LE FRAZIONI. ll pesce fratto. Modello di Fumiaki Shingu (da

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LE FRAZIONI. ll pesce fratto. Modello di Fumiaki Shingu (da"

Transcript

1 LE FRAZIONI Modello di Fumiaki Shingu (da ll pesce fratto Lo scopo del laboratorio è quello di scovare delle frazioniche rappresentino, rispetto al tutto, la parte bianca e colorata del modello che si sta piegando. Oltre che di frazioni complementari, si potrà parlare anche di frazioni equivalenti, osservando che, nel modello, esse rappresentanb la stessa porzione di figura. Gli allievi avranno così visto una realizzazione concreta di questo concetto, inizialmente non intuitivo. Materiale utilizzatc per ogni alunno, un foglio quadrato, colorato da un lato e bianco dall'altro; possono essere distribuiti fogli di misure diverse (dai 12 cm ai 18 cm circa).

2 DIAGRAMMIDI PIEGATURA I i...,l*.' ';':'i*l* i i i. :'{.,,,,,r.l,!,*-i*,.-.,=..--,."-. tl.. '-:-"'"-,*"--:'l i, : :.. 1. ' i : ;: :,1*i- :rr r i - s l l,r,p,", i-. i;.i ii{;1 l,,,.j :i r: i, i: ' j,.!-,,i l:'.' : t.!_:: 'i I 'i "'j: 't:1,rl, ".-^ **- -^- - t*---:--'-;-.,., ì.. --,*. t:..,,.. l -,..=.-,-.-.,-.,--..:.*,..- l-,,-

3 LEZIONE DIALOGATA A. Colore sopra, piegare una mediana e riaprire (figura 1).. Rispetto al quadrato di partenza, quanto vale ognuno dei due rettangoli nei quali la figura è stata divisa? Ogni rettangolo vale metà quadrato, cioè 1/2. B. Piegare i due lati paralleli alla mediana sulla mediana e riaprire (figura 2). Dopo aver riaperto una sola piega, possiamo chiedere. Quanto vale il rettangolo bianco rispetto al tutto? E quello colorato? Il rettangolo bianco vale 1/3 della figura, mentre quello colorato vale 2/3. C. Piegare ora I'altra mediana e riaprire (figura 3). Qui si possono indicare alcuni rettangoli e chiedere che frazione formino del tutto. Nella figura che segue, ne abbiamo evidenziati alcuni con colori diversi. L'educatore farà un disegno alla lavagna, indicando volta in volta il rettangolo in gioco. Proponiamo alcune domande tra quelle possibili.. Quanto vale il rettangolo giallo? ll rettangolo giallovale 1/8 della figura.

4 o Quanto vale il rettangolo arancione? tt rettangolo arancione vate 2/8 della figura. Vate anche 1/4. Quindi 2/8 e 1/4 sono frazioni equivalenti perché indicano /a sfessa porzione di figura. E opportuno far notare ai ragazzi che il rettangolo arancione è in effetti un quadrato.. Ci sono anche rettangoli diversi dal quadrato che valgono 218? si, quelli che avevamo ottenuto prima dell'ultima piega.. Quanto vale il rettangolo azzurro? ll rettangolo azzurro vale 4/8 detta figura. Vate anchel/2. Quindi 4/8 e1/2 sono equivalenti perché indicano /a sfes sa porzione di figura' D. Dobbramo finire di quadrettare il foglio. Portiamo i lati paralleli all'ultima piega fatta sulla piega stessa e riapriamo (figura 4)' Analogamente a prima, se facciamo riaprire solo una delle due pieghe, possiamo chiedere. euanto vale la parte bianca, rispetto al tutto? E quella colorata? Se usiamo come unità di base iquadretti che si sono formati, la parte bianca vale i 4/12 del tutto, quella colorata gli 8/12. o Ghe cosa puoi osservare se o'metti insieme" leírazioni? Le frazioni sono complementari perché la loro somma corrisponde alla figura bicolore che vediamo.. Sai esprimerle in frazioni equivalenti, aiutandoti con Ia figura? possiamo pensare ta figura divisa in tre rettangoli uguali (uguali a quello bianco). La parte bianca vate 1/3 e quella colorata 2/3. Dunque 1/3 è una frazione equivalente a 4/12 e 2/3 è equivalente a 8/12. Se lo ritiene opportuno, I'educatore può anche proseguire il gioco delle frazioni equivalenti. per esempio, si può scegliere come tassello di base il rettangolo formato da due quadretti' Volendo, può anche porre alcune domande analoghe a quelle in C, ma non ci sono nuove osservazioni. Suggeriamo di aspettare la piega successiva per continuare la discussione. E. Le pieghe fatte formano una griglia sul foglio di partenza, dividendolo in 16 quadretti. piegare lungo le diagonali due quadretti corrispondenti a due

5 vertici consecutivi, portando i vertici verso I'interno della foglio (figura 5). Si ottiene la figura 6.. Quanto valgono la parte bianca e quella colorata rispetto al tutto? Scegliamo come unità il triangolino bianco t appena piegato; allora possiamo pensare l'intera figura come formata da 30 triangolini. La parte bianca vale 2/30 e quella colorata vale 28/30 (frazione complementare di 2/30). lnvece, scegliendo come unità il quadretto q (che vale 2t), abbiamo che la parte bianca vale 1/15 del tutto e quella colorata vale la frazione complementare 14/15; inoltre, le frazioni 2/30 e 1/15 sono equivalenti, cosi come 28/30 e 14/15. F. La forma ottenuta ha un solo asse di simmetria (una mediana del foglio di partenza). Piegare su tale asse i lati ad esso paralleli (figura 6), ottenendo la figura 7.. Quanto valgono la parte bianca e quella colorata rispetto al tutto se usiamo come unità di base il triangolo colorato? La parte colorata vale 1/8 e quella bianca vale 7/8 (frazioni complementari). o E se usiamo come unità di base uno dei quadretti bianchi? La parte colorata vale sempre 1/8 e quella bianca 7/8. lnfatti il quadretto e il triangolo hanno /a sfessa esfensione, cioè occupano /o sfesso "spazio". Se lo si ritiene opportuno, si introduce il termine "equiestesi" riferito ai due poligoni. Si può anche far proseguire la discussione con altre scelte dell'unità di base (per esempio, usando il triangolino f, si troveranno le frazioni 2116 e 14116, rispettivamente equivalenti a 118 e 718). G. Portare ora il lato "colorato" del rettangolo sul lato corto opposto, piegando lungo la mediana corta (figura 7). H. Piegare lo strato superiore lungo le diagonali, riaprendo dopo ogni piega (figura 8). Notare che, piegando una diagonale, si vede di nuovo, in altra posizione, il triangolo colorato della figura 7. l. Piegare lo strato superiore lungo la mediana (figura 9). ll triangolo colorato della figura 7 riappare si arriva alla figura 10. Quanto valgono la parte bianca e quella colorata rispetto al tutto?

6 Se usramo come unità il triangolo colorato o il quadretto, valgono 3/4 e 1/4 rispettivamente (6/8 e 78 se usiamo il triangolino t). l. Sollevando un po' il rettangolo con il triangolo colorato e premendo su metà lato "bianco" alla volta, spingere itriangolini bianchi sotto il triangolo colorato, poi appiattire (figura 10). Si ottiene la figura 11. L. Sollevando il triangolo colorato, "aprire" esternamente, metà alla volta, la parte bianca superiore, liberando così la carta bloccatall'interno, poi appiattire (figura 11). Si ottiene lafigura 12. o Quanto valgono la parte bianca e quella colorata rispetto al tutto se usiamo come unità di base il triangolo colorato? La parte colorata vale 5/7 e quella bianca vale 2[7. o C'è un'altra unità di base con la quale si ottiene lo stesso risultato? Sì, il quadretto.. Se usiamo come unità il triangolino f, quali frazioni otteniamo? La parte colorata vale 10/14 e quella bianca vale 4/14. M. Voltare la frittata e piegare portandogni metà del lato di base sull'asse di simmetria (verticale), come mostrato in figura 13. Si ottiene la figura 14. Questo è I'ultimo passo in cui faremo domande matematiche. Questa volta lasceremo liberi ragazzi di scegliere l'unità di base.. Quanto valgono la parte bianca e quella colorata? Scegliendo il triangolino colorato t, abbiamo che la parte colorata vale V9 e quella bianca vale 7/9. N. Portare ora ogni metà del lato lungo sull'asse di simmetria verticale (figura 14). O. Sullo strato superiore, piegare le bisettrici degli angoli di 45o che abbiamo appena "creato" (figura 15). Si ottiene la figura 16. P. Voltare nuovamente la frittata. Ecco pronto (figura 17) n nostro pesce fratto!

Il tangram 1. Trovare il punto medio della diagonale e congiungerlo con un vertice. Trovare il punto medio dei due lati e unirli con un segmento.

Il tangram 1. Trovare il punto medio della diagonale e congiungerlo con un vertice. Trovare il punto medio dei due lati e unirli con un segmento. Laboratorio ludo-matematico Il tangram 1 isegnare il tangram utilizzando il punto medio isegnare un primo tangram su carta quadrettata (in questo momento non è importante la dimensione del tangram, quindi

Dettagli

Divisione in tre parti uguali

Divisione in tre parti uguali Divisione in tre parti uguali ) Il metodo più pratico per dividere un quadrato in tre parti uguali è quello di trisecare ad occhio il foglio ed aggiustare la parte in eccesso o in difetto con piccoli spostamenti

Dettagli

Costruzioni geometriche. (Teoria pag , esercizi )

Costruzioni geometriche. (Teoria pag , esercizi ) Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

si usa in geometria per definire due figure uguali per forma ma non per dimensioni.

si usa in geometria per definire due figure uguali per forma ma non per dimensioni. FIGURE PIANE EQUIESTESE Due figure piane si definiscono equivalenti (o equiestese) se hanno la stessa superficie, la stessa estensione cioè la stessa area. OSSERVA CHE 1- Due figure congruenti saranno

Dettagli

Proprietà di un triangolo

Proprietà di un triangolo Poligono con tre lati e tre angoli. Proprietà di un triangolo In un triangolo : I lati e i vertici sono consecutivi fra loro; La somma degli angoli interni è 180 ; La somma degli angoli esterni è 360 Ciascun

Dettagli

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo In un triangolo si dice altezza relativa a un lato il segmento di perpendicolare al lato condotta dal vertice opposto. Si dice mediana relativa a un lato il segmento che unisce il punto medio del lato

Dettagli

MESSA A PUNTO DI UNA SITUAZIONE A-DIDATTICA

MESSA A PUNTO DI UNA SITUAZIONE A-DIDATTICA MESSA A PUNTO DI UNA SITUAZIONE A-DIDATTICA Una situazione a-didattica è una situazione che mette l allievo in un conflitto cognitivo con la conoscenza, costringendolo a costruirsi modelli revisionali.

Dettagli

Costruzioni geometriche. ( Teoria pag , esercizi 141 )

Costruzioni geometriche. ( Teoria pag , esercizi 141 ) Costruzioni geometriche. ( Teoria pag. 81-96, esercizi 141 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda ; due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono

Dettagli

Attività - I Dadi. Proposta dal prof. Pasquale Cozza, insegnante di matematica, del Liceo Scientifico Pitagora di Rende

Attività - I Dadi. Proposta dal prof. Pasquale Cozza, insegnante di matematica, del Liceo Scientifico Pitagora di Rende Attività - I Dadi Proposta dal prof. Pasquale Cozza, insegnante di matematica, del Liceo Scientifico Pitagora di Rende Ci proponiamo l obiettivo di studiare le regole di costruzione dei dadi per progettare

Dettagli

L AREA DELLE FIGURE PIANE

L AREA DELLE FIGURE PIANE L AREA DELLE FIGURE PIANE Segna il completamento corretto. 1. Due figure sono equivalenti se: a. hanno lo stesso perimetro b. sono sovrapponibili c. occupano la stessa superficie, cioè hanno la stessa

Dettagli

1. Quale dei seguenti sviluppi rappresenta il tetraedro in figura? A. A B. B C. C D. D E. nessuno dei precedenti

1. Quale dei seguenti sviluppi rappresenta il tetraedro in figura? A. A B. B C. C D. D E. nessuno dei precedenti Prova di abilità logico-matematiche pagina 1 di 5 Rispondi a ciascuna delle domande seguenti selezionando tra le opzioni proposte quella che ritieni corretta. Le domande hanno tutte lo stesso valore; le

Dettagli

Elementi di soluzione per la prova 10 febbraio 2009

Elementi di soluzione per la prova 10 febbraio 2009 Elementi di soluzione per la prova 10 febbraio 009 Usare solo un foglio risposta per esercizio. Sono richieste spiegazioni o giustificazioni per gli esercizi 1, 9, 10, 1 e 13. Saranno esaminate tutte le

Dettagli

Area dei poligoni. Def: due superfici piane si dicono equivalenti se hanno la stessa AREA.

Area dei poligoni. Def: due superfici piane si dicono equivalenti se hanno la stessa AREA. Area dei poligoni AREA DEI POLIGONI 1 Def: si dice area di una superficie piana la parte delimitata di piano che essa occupa. Def: due superfici piane si dicono equivalenti se hanno la stessa AREA. Proprietà:

Dettagli

ESPERIENZE CON GLI SPECCHI PIANI

ESPERIENZE CON GLI SPECCHI PIANI 1. Qual è la posizione dell immagine fornita da uno specchio piano? Di che tipo di immagine si tratta? Disponi il cilindro giallo dietro lo specchio, in modo che coincida con l immagine riflessa del cilindro

Dettagli

Parallelogrammi 1 Parallelogrammi Nome: classe: data:

Parallelogrammi 1 Parallelogrammi Nome: classe: data: www.matematicamente.it Parallelogrammi 1 Parallelogrammi Nome: classe: data: 1. Quali tra le seguenti sono proprietà del parallelogramma?. ciascuna diagonale lo divide in due triangoli uguali. gli angoli

Dettagli

MATEMATICA: Compiti delle vacanze Estate 2015

MATEMATICA: Compiti delle vacanze Estate 2015 MATEMATICA: Compiti delle vacanze Estate 2015 Classe II a PRIMA PARTE Ecco una raccolta degli esercizi sugli argomenti svolti quest anno: risolvili sul tuo quaderno! Per algebra ho inserito anche una piccola

Dettagli

quadrilatero generico parallelogramma rombo rettangolo quadrato

quadrilatero generico parallelogramma rombo rettangolo quadrato Pavimentare 1. Quali forme di quadrilateri puoi costruire? Schizza tutte le forme possibili e scrivi il loro nome. 2. Cosa rappresentano i piccoli punti rossi sui lati del quadrilatero? 3. a) Costruisci

Dettagli

6 ottobre 2010 Prof.ssa Marina Rocco GEOMETRIA CON PIEGATURE DELLA CARTA: COSTRUZIONI GEOMETRICHE, IN PARTICOLARE DI TRIANGOLI E QUADRILATERI.

6 ottobre 2010 Prof.ssa Marina Rocco GEOMETRIA CON PIEGATURE DELLA CARTA: COSTRUZIONI GEOMETRICHE, IN PARTICOLARE DI TRIANGOLI E QUADRILATERI. U N I V E R S I T A D E G L I S T U D I D I T R I E S T E CENTRO INTERDIPARTIMENTALE PER LA RICERCA DIDATTICA Via A. Valerio 12/1, 34127 Trieste, Italia Tel.: +39 040 558 2659 Fax: +39 040 558 2660 email:

Dettagli

Appunti ed esercizi di geometria analitica PRIMA PARTE

Appunti ed esercizi di geometria analitica PRIMA PARTE Appunti ed esercizi di geometria analitica PRIMA PARTE Per la teoria studiare su il libro di testo La retta e i sistemi lineari, modulo E, da pagina 594 a pagina 597. Esercizi da pagina 617 a pagina 623.

Dettagli

Soluzione esercizi Gara Matematica 2009

Soluzione esercizi Gara Matematica 2009 Soluzione esercizi Gara Matematica 009 ( a cura di Stefano Amato, Emanuele Leoncini e Alessandro Martinelli) Esercizio 1 In una scacchiera di 100 100 quadretti, Carlo colora un quadretto di rosso, poi

Dettagli

Assumendo 1 u = 1 cm, calcola il perimetro e l area del quadrilatero ABCD.

Assumendo 1 u = 1 cm, calcola il perimetro e l area del quadrilatero ABCD. Esercizio 1a Disegna un piano cartesiano ortogonale ed in esso inserisci i punti che seguono, poi uniscili nell ordine dato: Secondo te che tipo di quadrilatero hai ottenuto? Perché? Quali sono le sue

Dettagli

Unità Didattica N 25 Quadrilateri particolari

Unità Didattica N 25 Quadrilateri particolari Unità idattica N 25 Quadrilateri particolari 41 Unità idattica N 25 Quadrilateri particolari 01) efinizione di quadrilatero 02) efinizione di parallelogrammo 03) Teoremi diretti sul parallelogrammo 04)

Dettagli

GEOMETRIA CLASSE IV B A.S.

GEOMETRIA CLASSE IV B A.S. GEOMETRIA CLASSE IV B A.S. 2014/15 Insegnante: Stallone Raffaella RETTA, SEMIRETTA E SEGMANTO La retta è illimitata, non ha né inizio né fine. Si indica con una lettera minuscola. La semiretta è ciascuna

Dettagli

Principali Definizioni e Teoremi di Geometria

Principali Definizioni e Teoremi di Geometria Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo

Dettagli

Problemi di geometria

Problemi di geometria 1 2 6 7 9 Calcola la misura dell ipotenusa di un triangolo rettangolo i cui cateti misurano 11,2 cm e 1 cm. [1,7 cm] In un triangolo rettangolo l ipotenusa misura cm, un cateto è dell ipotenusa. Calcola

Dettagli

Kangourou Italia Gara del 17 marzo 2016 Categoria Student Per studenti di quarta e quinta della scuola secondaria di secondo grado

Kangourou Italia Gara del 17 marzo 2016 Categoria Student Per studenti di quarta e quinta della scuola secondaria di secondo grado Kangourou Italia Gara del 17 marzo 2016 Categoria Student Per studenti di quarta e quinta della scuola secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. La somma degli

Dettagli

Preparazione al compito di geometria (Semiretta, Retta, Angoli)

Preparazione al compito di geometria (Semiretta, Retta, Angoli) Preparazione al compito di geometria (Semiretta, Retta, Angoli) Semiretta Per definire una semiretta, prendiamo una retta ed un punto P su di essa: Tale punto dividerà la retta in due parti; ciascuna di

Dettagli

TEST SULLE COMPETENZE Classe Seconda

TEST SULLE COMPETENZE Classe Seconda TEST SULLE COMPETENZE Classe Seconda 1 Una sola tra le seguenti proposizioni è FALSA Quale? A Se due punti A e B hanno la stessa ascissa, il coefficiente angolare della retta che li contiene non è definito

Dettagli

Attività: Artigiano, operaio o imprenditore? Materiale: Schede ruolo degli artigiani da fotocopiare e distribuire nella prima fase del.

Attività: Artigiano, operaio o imprenditore? Materiale: Schede ruolo degli artigiani da fotocopiare e distribuire nella prima fase del. Attività: Artigiano, operaio o imprenditore? Materiale: Schede ruolo degli artigiani da fotocopiare e distribuire nella prima fase del gioco 1 Il tessitore di cubi (indicare il nome) I vostri cubi sono

Dettagli

Poligoni inscritti e circoscritti ad una circonferenza

Poligoni inscritti e circoscritti ad una circonferenza Poligoni inscritti e circoscritti ad una circonferenza Def: 1. Un poligono si dice inscritto in una circonferenza se tutti i suoi vertici sono punti della La circonferenza si dice circoscritta al poligono.

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione Test 0 10 0 30 0 0 0 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni.

Dettagli

I punti di inizio e di fine della spezzata prendono il nome di estremi della spezzata. lati

I punti di inizio e di fine della spezzata prendono il nome di estremi della spezzata. lati I Poligoni Spezzata C A cosa vi fa pensare una spezzata? Qualcosa che si rompe in tanti pezzi A me dà l idea di un spaghetto che si rompe Se noi rompiamo uno spaghetto e manteniamo uniti i vari pezzi per

Dettagli

SCHEDA1 PARALLELISMO E PERPENDICOLARITA' FRA RETTE

SCHEDA1 PARALLELISMO E PERPENDICOLARITA' FRA RETTE SCHEDA1 PARALLELISMO E PERPENDICOLARITA' FRA RETTE Controllare la correttezza delle seguenti proprietà, controllandola su un esempio e muovendo dinamicamente gli oggetti costruiti. 1. Per due punti passa

Dettagli

Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti.

Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti. Anno 2014 1 Sommario Altezze, mediane, bisettrici dei triangoli... 2 Altezze relativa a un vertice... 2 Mediane relative a un lato... 2 Bisettrici relativi a un lato... 2 Rette perpendicolari... 3 Teorema

Dettagli

Come risolvere i quesiti dell INVALSI - primo

Come risolvere i quesiti dell INVALSI - primo Come risolvere i quesiti dell INVALSI - primo Soluzione: Se mancano di 90 significa mancano a 90. Saranno presenti 90 9 = 81 litri. Soluzione: Se il trapezio è isoscele allora l angolo, inoltre l angolo

Dettagli

Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare:

Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare: Matematica La matematica rappresenta una delle materie di base dei vari indirizzi del nostro Istituto e, anche se non sarà approfondita come in un liceo scientifico, prevede comunque lo studio di tutte

Dettagli

Cosa puoi dire del quadrilatero ABCD? Come sono i lati, le diagonali, gli angoli?

Cosa puoi dire del quadrilatero ABCD? Come sono i lati, le diagonali, gli angoli? Dal parallelogramma al rombo (fase 1 e 2) Fase 1 Disegna due circonferenze concentriche c e c di centro O; disegna su c un punto A e su c un punto B; traccia la retta r passante per i punti A e O, chiama

Dettagli

Buone Vacanze! Compiti per le vacanze. Classe II A

Buone Vacanze! Compiti per le vacanze. Classe II A Compiti per le vacanze Classe II A Indicazioni Procurati un quaderno a quadretti, dove eseguirai tutti gli esercizi. Se le espressioni non ti dovessero riuscire ritenta almeno tre volte sul quaderno Nei

Dettagli

3 :

3 : COMPITI VACANZE 0 MATEMATICA CLASSE SECONDA Espressioni con le frazioni......... 0. Numeri decimali. Dopo aver stabilito che numero decimale puoi ottenere (osservando il denominatore), determina il numero

Dettagli

7.7 Esercizi. 236 Capitolo 7. Equiestensione e aree

7.7 Esercizi. 236 Capitolo 7. Equiestensione e aree 236 apitolo 7. quiestensione e aree 7.7 sercizi 7.7.1 sercizi dei singoli paragrafi 7.2 - Poligoni equivalenti 7.1. nunciate e dimostrate il teorema le cui ipotesi e tesi sono indicate di seguito. Ipotesi:,

Dettagli

SIMULAZIONE TEST INVALSI

SIMULAZIONE TEST INVALSI SIMULAZIONE TEST INVALSI AREE POLIGONI Disegna nel piano quadrettato un rettangolo che abbia la stessa area del rettangolo ABCD, ma perimetro maggiore. Osserva il rettangolo. Sul lato DC segna il punto

Dettagli

Allenamenti di Matematica

Allenamenti di Matematica rescia, 3-4 febbraio 2006 llenamenti di Matematica Geometria 1. Il trapezio rettangolo contiene una circonferenza di raggio 1 metro, tangente a tutti i suoi lati. Sapendo che il lato obliquo è lungo 7

Dettagli

a. Le due figure sono equivalenti?...sì... Perchè? sono equicomposte. b. Due figure equicomposte sono sempre equivalenti? sì..

a. Le due figure sono equivalenti?...sì... Perchè? sono equicomposte. b. Due figure equicomposte sono sempre equivalenti? sì.. Segna il completamento corretto. L AREA DELLE FIGURE PIANE (in rosso i risultati) 1. Due figure sono equivalenti se: a. hanno lo stesso perimetro b. sono sovrapponibili c. occupano la stessa superficie,

Dettagli

9 a GARA MATEMATICA CITTÀ DI PADOVA 19 MARZO 1994 SOLUZIONI

9 a GARA MATEMATICA CITTÀ DI PADOVA 19 MARZO 1994 SOLUZIONI 9 a GARA MATEMATICA CITTÀ DI PADOVA 19 MARZO 1994 SOLUZIONI 1.- Nella prima giornata la squadra B gioca con una delle tre rimanenti (vi sono 3 scelte possibili) e le altre due una contro l altra. 1 3 I

Dettagli

Kangourou della Matematica 2012 Coppa a squadre Kangourou Semifinale turno A Cervia, 5 maggio Quesiti

Kangourou della Matematica 2012 Coppa a squadre Kangourou Semifinale turno A Cervia, 5 maggio Quesiti Kangourou della Matematica 0 Coppa a squadre Kangourou Semifinale turno A Cervia, 5 maggio 0 Quesiti. umeri di quest anno Quanti numeri interi positivi n sono tali che entrambi i numeri n 0 e n + 0 siano

Dettagli

1. Qual è la posizione dell immagine fornita da uno specchio piano? Di che tipo di immagine si tratta?

1. Qual è la posizione dell immagine fornita da uno specchio piano? Di che tipo di immagine si tratta? Specchi piani MPZ 1. Qual è la posizione dell immagine fornita da uno specchio piano? Di che tipo di immagine si tratta? Disponi il cilindro giallo dietro lo specchio, in modo che coincida con l immagine

Dettagli

Le caratteristiche generali di un quadrilatero

Le caratteristiche generali di un quadrilatero 1 Le caratteristiche generali di un quadrilatero Nel quadrilatero (poligono di quattro lati) si distinguono:! i vertici,,, ;! gli angoli α, β, γ, δ;! i lati,,, ;! le diagonali e. EFINIZIONE. ue angoli

Dettagli

10. Quale dei seguenti numeri

10. Quale dei seguenti numeri Test d'ingresso di matematica per la secondaria di secondo grado (liceo classico) Il test si basa su alcuni test di ingresso (opportunamente modificati) assegnati al liceo classico e trovati in Rete Nome:

Dettagli

Kangourou Italia Gara del 17 marzo 2005 Categoria Student Per studenti di quarta o quinta superiore. I quesiti dal N. 1 al N. 10 valgono 3 punti

Kangourou Italia Gara del 17 marzo 2005 Categoria Student Per studenti di quarta o quinta superiore. I quesiti dal N. 1 al N. 10 valgono 3 punti _05_D.qp 21/02/2005 16.15 Pagina 28 Kangourou Italia Gara del 17 marzo 2005 Categoria Per studenti di quarta o quinta superiore I quesiti dal N. 1 al N. 10 valgono 3 punti 1. Per quale dei seguenti valori

Dettagli

Sistema di due equazioni di primo grado in due incognite

Sistema di due equazioni di primo grado in due incognite Sistema di due equazioni di primo grado in due incognite Problema Un trapezio rettangolo di area cm ha altezza di 8 cm. Sapendo che il triplo della base minore è inferiore di cm al doppio della base maggiore

Dettagli

Come risolvere i quesiti dell INVALSI - terzo

Come risolvere i quesiti dell INVALSI - terzo Come risolvere i quesiti dell INVALSI - terzo Soluzione: Dobbiamo ricordare le precedenze. Prima le potenze, poi le parentesi tonde, quadre e graffe, seguono moltiplicazioni e divisioni nell ordine di

Dettagli

L ampiezza degli angoli si misura in gradi (simbolo ), da 0 a 360. sottomultipli

L ampiezza degli angoli si misura in gradi (simbolo ), da 0 a 360. sottomultipli In un poligono possiamo prendere diversi tipi di misure: L ampiezza degli angoli La misura dei lati ed il perimetro La misura della sua superficie o area. L ampiezza degli angoli si misura in gradi (simbolo

Dettagli

SOLUZIONI. u u In un quadrato magico sommando gli elementi di una riga, di una

SOLUZIONI. u u In un quadrato magico sommando gli elementi di una riga, di una 1 a GARA MATEMATICA CITTÀ DI PADOVA 2 Aprile 2016 SOLUZIONI 1.- Sia n un numero intero. È vero che se la penultima cifra di n 2 è dispari allora l ultima è 6? Possiamo supporre n positivo. Sia : n = 100c

Dettagli

RIPASSO DI MATEMATICA FRAZIONI

RIPASSO DI MATEMATICA FRAZIONI SOMMA a) Trovo m.c.m.tra i denominatori b) il risultato diventa il nuovo denominatore RIPASSO DI MATEMATICA FRAZIONI a) eseguo la divisione tra il nuovo denominatore con il denominatore b) moltiplico il

Dettagli

Geometria analitica del piano II (M.S. Bernabei & H. Thaler)

Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Equazione della retta in forma esplicita Sia data una retta r ax + by + c = 0 con b 0. Svolgendo questa equazione per y otteniamo e ponendo

Dettagli

Problemi sulla circonferenza verso l esame di stato

Problemi sulla circonferenza verso l esame di stato Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza

Dettagli

La simmetria assiale classe IV Scuola primaria A.M.Menconi I.C.Taliercio Anno Scolastico 20014/2015 insegnante Giovanetti Alessandra

La simmetria assiale classe IV Scuola primaria A.M.Menconi I.C.Taliercio Anno Scolastico 20014/2015 insegnante Giovanetti Alessandra La simmetria assiale classe IV Scuola primaria A.M.Menconi I.C.Taliercio Anno Scolastico 20014/2015 insegnante Giovanetti Alessandra CURRICOLO VERTICALE: GEOMETRIA OBIETTIVI: Riconoscere figure simmetriche.

Dettagli

Si chiamano poligoni regolari quei poligoni che sono equilateri ed equiangoli.

Si chiamano poligoni regolari quei poligoni che sono equilateri ed equiangoli. 6.4 I poligoni regolari Si chiamano poligoni regolari quei poligoni che sono equilateri ed equiangoli. Poligoni regolari: triangolo equilatero; quadrato; pentagono regolare; esagono regolare; ettagono

Dettagli

CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015

CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 Lezione del 3 NOVEMBRE 2015 GEOMETRIA CRITERI DI CONGRUENZA FRA TRIANGOLI IL SIMBOLO indica la congruenza PRIMO CRITERIO DI CONGRUENZA: Se due triangoli

Dettagli

Gli angoli corrispondenti sono congruenti; I lati corrispondenti, che si dicono lati omologhi, sono in rapporto costante:

Gli angoli corrispondenti sono congruenti; I lati corrispondenti, che si dicono lati omologhi, sono in rapporto costante: ome sai, se vuoi riprodurre una figura, puoi disegnarla perfettamente uguale rispettandone la forma e le dimensioni e cambiandone quindi solo la posizione. In questo caso la riproduci isometricamente,

Dettagli

Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180.

Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180. 1 Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180. Come giustificare questo fatto? Con delle prove sperimentali, ad esempio.

Dettagli

Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa.

Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa. Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa. Lato Vertice Angolo interno Angolo esterno I lati del poligono sono segmenti che costituiscono la linea spezzata.

Dettagli

LA DIVINA PROPORZIONE

LA DIVINA PROPORZIONE Zeno Martini (admin) LA DIVINA PROPORZIONE 19 February 2009 L' articolo è un invito alla piacevole (per me almeno) lettura di un bel libro di Mario Livio, astrofisico, su uno dei numeri più illustri della

Dettagli

3 Omotetie del piano. 4 Omotetie del piano. Fondamenti e didattica della matematica B. Geometria delle similitudini. k = 3.

3 Omotetie del piano. 4 Omotetie del piano. Fondamenti e didattica della matematica B. Geometria delle similitudini. k = 3. 1 2 Fondamenti e didattica della matematica B 5 marzo 2007 Geometria delle similitudini Marina Bertolini (marina.bertolini@mat.unimi.it) Dipartimento di Matematica F.Enriques Università degli Studi di

Dettagli

C6. Quadrilateri - Esercizi

C6. Quadrilateri - Esercizi C6. Quadrilateri - Esercizi DEFINIZIONI E COSTRUZIONI 1) Dato il seguente quadrilatero completa al posto dei puntini. I lati AB e BC sono I lati AB e CD sono I lati AD e sono consecutivi I lati AD e sono

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

Anno 2. Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali

Anno 2. Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali Anno 2 Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali 1 Introduzione In questa lezione tratteremo i poligoni inscritti e circoscritti a una circonferenza, descrivendone

Dettagli

La misura della lunghezza della poligonale si chiama perimetro del poligono. Due poligoni che hanno lo stesso perimetro si chiamano isoperimetrici.

La misura della lunghezza della poligonale si chiama perimetro del poligono. Due poligoni che hanno lo stesso perimetro si chiamano isoperimetrici. Perimetro La misura della lunghezza della poligonale si chiama perimetro del poligono. Quindi è la somma delle lunghezze dei lati. Due poligoni che hanno lo stesso perimetro si chiamano isoperimetrici.

Dettagli

Alunno/a. Esercitazione in preparazione alla PROVA d ESAME. Buon Lavoro Prof.ssa Elena Spera

Alunno/a. Esercitazione in preparazione alla PROVA d ESAME. Buon Lavoro Prof.ssa Elena Spera Esercitazione in preparazione alla PROVA d ESAME Alunno/a Classe III.. 2008 Buon Lavoro Prof.ssa Elena Spera 1. Quale percentuale della figura è colorata? A. 80 % B. 50 % A. 45 % D. 40 % Osservando bene

Dettagli

3^A - MATEMATICA compito n d. l'equazione della mediana BM, verificando che il baricentro le appartenga;

3^A - MATEMATICA compito n d. l'equazione della mediana BM, verificando che il baricentro le appartenga; ^ - TETI compito n 2-2014-2015 1 Il triangolo ha come lati le rette r : y=x 2, s: x 4=0, t : x y 22=0 Disegna le rette r, s, t e determina: a le coordinate dei vertici =r s, =s t, =t r ; b l'area del triangolo;

Dettagli

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5 GEOMETRIA 01. Se il raggio di un cerchio dimezza, la sua area diventa: 1/ b) 1/4 c) / d) 1/5 0. Quanto misura il lato di un quadrato la cui area è equivalente a quella di un triangolo che ha la base di

Dettagli

SCUOLA SECONDARIA DI SECONDO GRADO. Contenuti Attività Metodo Strumenti Durata (in ore)

SCUOLA SECONDARIA DI SECONDO GRADO. Contenuti Attività Metodo Strumenti Durata (in ore) SCUOLA SECONDARIA DI SECONDO GRADO Obiettivi di apprendimento Contenuti Attività Metodo Strumenti Durata (in ore) Valutazione degli obiettivi di apprendimento Valutazione della competenza Conoscere i poligoni

Dettagli

POTENZIAMENTO VISUO-SPAZIALE

POTENZIAMENTO VISUO-SPAZIALE POTENZIAMENTO VISUO-SPAZIALE Spunti ricavati dalla bozza (fornita da Marta) per potenziare le carenze visuo-spaziali di alunni di seconda media Docente Gisella Maculan Obiettivo : Con questa sezione si

Dettagli

Problemi di geometria

Problemi di geometria 1 3 4 5 6 7 8 9 Un triangolo rettangolo ha un angolo acuto di 30, il cateto minore misura 6 m. Calcola il perimetro e l area del triangolo. [8,39 m; 31,18 m ] Un triangolo rettangolo ha un angolo acuto

Dettagli

Kangourou Italia Gara del 15 marzo 2007 Categoria Benjamin Per studenti di prima o seconda della scuola secondaria di primo grado

Kangourou Italia Gara del 15 marzo 2007 Categoria Benjamin Per studenti di prima o seconda della scuola secondaria di primo grado Testi_07.qxp 16-0-2007 12:0 Pagina 10 Kangourou Italia Gara del 15 marzo 2007 Categoria Per studenti di prima o seconda della scuola secondaria di primo grado I quesiti dal N. 1 al N. 10 valgono punti

Dettagli

LA CIRCONFERENZA e IL CERCHIO

LA CIRCONFERENZA e IL CERCHIO LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più

Dettagli

Problemi di geometria

Problemi di geometria 1 2 3 applicazioni al triangolo rettangolo Calcola il perimetro e l area di un triangolo rettangolo sapendo che l ipotenusa e l altezza ad essa relativa sono lunghe rispettivamente 3 cm e 16,8 cm. [8 cm;

Dettagli

Origami, riga e compasso, software geometrico

Origami, riga e compasso, software geometrico Livello scolare: 1 biennio Origami, riga e compasso, software geometrico Abilità interessate Realizzare costruzioni geometriche elementari utilizzando strumenti diversi. Individuare e riconoscere proprietà

Dettagli

1) Quale delle due figure ha maggior perimetro? Quali delle due figure ha maggior superficie? cm 8

1) Quale delle due figure ha maggior perimetro? Quali delle due figure ha maggior superficie? cm 8 1) Quale delle due figure ha maggior perimetro? Quali delle due figure ha maggior superficie? cm 8 cm 8 cm 10 cm 10 2) I quadrati della figura hanno lunghezza 1 cm., qual è l area del rettangolo inclinato?

Dettagli

La composizione di isometrie

La composizione di isometrie La composizione di isometrie Quello che è più interessante in una trasformazione geometrica è studiare quali effetti ha sulle figure e soprattutto valutare quali proprietà delle figure di partenza si conservano

Dettagli

I QUADRILATERI. d tot. = n(n 3) : 2 = 4(4 3) : 2 = 2 S I. = (n 2) 180 = (4 2) 180 = 360 S E = IL TRAPEZIO

I QUADRILATERI. d tot. = n(n 3) : 2 = 4(4 3) : 2 = 2 S I. = (n 2) 180 = (4 2) 180 = 360 S E = IL TRAPEZIO I QUADRILATERI Il quadrilatero è un poligono formato da quattro angoli e da quattro lati. Al contrario del triangolo è una figura deformabile, infatti i quadrilateri possono essere intercambiabili fra

Dettagli

GEOMETRIA ANALITICA. Il Piano cartesiano

GEOMETRIA ANALITICA. Il Piano cartesiano GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,

Dettagli

I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno

I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno Testi_10Mat.qxp 15-02-2010 :1 Pagina 1 Kangourou Italia Gara del 18 marzo 2010 Categoria Per studenti di terza della scuola secondaria di primo grado o prima della secondaria di secondo grado I quesiti

Dettagli

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro.

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro. 1 I poliedri diagonale DEFINIZIONE. Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune a due di essi. I poligoni che delimitano il poliedro

Dettagli

LUNGHEZZA DELLA CIRCONFERENZA E AREA DEL CERCHIO Conoscenze. 2. Completa le seguenti formule, dirette e inverse, riguardanti la circonferenza.

LUNGHEZZA DELLA CIRCONFERENZA E AREA DEL CERCHIO Conoscenze. 2. Completa le seguenti formule, dirette e inverse, riguardanti la circonferenza. LUNGHEZZA DELLA CIRCONFERENZA E AREA DEL CERCHIO Conoscenze 1. Completa. a. Si chiama circonferenza rettificata il b. Il rapporto tra la lunghezza di una circonferenza e il suo diametro è una... che si

Dettagli

GEOMETRIA. Congruenza, angoli e segmenti

GEOMETRIA. Congruenza, angoli e segmenti GEOMETRIA Per affermare che un triangolo è isoscele o rettangolo oppure che un quadrilatero è un parallelogramma o un rettangolo o un rombo o un quadrato o un trapezio o un trapezio isoscele, c è sempre

Dettagli

POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA

POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA Poligoni Inscritti ad una circonferenza: Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza e gli

Dettagli

La circonferenza e il cerchio

La circonferenza e il cerchio La circonferenza e il cerchio Def. Circonferenza Si dice circonferenza una linea piana chiusa formata dall insieme dei punti che hanno la stessa distanza da un punto detto centro. Si dice raggio di una

Dettagli

I TRIANGOLI AB < AC + BC

I TRIANGOLI AB < AC + BC I TRIANGOLI Il triangolo è un poligono formato da tre angoli e da tre lati: rappresenta la figura più semplice in assoluto, in quanto 3 è il numero minimo di segmenti necessari per delimitare una superficie

Dettagli

1. CALCOLARE LA FRAZIONE DI UNA GRANDEZZA O DI UN NUMERO:

1. CALCOLARE LA FRAZIONE DI UNA GRANDEZZA O DI UN NUMERO: PROBLEMI FONDAMENTALI CON LE FRAZIONI/RAPPORTI Le frazioni hanno applicazioni in moltissimi problemi. I tipi di problemi più frequenti sono: 1. Calcolare la frazione di un numero 2. Calcolare un numero

Dettagli

I TRIANGOLI. Esistono vari tipi di triangoli che vengono classificati in base ai lati e agli angoli.

I TRIANGOLI. Esistono vari tipi di triangoli che vengono classificati in base ai lati e agli angoli. I TRIANGOLI Il triangolo è un poligono formato da tre angoli o vertici e da tre lati. Il triangolo è la forma geometrica con il minor numero di lati perché tre è il numero minimo di lati con cui si può

Dettagli

C7. Circonferenza e cerchio

C7. Circonferenza e cerchio 7. irconferenza e cerchio 7.1 Introduzione ai luoghi geometrici Un luogo geometrico è l insieme dei punti del piano che godono di una proprietà detta proprietà caratteristica del luogo geometrico. Esempio

Dettagli

Anno 1. Quadrilateri

Anno 1. Quadrilateri Anno 1 Quadrilateri 1 Introduzione In questa lezione impareremo a risolvere i problemi legati all utilizzo dei quadrilateri. Forniremo la definizione di quadrilatero e ne analizzeremo le proprietà e le

Dettagli

In quanto segue ci interesseranno particolarmente le forme che si comportano come l esempio del quadrato A qui sopra. Le chiameremo forme di tipo A.

In quanto segue ci interesseranno particolarmente le forme che si comportano come l esempio del quadrato A qui sopra. Le chiameremo forme di tipo A. I MOSAICI E IL CONCETTO DI GRUPPO (triennio sc.sec II grado) Qui sotto avete una griglia, che rappresenta una normale quadrettatura, come quella dei quaderni a quadretti; nelle attività che seguono dovrete

Dettagli

Terzo incontro 5 marzo 2017 Pietro Di Martino

Terzo incontro 5 marzo 2017 Pietro Di Martino Terzo incontro 5 marzo 2017 Pietro Di Martino pietro.dimartino@unipi.it Il riconoscimento di indicatori di competenza Scuola primaria Scuola secondaria di primo grado Livello 5-2016 Livello 5-2016 7 su

Dettagli

1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione

1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione 1 La traslazione Per poter applicare una traslazione ad una generica figura geometrica si deve: ± creare il vettore di traslazione AB mediante il comando Vettore tra due punti; ± cliccare con il mouse

Dettagli

3 :

3 : COMPITI VACANZE 0 MATEMATICA CLASSE SECONDA Espressioni con le frazioni......... 0. Numeri decimali. Dopo aver stabilito che numero decimale puoi ottenere (osservando il denominatore), determina il numero

Dettagli

soluzione in 6 step Es n 65

soluzione in 6 step Es n 65 soluzione in 6 colorata? (Progetto Olimpiadi di Matematica, 008, Gara di secondo livello) p p p 6 p soluzione in 6 colorata? (Progetto Olimpiadi di Matematica, 008, Gara di secondo livello) p p p 6 p soluzione

Dettagli

E ora qualche proporzione!

E ora qualche proporzione! CLASSE II B COMPITI PER LE VACANZE Come d accordo risolvi le espressioni ed i problemi con le frazioni del libro delle vacanze dello scorso anno; risolvi tante espressioni quante ti servono per un ripasso

Dettagli