri per km), mentre i colori rappresentano le nazioni secondo il grafico precedente. Commento: - dall'esame dei dati si osserva che: l'orientamento negativo del primo asse fattoriale corrisponde a valori alti di peso, cilindrata, numero cilindri e potenza e a valori alti di consumo (l/km) e drive-ratio (e queste variabili sono ben rappresentate su tale asse); l'orientamento negativo del secondo asse corrisponde a valori alti per la ripresa (e questa variabile è ben rappresentata su tale asse) - dall'esame complessivo della carta delle auto suddivise per nazione si può concludere che: le auto tedesche, italiane e giapponesi sono caratterizzate complessivamente da valori bassi per peso, cilindrata, numero cilindri e potenza e consumo e drive-ratio; in particolare un'auto giapponese pur avendo bassi valori per le variabili precedenti ha la ripresa massima e ciò è evidenziato dalla sua posizione in basso a destra; le auto statunitensi sono per lo più posizionate (ma non totalmente) sull'orientamento negativo del primo asse mentre si distribuiscono più o meno uniformemente rispetto al secondo: questo corrisponde a valori medio-alti per le variabili peso, cilindrata, numero cilindri e potenza e medio-alti per consumo e drive-ratio e a valori sia alti che bassi per la variabile ripresa. 15

Analisi delle Corrispondenze Multiple Prof. Roberto Fantaccione

Analisi delle Corrispondenze Multiple Prof. Roberto Fantaccione Analisi delle Corrispondenze Multiple Prof. Roberto Fantaccione Consideriamo il nostro dataset formato da 468 individui e 1 variabili nominali costituite dalle seguenti modalità : colonna D: Age of client

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Alessandro Rezzani Abstract L articolo descrive una delle tecniche di riduzione della dimensionalità del data set: il metodo dell analisi delle componenti principali (Principal

Dettagli

Esercizi su Autovalori e Autovettori

Esercizi su Autovalori e Autovettori Esercizi su Autovalori e Autovettori Esercizio n.1 5 A = 5, 5 5 5 Esercizio n.6 A =, Esercizio n.2 4 2 9 A = 2 1 8, 4 2 9 Esercizio n.7 6 3 3 A = 6 3 6, 3 3 6 Esercizio n.3 A = 4 6 6 2 2, 6 6 2 Esercizio

Dettagli

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Come evidenziare l informazione contenuta nei dati S. Marsili-Libelli: Calibrazione di Modelli Dinamici pag. Perche PCA? E un semplice metodo non-parametrico per estrarre

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

Appunti di Statistica

Appunti di Statistica Appunti di Statistica Riccardo Ricci Università di Firenze, Facoltà di Psicologia Corso di Laurea in Scienze e Tecniche di Psicologia del Lavoro e delle Organizzazioni Anno Accademico 2002-2003 1 maggio

Dettagli

Lezione del 28-11-2006. Teoria dei vettori ordinari

Lezione del 28-11-2006. Teoria dei vettori ordinari Lezione del 8--006 Teoria dei vettori ordinari. Esercizio Sia B = {i, j, k} una base ortonormale fissata. ) Determinare le coordinate dei vettori v V 3 complanari a v =,, 0) e v =, 0, ), aventi lunghezza

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f).

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f). Due Matrici A,B. Ker f = ker g. 1- Ridurre a scala A e B e faccio il sistema. 2 Se Vengono gli stessi valori allora, i ker sono uguali. Cauchy 1 autovalore, 1- Metto a matrice x1(0),x2(0),x3(0) e la chiamo

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

STATISTICA (A-K) a.a. 2007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 2007

STATISTICA (A-K) a.a. 2007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 2007 A STATISTICA (A-K) a.a. 007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 007 STESS N.O. RD 00 GORU N.O. RD 006 ) La distribuzione del numero degli occupati (valori x 000) in una provincia

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente 1.1 Il motore a corrente continua Il motore a corrente continua, chiamato così perché per funzionare deve essere alimentato con tensione e corrente costante, è costituito, come gli altri motori da due

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire.

f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire. Consideriamo l insieme P dei punti del piano e una f funzione biiettiva da P in P: f : { P P A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE 2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 INTRODUZIONE Il problema agli autovalori di un operatore La trattazione del problema agli autovalori di un operatore fatta negli spazi finitodimensionali

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

if t>=0 x=1; else x=0; end fornisce, nella variabile x, il valore della funzione gradino a tempi continui, calcolata in t.

if t>=0 x=1; else x=0; end fornisce, nella variabile x, il valore della funzione gradino a tempi continui, calcolata in t. Il programma MATLAB In queste pagine si introduce in maniera molto breve il programma di simulazione MAT- LAB (una abbreviazione di MATrix LABoratory). Introduzione MATLAB è un programma interattivo di

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A.

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A. Travature reticolari piane : esercizi svolti e omenico., Fuschi., isano., Sofi. SRZO n. ata la travatura reticolare piana triangolata semplice illustrata in Figura, determinare gli sforzi normali nelle

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Metodi di misura della magnetizzazione rimanente naturale

Metodi di misura della magnetizzazione rimanente naturale rimanente naturale L archeologia e il tempo, Metodi di datazione 4-8 Maggio 2009, Peveragno (Cuneo) Parte I Magnetizzazione Rimanente Naturale S Magnetizzazione naturale rimanente in un campione di roccia

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

Lab. 1 - Introduzione a Matlab

Lab. 1 - Introduzione a Matlab Lab. 1 - Introduzione a Matlab Alcune informazioni su Matlab Matlab è uno strumento per il calcolo scientifico utilizzabile a più livelli, dalla calcolatrice tascabile, alla simulazione ed analisi di sistemi

Dettagli

ITCG Cattaneo via Matilde di canossa n.3 - Castelnovo ne' Monti (RE) SEZIONE I.T.I. - Corso di Fisica - prof. Massimo Manvilli

ITCG Cattaneo via Matilde di canossa n.3 - Castelnovo ne' Monti (RE) SEZIONE I.T.I. - Corso di Fisica - prof. Massimo Manvilli ITCG C. CATTANEO via Matilde di Canossa n.3 - Castelnovo ne' Monti (Reggio Emilia) Costruzione del grafico di una funzione con Microsoft Excel Supponiamo di aver costruito la tabella riportata in figura

Dettagli

LA CORRELAZIONE LINEARE

LA CORRELAZIONE LINEARE LA CORRELAZIONE LINEARE La correlazione indica la tendenza che hanno due variabili (X e Y) a variare insieme, ovvero, a covariare. Ad esempio, si può supporre che vi sia una relazione tra l insoddisfazione

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.

Dettagli

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1 UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA Filippo Romano 1 1. Introduzione 2. Analisi Multicriteri o Multiobiettivi 2.1 Formule per l attribuzione del

Dettagli

3. SPAZI VETTORIALI CON PRODOTTO SCALARE

3. SPAZI VETTORIALI CON PRODOTTO SCALARE 3 SPAZI VETTORIALI CON PRODOTTO SCALARE 31 Prodotti scalari Definizione 311 Sia V SV(R) Un prodotto scalare su V è un applicazione, : V V R (v 1,v 2 ) v 1,v 2 tale che: i) v,v = v,v per ogni v,v V ; ii)

Dettagli

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014)

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) Le grandezze fisiche. Metodo sperimentale di Galilei. Concetto di grandezza fisica e della sua misura. Il Sistema internazionale di Unità

Dettagli

CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE

CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE Consideriamo adesso un corpo esteso, formato da più punti, e che abbia un asse fisso, attorno a cui il corpo può ruotare. In questo caso l

Dettagli

TRIBUTO AL GRAN PREMIO PARCO VALENTINO

TRIBUTO AL GRAN PREMIO PARCO VALENTINO TRIBUTO AL Fai sfilare la tua passione tra le strade di Torino. Iscrivi la tua vettura al DOMENICA, 14 GIUGNO 2015 la parata celebrativa delle automobili più importanti di sempre PARCO VALENTINO - SALONE

Dettagli

Terne pitagoriche e teorema di Pitagora, numeri e triangoli. Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it

Terne pitagoriche e teorema di Pitagora, numeri e triangoli. Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it 3 4 5 Terne pitagoriche e teorema di Pitagora, numeri e triangoli Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it Qualche osservazione preliminare sul Teorema di Pitagora e le terne

Dettagli

1. Si consideri uno spazio di indirizzamento logico di otto pagine di 1024 parole ognuna, mappate su una memoria fisica di 32 frame.

1. Si consideri uno spazio di indirizzamento logico di otto pagine di 1024 parole ognuna, mappate su una memoria fisica di 32 frame. 1. Si consideri uno spazio di indirizzamento logico di otto pagine di 1024 parole ognuna, mappate su una memoria fisica di 32 frame. (a) Da quanti bit è costituito l indirizzo logico? (b) Da quanti bit

Dettagli

I Grafici. La creazione di un grafico

I Grafici. La creazione di un grafico I Grafici I grafici servono per illustrare meglio un concetto o per visualizzare una situazione di fatto e pertanto la scelta del tipo di grafico assume notevole importanza. Creare grafici con Excel è

Dettagli

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0 1 ) Un veicolo che viaggia inizialmente alla velocità di 1 Km / h frena con decelerazione costante sino a fermarsi nello spazio di m. La sua decelerazione è di circa: A. 5 m / s. B. 3 m / s. C. 9 m / s.

Dettagli

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA ANALISI EDIANTE LO SPETTRO DI RISPOSTA arco BOZZA * * Ingegnere Strutturale, già Direttore della Federazione regionale degli Ordini degli Ingegneri del Veneto (FOIV), Amministratore di ADEPRON DINAICA

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

Seggiolini auto: dov è il "vantaggio per le famiglie"?

Seggiolini auto: dov è il vantaggio per le famiglie? Ufficio stampa del TCS Vernier Tel +41 58 827 27 16 Fax +41 58 827 51 24 www.pressetcs.ch Comunicato stampa Seggiolini auto: dov è il "vantaggio per le famiglie"? Emmen, 15 novembre 2012. Il test del TCS

Dettagli

Cos è Excel. Uno spreadsheet : un foglio elettronico. è una lavagna di lavoro, suddivisa in celle, cosciente del contenuto delle celle stesse

Cos è Excel. Uno spreadsheet : un foglio elettronico. è una lavagna di lavoro, suddivisa in celle, cosciente del contenuto delle celle stesse Cos è Excel Uno spreadsheet : un foglio elettronico è una lavagna di lavoro, suddivisa in celle, cosciente del contenuto delle celle stesse I dati contenuti nelle celle possono essere elaborati ponendo

Dettagli

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della RELAZIONE TRA VARIABILI QUANTITATIVE Lezione 7 a Accade spesso nella ricerca in campo biomedico, così come in altri campi della scienza, di voler studiare come il variare di una o più variabili (variabili

Dettagli

TEST DELL'ABILITA' PRATICA DEL RAGIONAMENTO GLOBALE

TEST DELL'ABILITA' PRATICA DEL RAGIONAMENTO GLOBALE TEST DELL'ABILITA' PRATICA DEL RAGIONAMENTO GLOBALE COPYRIGHT 2008 PROCTER & GAMBLE CINCINNATI, OH 45202 U.S.A. AVVERTENZA: Tutti i diritti riservati. Questo opuscolo non può essere riprodotto in alcun

Dettagli

IL MOTO. 1 - Il moto dipende dal riferimento.

IL MOTO. 1 - Il moto dipende dal riferimento. 1 IL MOTO. 1 - Il moto dipende dal riferimento. Quando un corpo è in movimento? Osservando la figura precedente appare chiaro che ELISA è ferma rispetto a DAVIDE, che è insieme a lei sul treno; mentre

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

GIRO DELLA MORTE PER UN CORPO CHE ROTOLA

GIRO DELLA MORTE PER UN CORPO CHE ROTOLA 0. IL OETO D IERZIA GIRO DELLA ORTE ER U CORO CHE ROTOLA ell approfondimento «Giro della morte per un corpo che scivola» si esamina il comportamento di un punto materiale che supera il giro della morte

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

STATISTICA 1 ESERCITAZIONE 1 CLASSIFICAZIONE DELLE VARIABILI CASUALI

STATISTICA 1 ESERCITAZIONE 1 CLASSIFICAZIONE DELLE VARIABILI CASUALI STATISTICA 1 ESERCITAZIONE 1 Dott. Giuseppe Pandolfo 30 Settembre 2013 Popolazione statistica: insieme degli elementi oggetto dell indagine statistica. Unità statistica: ogni elemento della popolazione

Dettagli

1x1 qs-stat. Pacchetto Software per la Soluzione di Problemi Statistici nel Controllo Qualità. Versione: 1 / Marzo 2010 Doc. n.

1x1 qs-stat. Pacchetto Software per la Soluzione di Problemi Statistici nel Controllo Qualità. Versione: 1 / Marzo 2010 Doc. n. 1x1 qs-stat Pacchetto Software per la Soluzione di Problemi Statistici nel Controllo Qualità Versione: 1 / Marzo 2010 Doc. n.: PD-0012 Copyright 2010 Q-DAS GmbH & Co. KG Eisleber Str. 2 D - 69469 Weinheim

Dettagli

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz:

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz: FUNZIONI DI PIU VARIABILI Esercizi svolti. Determinare il dominio delle seguenti funzioni e rappresentarlo graficamente : (a) f log( x y ) (b) f log(x + y ) (c) f y x 4 (d) f sin(x + y ) (e) f log(xy +

Dettagli

QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA

QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA Michele Impedovo Bollettino dei Docenti di Matematica del Canton Ticino (CH) n 36, maggio 98. Il problema Il lavoro che

Dettagli

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani Ricerca Operativa Esercizi sul metodo del simplesso Luigi De Giovanni, Laura Brentegani 1 1) Risolvere il seguente problema di programmazione lineare. ma + + 3 s.t. 2 + + 2 + 2 + 3 5 2 + 2 + 6,, 0 Soluzione.

Dettagli

Appunti sull uso di matlab - I

Appunti sull uso di matlab - I Appunti sull uso di matlab - I. Inizializazione di vettori.. Inizializazione di matrici.. Usare gli indici per richiamare gli elementi di un vettore o una matrice.. Richiedere le dimensioni di una matrice

Dettagli

LEZIONE 17. B : kn k m.

LEZIONE 17. B : kn k m. LEZIONE 17 17.1. Isomorfismi tra spazi vettoriali finitamente generati. Applichiamo quanto visto nella lezione precedente ad isomorfismi fra spazi vettoriali di dimensione finita. Proposizione 17.1.1.

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

4. Confronto tra medie di tre o più campioni indipendenti

4. Confronto tra medie di tre o più campioni indipendenti BIOSTATISTICA 4. Confronto tra medie di tre o più campioni indipendenti Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Autorità per la vigilanza sui contratti pubblici di lavori, servizi e forniture QUADERNO

Autorità per la vigilanza sui contratti pubblici di lavori, servizi e forniture QUADERNO Autorità per la vigilanza sui contratti pubblici di lavori, servizi e forniture QUADERNO IL CRITERIO DI AGGIUDICAZIONE DELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA Dicembre 2011 IL CRITERIO DI AGGIUDICAZIONE

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

Le formule possono essere scritte utilizzando un insieme di funzioni predefinite che Excel mette a disposizione, raggruppate per argomento.

Le formule possono essere scritte utilizzando un insieme di funzioni predefinite che Excel mette a disposizione, raggruppate per argomento. Excel: le funzioni Le formule possono essere scritte utilizzando un insieme di funzioni predefinite che Excel mette a disposizione, raggruppate per argomento. DEFINIZIONE: Le funzioni sono dei procedimenti

Dettagli

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t; CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S

Dettagli

percorso fatto sul tratto orizzontale). Determinare il lavoro (minimo) e la potenza minima del motore per percorrere un tratto.

percorso fatto sul tratto orizzontale). Determinare il lavoro (minimo) e la potenza minima del motore per percorrere un tratto. Esercizio 1 Una pietra viene lanciata con una velocità iniziale di 20.0 m/s contro una pigna all'altezza di 5.0 m rispetto al punto di lancio. Trascurando ogni resistenza, calcolare la velocità della pietra

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

General Linear Model. Esercizio

General Linear Model. Esercizio Esercizio General Linear Model Una delle molteplici applicazioni del General Linear Model è la Trend Surface Analysis. Questa tecnica cerca di individuare, in un modello di superficie, quale tendenza segue

Dettagli

Rapporto CESI. Cliente: Oggetto: Ordine: Contratto CESI n. 71/00056. Note: N. pagine: 13 N. pagine fuori testo: Data: 30.05.2000.

Rapporto CESI. Cliente: Oggetto: Ordine: Contratto CESI n. 71/00056. Note: N. pagine: 13 N. pagine fuori testo: Data: 30.05.2000. A0/010226 Pag.1/13 Cliente: Ricerca di Sistema Oggetto: Determinazione della tenacità di acciai eserciti - Correlazioni per stime di FATT da prove Small Punch Ordine: Contratto CESI n. 71/00056 Note: DEGRADO/GEN04/003

Dettagli

SVILUPPO IN SERIE DI FOURIER

SVILUPPO IN SERIE DI FOURIER SVILUPPO IN SERIE DI FOURIER Cenni Storici (Wikipedia) Jean Baptiste Joseph Fourier ( nato a Auxerre il 21 marzo 1768 e morto a Parigi il 16 maggio 1830 ) è stato un matematico e fisico, ma è conosciuto

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Rappresentazione dei numeri nei calcolatori rappresentazioni finalizzate ad algoritmi efficienti per le operazioni

Dettagli

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1 Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 Capitolo 3. L'analisi della varianza. Il problema dei confronti multipli. La soluzione drastica di Bonferroni ed il test

Dettagli

Appunti dalle Lezioni di MECCANICA RAZIONALE

Appunti dalle Lezioni di MECCANICA RAZIONALE Università degli Studi de L Aquila Appunti dalle Lezioni di MECCANICA RAZIONALE tenute dal prof. Raffaele ESPOSITO i INDICE Indice.......................................................................

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

Lezione: rappresentazione. rototraslazioni. Tutte e sole le isometrie (trasf. rigide) = roto-traslazioni = rotazioni (*) + traslazioni

Lezione: rappresentazione. rototraslazioni. Tutte e sole le isometrie (trasf. rigide) = roto-traslazioni = rotazioni (*) + traslazioni [GAME DEV] Mirco Lezione Lezione: rappresentazione rototraslazioni Marco Tarini Reminder Tutte e sole le isometrie (trasf. rigide) = roto-traslazioni = rotazioni (*) + traslazioni Rotazioni (*) : quante

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli