Statistica. Lezione 6

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Statistica. Lezione 6"

Transcript

1 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a Dott.ssa Daniela Ferrante

2 La verifica di ipotesi Le ipotesi di ricerca sono un insieme di congetture o di supposizioni che possono essere il risultato di anni di osservazione da parte del ricercatore e che motivano la ricerca Le ipotesi statistiche sono ipotesi che possono essere formulate in modo da poter essere valutate da adeguate tecniche statistiche.

3 Procedimento 1. Il ricercatore formula un ipotesi di lavoro, che costituisce la spiegazione di un fenomeno o indica il valore di un parametro.. Viene formulata l ipotesi nulla, cioè l affermazione che il ricercatore intende sottoporre a verifica, costruita in modo simmetrico all ipotesi di lavoro e formulata in modo tale da poter essere negata dall esperimento programmato. 3. Viene valutato dal ricercatore quanto è grande il rischio per lui accettabile di fornire una conclusione diversa dalla realtà (a lui ignota). 4. Viene disegnato l esperimento e viene definita la dimensione del campione. 3

4 5. Viene scelto il test statistico appropriato. 6. Viene condotto l esperimento. 7. Il risultato dell esperimento viene letto e confrontato con la distribuzione di probabilità precedentemente calcolata. Se la probabilità di ottenere il risultato osservato (data l ipotesi nulla) è inferiore alla soglia definita al punto 3 precedente, si conclude per il rifiuto dell ipotesi nulla. 4

5 PROCEDIMENTO Formulare Ho Calcolare la statistica test sui dati Calcolare la plausibilità di Ho visti i dati Conclusione Rif Ho Non rif Ho 5

6 Errore di prima specie Fisso il livello di significatività α che è definito come la probabilità di rifiutare l ipotesi nulla quando è vera: α è definito errore di prima specie. α = P(rif H 0 /H 0 ) Poiché rifiutare l ipotesi nulla quando è vera rappresenta un errore, dobbiamo quindi fissare un valore di α piccolo. Di solito α viene posto uguale a

7 La statistica test è una statistica che può essere calcolata a partire dai dati del campione. Formula generale della statistica test = (statistica di interesse-parametro ipotizzato) / errore standard della statistica di interesse 7

8 Esempio Un campione casuale di 10 rapporti di pronto soccorso è stato scelto dai file di un servizio di ambulanza. Il tempo medio campionario è di 13 minuti. Assumiamo che la popolazione dei tempi sia distribuita normalmente con varianza uguale a 16. Si può concludere da questi dati che la media della popolazione sia diversa da 10 minuti. Fissiamo α = 0,05 8

9 Test a una coda o due code? Il ricercatore sulla base del tipo di domanda a cui deve rispondere decide di utilizzare un test unidirezionale o bidirezionale. Si usa un test bidirezionale quando il rifiuto dell ipotesi nulla è dovuto sia a valori piccoli che a valori grandi della statistica test. ES. H0 : µ = 10 H1 : µ 10 Nel test bidirezionale (test a due code) la regione di rifiuto è divisa in due parti o due code della distribuzione della statistica test. 9

10 Si usa un test unidirezionale quando il rifiuto dell ipotesi nulla è causato o soltanto da valori sufficientemente piccoli o soltanto da valori sufficientemente grandi della statistica test ES. H0 : µ = 10 H1 : µ < 10 H0 : µ = 10 H1 : µ > 10 Un test unidirezionale è un test in cui la regione di rifiuto si trova in una o in un altra coda della distribuzione. 10

11 Quindi: Data la distribuzione della statistica test, rifiuto l ipotesi nulla se il valore della statistica test cade nella regione di rifiuto, mentre non rifiuto l ipotesi nulla se la statistica test cade nella regione di accettazione dell ipotesi nulla. Se l ipotesi nulla non è rifiutata si può concludere che i dati sui quali si effettua il test statistico non forniscono prove sufficienti per rifiutarla. Se invece l ipotesi nulla viene rifiutata allora i dati saranno compatibili con l ipotesi alternativa H1 (ipotesi di lavoro) che riteniamo vera dato che il test ha portato al rifiuto dell ipotesi nulla. 11

12 N.B. Con la verifica di ipotesi non arriviamo ad una dimostrazione di un ipotesi, ma otteniamo un indicazione del fatto che l ipotesi è supportata dai dati disponibili. Per tornare al nostro esempio avendo formulato la nostra ipotesi nulla e l ipotesi alternativa e fissato l errore di prima specie α=0.05 dobbiamo scegliere l opportuna statistica test. Il test in questo caso sarà di tipo bidirezionale. Conosciamo la deviazione standard della popolazione σ; quindi utilizziamo come statistica test z. H0 : µ = 10 H1 : µ 10 z = x µ 0 σ n 1

13 Calcoliamo il valore della statistica test: z = =.4 α=0.05 L area compresa tra - e -,4 e tra,4 e + viene definita p-value = 0,016 Il valore della statistica test cade nella regione di rifiuto dell ipotesi nulla quindi rifiuto H0 p<α 13

14 Se nel quesito precedente vogliamo verificare: H0 : µ = 10 H1 : µ < 10 allora dobbiamo utilizzare un test ad una coda. 0,5 0,4 0,3 0, 0,1 0,0 L area della coda sinistra è pari a 0, , -,4-1,6-0,8 0 0,8 1,6,4 3, 4 L area compresa tra - e,4 è il p-value = z p>α -1,65 Il valore della statistica test cade nella regione di accettazione dell ipotesi nulla quindi non rifiuto H0 14

15 Se nel quesito precedente vogliamo verificare: H0 : µ = 10 H1 : µ > 10 allora dobbiamo utilizzare un test ad una coda. 0,45 0,4 0,35 0,3 0,5 0, 0,15 0,1 0, ,65 X L area della coda destra è pari a 0,05 L area compresa tra,4 e + è il p-value = p<α Il valore della statistica test cade nella regione di rifiuto dell ipotesi nulla quindi rifiuto H0 15

16 In generale quindi se il valore del p-value è maggiore di α non rifiutiamo l ipotesi nulla, se invece è minore o uguale di α rifiutiamo l ipotesi nulla. Sempre con riferimento all esempio precedente, immaginiamo ora di voler verificare: nel caso in cui non conosciamo la deviazione standard della popolazione ma conosciamo solo la deviazione standard campionaria pari a 10. In questo caso ricorriamo al test t di Student con (n-1) gradi di libertà H0 : µ = 10 H1 : µ 10 16

17 Calcoliamo il valore della statistica test: x µ s n 0 t = t = = 0,95 0,5 0,4 0,3 La somma delle aree delle due code è pari a 0,05 0, 0,1 0,0-4 -3, -,4-1,6-0,8 0 0,8 1,6,4 3, 4 -,6,6 Il valore della statistica test cade nella regione di accettazione dell ipotesi nulla quindi non rifiuto H0 T L area compresa tra - e -0,95 e tra 0,95 e + (pvalue) =0,37 p>α 17

18 La verifica di ipotesi sulla differenza fra due medie Si considerino due popolazioni di individui sottoposti a due diversi trattamenti farmacologici. Si vuole valutare ad esempio se tali trattamenti producono uguali effetti (ipotesi nulla) o diversi (ipotesi alternativa) Estraggo un campione da ognuna delle due popolazioni ed effettuo le misurazione della variabile in studio sui due campioni calcolando quindi le medie delle due serie. Se le due medie sono diverse, si vuole valutare se tale differenza sia dovuta al caso e quindi i due trattamenti hanno lo stesso effetto oppure se effettivamente si osserva un effetto diverso tra i due trattamenti 18

19 Campioni indipendenti H0 : µ1 = µ oppure µ1 - µ = 0 H1 per un test ad una coda : H1 : µ1 >µ oppure µ1 < µ H1 per un test a due code : H1 : µ1 µ oppure µ1 - µ 0 19

20 0 Consideriamo il seguente caso relativamente a due campioni indipendenti: - Campionamento effettuato da popolazioni distribuite normalmente con varianza delle popolazioni non nota e omogeneità della varianza ossia + = ) ( ) ( n s n s x x t p p µ µ 1) ( 1) ( = n n s n s n s p Gdl della t = (n 1-1)+(n -1) 1 σ σ =

21 Esempio Si intende misurare l efficacia di un farmaco per il trattamento della depressione. Sono confrontati due gruppi: un gruppo al quale è stato somministrato il farmaco (n=33) e il gruppo placebo (n=43). La media della Hamilton Depression Scale è pari a 0.38 nel primo gruppo (s=3.91) e pari a 1.57 nel secondo (s=3.87). Stabilire se la differenza tra le due medie è statisticamente significativa a livello alfa=0,01 1

22 H0 : µ 1 = µ H1 : µ 1 µ t = ( x 1 x s n ) p 1 ( µ µ ) + s 1 p n 0 = ( , ) ,11 43 = 1.3 s p = (3 ) (4 ) = gl = >-,85 quindi non rifiuto H0

23 Consideriamo i seguenti due casi relativamente a due campioni appaiati: Vengono confrontati i valori presi sugli stessi soggetti in due momenti diversi oppure allo stesso soggetto vengono somministrati due trattamenti differenti Il confronto tra trattamento e controllo viene effettuato per cercare di controllare possibili fonti di variabilità che potrebbero oscurare la vera differenza tra le due serie di misurazioni I soggetti di un determinato gruppo sono appaiati con i soggetti di un altro gruppo in modo tale da rendere i due gruppi simili per alcune caratteristiche quali ad esempio età, sesso, etc. 3

24 Esempio Ad 8 individui adulti è stata misurata la pressione arteriosa prima e dopo l assunzione di un farmaco A B C D E F G H C è sufficiente evidenza statistica a supporto dell ipotesi che ci sia una differenza? 4

25 La formulazione del problema fa capire che si tratta di un test a due code, con d d H0 : d medio = 0 t = s H1 : d medio 0 n 16,37 10, = = 4,55 d 131 = = 8 16,37 s = 10,0 Valore critico per 7 gdl ; test a due code; p<α quindi la probabilità che la differenza tra media osservata e media attesa sia casuale è <0,05 Si rifiuta H0. 5

26 Funzione excel TEST.T - Restituisce la probabilità associata a un test t di Student. 6

27 TEST.T(matrice1;matrice;coda;tipo) Matrice1 è il primo insieme di dati. Matrice è il secondo insieme di dati. Coda specifica il numero di code di distribuzione. Se coda = 1, TEST.T utilizzerà la distribuzione a una coda. Se coda =, TEST.T utilizzerà la distribuzione a due code. Tipo è il tipo di test t da eseguire Se tipo è uguale 1 Accoppiato Omoschedastico (varianza uguale di due campioni) 3 Eteroschedastico (varianza disuguale di due campioni) 7

3. Confronto tra medie di due campioni indipendenti o appaiati

3. Confronto tra medie di due campioni indipendenti o appaiati BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Inferenza statistica. Statistica medica 1

Inferenza statistica. Statistica medica 1 Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione sulla base di alcune informazioni ricavate da un campione estratto da quella

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Nella verifica delle ipotesi è necessario fissare alcune fasi prima di iniziare ad analizzare i dati. a) Si deve stabilire quale deve essere l'ipotesi nulla (H0) e quale l'ipotesi

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

Excel Terza parte. Excel 2003

Excel Terza parte. Excel 2003 Excel Terza parte Excel 2003 TABELLA PIVOT Selezioniamo tutti i dati (con le relative etichette) Dati Rapporto tabella pivot e grafico pivot Fine 2 La tabella pivot viene messa di default in una pagina

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

Università del Piemonte Orientale. Corso di dottorato in medicina molecolare. a.a. 2002 2003. Corso di Statistica Medica. Inferenza sulle medie

Università del Piemonte Orientale. Corso di dottorato in medicina molecolare. a.a. 2002 2003. Corso di Statistica Medica. Inferenza sulle medie Università del Piemonte Orientale Corso di dottorato in medicina molecolare aa 2002 2003 Corso di Statistica Medica Inferenza sulle medie Statistica U Test z Test t campioni indipendenti con uguale varianza

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 010-011 Corso di Psicometria - Modulo B Dott. Marco Vicentini marco.vicentini@unipd.it Rev. 10/01/011 La distribuzione F di Fisher - Snedecor

Dettagli

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi Idea di base Supponiamo di avere un idea del valore (incognito) di una media di un campione, magari attraverso

Dettagli

Statistica. Esercitazione 15. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 15. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice Esercitazione 15 Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () 1 / 18 L importanza del gruppo di controllo In tutti i casi in cui si voglia studiare l effetto di un certo

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA)

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA) Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 4: Analisi della varianza (ANOVA) Analisi della varianza Analisi della varianza (ANOVA) ANOVA ad

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi per la media (varianza nota), p-value del test Il manager di un fast-food

Dettagli

Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test

Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test STATISTICA (2) ESERCITAZIONE 6 05.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test Il preside della scuola elementare XYZ sospetta che

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

L Analisi della Varianza ANOVA (ANalysis Of VAriance)

L Analisi della Varianza ANOVA (ANalysis Of VAriance) L Analisi della Varianza ANOVA (ANalysis Of VAriance) 1 CONCETTI GENERALI Finora abbiamo descritto test di ipotesi finalizzati alla verifica di ipotesi sulla differenza tra parametri di due popolazioni

Dettagli

STATISTICA IX lezione

STATISTICA IX lezione Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri

Dettagli

decidiamo, sulla base di un campione, se l ipotesi formulata è plausibile oppure no.

decidiamo, sulla base di un campione, se l ipotesi formulata è plausibile oppure no. LA VERIFICA D IPOTESI Alla base dell inferenza statistica vi è l assunzione che i fenomeni collettivi possano essere descritti efficacemente mediante delle distribuzioni di probabilità. Abbiamo già considerato

Dettagli

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI VERO FALSO CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI 1. V F Un ipotesi statistica è un assunzione sulle caratteristiche di una o più variabili in una o più popolazioni 2. V F L ipotesi nulla unita

Dettagli

Corso di Psicometria Progredito

Corso di Psicometria Progredito Corso di Psicometria Progredito 3.1 Introduzione all inferenza statistica Prima Parte Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico 2013-2014

Dettagli

Analizza/Confronta medie. ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107. Test t. Test t. t-test test e confronto tra medie chi quadrato

Analizza/Confronta medie. ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107. Test t. Test t. t-test test e confronto tra medie chi quadrato Analizza/Confronta medie ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107 t-test test e confronto tra medie chi quadrato C.d.L. Comunicazione e Psicologia a.a. 2008/09 Medie Calcola medie e altre statistiche

Dettagli

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che Statistica Cognome: Laurea Triennale in Biologia Nome: 26 luglio 2012 Matricola: Tema A 1. Parte A 1.1. Sia x 1, x 2,..., x n un campione di n dati con media campionaria x e varianza campionaria s 2 x

Dettagli

Statistica Medica. Verranno presi in esame:

Statistica Medica. Verranno presi in esame: Statistica Medica Premessa: il seguente testo cerca di riassumere e rendere in forma comprensibile ai non esperti in matematica e statistica le nozioni e le procedure necessarie a svolgere gli esercizi

Dettagli

Inferenza statistica

Inferenza statistica Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione in base ad informazioni ricavate da un campione. Inferenza statistica: indurre

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

La logica statistica della verifica (test) delle ipotesi

La logica statistica della verifica (test) delle ipotesi La logica statistica della verifica (test) delle ipotesi Come posso confrontare diverse ipotesi? Nella statistica inferenziale classica vengono sempre confrontate due ipotesi: l ipotesi nulla e l ipotesi

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

Università del Piemonte Orientale. Corsi di Specialità. Corso di Statistica Medica. Analisi dei dati quantitativi : Analisi della varianza

Università del Piemonte Orientale. Corsi di Specialità. Corso di Statistica Medica. Analisi dei dati quantitativi : Analisi della varianza Università del Piemonte Orientale Corsi di Specialità Corso di Statistica Medica Analisi dei dati quantitativi : Analisi della varianza Università del Piemonte Orientale Corso di laurea in biotecnologie

Dettagli

6. Modelli statistici: analisi della regressione lineare

6. Modelli statistici: analisi della regressione lineare BIOSTATISTICA 6. Modelli statistici: analisi della regressione lineare Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 L4, Corso Integrato di Psicometria - Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Rev. 18/04/2011 Inferenza statistica Formulazione

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Stima puntuale per la proporzione Da un lotto di arance se ne estraggono 400, e di queste 180

Dettagli

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per categoriali. Alessandro Valbonesi

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per categoriali. Alessandro Valbonesi LEZIONI DI STATISTCA APPLICATA Parte 2 Statistica inferenziale Variabili continue per categoriali Alessandro Valbonesi SARRF di Scienze ambientali Anno accademico 2010-11 CAPITOLO 4 - TEST STATISTICI CHE

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 9 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 TEST D IPOTESI Partiamo da un esempio presente sul libro di testo.

Dettagli

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici Test non parametrici Test non parametrici Il test T di Student per uno o per due campioni, il test F di Fisher per l'analisi della varianza, la correlazione, la regressione, insieme ad altri test di statistica

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

è decidere sulla verità o falsità

è decidere sulla verità o falsità I test di ipotesi I test di ipotesi Il test delle ipotesi consente di verificare se, e in quale misura, una determinata ipotesi (di carattere sociale, biologico, medico, economico, ecc.) è supportata dall

Dettagli

Regressione Lineare con un Singolo Regressore

Regressione Lineare con un Singolo Regressore Regressione Lineare con un Singolo Regressore Quali sono gli effetti dell introduzione di pene severe per gli automobilisti ubriachi? Quali sono gli effetti della riduzione della dimensione delle classi

Dettagli

Esercitazione n.4 Inferenza su varianza

Esercitazione n.4 Inferenza su varianza Esercizio 1 Un industria che produce lamiere metalliche ha ricevuto un ordine di acquisto di un grosso quantitativo di lamiere di un dato spessore. Per assicurare la qualità della propria fornitura, l

Dettagli

T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente:

T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente: T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente: t = X i X j s 2 i (n i 1) + s 2 j (n j 1) n i + n j - 2 1

Dettagli

Problema pratico: Test statistico = regola di decisione

Problema pratico: Test statistico = regola di decisione La verifica delle ipotesi statistiche Problema pratico: Quale, tra diverse situazioni possibili, riferite alla popolazione, è quella meglio sostenuta dalle evidenze empiriche? Coerenza del risultato campionario

Dettagli

La regressione lineare multipla

La regressione lineare multipla 13 La regressione lineare multipla Introduzione 2 13.1 Il modello di regressione multipla 2 13.2 L analisi dei residui nel modello di regressione multipla 9 13.3 Il test per la verifica della significatività

Dettagli

Politecnico di Milano - Anno Accademico 2010-2011 Statistica 086449 Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo

Politecnico di Milano - Anno Accademico 2010-2011 Statistica 086449 Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo Politecnico di Milano - Anno Accademico 200-20 Statistica 086449 Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo Esercitazione 9 2 Giugno 20 Esercizio. In un laboratorio per il test dei materiali,

Dettagli

ANALISI DI CORRELAZIONE

ANALISI DI CORRELAZIONE ANALISI DI CORRELAZIONE Esempio: Dati raccolti da n = 129 studenti di Pavia (A.A. 21/2) Altezza (cm) Peso (Kg) Voto Algebra e Geometria Voto Fisica I Valutare la correlazione delle seguenti coppie: Peso

Dettagli

STATISTICA INFERENZIALE

STATISTICA INFERENZIALE STATISTICA INFERENZIALE Premessa importante: si ipotizza che il comportamento della popolazione rispetto ad una variabile casuale X viene descritto attraverso una funzione parametrica di probabilità p

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione) Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 28/05/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Nel gico del

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale di area tecnica. Corso di Statistica Medica

Università del Piemonte Orientale. Corsi di Laurea Triennale di area tecnica. Corso di Statistica Medica Università del Piemonte Orientale Corsi di Laurea Triennale di area tecnica Corso di Statistica Medica Campionamento e distribuzione campionaria della media Corsi di laurea triennale di area tecnica -

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/06/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Un sistema

Dettagli

LEZIONE n. 5 (a cura di Antonio Di Marco)

LEZIONE n. 5 (a cura di Antonio Di Marco) LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Intervalli di confidenza

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Intervalli di confidenza Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Intervalli di confidenza Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica

Dettagli

Matlab per applicazioni statistiche

Matlab per applicazioni statistiche Matlab per applicazioni statistiche Marco J. Lombardi 19 aprile 2005 1 Introduzione Il sistema Matlab è ormai uno standard per quanto riguarda le applicazioni ingegneristiche e scientifiche, ma non ha

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli

ALCUNI ELEMENTI DI VERIFICA DI IPOTESI STATISTICHE Con applicazioni nell ambiente statistico R Vittorio Colagrande

ALCUNI ELEMENTI DI VERIFICA DI IPOTESI STATISTICHE Con applicazioni nell ambiente statistico R Vittorio Colagrande ALCUNI ELEMENTI DI VERIFICA DI IPOTESI STATISTICHE Con applicazioni nell ambiente statistico R Vittorio Colagrande Altro problema dell inferenza è quello della verifica di ipotesi: si ipotizza su una caratteristica

Dettagli

Capitolo 11 Test chi-quadro

Capitolo 11 Test chi-quadro Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova

Dettagli

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr.

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr. Corso di Laurea in Scienze e Tecnologie Biomolecolari Matematica e Statistica II Prova di esame dell 11/1/2012 NOME COGNOME N. Matr. Rispondere alle domande nel modo più completo possibile, cercando di

Dettagli

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Esercizio 1 Si consideri il seguente modello ad effetti fissi con variabili binarie: + 1 2 a) supponete che N=3. Si mostri che i regressori

Dettagli

Inferenza statistica I Alcuni esercizi. Stefano Tonellato

Inferenza statistica I Alcuni esercizi. Stefano Tonellato Inferenza statistica I Alcuni esercizi Stefano Tonellato Anno Accademico 2006-2007 Avvertenza Una parte del materiale è stato tratto da Grigoletto M. e Ventura L. (1998). Statistica per le scienze economiche,

Dettagli

Il coefficiente di correlazione di Spearman per ranghi

Il coefficiente di correlazione di Spearman per ranghi Il coefficiente di correlazione di Spearman per ranghi Questo indice di correlazione non parametrico viene indicato con r s o Spearman rho e permette di valutare la forza del rapporto tra due variabili

Dettagli

Esplorazione dei dati

Esplorazione dei dati Esplorazione dei dati Introduzione L analisi esplorativa dei dati evidenzia, tramite grafici ed indicatori sintetici, le caratteristiche di ciascun attributo presente in un dataset. Il processo di esplorazione

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 10-Il test t per un campione e la stima intervallare (vers. 1.1, 25 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia,

Dettagli

Popolazione. Campione. I risultati di un esperimento sono variabili aleatorie. I valori stimati sono variabili aleatorie. Teorema del limite centrale

Popolazione. Campione. I risultati di un esperimento sono variabili aleatorie. I valori stimati sono variabili aleatorie. Teorema del limite centrale I risultati di un esperimento sono variabili aleatorie. Un esperimento non consente di esaminare ogni elemento di una popolazione o di effettuare tutte le misure possibili. campione , sx Stime Popolazion

Dettagli

Servizi di consulenza specialistica per IGRUE 2009 2012

Servizi di consulenza specialistica per IGRUE 2009 2012 Allegato 9A Metodo della stima delle differenze Descrizione della procedura Il metodo della stima delle differenze è indicato qualora il controllore ritenga che la popolazione sia affetta da un tasso di

Dettagli

Relazioni tra variabili

Relazioni tra variabili Università degli Studi di Padova Facoltà di Medicina e Chirurgia Corso di Laurea in Medicina e Chirurgia - A.A. 009-10 Scuole di specializzazione in: Medicina Legale, Medicina del Lavoro, Igiene e Medicina

Dettagli

TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST

TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Statistica 1 Parte A 1.1 La formula µ = x ± s n

Dettagli

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1 Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 Capitolo 3. L'analisi della varianza. Il problema dei confronti multipli. La soluzione drastica di Bonferroni ed il test

Dettagli

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE La presentazione dei dati per molte ricerche mediche fa comunemente riferimento a frequenze, assolute o percentuali. Osservazioni cliniche conducono sovente

Dettagli

L analisi dei rischi: l aspetto statistico Ing. Pier Giorgio DELLA ROLE Six Sigma Master Black Belt

L analisi dei rischi: l aspetto statistico Ing. Pier Giorgio DELLA ROLE Six Sigma Master Black Belt L analisi dei rischi: l aspetto statistico Ing. Pier Giorgio DELL ROLE Six Sigma Master lack elt Dicembre, 009 Introduzione Nell esecuzione dei progetti Six Sigma è di fondamentale importanza sapere se

Dettagli

I ESERCITAZIONE. Gruppo I 100 individui. Trattamento I Nuovo Farmaco. Osservazione degli effetti sul raffreddore. Assegnazione casuale

I ESERCITAZIONE. Gruppo I 100 individui. Trattamento I Nuovo Farmaco. Osservazione degli effetti sul raffreddore. Assegnazione casuale I ESERCITAZIONE ESERCIZIO 1 Si vuole testare un nuovo farmaco contro il raffreddore. Allo studio partecipano 200 soggetti sani della stessa età e dello stesso sesso e con caratteristiche simili. i) Che

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 3 A. Sia una variabile casuale che si distribuisce secondo

Dettagli

Esercitazione n.2 Inferenza su medie

Esercitazione n.2 Inferenza su medie Esercitazione n.2 Esercizio L ufficio del personale di una grande società intende stimare le spese mediche familiari dei suoi impiegati per valutare la possibilità di attuare un programma di assicurazione

Dettagli

8 Elementi di Statistica

8 Elementi di Statistica 8 Elementi di Statistica La conoscenza di alcuni elementi di statistica e di analisi degli errori è importante quando si vogliano realizzare delle osservazioni sperimentali significative, ed anche per

Dettagli

SOLUZIONI ESERCITAZIONE NR. 6 Variabili casuali binomiale e normale

SOLUZIONI ESERCITAZIONE NR. 6 Variabili casuali binomiale e normale SOLUZIONI ESERCITAZIONE NR. 6 Variabili casuali binomiale e normale ESERCIZIO nr. 1 I Presidi delle scuole medie superiori di una certa cittá italiana hanno indetto tra gli studenti dell ultimo anno una

Dettagli

La statistica nella ricerca scientifica

La statistica nella ricerca scientifica La statistica nella ricerca scientifica Pubblicazione dei risultati Presentazione dei dati e la loro elaborazione devono seguire criteri universalmente validi Impossibile verifica dei risultati da parte

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

4. Confronto tra medie di tre o più campioni indipendenti

4. Confronto tra medie di tre o più campioni indipendenti BIOSTATISTICA 4. Confronto tra medie di tre o più campioni indipendenti Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Calcolo delle probabilità Il Sig. Rossi abita nella città X e lavora nella città Y, poco distante.

Dettagli

DEFINIZIONE La statistica è una scienza che si propone di definire con dei numeri cose che non si possono numerare ne misurare.

DEFINIZIONE La statistica è una scienza che si propone di definire con dei numeri cose che non si possono numerare ne misurare. Appunti di Statistica DEFINIZIONE La statistica è una scienza che si propone di definire con dei numeri cose che non si possono numerare ne misurare. PROCESSO STATISTICO L indagine statistica comprende

Dettagli

LE BASI DELLA STATISTICA E LA RACCOLTA DEI DATI

LE BASI DELLA STATISTICA E LA RACCOLTA DEI DATI LE BASI DELLA STATISTICA E LA RACCOLTA DEI DATI Tre punti importanti o Dati e ipotesi In tutte le discipline scientifiche che studiano gli organismi viventi, molto raramente i dati ottenuti attraverso

Dettagli

La distribuzione Gaussiana

La distribuzione Gaussiana Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in biotecnologie - Corso di Statistica Medica La distribuzione

Dettagli

Il controllo delle prestazioni del provider. IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti)

Il controllo delle prestazioni del provider. IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti) del provider IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti) 1 del provider - premessa (1) in merito alla fase di gestione ordinaria dell outsourcing sono state richiamate le prassi di miglioramento

Dettagli

STATISTICA SOCIALE Corso di laurea in Scienze Turistiche - A.A. 2007/2008 Esercizi di riepilogo - 14 dicembre 2007

STATISTICA SOCIALE Corso di laurea in Scienze Turistiche - A.A. 2007/2008 Esercizi di riepilogo - 14 dicembre 2007 STATISTICA SOCIALE Corso di laurea in Scienze Turistiche - A.A. 2007/2008 Esercizi di riepilogo - 14 dicembre 2007 Esercizio 1 In Tabella 1 è riportato il numero di crediti maturati al 30 settembre 2007

Dettagli

IL TEST CHI QUADRATO χ 2

IL TEST CHI QUADRATO χ 2 IL TEST CHI QUADRATO χ 2 Test parametrici I test studiati nelle lezioni precedenti (test-t, testz) consentono la verifica di ipotesi relative al valore di specifici parametri di popolazione Esempio: differenza

Dettagli

1 BREVE RIPASSO DEI TEST STATISTICI 2 I TEST STATISTICI NEI SOFTWARE ECONOMETRICI E IL P-VALUE 3 ESERCIZI DI ALLENAMENTO

1 BREVE RIPASSO DEI TEST STATISTICI 2 I TEST STATISTICI NEI SOFTWARE ECONOMETRICI E IL P-VALUE 3 ESERCIZI DI ALLENAMENTO I TEST STATISTICI E IL P-VALUE Obiettivo di questo Learning Object è ripassare la teoria ma soprattutto la pratica dei test statistici, con un attenzione particolare ai test che si usano in Econometria.

Dettagli

Appunti: Teoria Dei Test

Appunti: Teoria Dei Test Appunti: Teoria Dei Test Fulvio De Santis, Luca Tardella e Isabella Verdinelli Corsi di Laurea A + E + D + G + R 1. Introduzione. Il test d ipotesi è un area dell inferenza statistica in cui si valuta

Dettagli

Cenni di Statistica Inferenziale

Cenni di Statistica Inferenziale Cenni di Statistica Inferenziale Teorema del limite centrale Data una variabile, qualsiasi sia la sua distribuzione, la media di tutti i suoi campioni di ampiezza n ha una distribuzione normale: dove:

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA

ESERCIZI DI STATISTICA DESCRITTIVA ESERCIZI DI STATISTICA DESCRITTIVA ES1 Data la seguente serie di dati su Sesso e Altezza di 8 pazienti, riempire opportunamente due tabelle per rappresentare le distribuzioni di frequenze dei due caratteri,

Dettagli

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1)

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) 151 Introduzione Un esperimento è una prova o una serie di prove. Gli esperimenti sono largamente utilizzati nel campo dell ingegneria. Tra le varie applicazioni;

Dettagli

Analisi di dati di frequenza

Analisi di dati di frequenza Analisi di dati di frequenza Fase di raccolta dei dati Fase di memorizzazione dei dati in un foglio elettronico 0 1 1 1 Frequenze attese uguali Si assuma che dalle risposte al questionario sullo stato

Dettagli

Università del Piemonte Orientale. Corsi di laurea triennale di area tecnica. Corso di Statistica Medica. Analisi dei dati in tabelle di contingenza

Università del Piemonte Orientale. Corsi di laurea triennale di area tecnica. Corso di Statistica Medica. Analisi dei dati in tabelle di contingenza Università del Piemonte Orientale Corsi di laurea triennale di area tecnica Corso di Statistica Medica Analisi dei dati in tabelle di contingenza Corsi di laurea triennale di area tecnica - Corso di Statistica

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

Esercitazione di riepilogo 23 Aprile 2013

Esercitazione di riepilogo 23 Aprile 2013 Esercitazione di riepilogo 23 Aprile 2013 Grafici Grafico a barre Servono principalmente per rappresentare variabili (caratteri) qualitative, quantitative e discrete. Grafico a settori circolari (torta)

Dettagli

In questa dispensa cercheremo di approfondire le più comuni tecniche statistiche per l analisi dei dati raccolti nell ambito di ricerca clinica e di

In questa dispensa cercheremo di approfondire le più comuni tecniche statistiche per l analisi dei dati raccolti nell ambito di ricerca clinica e di In questa dispensa cercheremo di approfondire le più comuni tecniche statistiche per l analisi dei dati raccolti nell ambito di ricerca clinica e di base. Verranno inoltre forniti i concetti fondamentali

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale BIOSTATISTICA 2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk

Dettagli

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1 Potenza dello studio e dimensione campionaria Laurea in Medicina e Chirurgia - Statistica medica 1 Introduzione Nella pianificazione di uno studio clinico randomizzato è fondamentale determinare in modo

Dettagli

EMBA PART TIME 2012 ROMA I ANNO

EMBA PART TIME 2012 ROMA I ANNO BUSINESS STATISTICS: ASSIGNMENT II: EMBA PART TIME 2012 ROMA I ANNO PROF. MOSCONI ESERCIZIO 1: USO DEL MODELLO DI REGRESSIONE PER DETERMINARE IL VALORE DEGLI IMMOBILI. ESERCIZIO 2: PREVISIONE DI VARIABILI

Dettagli

(a cura di Francesca Godioli)

(a cura di Francesca Godioli) lezione n. 12 (a cura di Francesca Godioli) Ad ogni categoria della variabile qualitativa si può assegnare un valore numerico che viene chiamato SCORE. Passare dalla variabile qualitativa X2 a dei valori

Dettagli

Grafici delle distribuzioni di frequenza

Grafici delle distribuzioni di frequenza Grafici delle distribuzioni di frequenza L osservazione del grafico può far notare irregolarità o comportamenti anomali non direttamente osservabili sui dati; ad esempio errori di misurazione 1) Diagramma

Dettagli