Assicurazione e contratto assicurativo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Assicurazione e contratto assicurativo"

Transcript

1 Teoria dei giochi, A.A. 2002/03 c Fioravante Patrone 1 Assicurazione e contratto assicurativo Consideriamo il problema di assicurarsi contro un sinistro. Vediamo le ragioni per cui può verificarsi il fatto che entrambe le parti (assicurando ed assicuratore) preferiscono sottoscrivere il contratto di assicurazione. Vedremo il problema ridotto all osso, per cogliere gli aspetti essenziali. Valore della cosa assicurata: V Probabilità che avvenga il sinistro: p Premio: P Funzione di utilità dell assicurando: u Funzione di utilità dell assicuratore: v Ricordiamo che si definisce premio equo quel premio che rende uguale (per l assicurando, ovvero per l assicuratore: se lo è per l uno, lo è anche per l altro)ilguadagnoattesoperlasceltadiassicurarsiaquelloperlasceltadi non assicurarsi. Il premio equo è P e = p V Esaminiamo la convenienza del contratto di assicurazione dalla parte di assicurando e di assicuratore. Ciascuno di loro deve esprimere la sua preferenza rispetto a due lotterie: una è quella che scaturisce dal fatto di stipulare il contratto di assicurazione, l altra del fatto di non stipularlo. Si noti che le lotterie tra cui deve scegliere l assicurando sono diverse da quelle tra le quali deve scegliere l assicuratore. Assicurando: - si assicura: guadagna P con probabilità 1 ½ 0 con probabilità 1-p - non si assicura: guadagna V con probabilità p Assicuratore: - non assicura: guadagna 0 con probabilità 1 ½ P con probabilità 1-p - assicura: guadagna P V con probabilità p Verifichiamo che effettivamente per P = P e = p V il guadagno atteso per

2 Teoria dei giochi, A.A. 2002/03 c Fioravante Patrone 2 l assicurando è identico per entrambe le lotterie: se si assicura, il guadagno atteso è P = P e se non si assicura, il guadagno atteso è(1 p) 0+p ( V )=p ( V )= P e. Verifichiamolo ora per l assicuratore: se assicura, il guadagno atteso è(1 p) P + p (P V )=(1 p) p V + p (p V V )=0. se non assicura, il guadagno atteso è0 Si noti che, come detto, se il premio è equo dal punto di vista del guadagno atteso per l assicurando, allora lo è anche dal punto di vista dell assicuratore, e viceversa. Basta notare come le lotterie tra cui deve scegliere l assicuratore siano ottenibili da quelle dell assicurando, scambiando si assicura con non assicura e non si assicura con assicura, e poi aggiungendo P in tutti i tre casi (ovverro i tre stati di natura : avviene il sinistro quando l assicurazione non è stipulata, non avviene il sinistro quando l assicurazione non è stipulata e l assicurazione è stipulata ). Ovviamente, se sia assicurando che assicuratore sono indifferenti al rischio, questo è come dire che il loro criterio di scelta è il guadagno atteso (ovverossia: possiamo in tal caso assumere che u e v siano la funzione identità). Ne segue che per loro è indifferente stipulare oppure no il contratto di assicurazione. Di fatto, in presenza di indifferenza al rischio il contratto di assicurazione non verrà stipulato per la presenza, ineludibile in ogni contratto, dei costi di transazione. Tutto ciò vale se assumiamo che il premio sia quello equo, cioè sep = P e. Altrimenti, se P>P e, si vede immediatamente che l assicurando preferirà non assicurarsi (l assicuratore invece vorrebbe assicuralo, ma un contratto va sottoscritto in due...). Considerazioni del tutto simmetriche se P<P e. Supponiamo allora che l assicurando sia strettamente avverso al rischio, vale adirecheu sia strettamente concava. Sia P u l equivalente certo per l assicurando della lotteria: 0 con probabilità 1 p e V con probabilità p. Ovverossia, P u è caratterizzato dal fatto che: u( P u )=(1 p) u(0) + p u( V ) Per comodità scelgo u tale che sia: u(0) = 0 e u( V )= 1. Allora sarà u( P u )= p. Per la stretta concavità diu, è P u < p V = P e. Ovverossia, P u >P e. Il disegno seguente illustra queste considerazioni analitiche:

3 Teoria dei giochi, A.A. 2002/03 c Fioravante Patrone 3 Sempre per semplicità, considero che l assicuratore sia indifferente al rischio e quindi scelgo, sempre per comodità, v tale che sia: v(0) = 0 e v( V )= 1. Pertanto, v(x) =x/v. Sia allora P t.c. P e <P <P u. Ho, per l assicurando: u(mi assicuro) = u( P ) >u( P u )=u(non mi assicuro) Per l assicuratore: v(assicuro) = (1 p) v(p )+p v(p V )=......= P p V V = P P e V > 0=v(0) = v(non assicuro)

4 Teoria dei giochi, A.A. 2002/03 c Fioravante Patrone 4 Come si vede, entrambi preferiscono stipulare il contratto di assicurazione. EciòvaleperogniP t.c. P e <P <P u. Quale sia poi il P che viene effettivamente scelto, dipenderà in senso generale dal potere contrattuale dei due soggetti (conseguenza di vari fattori, tra cui la struttura del mercato assicurativo esistente). L esempio visto considera, per così dire, l essenza del contratto assicurativo. Ancora mantenendosi a questo livello di essenzialità si potrebbe fare un caso più generale, per mostrare come ciò checontadavverononèavereun decisore avverso al rischio ed uno indifferente al rischio, ma avere due decisori con due gradi diversi di avversione al rischio (o amore per il rischio). Questa generalizzaizone viene lasciata al lettore :-)

5 Teoria dei giochi, A.A. 2002/03 c Fioravante Patrone 5 Perché non assicuro più la mia macchina per il furto? Si tratta di riprendere il problema come sopra formulato e per comodità supporre che il premio sia dato da P = π V.Conπ che rappresenta il premio unitario, e che supporremo costante. Ovviamente supporremo che sia π >p, di modo che l assicuratore abbia sempre convenienza ad assicurare (ricordo che stiamo assumendo che l assicuratore sia indifferente al rischio). Per l assicurando, se V è il valore che ha da assicurare, lui avrà una utilità attesa (e certa...) pari a: u(mi assicuro) = u( P )=u( π V ) Se invece non si assicura, la sua utilità attesaèdatada: u(non mi assicuro) = (1 p) u(0) + p u( V ) Possiamo fissare u(0) = 0 ed u( V 0 )= 1 (dovev 0 è il valore iniziale dell auto, ma non vi è nulla di essenziale in questa scelta). Tutto ciò allo scopo di semplificare (poco) la formula: u(non mi assicuro) = p u( V ) Allora,semiassicuroèperchéè: u( π V ) >p u( V ) (*) Ora, è agevole verificare che, se la quantità V diventa più piccola, tutto il resto restando fisso (cioè non cambiano: u, p, π), questa disuguaglianza prima o poi dovrebbe diventare falsa. Per lo meno se supponiamo che la funzione u sia derivabile. Infatti, se u è derivabile, scegliendo V abbastanza piccolo, ovvero tale che u( V ) V u 0 (0), la disuguaglianza (*) diventa, approssimativamente: u( π V ) ( π V ) u 0 (0) >p V u 0 (0) p u( V ) Se u 0 (0) > 0 (ipotesi ragionevole), la disuguaglianza precedente si semplifica così, dividendo per V u 0 (0): π > p Cosa che contrasta con l assunzione fatta che fosse π >p. Nel mio caso particolare, la inversione nella disuguaglianza, e quindi il passaggio dalla scelta di assicurarsi a quella di non assicurarsi èproprioavvenuta per via del progressivo diminuire di V. Si noti che nella formula (*) compaiono le grandezze u, π,v,p. Qui abbiamo ipotizzato che solo V variasse, mentre le altre le abbiamo assunte costanti. In realtà, è possibile che la relazione (*) non sia più soddi-

6 Teoria dei giochi, A.A. 2002/03 c Fioravante Patrone 6 sfatta ad esempio perché: - (tenendo fissi u, π,v): è cambiata la probabilità che l auto sia rubata (per esempio, acquisto di un garage, trasferimento ad altra zona residenziale più tranquilla, cambio di abitudini nell uso dell auto, etc.) - (tenendo fissi u, V, p): il premio unitario è aumentato (ad esempio, la compagnia di assicurazione ha alzato i prezzi) - (tenendo fissi π,v,p): è cambiata la u. In particolare, è diminuita la mia avversione al rischio (magari come conseguenza di un notevole miglioramento della mia condizione economica) Va da sé che può esserci un cambiamento anche di due, tre o di tutti i parametri contemporaneamente.

7 Teoria dei giochi, A.A. 2002/03 c Fioravante Patrone 7 Assicurazione: autometrica di AXA La Axa ha introdotto un contratto di assicurazione innovativo: uno paga un premio che dipende dal numero di chilometri percorsi. Ovviamente ciò presuppone un meccanismo affidabile per sapere quanti Km uno ha fatto (un sigillo al contachilometri). Facciamo un ipotesi eroica ed anche ben poco realistica: ovverossia che sia dato il valore V del sinistro che viene assicurato. In realtà, trattandosi di responsabilità civile, ciò che viene assicurato èpiù ragionevolmente rappresentabile come una gamma di sinistri, corredati dalla probabilità chesi verifichino. Per evitare complicazioni ci teniamo in questo contesto ipersemplificato. Possiamo allora assumere che si abbia la struttura del premio indicata dalla formula seguente: P = P 0 + P 1 x Dove P 0 è il premio da pagare comunque, indipendentemente dai chilometri percorsi. Mentre P 1 è il premio al chilometro. Ovviamente x indica il numero di chilometri percorsi. Supponiamo che oltre a questa vi sia un altra tariffa sul mercato, ovverossia quella classica che prevede un premio fisso P f. Si assuma che i valori di P 0,P 1,P f siano dati e non contrattabili da parte dell assicurando. Quale tariffa sceglierà l assicurando? Tenendo conto del comportamento prevedibile degli assicurandi, come èplausibile che vengano fissati P f e P 0,P 1 dall assicurazione? (Si assuma che vi sia una sola compagnia assicuratrice). Se pensiamo ad un mercato in cui vi fosse precedentemente solo la tariffa a premio fisso, che effetto potrà avere l introduzione di questa nuova tariffa?

Capitolo 23: Scelta in condizioni di incertezza

Capitolo 23: Scelta in condizioni di incertezza Capitolo 23: Scelta in condizioni di incertezza 23.1: Introduzione In questo capitolo studiamo la scelta ottima del consumatore in condizioni di incertezza, vale a dire in situazioni tali che il consumatore

Dettagli

Scelte in condizione di incertezza

Scelte in condizione di incertezza Scelte in condizione di incertezza Tutti i problemi di decisione che abbiamo considerato finora erano caratterizzati dal fatto che ogni possibile scelta dei decisori portava a un esito certo. In questo

Dettagli

Esercizio 1 Dato il gioco ({1, 2, 3}, v) con v funzione caratteristica tale che:

Esercizio 1 Dato il gioco ({1, 2, 3}, v) con v funzione caratteristica tale che: Teoria dei Giochi, Trento, 2004/05 c Fioravante Patrone 1 Teoria dei Giochi Corso di laurea specialistica: Decisioni economiche, impresa e responsabilità sociale, A.A. 2004/05 Soluzioni degli esercizi

Dettagli

5.7. Assicurazione e equilibri di separazione.

5.7. Assicurazione e equilibri di separazione. ELORTO DL PR ON LINE DI ECONOMI DEI CONTRTTI 5.7. ssicurazione e equilibri di separazione. In questo paragrafo esaminiamo l attività di screening di una compagnia assicurativa (per definizione neutrale

Dettagli

Elementi di economia Economia dell informazione

Elementi di economia Economia dell informazione Elementi di economia Economia dell informazione Dott.ssa Michela Martinoia michela.martinoia@unimib.it Corso di laurea in Scienze del Turismo e Comunità Locale A.A. 2014/15 Informazione completa Significa

Dettagli

5.7. Assicurazione, selezione e equilibri di separazione.

5.7. Assicurazione, selezione e equilibri di separazione. ELBORTO SULL BSE DEL PR ON LINE 5.7 DI NICIT-SCOPP, ECONOMI DEI CONTRTTI (versione CZ del 10.12.2012) 5.7. ssicurazione, selezione e equilibri di separazione. In questo paragrafo esaminiamo l attività

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

Capitolo 5: Preferenze

Capitolo 5: Preferenze Capitolo 5: Preferenze 5.1: Introduzione Le preferenze individuali alla base dell analisi dei capitoli 3 e 4 vengono rappresentate graficamente da curve di indifferenza parallele in direzione verticale

Dettagli

Capitolo 25: Lo scambio nel mercato delle assicurazioni

Capitolo 25: Lo scambio nel mercato delle assicurazioni Capitolo 25: Lo scambio nel mercato delle assicurazioni 25.1: Introduzione In questo capitolo la teoria economica discussa nei capitoli 23 e 24 viene applicata all analisi dello scambio del rischio nel

Dettagli

Incertezza, assicurazioni, deterrenza

Incertezza, assicurazioni, deterrenza Incertezza, assicurazioni, deterrenza (anche questo è adattato da altri pezzi per mancanza di tempo) Scelta sotto incertezza come scelta tra lotterie L esperienza ci insegna che in generale le conseguenze

Dettagli

Capitolo 34: Informazione Asimmetrica

Capitolo 34: Informazione Asimmetrica Capitolo 34: Informazione Asimmetrica 34.1: Introduzione Fino ad ora abbiamo assunto che tutti gli agenti abbiano accesso alle stesse informazioni sul bene scambiato nel mercato. In questo capitolo studiamo

Dettagli

Le operazioni di assicurazione e la teoria

Le operazioni di assicurazione e la teoria Capitolo 1 Le operazioni di assicurazione e la teoria dell utilità 1.1 Introduzione In questo capitolo si discutono alcuni aspetti di base della teoria delle assicurazioni. In particolare, si formalizza

Dettagli

ASIMMETRIE INFORMATIVE. (Cap. 34 di Hey) Eppure si tratta di elementi piuttosto diffusi nella realtà di tutti i giorni:

ASIMMETRIE INFORMATIVE. (Cap. 34 di Hey) Eppure si tratta di elementi piuttosto diffusi nella realtà di tutti i giorni: ASIMMETRIE INFORMATIVE (Cap. 34 di Hey) Tener conto delle asimmetrie informative consente di evidenziare alcuni importanti elementi che la teoria standard - assumendo informazione completa e simmetrica

Dettagli

L avversione al rischio e l utilità attesa

L avversione al rischio e l utilità attesa L avversione al rischio e l utilità attesa Kreps: "Microeconomia per manager" 1 ARGOMENTI DI QUESTA LEZIONE In questa lezione introdurremo il modello dell utilità attesa, che descrive le scelte individuali

Dettagli

Modellazione delle preferenze

Modellazione delle preferenze Modellazione delle preferenze Roberto Cordone 1 1 Sono debitore delle dispense di B. Simeone e F. Patrone Sistemazione assiomatica Dato un insieme non vuoto di impatti F, esprimere una preferenza fra due

Dettagli

Esercitazione 23 maggio 2016

Esercitazione 23 maggio 2016 Esercitazione 5 maggio 016 Esercitazione 3 maggio 016 In questa esercitazione, nei primi tre esercizi, analizzeremo il problema del moral hazard nel mercato. In questo caso prenderemo in considerazione

Dettagli

Possiamo calcolare facilmente il valore attuale del bond A e del bond B come segue: VA A = 925.93 = 1000/1.08 VA B = 826.45 = 1000/(1.

Possiamo calcolare facilmente il valore attuale del bond A e del bond B come segue: VA A = 925.93 = 1000/1.08 VA B = 826.45 = 1000/(1. Appendice 5A La struttura temporale dei tassi di interesse, dei tassi spot e del rendimento alla scadenza Nel capitolo 5 abbiamo ipotizzato che il tasso di interesse rimanga costante per tutti i periodi

Dettagli

CONTRATTI E TASSI SWAP

CONTRATTI E TASSI SWAP CONTRATTI E TASSI SWAP FLAVIO ANGELINI Sommario. In queste note vengono definite, analizzate e valutate le tipologie più comuni di contratti interest rate swap e si discute l importanza che i tassi swap

Dettagli

Utilità scontata (US) attiene alla scelta/allocazione tra oggi e domani (i.e. risparmio ottimo). Elemento psicologico: propensione alla parsimonia.

Utilità scontata (US) attiene alla scelta/allocazione tra oggi e domani (i.e. risparmio ottimo). Elemento psicologico: propensione alla parsimonia. Richiami essenziali: Utilità scontata (US) attiene alla scelta/allocazione tra oggi e domani (i.e. risparmio ottimo). Elemento psicologico: propensione alla parsimonia. Tasso di sconto intertemporale soggettivo

Dettagli

Capitolo 25: Lo scambio nel mercato delle assicurazioni

Capitolo 25: Lo scambio nel mercato delle assicurazioni Capitolo 25: Lo scambio nel mercato delle assicurazioni 25.1: Introduzione In questo capitolo la teoria economica discussa nei capitoli 23 e 24 viene applicata all analisi dello scambio del rischio nel

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

Economia dell Informazione. Cap. 12

Economia dell Informazione. Cap. 12 Economia dell Informazione Cap. 12 Informazione completa Significa che non esistono gap informativi rispetto a nessuna delle situazioni connesse agli scambi: sui beni disponibili, sui loro prezzi, sulla

Dettagli

di informazione asimmetrica:

di informazione asimmetrica: Informazione asimmetrica In tutti i modelli che abbiamo considerato finora abbiamo assunto (implicitamente) che tutti gli agenti condividessero la stessa informazione (completa o incompleta) a proposito

Dettagli

Organizzazione aziendale Lezione 6 I fallimenti del mercato Cap. 2. Ing. Marco Greco m.greco@unicas.it Tel.0776.299.

Organizzazione aziendale Lezione 6 I fallimenti del mercato Cap. 2. Ing. Marco Greco m.greco@unicas.it Tel.0776.299. Organizzazione aziendale Lezione 6 I fallimenti del mercato Cap. 2 Ing. m.greco@unicas.it Tel.0776.299.3641 Stanza 1S-28 Le cause delle distorsioni Concorrenza insufficiente Rendimenti crescenti di scala

Dettagli

Domanda e offerta di lavoro

Domanda e offerta di lavoro Domanda e offerta di lavoro 1. Assumere (e licenziare) lavoratori Anche la decisione di assumere o licenziare lavoratori dipende dai costi che si devono sostenere e dai ricavi che si possono ottenere.

Dettagli

TEORIA DELL UTILITÀ E DECISION PROCESS

TEORIA DELL UTILITÀ E DECISION PROCESS TEORIA DELL UTILITÀ E DECISION PROCESS 1 UTILITÀ Classicamente sinonimo di Desiderabilità Fisher (1930):... uno degli elementi che contribuiscono ad identificare la natura economica di un bene e sorge

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Paperone e Rockerduck: a cosa serve l antitrust?

Paperone e Rockerduck: a cosa serve l antitrust? Paperone e Rockerduck: a cosa serve l antitrust? Paperone Anna Torre, Rockerduck Ludovico Pernazza 1-14 giugno 01 Università di Pavia, Dipartimento di Matematica Concorrenza Due imprese Pap e Rock operano

Dettagli

COSTI, RICAVI E PROFITTI

COSTI, RICAVI E PROFITTI COSTI, RICAVI E PROFITTI L obiettivo dell impresa è la massimizzazione dei profitti. I profitti sono dati dalla differenza tra i ricavi e i costi. Al variare della quantità prodotta, q, variano sia i costi

Dettagli

Capitolo 33: Beni Pubblici

Capitolo 33: Beni Pubblici Capitolo 33: Beni Pubblici 33.1: Introduzione In questo capitolo discutiamo le problematiche connesse alla fornitura privata dei beni pubblici, concludendo per l opportunità dell intervento pubblico in

Dettagli

La condivisione del rischio e la sua ripartizione su ampia scala

La condivisione del rischio e la sua ripartizione su ampia scala La condivisione del rischio e la sua ripartizione su ampia scala 1 ARGOMENTI DI QUESTA LEZIONE Questa lezione propone esplora due problemi fondamentali: Se esiste un rischio in una transazione chi lo deve

Dettagli

Scelte in condizioni di rischio e incertezza

Scelte in condizioni di rischio e incertezza CAPITOLO 5 Scelte in condizioni di rischio e incertezza Esercizio 5.1. Tizio ha risparmiato nel corso dell anno 500 euro; può investirli in obbligazioni che rendono, in modo certo, il 10% oppure in azioni

Dettagli

Organizzazione aziendale Lezione 5 Informazione, organizzazione e mercato Cap. 3. Ing. Marco Greco m.greco@unicas.it Tel.0776.299.

Organizzazione aziendale Lezione 5 Informazione, organizzazione e mercato Cap. 3. Ing. Marco Greco m.greco@unicas.it Tel.0776.299. Organizzazione aziendale Lezione 5 Informazione, organizzazione e mercato Cap. 3 Ing. m.greco@unicas.it Tel.0776.299.3641 Stanza 1S-28 Informazioni visita IPZS 9.30 Appuntamento in via Salaria n. 712,

Dettagli

Esercizi TdG per PoliMI

Esercizi TdG per PoliMI Esercizi TdG per PoliMI c Fioravante Patrone Esercizi TdG per PoliMI Esercizio Trovare gli equilibri di Nash (in strategie pure) dei giochi seguenti. I II L R T,, B,, I II L R T 99, 99, B, 98, 98 Quale

Dettagli

Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie

Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie Economia degli Intermediari Finanziari 29 aprile 2009 A.A. 2008-2009 Agenda 1. Il calcolo

Dettagli

La teoria dell utilità attesa

La teoria dell utilità attesa La teoria dell utilità attesa 1 La teoria dell utilità attesa In un contesto di certezza esiste un legame biunivoco tra azioni e conseguenze: ad ogni azione corrisponde una e una sola conseguenza, e viceversa.

Dettagli

La scelta in condizioni di incertezza

La scelta in condizioni di incertezza La scelta in condizioni di incertezza 1 Stati di natura e utilità attesa. L approccio delle preferenza per gli stati Il problema posto dall incertezza riformulato (state-preference approach). L individuo

Dettagli

Scelte Rischiose (cap. 23 Hey)

Scelte Rischiose (cap. 23 Hey) Scelte Rischiose (cap. 23 Hey) Solito preambolo: In Economia le scelte/decisioni vengono distinte in: 1. decisioni in situazioni di certezza 2. decisioni in situazioni di rischio 3. decisioni in situazioni

Dettagli

Scelta sotto incertezza

Scelta sotto incertezza Scelta sotto incertezza 1. Introduzione Nei capitoli 1 e 2 della microeconomia standard si studia la scelta dei consumatori e dei produttori, che hanno un informazione perfetta sulle circostanze che caratterizzano

Dettagli

Dispensa 4. June 11, 2009

Dispensa 4. June 11, 2009 Dispensa 4 June 11, 2009 1 Il mercato dei bidoni Il problema della selezione avversa è dovuto al fatto che l agente detiene informazioni private (delle quali il principale non è a conoscenza) prima della

Dettagli

Esercizi di Ricerca Operativa II

Esercizi di Ricerca Operativa II Esercizi di Ricerca Operativa II Raffaele Pesenti January 12, 06 Domande su utilità 1. Determinare quale è l utilità che un giocatore di roulette assegna a 100,00 Euro, nel momento che gioca tale cifra

Dettagli

Università di Milano Bicocca. Esercitazione 6 di Matematica per la Finanza. 14 Maggio 2015

Università di Milano Bicocca. Esercitazione 6 di Matematica per la Finanza. 14 Maggio 2015 Università di Milano Bicocca Esercitazione 6 di Matematica per la Finanza 14 Maggio 2015 Esercizio 1 Un agente presenta una funzione di utilitá u(x) = ln(1 + 6x). Egli dispone di un progetto incerto che

Dettagli

3. Asimmetrie informative

3. Asimmetrie informative Lezione seconda parte seconda Beni pubblici e altre cause di fallimento del mercato 1 3. Asimmetrie informative 3.1 rischio 3.2 assicurazione 3.3 asimmetrie informative 2 1 3.1 rischio Una situazione rischiosa

Dettagli

Incertezza, assicurazioni, deterrenza

Incertezza, assicurazioni, deterrenza Incertezza, assicurazioni, deterrenza (anche questo è adattato da altri pezzi per mancanza di tempo) Scelta sotto incertezza come scelta tra lotterie L esperienza ci insegna che in generale le conseguenze

Dettagli

Decisioni in condizioni di rischio. Roberto Cordone

Decisioni in condizioni di rischio. Roberto Cordone Decisioni in condizioni di rischio Roberto Cordone Decisioni in condizioni di rischio Rispetto ai problemi in condizioni di ignoranza, oltre all insieme Ω dei possibili scenari, è nota una funzione di

Dettagli

Un modello matematico di investimento ottimale

Un modello matematico di investimento ottimale Un modello matematico di investimento ottimale Tiziano Vargiolu 1 1 Università degli Studi di Padova Liceo Scientifico Benedetti Venezia, giovedì 30 marzo 2011 Outline 1 Preliminari di calcolo delle probabilità

Dettagli

= 8.000 + 2.000 = 5.000.

= 8.000 + 2.000 = 5.000. Esercizio 1 Consideriamo il mercato delle barche usate e supponiamo che esse possano essere di due tipi, di buona qualità e di cattiva qualità. Il valore di una barca di buona qualità è q = 8000, mentre

Dettagli

Economia pubblica. Alberto Zanardi

Economia pubblica. Alberto Zanardi Università di Bologna Scuola di Economia, Management e Statistica Corso di laurea CLEF Economia pubblica a.a. 2013-14 14 (8 crediti, 60 ore insegnamento) Le asimmetrie informative Alberto Zanardi Carenze

Dettagli

Economia Pubblica Rischio e Incertezza

Economia Pubblica Rischio e Incertezza Economia Pubblica Rischio e Incertezza Giuseppe De Feo Università degli Studi di Pavia email: giuseppe.defeo@unipv.it Secondo Semestre 2011-12 Seconda parte del corso di Economia Pubblica I problemi dell

Dettagli

Richiami di microeconomia

Richiami di microeconomia Capitolo 5 Richiami di microeconomia 5. Le preferenze e l utilità Nell analisi microeconomica si può decidere di descrivere ogni soggetto attraverso una funzione di utilità oppure attraverso le sue preferenze.

Dettagli

Energia potenziale elettrica e potenziale. In queste pagine R indicherà una regione in cui è presente un campo elettrostatico.

Energia potenziale elettrica e potenziale. In queste pagine R indicherà una regione in cui è presente un campo elettrostatico. Energia potenziale elettrica e potenziale 0. Premessa In queste pagine R indicherà una regione in cui è presente un campo elettrostatico. 1. La forza elettrostatica è conservativa Una o più cariche ferme

Dettagli

Incentivi alla cooperazione Introduzione

Incentivi alla cooperazione Introduzione Incentivi alla cooperazione dellamico@disi.unige.it Sistemi Distribuiti P2P A.A. 2007-08 6-7 dicembre 2007 Outline 1 Cooperazione e free riding Free riding Reciprocità 2 Eliminazione iterata 3 Forma iterata

Dettagli

D R (S) = ϱ 1 D R (S), e ovviamente per quella passiva

D R (S) = ϱ 1 D R (S), e ovviamente per quella passiva CAPITOLO 1 Introduzione Nella fisica moderna i metodi algebrici e in particolare la teoria dei gruppi hanno acquistato un interesse sconosciuto alla fisica del secolo scorso. Si può vedere la cosa in una

Dettagli

3 Scegliere quando il mondo è incerto

3 Scegliere quando il mondo è incerto 3 Scegliere quando il mondo è incerto (Parte del cap. 3 di I. Lavanda e G. Rampa, Microeconomia. Scelte individuali e benessere sociale, Roma, Carocci, 2004) 1. Introduzione Nel capitolo precedente abbiamo

Dettagli

Esercitazione del 5/10/09

Esercitazione del 5/10/09 Esercitazione del 5/10/09 A cura di Giuseppe Gori (giuseppe.gori@unibo.it) Corso di Microeconomia, Docente Luigi Marattin 1 Esercizi. 1.1 Le curve di domanda e di offerta in un dato mercato sono date da:

Dettagli

004722 - Economia pubblica - II anno

004722 - Economia pubblica - II anno Corso di laurea di primo livello in Economia aziendale CLEA nuovo ordinamento 004722 - Economia pubblica - II anno 8 crediti, 60 ore insegnamento a.a. 2011-12 Stefano Toso e Alberto Zanardi Lezione 7 Carenze

Dettagli

STATO E RIDISTRIBUZIONE DELLE RISORSE CORSO DI LAUREA IN SERVIZIO SOCIALE, FACOLTÁ DI SOCIOLOGIA

STATO E RIDISTRIBUZIONE DELLE RISORSE CORSO DI LAUREA IN SERVIZIO SOCIALE, FACOLTÁ DI SOCIOLOGIA STATO E RIDISTRIBUZIONE DELLE RISORSE CORSO DI LAUREA IN SERVIZIO SOCIALE, FACOLTÁ DI SOCIOLOGIA A.A. 2008-2009 ANNA TEMPIA 2 LEZIONE LE RAGIONI DELL INTERVENTO PUBBLICO (PARTE SECONDA) BIBLIOGRAFIA: P.

Dettagli

Le garanzie possono essere di due tipi (Chan e Kanatas, 1985):

Le garanzie possono essere di due tipi (Chan e Kanatas, 1985): Sull uso delle Garanzie. Tassonomia Le garanzie possono essere di due tipi (Chan e Kanatas, 1985): a) Un mutuatario può impegnare come garanzia ( interna all impresa) un cespite che viene utilizzato nel

Dettagli

La curva di offerta. La curva di offerta

La curva di offerta. La curva di offerta La curva di offerta La curva di offerta Un diagramma che mostra la quantità di un bene che i venditori desiderano vendere per un dato prezzo rapporto tra prezzo e quantità offerta Ha pendenza positiva

Dettagli

EQUILIBRIO ECONOMICO GENERALE PROF. MATTIA LETTIERI

EQUILIBRIO ECONOMICO GENERALE PROF. MATTIA LETTIERI EQUILIBRIO ECONOMICO GENERALE PROF. MATTIA LETTIERI Indice 1 EQUILIBRIO ECONOMICO GENERALE ------------------------------------------------------------------------------ 3 2 L EQUILIBRIO ECONOMICO GENERALE

Dettagli

Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza

Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza ECONOMIA DELL INFORMAZIONE L informazione è un fattore importante nel processo decisionale di consumatori e imprese Nella realtà,

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

Guardiamo ora però la cosa da un altro punto di vista analizzando il seguente grafico a forma di torta. La torta in 5 parti

Guardiamo ora però la cosa da un altro punto di vista analizzando il seguente grafico a forma di torta. La torta in 5 parti L EQUIVALENZA FRA I NUMERI RAZIONALI (cioè le frazioni), I NUMERI DECIMALI (quelli spesso con la virgola) ED I NUMERI PERCENTUALI (quelli col simbolo %). Ora vedremo che ogni frazione (sia propria, che

Dettagli

Efficienza ed equità

Efficienza ed equità Efficienza ed equità Efficienza ed equità Abbiamo visto nelle lezioni precedenti che, nella situazione ideale di assenza di fallimenti del mercato, il mercato condurrebbe a un risultato Pareto-efficiente.

Dettagli

LA RICERCA OPERATIVA E I PROBLEMI DI SCELTA

LA RICERCA OPERATIVA E I PROBLEMI DI SCELTA LA RICERCA OPERATIVA E I PROBLEMI DI SCELTA La ricerca operativa può essere considerata: L applicazione del metodo scientifico da parte di gruppi interdisciplinari a problemi che implicano il controllo

Dettagli

MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti. Enrico Saltari Università di Roma La Sapienza

MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti. Enrico Saltari Università di Roma La Sapienza MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti Enrico Saltari Università di Roma La Sapienza 1 Dotazioni iniziali Il consumatore dispone ora non di un dato reddito monetario ma di un ammontare

Dettagli

Funzioni. Capitolo 6. 6.1 Concetto di funzione e definizioni preliminari

Funzioni. Capitolo 6. 6.1 Concetto di funzione e definizioni preliminari Capitolo 6 Funzioni 6. Concetto di funzione e definizioni preliminari Definizione 6. Dati due insiemi non vuoti D e C, si dice applicazione o funzione una qualsiasi legge (relazione) che associa ad ogni

Dettagli

Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza

Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza ECONOMIA DELL INFORMAZIONE L informazione è un fattore importante nel processo decisionale di consumatori e imprese Nella realtà,

Dettagli

Le scelte del consumatore in condizione di incertezza (cap.5)

Le scelte del consumatore in condizione di incertezza (cap.5) Le scelte del consumatore in condizione di incertezza (cap.5) Che cos è il rischio? Come possiamo indicare le preferenze del consumatore riguardo al rischio? C è chi acquista assicurazione (non ama il

Dettagli

I costi. Costi economici vs. costi contabili

I costi. Costi economici vs. costi contabili I costi Costi economici vs. costi contabili I costi economici connessi alla produzione di una certa quantità di output Y includono tutte le spese per i fattori produttivi. In altre parole, i costi economici

Dettagli

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0.

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0. EQUAZIONI E DISEQUAZIONI Le uguaglianze fra espressioni numeriche si chiamano equazioni. Cercare le soluzioni dell equazione vuol dire cercare quelle combinazioni delle lettere che vi compaiono che la

Dettagli

Marzo 2015. Voluntary Disclosure, ravvedimento operoso e acquiescenza. Quale strada percorrere?

Marzo 2015. Voluntary Disclosure, ravvedimento operoso e acquiescenza. Quale strada percorrere? Marzo 2015 Voluntary Disclosure, ravvedimento operoso e acquiescenza. Quale strada percorrere? Carlo Sallustio, Ph. D. in Diritto tributario, Avvocato tributarista presso Studio Legale Tributario Fantozzi

Dettagli

Progetto costo I. O. I.A. A 5 9 4 B 8 15 9 C 4 3 3 D 9 7 1

Progetto costo I. O. I.A. A 5 9 4 B 8 15 9 C 4 3 3 D 9 7 1 Tecniche di Valutazione Economica Processo di aiuto alla decisione lezione 13.04.2005 Modello di valutazione Dobbiamo riuscire a mettere insieme valutazioni che sono espresse con dimensioni diverse. Abbiamo

Dettagli

Pertanto la formula per una prima approssimazione del tasso di rendimento a scadenza fornisce

Pertanto la formula per una prima approssimazione del tasso di rendimento a scadenza fornisce A. Peretti Svolgimento dei temi d esame di MDEF A.A. 015/16 1 PROVA CONCLUSIVA DI MATEMATICA per le DECISIONI ECONOMICO-FINANZIARIE Vicenza, 9/01/016 ESERCIZIO 1. Data l obbligazione con le seguenti caratteristiche:

Dettagli

Esercizi TdG per PoliMI, parte 2

Esercizi TdG per PoliMI, parte 2 Esercizi TdG per PoliMI, parte 2 c Fioravante Patrone 1 Esercizi TdG per PoliMI, parte 2 Esercizio 1 I \ II L R T 2, 2 3, 3 B 3, 3 4, 4 Per il gioco in forma strategica sopra descritto: trovare gli equilibri

Dettagli

ANALISI COSTI-BENEFICI

ANALISI COSTI-BENEFICI ANALISI COSTI-BENEFICI Valutazione di progetti pubblici Le politiche pubbliche correnti consistono nel realizzare progetti pubblici: il policy maker deve decidere quale progetto è da preferire tra le varie

Dettagli

Lezione 5. Argomenti. Premessa Vincolo di bilancio La scelta ottima del consumatore

Lezione 5. Argomenti. Premessa Vincolo di bilancio La scelta ottima del consumatore Lezione 5 Argomenti Premessa Vincolo di bilancio La scelta ottima del consumatore 5.1 PREESSA Nonostante le preferenze portino a desiderare quantità crescenti di beni, nella realtà gli individui non sono

Dettagli

educazione finanziaria atelier condividere con voi la mia esperienza di insegnamento

educazione finanziaria atelier condividere con voi la mia esperienza di insegnamento Ringrazio gli organizzatori e i colleghi che hanno deciso di dedicare il loro tempo a questa iniziativa. Mi presento. Io insegno EIF e FA nei corsi di Laurea di Economia: quindi insegno a ragazzi grandi

Dettagli

Discuteremo di. Domanda individuale e domanda di mercato. Scelta razionale

Discuteremo di. Domanda individuale e domanda di mercato. Scelta razionale Discuteremo di. La determinazione dell insieme delle alternative all interno del quale sceglie il consumatore La descrizione e la rappresentazione delle sue preferenze Come si determina la scelta ottima

Dettagli

Microeconomia A-K, Prof Giorgio Rampa a.a. 2011-2012. Svolgimento della prova scritta di Microeconomia AK del 19 settembre 2012

Microeconomia A-K, Prof Giorgio Rampa a.a. 2011-2012. Svolgimento della prova scritta di Microeconomia AK del 19 settembre 2012 Svolgimento della prova scritta di Microeconomia AK del 19 settembre 2012 A DEFINIZIONI - Si definiscano sinteticamente i termini anche con l ausilio, qualora necessario, di formule e grafici. 1. Beni

Dettagli

1 Massimi e minimi liberi 1. 2 Massimi e minimi vincolati 7. 3 Soluzioni degli esercizi 12

1 Massimi e minimi liberi 1. 2 Massimi e minimi vincolati 7. 3 Soluzioni degli esercizi 12 UNIVR Facoltà di Economia Sede di Vicenza Corso di Matematica 1 Massimi e minimi delle funzioni di più variabili Indice 1 Massimi e minimi liberi 1 Massimi e minimi vincolati 7 3 Soluzioni degli esercizi

Dettagli

COME MASSIMIZZARE UNA FUNZIONE DI UTILITÀ

COME MASSIMIZZARE UNA FUNZIONE DI UTILITÀ icroeconomia Douglas Bernheim, ichael Whinston Copyright 009 The cgraw-hill Companies srl COE ASSIIZZARE UNA FUNZIONE DI UTILITÀ Supponiamo che il reddito mensile di Elena sia pari a Y e sia interamente

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

Qualificare i fornitori attraverso un sistema analitico di rating

Qualificare i fornitori attraverso un sistema analitico di rating articolo n. 3 giugno 2014 Qualificare i fornitori attraverso un sistema analitico di rating MASSIMILIANO MARI Responsabile Acquisti, SCANDOLARA s.p.a. Realizzare un sistema di rating costituisce un attività

Dettagli

Università per Stranieri di Siena Livello A1

Università per Stranieri di Siena Livello A1 Unità 20 Come scegliere il gestore telefonico CHIAVI In questa unità imparerai: a capire testi che danno informazioni sulla scelta del gestore telefonico parole relative alla scelta del gestore telefonico

Dettagli

Indice. 1 Il settore reale --------------------------------------------------------------------------------------------- 3

Indice. 1 Il settore reale --------------------------------------------------------------------------------------------- 3 INSEGNAMENTO DI ECONOMIA POLITICA LEZIONE VI IL MERCATO REALE PROF. ALDO VASTOLA Indice 1 Il settore reale ---------------------------------------------------------------------------------------------

Dettagli

Equivalenza economica

Equivalenza economica Equivalenza economica Calcolo dell equivalenza economica [Thuesen, Economia per ingegneri, capitolo 4] Negli studi tecnico-economici molti calcoli richiedono che le entrate e le uscite previste per due

Dettagli

bonus.ch: le assicurazioni auto online raggiungono il 15% di quota di mercato

bonus.ch: le assicurazioni auto online raggiungono il 15% di quota di mercato bonus.ch: le assicurazioni auto online raggiungono il 15% di quota di mercato Gli Svizzeri sono soddisfatti del proprio assicuratore auto: come per lo scorso anno, i risultati del sondaggio del portale

Dettagli

CAPITOLO 1 OFFERTA DI LAVORO

CAPITOLO 1 OFFERTA DI LAVORO CAPITOLO 1 OFFERTA DI LAVORO 1-1. Quante ore allocherà un individuo alle attività di tempo libero se le sue curve di indifferenza tra consumo e beni sono concave verso l origine? Il lavoratore o lavorerà

Dettagli

Utilità Attesa (Cap. 24 Hey)

Utilità Attesa (Cap. 24 Hey) Utilità Attesa (Cap. 24 Hey) Solito preambolo: In Economia le scelte/decisioni vengono distinte in: 1. decisioni in situazioni di certezza 2. decisioni in situazioni di rischio 3. decisioni in situazioni

Dettagli

Capitolo 2. Un introduzione all analisi dinamica dei sistemi

Capitolo 2. Un introduzione all analisi dinamica dei sistemi Capitolo 2 Un introduzione all analisi dinamica dei sistemi Obiettivo: presentare una modellistica di applicazione generale per l analisi delle caratteristiche dinamiche di sistemi, nota come system dynamics,

Dettagli

Testimonianza 6Sicuro. Economia Cognitivo - Emotiva: presa delle decisioni in campo economico. Monza, 10 giugno 2011.

Testimonianza 6Sicuro. Economia Cognitivo - Emotiva: presa delle decisioni in campo economico. Monza, 10 giugno 2011. Testimonianza 6Sicuro Economia Cognitivo - Emotiva: presa delle decisioni in campo economico Monza, 10 giugno 2011 Chi presenta oggi 2 Agenda dell intervento Il mercato RC in Italia La struttura organizzativa

Dettagli

Problemi di Programmazione Lineare Intera

Problemi di Programmazione Lineare Intera Capitolo 4 Problemi di Programmazione Lineare Intera La Programmazione Lineare Intera (PLI) tratta il problema della massimizzazione (minimizzazione) di una funzione di più variabili, soggetta a vincoli

Dettagli

Nella prima parte del corso l attenzione è venuta appuntandosi sui problemi inerenti la valutazione di investimenti aziendali e di strumenti

Nella prima parte del corso l attenzione è venuta appuntandosi sui problemi inerenti la valutazione di investimenti aziendali e di strumenti Nella prima parte del corso l attenzione è venuta appuntandosi sui problemi inerenti la valutazione di investimenti aziendali e di strumenti finanziari in un contesto di flussi finanziari certi, tuttavia

Dettagli

MONOPOLIO. 1. Massimizzazione del Profitto

MONOPOLIO. 1. Massimizzazione del Profitto MONOPOLIO Quando nel mercato c è una sola impresa, difficilmente questa accetta il prezzo di mercato come dato. Il monopolista può infatti influire sul prezzo di mercato (price-maker) e quindi sceglie

Dettagli

Esercizi di Teoria dei Giochi

Esercizi di Teoria dei Giochi Esercizi di Teoria dei Giochi ultimo aggiornamento: 11 maggio 2010 1. Si consideri il gioco fra 2 giocatori rappresentato (con le notazioni standard) dalla seguente matrice: (3, 1) (5, 0) (1, 0) (2, 6)

Dettagli

6.4 Risposte alle domande di ripasso

6.4 Risposte alle domande di ripasso Economia dell informazione e scelta in condizioni di incertezza 45 6.4 Risposte alle domande di ripasso 1. Se si potesse falsificare il segnale, questo cesserebbe di essere un segnale perché diventerebbe

Dettagli

DALLA PARTE DEI GIOVANI. Prodotti e servizi che semplificano la vita.

DALLA PARTE DEI GIOVANI. Prodotti e servizi che semplificano la vita. DALLA PARTE DEI GIOVANI Prodotti e servizi che semplificano la vita. LA BANCA COME TU LA DALLA PARTE DEI GIOVANI Prodotti e servizi che semplificano la vita. VUOI Una banca innovativa a mia disposizione

Dettagli

La scelta di portafoglio

La scelta di portafoglio La scelta di portafoglio 1 La scelta di portafoglio La scelta di portafoglio: il modo in cui un individuo decide di allocare la propria ricchezza tra più titoli Il mercato dei titoli è un istituzione che

Dettagli