Strutture dati efficienti per la ricerca della similarità

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Strutture dati efficienti per la ricerca della similarità"

Transcript

1 Strutture dati efficienti per la ricerca della similarità Anche utilizzando i metodi di filtraggio visti in precedenza, il numero di confronti tra query e oggetti presenti nel database rimane alto. L efficienza di ricerca può essere migliorata in maniera sensibile utilizzando delle strutture dati specifiche per la memorizzazione dei vettori di feature. Alberi bilanciati (B trees) Clustering Alberi bilanciati multidimensionali (MB trees) K-d trees Grid files Alberi bilanciati Introduciamo i B+ e i B tree che memorizzano esclusivamente vettori monodimensionali (singoli valori) ma forniscono le idee di base per le strutture dedicate ai vettori multidimensionali Un B+ tree è una struttura gerarchica costituita da nodi, Ogni nodo contiene n puntatori e n-1 valori (o chiavi) dove n è il GRADO del tree (è il massimo numeri di figli che ogni nodo può avere). Il puntatore 1 è utilizzato per accedere a tutti i record i cui valori sono inferiori al valore 1, il puntatore 2 per accedere a tutti i record il cui valore è più grande del valore 1 e più piccolo del valore 2, ecc, l ultimo puntatore n è usato per accedere a tutti i record il cui valore e uguale o maggiore del valore n-1

2 Alberi bilanciati In un albero B, tutte le foglie hanno la stessa distanza dalla radice; per questo motivo tali alberi hanno un efficienza prevedibile. Gli alberi B supportano il recupero sia casuale sia sequenziale dei record. La forma più diffusa di albero B è l albero B+. Un albero B+ di grado m possiede la seguente proprietà: Ogni nodo ha tra m e m/2 figli (m è un intero maggiore di o uguale a 3, solitamente dispari), ad eccezione del nodo radice (che non rispetta questo limite inferiore). Ricerca in alberi bilanciati Si immagini di voler recuperare i record di dati per il numero di prodotto Si noti che il valore nel nodo radice è oiché 1425 è maggiore di 1250, si dovrà seguire la freccia a destra di questo valore verso il basso fino al livello successivo. In questo nodo si trova il valore ricercato (1425), quindi si seguirà la freccia centrale verso il basso fino al nodo foglia che contiene il valore Questo nodo contiene un puntatore al record di dati per il numero di prodotto 1425, quindi il record può essere recuperato.

3 Inserimento in alberi bilanciati Si supponga di aggiungere un record con la chiave 1800 all albero B+ della figura precedente Il risultato di questo inserimento è mostrato nella figura soprastante oiché il nodo 1 ha solo tre figli l albero soddisfa ancora tutte le proprietà dell albero B+. Inserimento in alberi bilanciati Si consideri ora l effetto dell aggiunta di un altro record all albero, questa volta con la chiave In questo caso, il nodo 1 viola il limite del grado, e deve quindi essere suddiviso in due nodi. La suddivisione del nodo 1 comporta una nuova immissione nel nodo 2, che farà sì che questo nodo abbia quattro figli. Anche il nodo 2 dovrà quindi essere suddiviso, cosa che comporta una nuova immissione nel nodo 3.

4 Dopo l inserimento L eliminazione di un record causa l eliminazione di una voce nel nodo. Se questa eliminazione fa sì che una foglia abbia meno di m/2 figli, la foglia verrà unita a una foglia adiacente; se la foglia unita è troppo grande (ha più di m figli), viene suddivisa, cosa che comporta semplicemente una ri-distribuzione più equilibrata delle chiavi tra i nodi. Il risultato è che un albero B+ viene riorganizzato dinamicamente perché sia possibile mantenerlo bilanciato (stessa profondità lungo qualsiasi percorso dalla radice) Cluster 1 Cluster 5 Clustering Tecnica per ottimizzare i tempi di ricerca nello spazio di feature n-dimensionale Vettori di features simili vengono raggruppati Cluster 3 in cluster in base a Cluster 2 misure di similarità Ogni cluster e rappresentato dal proprio centroide Il calcolo della similarità avviene tra la Cluster 4 query ed il centroide di ogni cluster I cluster il cui centroide CENTROIDE e più simile alla query vengono utilizzati per la ricerca completa sui vettori di features che contengono

5 Clustering a più livelli Quando il numero di cluster e comunque alto si utilizzano cluster a livelli multipli per ridurre il numero di calcoli di similarità Cluster 2 Cluster 3 CENTROIDE DEL SUERCLUSTER Cluster 1 Super Cluster 1 Cluster 4 Super Cluster 2 Cluster 5 CENTROIDE MB trees multidimensionali Struttura simile al B+ TREE standard Supporta le similarity query Esempio in 2D: Ogni feature vector è un punto nello spazio 2D Si definisce il bounding-box contenente tutti i punti Dividiamo tale rettangolo in regioni con numero simile di feature contenute all interno di ogni regione Le regioni vengono ordinate secondo un criterio (rima X, quindi Y) Ogni regione contiene i puntatori ai feature-vector che ricadono all interno della regione Ogni feature-vector ha un link con il dato multimediale di cui è una rappresentazione

6 MB trees multidimensionali D 0,1 D 0,0 D 1,2 D 1,1 D 2,1 D 3,0 D 1,2 0 D 1,0 D 2,0 D 1,0 0 D 2,1 0 D 0,0 D 0,1 D 1,0 D 1,1 D 1,2 D 2,0 D 2,1 D 3,0 0 L 0,0 L 0,1 L 1,0 L 1,1 L 1,2 L 2,0 L 2,1 L 3,0 Ricerca su MB trees multidimensionali oint query Ricerca di un vettore dato (x,y) artiamo dalla root e troviamo la regione che contiene il vettore da ricercare Scorriamo la lista di feature-vector associata alla regione Range query Ricerca di tutti i vettori che ricadono in un rettangolo artendo dalla root troviamo tutte le regioni che si sovrappongono al rettangolo di ricerca Scorriamo la lista di feature-vector associata alla regione K Nearest-Neighbor query Ricerca dei k vettori più vicini ad un vettore dato Utilizziamo un procedimento iterativo, composto dalla ripetizione di Range query fino a quando non troviamo un numero sufficiente di vettori candidati. Utilizziamo il calcolo della distanza euclidea tra il vettore da ricercare ed i vettori candidati

7 K-d trees Sono una estensione degli ALBERI BINARI: In un A.B. ogni nodo ha tre elementi: un valore della chiave X un puntatore ai record con chiave < x un puntatore ai record con chiave > x Un albero binario e normalmente non bilanciato Durante l inserimento si applicano metodi di bilanciamento per mantenere i tempi di ricerca in O(log n ) in un k-d tree ogni chiave è costituita dal vettore k-dimensionale invece che da un solo valore er generare l albero bisogna individuare una regola per decidere da che parte inserire il nuovo elemento (dx,sx) Al primo livello si effettua il salto basandosi sulla prima componente del vettore Al secondo livello si effettua il salto basandosi sulla seconda componente del vettore ecc Esempio di K-d trees Supponiamo di avere i seguenti vettori nello spazio a 3 dimensioni: (10,13,7) (9,14,8) (20,9,17) (7,13,6) (8,12,7) (6,10,9) (11,8,14) (15,13,11) (10,6,17) (16,12,21) (17,3,15) Livello 1 L albero che potremmo costruire è: (10, 13,17) Livello 2 (9, 14,18) (20, 9,17) Livello 3 (7, 13,6) (11, 8,14) (15, 13,11) Livello 4 (8, 12,7) (10, 6,17) (16, 12,21) Livello 5 (6, 10, 9) (17, 3,15)

8 Utilizzo K-d trees Inserimento: si utilizza ad ogni livello l ordinamento sulla corrispondente componente. roblema: la struttura dell albero dipende dall ordine di inserimento dei record. L albero può diventare sbilanciato e richiedere operazioni di ri-bilanciamento Ricerca: è simile al processo di inserimento Ad ogni livello effettuiamo il salto sulla base del valore della relativa componente del vettore Eliminazione: uò risultare complicata quando occorre eliminare un nodo intermedio dell albero Si possono effettuare delle cancellazioni logiche senza modificare la struttura dell albero Range query: sono facili da implementare e comportano la visita di un numero di nodi dell albero abbastanza ridotta Grid files Sono una modalità di indicizzazione e ricerca abbastanza semplice ma molto utilizzata in implementazioni reali. Consistono nella suddivisione dello spazio n-dimensionale in ipercubi aventi tutti la stessa dimensione. Ogni ipercubo contiene zero o più feature-vector Esempio 2D: Griglia nello spazio dei valori delle features Indice Scala dei valori 0,0 1,0 2,0 3,0 Array 2D di puntatori alle griglie 0,1 1,1 2,1 3,1 0,2 1,2 2,2 3,2 0,3 1,3 2,3 3,3

9 Grid files L Inserimento di un valore nella struttura e molto semplice: Es: se volessimo inserire il vettore de feature {80, 70} nella griglia 2D precedente sapremmo subito che questo dovrà essere inserito nella griglia con indice (1,1) e quindi sarà puntato dal puntatore 1,1 La ricerca di un valore avviene in un modo simile: Es di point query: se vogliamo trovare il vettore {40, 125} sappiamo subito che questo si troverà nella griglia (0,2). Quindi prendiamo il puntatore 0,2 e scorriamo la lista di vettori puntati da questo (tutti i vettori di feature che si trovano nella stessa griglia sono puntati dallo stesso puntatore) Es di range query: e necessario trovare tutte le liste di vettori puntate dai puntatori le cui griglie vengono intersecate dal rettangolo descritto dalla query Considerazioni su grid files Se i vettori di features sono distribuiti abbastanza uniformemente all interno dello spazio dei valori tale metodo da buoni risultati Nel caso contrario (vettori non distribuiti uniformemente nello spazio) alcune griglie risultano vuote o quasi e altre sovraffollate Se una griglia e sovraffollata il puntatore alla griglia individuerà una lista di vettori molto lunga il cui scorrimento e calcolo della similarità comporta perdita di tempo elevata er far fronte a questo problema (nel caso di distribuzione non uniforme) invece di utilizzare griglie fisse della stessa dimensione si crea una suddivisione adattativa cercando di bilanciare il contenuto delle diverse griglie Nelle zone dello spazio densamente popolate si utilizzano griglie di piccole dimensioni mentre nelle zone scarsamente popolate si utilizzano griglie di dimensioni più grandi

10 R tree Sono una famiglia si strutture di indicizzazione molto utilizzate per l organizzazione dei dati multidimensionali. Un R tree è una generalizzazione di un MB+ tree. In ogni nodo non foglia viene memorizzato un puntatore che punta ad un nodo di livello più basso nell albero e un rettangolo che copre tutti i rettangoli associati ai discendenti del nodo. Nei nodi foglia viene memorizzata la lista dei vettori che ricadono dentro al singolo rettangolo di livello più basso. Sono strutture dati utilizzate sia per memorizzare dati che hanno un boundingbox che dati di tipo puntuale Esempio R tree Il rettangolo blu rappresenta il dominio spaziale di una base di dati bidimensionale. Al suo interno sono presenti 12 oggetti. Indice RTree relativo agli oggetti della Fig. 1. La figura di destra illustra un RTree che indicizza i rettangoli della figura di sinistra oiché ogni record rappresenta una porzione di spazio, essi sono stati rappresentati graficamente. Ad esempio, la radice contiene due record, e per ognuno e' stata rappresentata l'intera base di dati (il rettangolo blu) con evidenziata in verde l'area da essi indicizzata. La stessa cosa e' ripetuta nei due nodi interni, con il colore azzurro. Si può notare come l'area indicizzata da ogni record comprenda l'unione delle aree dei figli. er compattezza, i record nelle foglie sono stati rappresentati con il solo nome.

11 Operazioni su R tree Query: La regione da cercare viene caratterizzata dal suo MBR (minimum bounding-box) A partire dalla root si attraversa l albero cercando i rettangoli che intersecano l MBR (possono essere più di uno ad ognuno dei livelli) Raggiunti i nodi foglia, si testa l intersezione tra l MBR e il rettangolo collegato Operazioni su R tree Insert: Si attraversa l albero selezionando il rettangolo più piccolo che include l oggetto da inserire o quello che richiederebbe l allargamento minore per coprire il nuovo oggetto L inserimento comporta l allargamento del nodo padre per fare in modo che il suo rettangolo includa completamente il nuovo oggetto Se il nodo nell albero è già pieno per più di metà, occorre procedere alla operazione di splitting in maniera analoga a quanto avviene sui MB+ tree Lo splitting si può ripercuotere ricorsivamente verso l alto fino a quando l aggiunta di un nuovo rettangolo non comporta un riempimento eccessivo Delete: Si utilizza un procedimento di attraversamento dell albero simile a quello della ricerca Se l eliminazione di un oggetto comporta che un nodo dell albero contiene troppo pochi elementi, il nodo viene eliminato e gli oggetti che conteneva vengono reinseriti nell albero

12 Dati puntuali e R tree er la ricerca, l inserimento e l eliminazione di dati puntuali in un R TREE gli algoritmi sono simili a quelli precedenti (dati multidimesionali) L unica differenza consiste nel fatto che ogni nodo foglia contiene più di un elemento puntuale di cui viene memorizzato l MBR E possibile implementare la ricerca k nearest neighbor attraverso la stima di un rettangolo che contiene sicuramente tutti i punti da ricercare e utilizzando la ricerca su oggetti rettangolari descritta in precedenza L inserimento di un punto avviene ricercando il rettangolo dell albero che deve essere ampliato di meno per contenerlo In maniera analoga al caso di oggetti rettangolari vengono trattati i casi di splitting (quando la lista di punti di un nodo conterrebbe troppi elementi) o di eliminazione di un nodo a seguito della eliminazione di uno o più punti Efficienza di ricerca di un R TREE Dipende da 2 concetti (definiti per ognuno dei livelli dell albero): COVERAGE: E l area totale di tutti i rettangoli associati ai nodi del livello OVERLA: E l area totale coperta da due o più nodi Un R tree è efficiente se sia la COVERAGE che l OVERLA sono minimizzati In particolare l overlap comporta problemi in fase di ricerca. Es: per cercare r12 dobbiamo attraversare i nodi interni R1, R2, R3, R4, R5 ed R6 a causa del fatto che R1 ed R2 hanno una sovrapposizione. Inoltre è cruciale l ordine di inserimento per ottenere un albero maggiormente bilanciato

13 Hardware e software per MMDBMS Un MMDBMS deve rispettare requisiti stringenti in termini di: Throughput Delay Delay jitter Dati di tipo audio e video hanno caratteristiche particolari: Un elevata occupazione di memoria Necessitano di un elevata banda di trasmissione Sono caratterizzati da deadline temporali molto rigide Le caratteristiche hardware e software di un MMDBMS sono di conseguenza dimensionate in relazione a tali requisiti Aspetti rilevanti di un MMDBMS Supporti e tecniche per la memorizzazione Ottimizzazione dell efficienza e capacità dei dischi Sistemi RAID Accesso remoto e trasmissione dati rotocolli specifici per la trasmissione di grandi quantità di dati roblema della garanzia della QoS Decodifica dei tipi di dati La codifica e la decodifica da un formato all altro deve essere efficiente Decoder implementati in hardware Scalabilita del sistema Il sistema deve permettere la propria espansione ed evoluzione senza soffrire di drastiche riduzioni di performance

14 Architetture hardware per sistemi multimediali rocessori dedicati Set di istruzioni dedicato all elaborazione multimediale Maggiore efficienza Minore scalabilita e programmabilita (molte operazioni sono hard-wired nel processore Utilizzo di bus locali Minor traffico sul bus principale Bus locali dedicati più veloci Device multimediali dedicati Gestiscono particolari operazioni sui dati Esterni al server (il server ne controlla l operato) I dati non devono passare attraverso il server per essere elaborati Sono connessi direttamente alla rete Sistemi distribuiti Connessioni dedicate ad elevata velocità di trasmissione Separazione delle fasi di processing su macchine diverse Sistemi operativi dedicati Gestione efficiente dell hardware dedicato Garanzia della QoS Compatibilità verso sistemi standard e gestione indipendente delle normali applicazioni

15 Misure di efficienza ed efficacia dei MMDBMS Efficienza: Legata al tempo di risposta del sistema Maggiore e il tempo di risposta e minore e l efficienza Dipendenza forte dalle strutture dati utilizzate per memorizzare i record e dalle tecniche di indicizzazione Efficacia: Qualità della presentazione dei risultati (record) e un aspetto legato alla QoS Abilità del sistema di trovare record rilevanti in seguito ad una query e di scartare quelli irrilevanti (la ricerca e basata sulla similarità e non su matching esatto) Standard per valutazione dell efficacia er determinare una misura dell efficacia del sistema e necessario definire in modo standard cosa sia rilevante e cosa non lo sia in modo da avere un termine di confronto Raccolta di informazioni sulla rilevanza dei record basata sul giudizio umano Si prende un campione di persone e ad ognuna viene chiesto, date alcune query di test, quali siano i record rilevanti e quali non lo siano Normalmente si usano tre metodi differenti

16 Metodi Metodo 1: Ad ogni persona viene chiesto di indicare quale record nel database e rilevante data una particolare query I record selezionati da un numero di persone superiore ad una determinata soglia vengono contrassegnati come rilevanti per la specifica query Metodo 2: Come nel primo metodo ad ogni persona viene chiesto di indicare quale record nel database e rilevante Ad ogni record viene attribuito un peso che incrementa ogni volta che una persona indica quel record rilevante per una determinata query Ogni record avrà un peso relativo a ogni query Metodi Metodo 3 Ogni persona assegna un punteggio di rilevanza ad ogni record (invece che individuare semplicemente se e rilevante o no) Si ottiene una matrice Q j (i,k) per ogni query j dove Q j (i,k) indica il numero di persone che ha valutato il record i in k-esima posizione per la query j

17 Misure di efficacia er misurare l efficacia di un MMDBMS intesa come l abilita nel ritrovare record rilevanti esistono diverse tecniche: Recall and precision pair (R): ercentage of weighted hits (WH): ercentage of similarity rankings (SR) Recall and precision pair (R) Si basa sul confronto con risultati ottenuti con il metodo 1 Recall e precision devono essere utilizzate congiuntamente per valutare l efficacia di un sistema Recall: misura l abilita di trovare record rilevanti recision: misura l abilita di rifiutare record irrilevanti Un buon MMDBMS dovrebbe avere sia recall che precision alte

18 ercentage of weighted hits (WH) Si basa sul confronto con risultati ottenuti con il metodo 2 er ogni query vengono ritornati un numero fisso di record. La percentuale degli hit pesati e definita nel modo seguente: n i= 1 = N j= 1 w w i j dove n e il numero dei record ritornati; w i e il numero delle persone che ha definito il record i come rilevante N e il numero totale dei record nel DB e w j e il numero delle persone che ha definito il record j come rilevante ercentage of similarity rankings (SR) Si basa sul confronto con risultati ottenuti con il metodo 3 Ogni record ha un valore Qj(i,k) dal quale si calcola la media p j (i) e la deviazione standard s j (i) che rappresentano il ranking medio del record e il grado di disaccordo tra le varie persone che hanno condotto il test Il MMDBMS in risposta ad una query j ritorna dei record in un determinato ordine definendo un ranking per ogni item i del database j (i) L efficacia del sistema può essere valutata come dalla somma della percentuale di persone che ha valutato il record i in posizione compresa tra: j (i)-s j (i)/2 e j (i)+s j (i)/2 In questo modo la percentuale di similarità e calcolata come: j ( i) + s j ( i)/ 2 S j ( i) = Q j ( i, k) k = ( i) s ( i)/ 2 j j

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

Analisi dei requisiti e casi d uso

Analisi dei requisiti e casi d uso Analisi dei requisiti e casi d uso Indice 1 Introduzione 2 1.1 Terminologia........................... 2 2 Modello del sistema 4 2.1 Requisiti hardware........................ 4 2.2 Requisiti software.........................

Dettagli

Prof. Caterina Rizzi Dipartimento di Ingegneria Industriale

Prof. Caterina Rizzi Dipartimento di Ingegneria Industriale RUOLO DELLA MODELLAZIONE GEOMETRICA E LIVELLI DI MODELLAZIONE PARTE 2 Prof. Caterina Rizzi... IN QUESTA LEZIONE Modelli 2D/3D Modelli 3D/3D Dimensione delle primitive di modellazione Dimensione dell oggettoy

Dettagli

Introduzione ad Access

Introduzione ad Access Introduzione ad Access Luca Bortolussi Dipartimento di Matematica e Informatica Università degli studi di Trieste Access E un programma di gestione di database (DBMS) Access offre: un supporto transazionale

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

Sistemi avanzati di gestione dei Sistemi Informativi

Sistemi avanzati di gestione dei Sistemi Informativi Esperti nella gestione dei sistemi informativi e tecnologie informatiche Sistemi avanzati di gestione dei Sistemi Informativi Docente: Email: Sito: Eduard Roccatello eduard@roccatello.it http://www.roccatello.it/teaching/gsi/

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Universita' di Ferrara Dipartimento di Matematica e Informatica. Algoritmi e Strutture Dati. Rappresentazione concreta di insiemi e Hash table

Universita' di Ferrara Dipartimento di Matematica e Informatica. Algoritmi e Strutture Dati. Rappresentazione concreta di insiemi e Hash table Universita' di Ferrara Dipartimento di Matematica e Informatica Algoritmi e Strutture Dati Rappresentazione concreta di insiemi e Hash table Copyright 2006-2015 by Claudio Salati. Lez. 9a 1 Rappresentazione

Dettagli

Dati importati/esportati

Dati importati/esportati Dati importati/esportati Dati importati Al workspace MATLAB script Dati esportati file 1 File di testo (.txt) Spreadsheet Database Altro Elaborazione dati Grafici File di testo Relazioni Codice Database

Dettagli

Lezione n.19 Processori RISC e CISC

Lezione n.19 Processori RISC e CISC Lezione n.19 Processori RISC e CISC 1 Processori RISC e Superscalari Motivazioni che hanno portato alla realizzazione di queste architetture Sommario: Confronto tra le architetture CISC e RISC Prestazioni

Dettagli

Guida Dell di base all'acquisto dei server

Guida Dell di base all'acquisto dei server Guida Dell di base all'acquisto dei server Per le piccole aziende che dispongono di più computer è opportuno investire in un server che aiuti a garantire la sicurezza e l'organizzazione dei dati, consentendo

Dettagli

Calc è il programma per la gestione di fogli di calcolo della suite OpenOffice.org.

Calc è il programma per la gestione di fogli di calcolo della suite OpenOffice.org. Calc è il programma per la gestione di fogli di calcolo della suite OpenOffice.org. Nuovo documento Anteprima di stampa Annulla Galleria Apri Controllo ortografico Ripristina Sorgente dati Salva Controllo

Dettagli

UML Component and Deployment diagram

UML Component and Deployment diagram UML Component and Deployment diagram Ing. Orazio Tomarchio Orazio.Tomarchio@diit.unict.it Dipartimento di Ingegneria Informatica e delle Telecomunicazioni Università di Catania I diagrammi UML Classificazione

Dettagli

Architetture CISC e RISC

Architetture CISC e RISC FONDAMENTI DI INFORMATICA Prof. PIER LUCA MONTESSORO Facoltà di Ingegneria Università degli Studi di Udine Architetture CISC e RISC 2000 Pier Luca Montessoro (si veda la nota di copyright alla slide n.

Dettagli

Analisi dei requisiti e casi d uso

Analisi dei requisiti e casi d uso Analisi dei requisiti e casi d uso Indice 1 Introduzione 2 1.1 Terminologia........................... 2 2 Modello della Web Application 5 3 Struttura della web Application 6 4 Casi di utilizzo della Web

Dettagli

I n d i c e. 163 Appendice B Questionari su utilità e uso delle Strategie di Studio (QS1 e QS2)

I n d i c e. 163 Appendice B Questionari su utilità e uso delle Strategie di Studio (QS1 e QS2) I n d i c e 9 Introduzione 11 CAP. 1 I test di intelligenza potenziale 17 CAP. 2 La misura dell intelligenza potenziale nella scuola dell infanzia 31 CAP. 3 La misura dell intelligenza potenziale nella

Dettagli

Architettura dei Calcolatori

Architettura dei Calcolatori Architettura dei Calcolatori Sistema di memoria parte prima Ing. dell Automazione A.A. 2011/12 Gabriele Cecchetti Sistema di memoria parte prima Sommario: Banco di registri Generalità sulla memoria Tecnologie

Dettagli

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione Alberi binari Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Alberi binari, A.A. 2009/2010 1/20 Alberi binari

Dettagli

Introduzione al GIS (Geographic Information System)

Introduzione al GIS (Geographic Information System) Introduzione al GIS (Geographic Information System) Sommario 1. COS E IL GIS?... 3 2. CARATTERISTICHE DI UN GIS... 3 3. COMPONENTI DI UN GIS... 4 4. CONTENUTI DI UN GIS... 5 5. FASI OPERATIVE CARATTERIZZANTI

Dettagli

Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it

Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it Corso di laurea magistrale in Ingegneria delle Telecomunicazioni Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it Trasmettitore

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

Caratteristiche raccomandate del Network in un progetto di Home Automation

Caratteristiche raccomandate del Network in un progetto di Home Automation Caratteristiche raccomandate del Network in un progetto di Home Automation Uno degli aspetti progettuali più importanti di un sistema Control4 è la rete. Una rete mal progettata, in molti casi, si tradurrà

Dettagli

ORACLE BUSINESS INTELLIGENCE STANDARD EDITION ONE A WORLD CLASS PERFORMANCE

ORACLE BUSINESS INTELLIGENCE STANDARD EDITION ONE A WORLD CLASS PERFORMANCE ORACLE BUSINESS INTELLIGENCE STANDARD EDITION ONE A WORLD CLASS PERFORMANCE Oracle Business Intelligence Standard Edition One è una soluzione BI completa, integrata destinata alle piccole e medie imprese.oracle

Dettagli

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina Cosa è il DSS L elevato sviluppo dei personal computer, delle reti di calcolatori, dei sistemi database di grandi dimensioni, e la forte espansione di modelli basati sui calcolatori rappresentano gli sviluppi

Dettagli

Sistemi Operativi. Interfaccia del File System FILE SYSTEM : INTERFACCIA. Concetto di File. Metodi di Accesso. Struttura delle Directory

Sistemi Operativi. Interfaccia del File System FILE SYSTEM : INTERFACCIA. Concetto di File. Metodi di Accesso. Struttura delle Directory FILE SYSTEM : INTERFACCIA 8.1 Interfaccia del File System Concetto di File Metodi di Accesso Struttura delle Directory Montaggio del File System Condivisione di File Protezione 8.2 Concetto di File File

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Stefano Bonetti Framework per la valutazione progressiva di interrogazioni di localizzazione

Stefano Bonetti Framework per la valutazione progressiva di interrogazioni di localizzazione Analisi del dominio: i sistemi per la localizzazione Definizione e implementazione del framework e risultati sperimentali e sviluppi futuri Tecniche di localizzazione Triangolazione Analisi della scena

Dettagli

Energy Studio Manager Manuale Utente USO DEL SOFTWARE

Energy Studio Manager Manuale Utente USO DEL SOFTWARE Energy Studio Manager Manuale Utente USO DEL SOFTWARE 1 ANALYSIS.EXE IL PROGRAMMA: Una volta aperto il programma e visualizzato uno strumento il programma apparirà come nell esempio seguente: Il programma

Dettagli

DBMS (Data Base Management System)

DBMS (Data Base Management System) Cos'è un Database I database o banche dati o base dati sono collezioni di dati, tra loro correlati, utilizzati per rappresentare una porzione del mondo reale. Sono strutturati in modo tale da consentire

Dettagli

Le funzionalità di un DBMS

Le funzionalità di un DBMS Le funzionalità di un DBMS Sistemi Informativi L-A Home Page del corso: http://www-db.deis.unibo.it/courses/sil-a/ Versione elettronica: DBMS.pdf Sistemi Informativi L-A DBMS: principali funzionalità Le

Dettagli

Rapida Introduzione all uso del Matlab Ottobre 2002

Rapida Introduzione all uso del Matlab Ottobre 2002 Rapida Introduzione all uso del Matlab Ottobre 2002 Tutti i tipi di dato utilizzati dal Matlab sono in forma di array. I vettori sono array monodimensionali, e così possono essere viste le serie temporali,

Dettagli

VIRTUALIZE IT. www.digibyte.it - digibyte@digibyte.it

VIRTUALIZE IT. www.digibyte.it - digibyte@digibyte.it il server? virtualizzalo!! Se ti stai domandando: ma cosa stanno dicendo? ancora non sai che la virtualizzazione è una tecnologia software, oggi ormai consolidata, che sta progressivamente modificando

Dettagli

Manuale d uso Apache OpenMeetings (Manuale Utente + Manuale Amministratore)

Manuale d uso Apache OpenMeetings (Manuale Utente + Manuale Amministratore) Manuale d uso Apache OpenMeetings (Manuale Utente + Manuale Amministratore) Autore: Matteo Veroni Email: matver87@gmail.com Sito web: matteoveroni@altervista.org Fonti consultate: http://openmeetings.apache.org/

Dettagli

Import Dati Release 4.0

Import Dati Release 4.0 Piattaforma Applicativa Gestionale Import Dati Release 4.0 COPYRIGHT 2000-2005 by ZUCCHETTI S.p.A. Tutti i diritti sono riservati.questa pubblicazione contiene informazioni protette da copyright. Nessuna

Dettagli

Strutture. Strutture e Unioni. Definizione di strutture (2) Definizione di strutture (1)

Strutture. Strutture e Unioni. Definizione di strutture (2) Definizione di strutture (1) Strutture Strutture e Unioni DD cap.10 pp.379-391, 405-406 KP cap. 9 pp.361-379 Strutture Collezioni di variabili correlate (aggregati) sotto un unico nome Possono contenere variabili con diversi nomi

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Progettazione di un DB....in breve

Progettazione di un DB....in breve Progettazione di un DB...in breve Cosa significa progettare un DB Definirne struttura,caratteristiche e contenuto. Per farlo è opportuno seguire delle metodologie che permettono di ottenere prodotti di

Dettagli

Software Emeris Communication Manager

Software Emeris Communication Manager ecm Software Emeris Communication Manager Manuale operativo Fantini Cosmi S.p.A. Via dell Osio 6 20090 Caleppio di Settala MI Tel 02.956821 - Fax 02.95307006 e-mail: info@fantinicosmi.it http://www.fantinicosmi.it

Dettagli

Modello OSI e architettura TCP/IP

Modello OSI e architettura TCP/IP Modello OSI e architettura TCP/IP Differenza tra modello e architettura - Modello: è puramente teorico, definisce relazioni e caratteristiche dei livelli ma non i protocolli effettivi - Architettura: è

Dettagli

Applicazione: DoQui/Index - Motore di gestione dei contenuti digitali

Applicazione: DoQui/Index - Motore di gestione dei contenuti digitali Riusabilità del software - Catalogo delle applicazioni: Applicativo verticale Applicazione: DoQui/Index - Motore di gestione dei contenuti digitali Amministrazione: Regione Piemonte - Direzione Innovazione,

Dettagli

explora consulting s.r.l. Via Case Rosse, 35-84131 SALERNO - tel 089 848073 fax 089 384582 www.exploraconsulting.it info@exploraconsulting.

explora consulting s.r.l. Via Case Rosse, 35-84131 SALERNO - tel 089 848073 fax 089 384582 www.exploraconsulting.it info@exploraconsulting. explora consulting s.r.l. Via Case Rosse, 35-84131 SALERNO - tel 089 848073 fax 089 384582 www.exploraconsulting.it info@exploraconsulting.it Procedura di gestione per Laboratori di Analisi Cliniche Pag.

Dettagli

Introduzione al linguaggio C Gli array

Introduzione al linguaggio C Gli array Introduzione al linguaggio C Gli array Vettori nome del vettore (tutti gli elementi hanno lo stesso nome, c) Vettore (Array) Gruppo di posizioni (o locazioni di memoria) consecutive Hanno lo stesso nome

Dettagli

END-TO-END SERVICE QUALITY. LA CULTURA DELLA QUALITÀ DAL CONTROLLO DELLE RISORSE ALLA SODDISFAZIONE DEL CLIENTE

END-TO-END SERVICE QUALITY. LA CULTURA DELLA QUALITÀ DAL CONTROLLO DELLE RISORSE ALLA SODDISFAZIONE DEL CLIENTE END-TO-END SERVICE QUALITY. LA CULTURA DELLA QUALITÀ DAL CONTROLLO DELLE RISORSE ALLA SODDISFAZIONE In un mercato delle Telecomunicazioni sempre più orientato alla riduzione delle tariffe e dei costi di

Dettagli

Virtualizzazione e installazione Linux

Virtualizzazione e installazione Linux Virtualizzazione e installazione Linux Federico De Meo, Davide Quaglia, Simone Bronuzzi Lo scopo di questa esercitazione è quello di introdurre il concetto di virtualizzazione, di creare un ambiente virtuale

Dettagli

NUMERI RAZIONALI E REALI

NUMERI RAZIONALI E REALI NUMERI RAZIONALI E REALI CARLANGELO LIVERANI. Numeri Razionali Tutti sanno che i numeri razionali sono numeri del tio q con N e q N. Purtuttavia molte frazioni ossono corrisondere allo stesso numero, er

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Informatica Applicata

Informatica Applicata Ing. Irina Trubitsyna Concetti Introduttivi Programma del corso Obiettivi: Il corso di illustra i principi fondamentali della programmazione con riferimento al linguaggio C. In particolare privilegia gli

Dettagli

Informatica. Scopo della lezione

Informatica. Scopo della lezione 1 Informatica per laurea diarea non informatica LEZIONE 1 - Cos è l informatica 2 Scopo della lezione Introdurre le nozioni base della materia Definire le differenze tra hardware e software Individuare

Dettagli

MANUALE UTENTE DEL SOFTWARE DI GESTIONE DEGLI ART. SDVR040A/SDVR080A/SDVR160A

MANUALE UTENTE DEL SOFTWARE DI GESTIONE DEGLI ART. SDVR040A/SDVR080A/SDVR160A MANUALE UTENTE DEL SOFTWARE DI GESTIONE DEGLI ART. SDVR040A/SDVR080A/SDVR160A Leggere attentamente questo manuale prima dell utilizzo e conservarlo per consultazioni future Via Don Arrigoni, 5 24020 Rovetta

Dettagli

Background (sfondo): Finestra: Una finestra serve a mostrare il contenuto di un disco o di una cartella -, chiamata anche directory.

Background (sfondo): Finestra: Una finestra serve a mostrare il contenuto di un disco o di una cartella -, chiamata anche directory. @ PC (Personal computer): Questa sigla identificò il primo personal IBM del 1981 a cura di R.Mangini Archiviazione: Il sistema operativo si occupa di archiviare i file. Background (sfondo): Cursore: Nei

Dettagli

Ricerca non informata in uno spazio di stati

Ricerca non informata in uno spazio di stati Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A5_2 V2.4 Ricerca non informata in uno spazio di stati Il contenuto del documento è liberamente utilizzabile dagli

Dettagli

Relazione sul data warehouse e sul data mining

Relazione sul data warehouse e sul data mining Relazione sul data warehouse e sul data mining INTRODUZIONE Inquadrando il sistema informativo aziendale automatizzato come costituito dall insieme delle risorse messe a disposizione della tecnologia,

Dettagli

capitolo 6 IL QUESTIONARIO PER LA VALUTV ALUTAZIONEAZIONE DEI CONTENUTI

capitolo 6 IL QUESTIONARIO PER LA VALUTV ALUTAZIONEAZIONE DEI CONTENUTI capitolo 6 IL QUESTIONARIO PER LA VALUTV ALUTAZIONEAZIONE DEI CONTENUTI 6.1 ISTRUZIONI PER IL VALUTATORE Il processo di valutazione si articola in quattro fasi. Il Valutatore deve: 1 leggere il questionario;

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

Cross Software ltd Malta Pro.Sy.T Srl. Il gestionale come l'avete sempre sognato... Pag. 1

Cross Software ltd Malta Pro.Sy.T Srl. Il gestionale come l'avete sempre sognato... Pag. 1 Il gestionale come l'avete sempre sognato... Pag. 1 Le funzionalità di X-Cross La sofisticata tecnologia di CrossModel, oltre a permettere di lavorare in Internet come nel proprio ufficio e ad avere una

Dettagli

Il Sistema Operativo: il File System

Il Sistema Operativo: il File System Il Sistema Operativo: il File System Il File System è quella parte del S.O. che si occupa di gestire e strutturare le informazioni memorizzate su supporti permanenti (memoria secondaria) I file vengono

Dettagli

Sizing di un infrastruttura server con VMware

Sizing di un infrastruttura server con VMware Sizing di un infrastruttura server con VMware v1.1 Matteo Cappelli Vediamo una serie di best practices per progettare e dimensionare un infrastruttura di server virtuali con VMware vsphere 5.0. Innanzitutto

Dettagli

Maurizio Vichi Sapienza Università di Roma

Maurizio Vichi Sapienza Università di Roma Percorsi didattici, interdisciplinari ed innovativi per la Statistica Maurizio Vichi Sapienza Università di Roma Presidente Federazione Europea delle Società Nazionali di Statistica Scuola Estiva di Matematica

Dettagli

Codifica dei numeri negativi

Codifica dei numeri negativi E. Calabrese: Fondamenti di Informatica Rappresentazione numerica-1 Rappresentazione in complemento a 2 Codifica dei numeri negativi Per rappresentare numeri interi negativi si usa la cosiddetta rappresentazione

Dettagli

Floating Point N = M BE. Notazione in virgola mobile. base. esempi 34.76 104 3.6891 106 = 36.891 105 =368.91 104 12.78 10-3 1.

Floating Point N = M BE. Notazione in virgola mobile. base. esempi 34.76 104 3.6891 106 = 36.891 105 =368.91 104 12.78 10-3 1. Floating Point Notazione in virgola mobile N = M BE mantissa base esponente esempi 34.76 104 3.6891 106 = 36.891 105 =368.91 104 12.78 10-3 1.6273 102 forma normalizzata: la mantissa ha una sola cifra

Dettagli

Introduzione a Puppy Linux: installazione su una chiavetta USB

Introduzione a Puppy Linux: installazione su una chiavetta USB Introduzione a Puppy Linux: installazione su una chiavetta USB Alex Gotev 1 Contenuti Che cos'è Puppy Linux? Come posso averlo? Come si avvia? Che programmi include? Installazione su Chiavetta USB Domande

Dettagli

Guida rapida all uso di ECM Titanium

Guida rapida all uso di ECM Titanium Guida rapida all uso di ECM Titanium Introduzione Questa guida contiene una spiegazione semplificata del funzionamento del software per Chiputilizzare al meglio il Tuning ECM Titanium ed include tutte

Dettagli

Le telecamere Installate verranno connesse ad Unità di elaborazione multiplexer per la gestione e la verifica di gruppi omogenei di 4-8-16-32-48-64

Le telecamere Installate verranno connesse ad Unità di elaborazione multiplexer per la gestione e la verifica di gruppi omogenei di 4-8-16-32-48-64 Le telecamere Installate verranno connesse ad Unità di elaborazione multiplexer per la gestione e la verifica di gruppi omogenei di 4-8-16-32-48-64 telecamere. I sistemi di acquisizione ed archiviazione

Dettagli

LA REGISTRAZIONE DEI FILE AUDIO.WAV IN CONTEMPORANEA CON LE MISURE FONOMETRICHE.

LA REGISTRAZIONE DEI FILE AUDIO.WAV IN CONTEMPORANEA CON LE MISURE FONOMETRICHE. Pagina 1 di 5 LA REGISTRAZIONE DEI FILE AUDIO.WAV IN CONTEMPORANEA CON LE MISURE FONOMETRICHE. A. Armani G. Poletti Spectra s.r.l. Via Magellano 40 Brugherio (Mi) SOMMARIO. L'impiego sempre più diffuso

Dettagli

Cos è Excel. Uno spreadsheet : un foglio elettronico. è una lavagna di lavoro, suddivisa in celle, cosciente del contenuto delle celle stesse

Cos è Excel. Uno spreadsheet : un foglio elettronico. è una lavagna di lavoro, suddivisa in celle, cosciente del contenuto delle celle stesse Cos è Excel Uno spreadsheet : un foglio elettronico è una lavagna di lavoro, suddivisa in celle, cosciente del contenuto delle celle stesse I dati contenuti nelle celle possono essere elaborati ponendo

Dettagli

Lezione 9: Strutture e allocazione dinamica della memoria

Lezione 9: Strutture e allocazione dinamica della memoria Lezione 9: Strutture e allocazione dinamica della memoria Laboratorio di Elementi di Architettura e Sistemi Operativi 9 Maggio 2012 Allocazione dinamica della memoria Memoria dinamica È possibile creare

Dettagli

TEST DELL'ABILITA' PRATICA DEL RAGIONAMENTO GLOBALE

TEST DELL'ABILITA' PRATICA DEL RAGIONAMENTO GLOBALE TEST DELL'ABILITA' PRATICA DEL RAGIONAMENTO GLOBALE COPYRIGHT 2008 PROCTER & GAMBLE CINCINNATI, OH 45202 U.S.A. AVVERTENZA: Tutti i diritti riservati. Questo opuscolo non può essere riprodotto in alcun

Dettagli

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Algoritmi Algoritmi Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Il procedimento (chiamato algoritmo) è composto da passi elementari

Dettagli

di4g: Uno strumento di clustering per l analisi integrata di dati geologici

di4g: Uno strumento di clustering per l analisi integrata di dati geologici di4g: Uno strumento di clustering per l analisi integrata di dati geologici Alice Piva 1, Giacomo Gamberoni 1, Denis Ferraretti 1, Evelina Lamma 2 1 intelliware snc, via J.F.Kennedy 15, 44122 Ferrara,

Dettagli

2.1 Difetti stechiometrici Variano la composizione del cristallo con la presenza di elementi diversi dalla natura dello stesso.

2.1 Difetti stechiometrici Variano la composizione del cristallo con la presenza di elementi diversi dalla natura dello stesso. 2. I difetti nei cristalli In un cristallo perfetto (o ideale) tutti gli atomi occuperebbero le corrette posizioni reticolari nella struttura cristallina. Un tale cristallo perfetto potrebbe esistere,

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

CATTURARE LO SCHERMO INTERO O LA FINESTRA ATTIVA

CATTURARE LO SCHERMO INTERO O LA FINESTRA ATTIVA CATTURARE LO SCHERMO INTERO O LA FINESTRA ATTIVA Supponiamo di voler eseguire una istantanea del nostro desktop, quella che in gergo si chiama Screenshot (da screen, schermo, e shot, scatto fotografico).

Dettagli

Un ripasso di aritmetica: Conversione dalla base 10 alla base 16

Un ripasso di aritmetica: Conversione dalla base 10 alla base 16 Un ripasso di aritmetica: Conversione dalla base 1 alla base 16 Dato un numero N rappresentato in base dieci, la sua rappresentazione in base sedici sarà del tipo: c m c m-1... c 1 c (le c i sono cifre

Dettagli

VALUTAZIONE DINAMICA DEL POTENZIALE DI APPRENDIMENTO IN UN BAMBINO CON DISTURBO DELLO SPETTRO AUTISTICO

VALUTAZIONE DINAMICA DEL POTENZIALE DI APPRENDIMENTO IN UN BAMBINO CON DISTURBO DELLO SPETTRO AUTISTICO Fondamenti teorici Vygotskji Zona di Sviluppo Prossimale Feuerstein VALUTAZIONE DINAMICA DEL POTENZIALE DI APPRENDIMENTO IN UN BAMBINO CON DISTURBO DELLO SPETTRO AUTISTICO Esperienza di Apprendimento Mediato

Dettagli

INDUSTRY PROCESS AND AUTOMATION SOLUTIONS. Lo strumento universale per la messa in esercizio e la diagnosi

INDUSTRY PROCESS AND AUTOMATION SOLUTIONS. Lo strumento universale per la messa in esercizio e la diagnosi Con Vplus, BONFIGLIOLI VECTRON offre uno strumento per la messa in esercizio, la parametrizzazione, il comando e la manutenzione. VPlus consente di generare, documentare e salvare le impostazioni dei parametri.

Dettagli

GESTIONE ATTREZZATURE

GESTIONE ATTREZZATURE SOLUZIONE COMPLETA PER LA GESTIONE DELLE ATTREZZATURE AZIENDALI SWSQ - Solution Web Safety Quality srl Via Mons. Giulio Ratti, 2-26100 Cremona (CR) P. Iva/C.F. 06777700961 - Cap. Soc. 10.000,00 I.V. -

Dettagli

General Linear Model. Esercizio

General Linear Model. Esercizio Esercizio General Linear Model Una delle molteplici applicazioni del General Linear Model è la Trend Surface Analysis. Questa tecnica cerca di individuare, in un modello di superficie, quale tendenza segue

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

LATCH E FLIP-FLOP. Fig. 1 D-latch trasparente per ck=1

LATCH E FLIP-FLOP. Fig. 1 D-latch trasparente per ck=1 LATCH E FLIPFLOP. I latch ed i flipflop sono gli elementi fondamentali per la realizzazione di sistemi sequenziali. In entrambi i circuiti la temporizzazione è affidata ad un opportuno segnale di cadenza

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

FileMaker Server 12. Guida introduttiva

FileMaker Server 12. Guida introduttiva FileMaker Server 12 Guida introduttiva 2007 2012 FileMaker, Inc. Tutti i diritti riservati. FileMaker, Inc. 5201 Patrick Henry Drive Santa Clara, California 95054 FileMaker e Bento sono marchi di FileMaker,

Dettagli

errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento

errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento Analisi della varianza a una via a misure ripetute (Anova con 1 fattore within) modello strutturale dell'analisi della varianza a misure ripetute con 1 fattore: y = μ ik 0 +π i +α k + ik ε ik interazione

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

Algebra Relazionale. algebra relazionale

Algebra Relazionale. algebra relazionale Algebra Relazionale algebra relazionale Linguaggi di Interrogazione linguaggi formali Algebra relazionale Calcolo relazionale Programmazione logica linguaggi programmativi SQL: Structured Query Language

Dettagli

Client di Posta Elettronica PECMailer

Client di Posta Elettronica PECMailer Client di Posta Elettronica PECMailer PECMailer è un semplice ma completo client di posta elettronica, ovvero un programma che consente di gestire la composizione, la trasmissione, la ricezione e l'organizzazione

Dettagli

PANDORA Sistema di Telecontrollo per Ascensori PANDORA is powered by

PANDORA Sistema di Telecontrollo per Ascensori PANDORA is powered by PANDORA Sistema di Telecontrollo per Ascensori l'espressione v a s o d i P a n d o r a viene usata metaforicamente per alludere all'improvvisa scoperta di un problema o una serie di problemi che per molto

Dettagli

Altri cifrari a blocchi

Altri cifrari a blocchi Altri cifrari a blocchi Barbara Masucci Dipartimento di Informatica ed Applicazioni Università di Salerno masucci@dia.unisa.it http://www.dia.unisa.it/professori/masucci RC2 [1989] IDEA (International

Dettagli

Attività 9. La città fangosa Minimal Spanning Trees

Attività 9. La città fangosa Minimal Spanning Trees Attività 9 La città fangosa Minimal Spanning Trees Sommario la nostra società ha molti collegamenti in rete: la rete telefonica, la rete energetica, la rete stradale. Per una rete in particolare, ci sono

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Lezione su Informatica di Base

Lezione su Informatica di Base Lezione su Informatica di Base Esplora Risorse, Gestione Cartelle, Alcuni tasti di scelta Rapida Domenico Capano D.C. Viterbo: Lunedì 21 Novembre 2005 Indice Una nota su questa lezione...4 Introduzione:

Dettagli

UNIVERSITA DI PISA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA ELETTRONICA ANNO ACCADEMICO 2004-2005 TESI DI LAUREA

UNIVERSITA DI PISA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA ELETTRONICA ANNO ACCADEMICO 2004-2005 TESI DI LAUREA UNIVERSITA DI PISA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA ELETTRONICA ANNO ACCADEMICO 2004-2005 TESI DI LAUREA SVILUPPO DI METODI DECONVOLUTIVI PER L INDIVIDUAZIONE DI SORGENTI INDIPENDENTI

Dettagli

Introduzione alla Programmazione ad Oggetti in C++

Introduzione alla Programmazione ad Oggetti in C++ Introduzione alla Programmazione ad Oggetti in C++ Lezione 1 Cosa è la Programmazione Orientata agli Oggetti Metodologia per costruire prodotti software di grosse dimensioni che siano affidabili e facilmente

Dettagli

Laboratorio di Calcolatori 1 Corso di Laurea in Fisica A.A. 2006/2007

Laboratorio di Calcolatori 1 Corso di Laurea in Fisica A.A. 2006/2007 Laboratorio di Calcolatori 1 Corso di Laurea in Fisica A.A. 2006/2007 Dott.Davide Di Ruscio Dipartimento di Informatica Università degli Studi di L Aquila Lezione del 08/03/07 Nota Questi lucidi sono tratti

Dettagli

Manuale d uso per la raccolta: Monitoraggio del servizio di Maggior Tutela

Manuale d uso per la raccolta: Monitoraggio del servizio di Maggior Tutela Manuale d uso per la raccolta: Monitoraggio del servizio di Maggior Tutela Pagina 1 di 9 Indice generale 1 Accesso alla raccolta... 3 2 Il pannello di controllo della raccolta e attivazione delle maschere...

Dettagli

Esperienze e soluzioni realizzate nell ambito del Progetto S.I.MO.NE

Esperienze e soluzioni realizzate nell ambito del Progetto S.I.MO.NE Programma Enti Locali Innovazione di Sistema Esperienze e soluzioni realizzate nell ambito del Progetto S.I.MO.NE 1 Premessa Il presente documento ha lo scopo di facilitare la disseminazione e il riuso

Dettagli

Risposte ai quesiti ricevuti per l Avviso di gara per la realizzazione del sistema informatico per la gestione richieste di finanziamento FAPISI

Risposte ai quesiti ricevuti per l Avviso di gara per la realizzazione del sistema informatico per la gestione richieste di finanziamento FAPISI Risposte ai quesiti ricevuti per l Avviso di gara per la realizzazione del sistema informatico per la gestione richieste di finanziamento FAPISI Forniamo in questo articolo le risposte ai 53 quesiti ricevuti

Dettagli