Regolatori di Tensione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Regolatori di Tensione"

Transcript

1 egolatori di Tensione I circuiti regolatori di tensione sono presenti in qualunque circuito elettronico con lo scopo di fornire le precise tensioni di alimentazione necessarie per il funzionamento dei circuiti elettronici analogici e digitali a partire dalle sorgenti primarie di potenza elettrica, ad esempio, la rete di distribuzione di energia elettrica per le utenze domestiche o industriali, oppure l alternatore e la batteria negli autoveicoli. Più precisamente, un circuito regolatore di tensione è progettato per fornire una tensione di uscita costante, precisa ed indipendente da ogni possibile causa di variazione, ossia indipendente dalla corrente assorbita dal carico, dalla tensione di ingresso, dalle condizioni ambientali e dall invecchiamento. I regolatori di tensione appartengono alla categoria dei circuiti elettronici di potenza dato che la loro funzione è legata alla gestione della potenza elettrica piuttosto che alla elaborazione di informazioni. In tali sistemi, tuttavia, è comunque necessario acquisire ed elaborare delle informazioni per ottenere un determinato obiettivo (ad esempio, una tensione di uscita costante ed indipendente dalle variabili esterne). Per tale ragione, i regolatori di tensione sono considerati sistemi elettronici e non elettrici. In ciò che segue saranno introdotti i regolatori di tensione. A tale scopo, saranno presentati i principali parametri dei regolatori di tensione e saranno descritte e confrontate tra loro le due principali categorie di circuiti regolatori, vale a dire i regolatori lineari e a commutazione (switching). 1 Parametri di un regolatore di tensione Un regolatore di tensione è progettato per fornire una tensione di uscita costante, precisa ed indipendente da ogni possibile causa di variazione, ossia indipendente dalla corrente assorbita dal carico, dalla tensione di ingresso, dalle condizioni ambientali e dall invecchiamento. I principali parametri di un regolatore di tensione sono: il rendimento, η = P OUT P IN (1) ossia il rapporto tra potenza elettrica P OUT fornita al carico e potenza elettrica P IN assorbita dall ingresso. Il rendimento è un parametro molto importante e va considerato per evitare sia spreco di energia elettrica, sia problemi di dissipazione del calore, visto che la potenza elettrica dissipata P D = P IN P OUT = P IN (1 η) è convertita in calore. 1

2 L impedenza d uscita, Z out = V OUT I OUT. (2) che esprime il rapporto tra variazione della tensione d uscita, V OUT e variazione della corrente assorbita dal carico I OUT. Più è bassa, più la tensione di uscita è indipendente dalla corrente del carico, cioè più il regolatore di tensione è simile ad un generatore ideale di tensione. Il coefficiente di regolazione rispetto alle variazioni della tensione in ingresso, S in = V OUT. (3) che esprime il rapporto tra variazione della tensione d uscita, V OUT e variazione della tensione d ingresso. Questo coefficiente è spesso espresso in decibel in funzione della frequenza. Il coefficiente di temperatura, S T = V OUT (4) T che esprime il rapporto tra variazione della tensione d uscita, V OUT e variazione di temperatura T, fornendo quindi un indicazione della sensibilità della tensione di uscita alle variazioni di temperatura. I regolatori di tensione possono essere raggruppati un due categorie: regolatori lineari regolatori a commutazione (o switching) Le principali caratteristiche di queste due categorie saranno descritte nel seguito. 2

3 2 egolatori lineari La Fig.1a riporta lo schema circuitale di un semplice regolatore lineare di tensione. Questo circuito contiene al suo interno un diodo Zener, la cui caratteristica tensione-corrente è riportata in Fig.2. Tale dispositivo, è polarizzato dalla tensione di ingresso nella regione di funzionamento detta regione di breakdown Zener attraverso il resistore. Con riferimento allo schema di Fig.1a, per la legge di Kirchoff delle tensioni, si ha che I = V OUT (5) Dal momento che la corrente I = I Z e la tensione V OUT = V Z sono legate tra loro dalla caratteristica I Z = f(v Z ) del diodo Zener, la tensione V OUT può essere valutata imponendo f( V OUT ) = V OUT (6) La (6) è un equazione non lineare e può essere risolta graficamente, considerando l intersezione della retta di carico I = V OUT con la caratteristica del diodo Zener I = f( V OUT ) nel piano (V OUT, I). Questa procedura grafica è illustrata in Fig.3a, con riferimento a diversi valori della tensione d ingresso. Si può osservare che, per > V Z0, lo Zener è polarizzato nella regione di breakdown Zener, e la tensione di uscita V OUT è molto prossima al valore nominale della tensione Zener, V Z0, ed è quasi indipendente dalle variazioni della tensione d ingresso, dal momento che la pendenza della caratteristica dello Zener nella regione di breakdown è molto ripida. Sulla base di queste osservazioni, visto che la tensione V OUT è praticamente costante al variare di, il circuito in Fig.1a può considerarsi un regolatore di tensione. Introducendo un carico esterno L che assorbe una corrente I OUT dall uscita del regolatore di tensione che abbiamo appena considerato, come mostrato in Fig.1b, l equazione (6) diventa f( V OUT ) = V OUT I OUT. (7) La soluzione grafica della (7) è illustrata in Fig.3b per una tensione di ingresso costante e per diversi valori della corrente assorbita dal carico, I OUT. Si può osservare che se I OUT > V OUT, I I I OUT V OUT L V OUT a) b) Figura 1: Semplice circuito di regolatore lineare di tensione in assenza di carico (a) e con il carico collegato (b). 3

4 Figura 2: Simbolo e caratteristica tensione-corrente I Z (V Z. Figura 3: Soluzione grafica dell equazione (5) nel piano (V OUT, I) per diversi valori della tensione d ingresso (a) e, soluzione grafica dell equazione (7) nel piano (V OUT, I) per diversi valori della corrente di carico I OUT (b). lo Zener non è più polarizzato nella regione di breakdown e la tensione di uscita dipende sia dalla tensione in ingresso, sia dalla corrente assorbita dal carico. Anche nel caso in cui I OUT < V OUT, tuttavia, la tensione d uscita può risentire leggermente della corrente assorbita dal carico, dal momento che la pendenza della caratteristica I Z = f(v Z ) dello Zener in regione di breakdown non è infinita. Per questa ragione, è altamente raccomandabile che la corrente di polarizzazione del diodo Zener non sia in relazione con la corrente assorbita dal carico. A questo scopo si introduce il regolatore di tensione in Fig.4. In questo circuito, un regolatore basato su diodo Zener, simile a quello in Fig.5a fornisce la tensione di ingresso ad un amplificatore di tensione realizzato con un operazionale retroazionato negativamente. Dal momento che l operazionale non assorbe idealmente alcuna corrente dal suo ingresso non-invertente, il regolatore basato su diodo Zener non deve fornire alcuna corrente I OUT in uscita ed opera perciò in condizioni 4

5 Figura 4: Circuito regolatore lineare di tensione. Figura 5: egolatore lineare di tensione con stadio di uscita a drain comune ottimali di polarizzazione. Di conseguenza, la tensione d uscita del regolatore può essere espressa come ( V OUT = 1 + ) 2 V Z (8) 1 ed è largamente indipendente dalla corrente di uscita del regolatore, dal momento che è mantenuta costante da un anello di retroazione negativa ad alto guadagno. La dipendenza residua della tensione di uscita dalla tensione di ingresso nel circuito in Fig.4 può essere messa in relazione sia alla leggera dipendenza della tensione V Z dalla tensione di ingresso, che è stata messa in luce in Fig.3a, sia in relazione al valore finito del coefficiente di reiezione delle variazioni della tensione di alimentazione (PS) dell amplificatore operazionale utilizzato, dal momento che la tensione di alimentazione dell operazionale è. Dal momento che la corrente di uscita I OUT può essere molto elevata, è necessario introdurre in uscita uno stadio amplificatore con elevata capacità di pilotaggio in corrente. Lo stadio amplificatore deve poter garantire una elevata massima corrente erogabile e deve essere in grado di dissipare la potenza P D = ( V OUT )I OUT. che è convertita in calore all interno del regolatore. 5

6 I IN I OUT egolatore di tensione V OUT I S Figura 6: Schema a blocchi di un regolatore di tensione. 2.1 endimento Per discutere del rendimento di un regolatore lineare di tensione, si consideri lo schema a blocchi di Fig.6. Con riferimento a tale schema, la tensione di uscita V OUT di un regolatore di tensione lineare è sempre minore della tensione di ingresso. Inoltre, per la legge di Kirchoff delle correnti I OUT = I IN I S < I IN. La corrente I S, che è necessaria al funzionamento del regolatore, è spesso trascurabile dal momento che è molto più piccola di quella erogata al carico (I OUT ). Inoltre, un regolatore di tensione lineare richiede che la differenza tra tensione in ingresso e tensione in uscita V DO = V OUT, nota come tensione di dropout, sia sempre maggiore di un valore minimo V DO,min (tipicamente qualche Volt), specificato dal costruttore. Ad esempio, con riferimento al regolatore lineare di tensione in Fig.5, si può osservare che la tensione di ingresso deve essere maggiore della minima tensione di dropout specificata V DO,min al fine di polarizzare opportunamente (in regione lineare) il transistore dello stadio finale. Dal momento che P IN = I IN e P OUT = V OUT I OUT, ne segue che il rendimento η di un regolatore di tensione lineare può essere espresso come η = P OUT P IN = V OUTI OUT I IN V OUT (9) La potenza elettrica dissipata (e quindi convertita in calore) all interno del regolatore è esprimibile come P D = P IN P OUT = I IN V OUT I OUT ( V OUT )I OUT = V DO I OUT. (10) ed è quindi data dal prodotto della tensione di dropout e della corrente erogata al carico. Dal momento che la tensione in ingresso normalmente non è costante, a causa delle variazioni nella sorgente primaria di energia e/o per l oscillazione residua (ripple) V, un circuito comprendente un regolatore di tensione lineare deve essere progettato in modo tale da garantire che la tensione di dropout sia maggiore del valore minimo specificato V DO,min anche quando la tensione di ingresso è minima (caso peggiore), cioè,min V OUT > V DO,min. La necessità di rispettare la precedente condizione in relazione al caso peggiore di tensione in ingresso minima, tuttavia, dà luogo ad una significativa penalizzazione in termini di rendimento 6

7 A L S1 v A S2 C I OUT V OUT L Figura 7: Convertitore DC-DC a commutazione. Figura 8: Forme d onda delle principali tensioni nel circuito in Fig.7. dal momento che, per la maggior parte del tempo, >,min. Tenendo conto della (9), questa penalizzazione nel rendimento è tanto più significativa quanto più bassa è la tensione di uscita del regolatore, come nel caso degli alimentatori per i moderni circuiti digitali che operano a bassissima tensione. 3 egolatori a commutazione I regolatori di tensione a commutazione sono stati sviluppati al fine di ottenere prestazioni in termini di efficienza molto più elevate rispetto ai regolatori di tensione lineari e sono al giorno d oggi molto diffusi in tutti gli apparati elettronici, in particolare in quelli utilizzati a bordo auto. Per comprendere il funzionamento di un regolatore di tensione a commutazione, vediamo ora come sia possibile realizzare un convertitore DC-DC ad elevato rendimento e configurabile (ossia un dispositivo che converte un valore di tensione continua in un altro valore di tensione continua senza perdita di potenza, così come avviene in un trasformatore per le tensioni alternate), utilizzando interruttori commutati periodicamente ed un filtro passa-basso LC. 7

8 3.1 Principio di funzionamento Il principio di funzionamento di un regolatore di tensione a commutazione verrà ora illustrato facendo riferimento al circuito in Fig.7, che è in grado di convertire una tensione di ingresso in una tensione di uscita V OUT diversa ai capi di un carico L senza (idealmente) dissipazione di potenza. In questo circuito, gli interruttori S1 ed S2 sono commutati periodicamente in controfase (quando S1 è acceso, S2 è spento e viceversa) con periodo T, come mostrato in Fig.8, dove T = T 1 + T 2. Nella stessa figura è anche riportata la forma d onda della tensione v A. Si può osservare che v A è uguale fintanto che l interruttore S1 è acceso (ossia durante il tempo indicato con T 1 ), mentre è uguale a zero quando S2 è acceso (cioè durante T 2 ). Dato che la funzione di trasferimento del filtro LC in Fig.7 è H(f) = 1 jωc 1 jωc + jωl = 1 1 ω 2 LC, 1 se si sceglie LC ω 0 = 2πf 0 = 2π T, allora il filtro passa basso LC rigetta le componenti armoniche della forma d onda di Fig.8 tranne la componente continua, la quale corrisponde al valore medio di v A, cioè V OUT = 1 T = 1 T = 1 T T 0 T1 0 T1 0 v A (t)dt v A (t)dt + 1 T dt + 1 T T T 1 T T 1 0dt v A (t)dt = T 1 T + 0 = D (11) dove D = T 1 T è il duty cycle, cioè il rapporto del tempo di accensione T 1 diviso per la durata dell intero periodo T del segnale ad onda quadra che pilota S1. Sulla base della (11), è possibile ottenere con semplicità un qualsiasi valore V OUT < della tensione di uscita pilotando gli interruttori S1 ed S2 con un opportuno duty cycle. 8

9 3.2 endimento Considerando interruttori e componenti reattivi ideali, il regolatore in Fig.7 presenta un rendimento η = 100%, dal momento che in un interruttore ideale acceso o spento non si ha mai dissipazione di potenza 1 così come non viene dissipata alcuna potenza in componenti reattivi ideali (L e C). In pratica, una certa potenza elettrica è dissipata negli interruttori accesi a causa della loro resistenza non nulla in fase di conduzione (perdite di conduzione) ed una certa energia è dissipata in corrispondenza delle commutazioni (perdite di commutazione), perchè le transizioni acceso-spento e spento-acceso degli interruttori reali non sono istantanee e durante queste transizioni si ha contemporaneamente una corrente che fluisce attraverso l interruttore ed una tensione non nulla ai suoi capi. Dal momento che una certa quantità di energia E SW viene dissipata in corrispondenza di ciascuna commutazione, la potenza dissipata per perdite di commutazione è proporzionale alla frequenza di commutazione f. Infine, una certa quantità di potenza è dissipata negli elementi parassiti di tipo resistivo del condensatore e dell induttore. In un induttore reale, in particolare, vi è dissipazione di potenza a causa della resistenza finita degli avvolgimenti ed a causa dell isteresi magnetica nel nucleo. Tenendo conto dei meccanismi di dissipazione appena descritti, il rendimento di un un convertitore a commutazione reale non sarà pari al 100%, ma sarà comunque molto alto (η = 80% 90%). Di conseguenza, il circuito in Fig.7 converte una tensione in ingresso in una differente tensione d uscita con efficienza molto elevata, comportandosi come un trasformatore per tensioni continue. 3.3 egolatori a commutazione ad anello chiuso Il principio di funzionamento dei convertitori a commutazione appena descritto può essere utilizzato per fornire una tensione di uscita costante ed indipendente dalla tensione di ingresso, dalla corrente assorbita dal carico e dalla temperatura di funzionamento. A questo scopo, è necessario controllare opportunamente il duty cycle D mediante un sistema ad anello chiuso in modo tale da contrastare le variazioni su V OUT che possono derivare da variazioni della tensione di ingresso, della corrente assorbita dal carico, ecc..., così che la tensione di uscita V OUT rimanga costante. La descrizione dettagliata delle strategie di controllo che possono essere adottate a questo scopo esula dalle finalità di questo corso. Si descriverà soltanto in linea di principio, con riferimento alla Fig.9, la più semplice di queste tecniche, che sfrutta direttamente il principio della retroazione negativa. Per ottenere una tensione di uscita costante V OUT, è necessario disporre di una tensione di riferimento. Questa tensione di riferimento è confrontata con una partizione βv OUT della tensione di uscita, in modo da ottenere il segnale d errore ε = V EF βv OUT. Il segnale d errore ε è quindi amplificato e posto in ingresso ad un modulatore a larghezza di impulso (meglio noto come modulatore pulse width modulation, o modulatore PWM), che genera un segnale ad onda quadra il cui duty cycle è proporzionale alla tensione d ingresso. Un modulatore PWM può essere implementato come mostrato in Fig.10. In questo circuito, il segnale d errore amplificato V ε è confrontato, mediante un comparatore di soglia, con un segnale triangolare v ST (t) di frequenza f pari alla frequenza scelta come frequenza di commutazione per l interruttore ed ampiezza di picco V pk. La funzione del comparatore di soglia è di confrontare la tensione presente ad uno dei suoi due terminali di ingresso con quella presente all altro terminale e generare una alla propria uscita una tensione alta oppure bassa a seconda di quale dei due ingressi ha valore maggiore. Di conseguenza, quando il segnale triangolare è al di sopra di V ε, la tensione all uscita del comparatore ha un valore alto mentre quando è al di sotto di V ε, l uscita ha un valore 1 La potenza dissipata in un interruttore è data da P D = v SWi SW. In un interruttore ideale acceso si ha che v SW = 0, mentre in un interruttore ideale spento si ha che, i SW = 0. Quindi, in entrambi i casi P D = 0. 9

10 D Convertitore DC-DC a commutazione V OUT PWM D=kV V Amplificatore d errore V OUT V EF Figura 9: egolatore a commutazione ad anello chiuso. più basso (ad esempio, la tensione di riferimento). Il segnale di uscita del comparatore è quindi un segnale ad onda quadra che, per ciascun periodo dell onda triangolare, è allo stato alto fino a quando v ST (t) = V pk T t < V ε, (12) mentre è allo stato basso nel resto del periodo. Questo vuol dire che il duty cycle della tensione di uscita è esprimibile come D = V ε V pk (13) ed è quindi proporzionale al segnale V ε. Il segnale di uscita del comparatore può quindi essere utilizzato per pilotare gli interruttori di un convertitore DC-DC a commutazione per chiudere l anello di retroazione. 10

11 v ST _ V v PWM + v ST V pk V T=1/ f t v PWM T 1 T 2 t Figura 10: Modulatore PWM e relative forme d onda. 11

ELETTRONICA CdS Ingegneria Biomedica

ELETTRONICA CdS Ingegneria Biomedica ELEONICA CdS Ingegneria Biomedica LEZIONE A.03 Circuiti a diodi: configurazioni, analisi, dimensionamento addrizzatori a semplice e doppia semionda addrizzatori a filtro (L, C e LC) Moltiplicatori di tensione

Dettagli

Elettronica per l'informatica 21/10/03

Elettronica per l'informatica 21/10/03 Unità D: Gestione della potenza D.1 D.2 D.3 Alimentatori a commutazione D.4 Pilotaggio di carichi D.5 Gestione della potenza 1 2 componentistica e tecnologie riferimenti di tensione, regolatori e filtri

Dettagli

RELAZIONE DI TELECOMUNICAZIONI ITIS Vobarno Titolo: I Transistor

RELAZIONE DI TELECOMUNICAZIONI ITIS Vobarno Titolo: I Transistor RLAZION DI TLCOMUNICAZIONI ITIS Vobarno Titolo: I Transistor Nome: Samuele Sandrini 4AT 05/10/14 Un transistor a giunzione bipolare (BJT Bipolar Junction Transistor) è formato da tre zone di semiconduttore

Dettagli

2 Alimentazione. +Vdc. Alimentazione 1 IGBT1 GND1. Alimentazione 2 IGBT2 GND2. -Vdc. Fig.1 - Alimentazione corretta degli switchs di uno stesso ramo

2 Alimentazione. +Vdc. Alimentazione 1 IGBT1 GND1. Alimentazione 2 IGBT2 GND2. -Vdc. Fig.1 - Alimentazione corretta degli switchs di uno stesso ramo 2 Alimentazione In un convertitore di potenza l alimentazione rappresenta un elemento fondamentale di tutto il progetto. L alimentatore deve essere in grado di fornire il livello di tensione e la corrente

Dettagli

ALIMENTATORI SWITCHING

ALIMENTATORI SWITCHING RODUZE... PRPO D FUNZAMENO DE REGOAORE SEP-DOWN... Bilancio Energetico (modello ideale)...3 Osservazione...3 Rendimento di conversione...3 Dimensionamento dell'induttanza...4 Dimensionamento del condensatore

Dettagli

Gli alimentatori stabilizzati

Gli alimentatori stabilizzati Gli alimentatori stabilizzati Scopo di un alimentatore stabilizzato è di fornire una tensione di alimentazione continua ( cioè costante nel tempo), necessaria per poter alimentare un dispositivo elettronico

Dettagli

Se la Vi è applicata all ingresso invertente si avrà un comparatore invertente con la seguente caratteristica:

Se la Vi è applicata all ingresso invertente si avrà un comparatore invertente con la seguente caratteristica: I comparatori sono dispositivi che consentono di comparare (cioè di confrontare ) due segnali. Di norma uno dei due è una tensione costante di riferimento Vr. Il dispositivo attivo utilizzato per realizzare

Dettagli

In elettronica un filtro elettronico è un sistema o dispositivo che realizza

In elettronica un filtro elettronico è un sistema o dispositivo che realizza Filtri V.Russo Cos è un Filtro? In elettronica un filtro elettronico è un sistema o dispositivo che realizza delle funzioni di trasformazione o elaborazione (processing) di segnali posti al suo ingresso.

Dettagli

In conduzione continua si ottiene una tensione sul carico v c proporzionale al valore desiderato v i.

In conduzione continua si ottiene una tensione sul carico v c proporzionale al valore desiderato v i. Controllo ad anello aperto Il filtro LC è necessario per ridurre le ondulazioni di corrente e di tensione ed è dimensionato in modo da mantenere v c circa costante. R rappresenta le perdite sugli avvolgimenti

Dettagli

4.4 Il regolatore di tensione a diodo zener.

4.4 Il regolatore di tensione a diodo zener. 4.4 l regolatore di tensione a diodo zener. n molte applicazioni il valore del fattore di ripple ottenibile con un alimentatore a raddrizzatore e filtro capacitivo non è sufficientemente basso. Per renderlo

Dettagli

Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una

Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una l blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una sorgente. Nel caso, come riportato in figura, il segnale

Dettagli

Raddrizzatore monofase a doppia semionda con filtro capacitivo

Raddrizzatore monofase a doppia semionda con filtro capacitivo Raddrizzatore monofase a doppia semionda con filtro capacitivo Nel caso di carichi lineari, a parità di potenza attiva erogata, la corrente (sinusoidale) assorbita dalla sorgente è minima quando la corrente

Dettagli

POLITECNICO DI TORINO TERZA ESERCITAZIONE ATTENZIONE

POLITECNICO DI TORINO TERZA ESERCITAZIONE ATTENZIONE POLITECNICO DI TORINO Laboratorio di Elettrotecnica Data: Gruppo: Allievi: TERZA ESERCITAZIONE Strumenti utilizzati Materiale necessario Generatore di funzioni da banco Oscilloscopio da banco Bread-board

Dettagli

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte E: Circuiti misti analogici e digitali Lezione n E - 1:

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte E: Circuiti misti analogici e digitali Lezione n E - 1: ELETTRONICA II Prof. Dante Del Corso - Politecnico di Torino Parte E: Circuiti misti analogici e digitali Lezione n. 19 - E - 1: Comparatori di soglia Comparatori con isteresi Circuiti misti analogici

Dettagli

Cos è un alimentatore?

Cos è un alimentatore? Alimentatori Cos è un alimentatore? Apparato in grado di fornire una o più tensioni richieste al funzionamento di altre attrezzature, partendo dalla rete elettrica (in Europa: alternata a 220 V, 50 Hz).

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017

ISTITUTO ISTRUZIONE SUPERIORE L. EINAUDI ALBA ANNO SCOLASTICO 2016/2017 ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017 CLASSE 4 I Disciplina: Elettrotecnica ed Elettronica PROGETTAZIONE DIDATTICA ANNUALE Elaborata dai docenti: Linguanti Vincenzo,

Dettagli

ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n PONTEDERA (PI) ANNO SCOLASTICO 2005/2006 CORSO SPERIMENTALE LICEO TECNICO

ISTITUTO TECNICO INDUSTRIALE STATALE G. MARCONI Via Milano n PONTEDERA (PI) ANNO SCOLASTICO 2005/2006 CORSO SPERIMENTALE LICEO TECNICO ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n. 2-56025 PONTEDERA (PI) 0587 53566/55390 - Fax: 0587 57411 - : iti@marconipontedera.it - Sito WEB: www.marconipontedera.it ANNO SCOLASTICO

Dettagli

Politecnico di Torino DU Ingegneria Elettronica - AA Elettronica Applicata II - Workbook / Note per appunti - Gruppo argomenti 1

Politecnico di Torino DU Ingegneria Elettronica - AA Elettronica Applicata II - Workbook / Note per appunti - Gruppo argomenti 1 E2.1. ALIMENTATORI Tutti i circuiti e sistemi elettronici richiedono energia per funzionare; tale energia viene fornita tramite una o più alimentazioni, generalmente in forma di tensione continua di valore

Dettagli

Laboratorio misure elettroniche ed elettriche: regolatori di tensione a tiristori

Laboratorio misure elettroniche ed elettriche: regolatori di tensione a tiristori Laboratorio misure elettroniche ed elettriche: regolatori di tensione a tiristori Circuiti di accensione per tiristori (Tavole E.1.1 - E.1.2) Considerazioni teoriche Per le debite considerazioni si fa

Dettagli

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a 5. Amplificatori Corso di Fondamenti di Elettronica Fausto Fantini a.a. 2010-2011 Amplificazione Amplificare un segnale significa produrre un segnale in uscita (output) con la stessa forma d onda del segnale

Dettagli

Componenti a Semiconduttore

Componenti a Semiconduttore Componenti a Semiconduttore I principali componenti elettronici si basano su semiconduttori (silicio o germani) che hanno subito il trattamento del drogaggio. In tal caso si parla di semiconduttori di

Dettagli

a.a. 2015/2016 Docente: Stefano Bifaretti

a.a. 2015/2016 Docente: Stefano Bifaretti a.a. 2015/2016 Docente: Stefano Bifaretti email: bifaretti@ing.uniroma2.it Controllo ad anello aperto Il filtro LC è necessario per ridurre le ondulazioni di corrente e di tensione ed è dimensionato in

Dettagli

a.a. 2014/2015 Docente: Stefano Bifaretti

a.a. 2014/2015 Docente: Stefano Bifaretti a.a. 2014/2015 Docente: Stefano Bifaretti email: bifaretti@ing.uniroma2.it Gli schemi circuitali impiegati per la realizzazione dei convertitori statici sono molteplici. Infatti, la struttura del convertitore

Dettagli

Amplificatori in classe A con accoppiamento capacitivo

Amplificatori in classe A con accoppiamento capacitivo Ottobre 00 Amplificatori in classe A con accoppiamento capacitivo amplificatore in classe A di Fig. presenta lo svantaggio che il carico è percorso sia dalla componente di segnale, variabile nel tempo,

Dettagli

Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali

Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali Edgardo Smerieri Laura Faè PLS - AIF - Corso Estivo di Fisica Genova 2009 Amplificatore operazionale perché? Moltiplicazione

Dettagli

Capitolo Descrizione tecnica del sensore MAF a filo caldo

Capitolo Descrizione tecnica del sensore MAF a filo caldo Capitolo 2 2.1 Descrizione tecnica del sensore MAF a filo caldo Come anticipato nel paragrafo 1.3.3, verrà ora analizzato in maniera più approfondita il principio di funzionamento del sensore MAF, con

Dettagli

Convertitore cc/cc Buck

Convertitore cc/cc Buck Il convertitore cc/cc abbassatore di tensione (Buck o Step-down) Convertitore cc/cc Buck Analisi del funzionamento a regime Struttura di principio Regolazione di tensione a controllo di tempo (PWM: Pulse

Dettagli

Amplificatori Differenziali

Amplificatori Differenziali Amplificatori Differenziali nei simboli non si esplicitano gli alimentatori DC, cioè Normalmente i circuiti che realizzano l amplificatore differenziale e operazionale non contengono un nodo elettricamente

Dettagli

Modulazione a larghezza di impulso ( PWM )

Modulazione a larghezza di impulso ( PWM ) Modulazione a larghezza di impulso ( PWM ) La tecnica denominata P.W.M. ( pulse width modulation ) consta essenzialmente nel trasmettere l informazione attraverso un segnale impulsivo mediante la larghezza

Dettagli

Classe IV specializzazione elettronica. Elettrotecnica ed elettronica

Classe IV specializzazione elettronica. Elettrotecnica ed elettronica Macro unità n 1 Classe IV specializzazione elettronica Elettrotecnica ed elettronica Reti elettriche, segnali e diodi Leggi fondamentali: legge di Ohm, principi di Kirchhoff, teorema della sovrapposizione

Dettagli

DIODO. La freccia del simbolo indica il verso della corrente.

DIODO. La freccia del simbolo indica il verso della corrente. DIODO Si dice diodo un componente a due morsetti al cui interno vi è una giunzione P-N. Il terminale del diodo collegato alla zona P si dice anodo; il terminale collegato alla zona N si dice catodo. Il

Dettagli

AMPLIFICATORE DIFFERENZIALE

AMPLIFICATORE DIFFERENZIALE AMPLIFICATORE DIFFERENZIALE Per amplificatore differenziale si intende un circuito in grado di amplificare la differenza tra due segnali applicati in ingresso. Gli ingressi sono due: un primo ingresso

Dettagli

Manuale per la progettazione dei circuiti elettronici analogici di bassa frequenza

Manuale per la progettazione dei circuiti elettronici analogici di bassa frequenza Manuale per la progettazione dei circuiti elettronici analogici di bassa frequenza C. Del Turco 2007 Indice : Cap. 1 I componenti di base (12) 1.1 Quali sono i componenti di base (12) 1.2 I resistori (12)

Dettagli

Elettronica I Amplificatore operazionale ideale; retroazione; stabilità

Elettronica I Amplificatore operazionale ideale; retroazione; stabilità Elettronica I Amplificatore operazionale ideale; retroazione; stabilità Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Comprendere il funzionamento dei convertitori V/f Saper effettuare misure di collaudo

Comprendere il funzionamento dei convertitori V/f Saper effettuare misure di collaudo SCH 32 Convertitore tensione/frequenza Obiettivi Strumenti e componenti Comprendere il funzionamento dei convertitori V/f Saper effettuare misure di collaudo R1 = 1,2 KΩ; R2 = 3,6 KΩ; R4 = 180 Ω; R5 =

Dettagli

Il convertitore bidirezionale a commutazione forzata trova ampio impiego anche in versione trifase.

Il convertitore bidirezionale a commutazione forzata trova ampio impiego anche in versione trifase. Il convertitore bidirezionale a commutazione forzata trova ampio impiego anche in versione trifase. In questa versione, anzi, non è necessario impiegare il filtro risonante L 1 C 1, in quanto il trasferimento

Dettagli

Amplificatori operazionali

Amplificatori operazionali Amplificatori operazionali Parte 3 www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 6--) Integratore Dato che l ingresso invertente è virtualmente a massa si ha vi ( t) ir ( t) R Inoltre i

Dettagli

Corso di ELETTRONICA INDUSTRIALE INVERTITORI MONOFASE A TENSIONE IMPRESSA

Corso di ELETTRONICA INDUSTRIALE INVERTITORI MONOFASE A TENSIONE IMPRESSA 1 Corso di LTTRONICA INDUSTRIAL INVRTITORI MONOFAS A TNSION IMPRSSA 0. 2 Principi di funzionamento di invertitori monofase a tensione impressa 0. 3 Principi di funzionamento di invertitori monofase a tensione

Dettagli

Generatori di Tensione Continua

Generatori di Tensione Continua Corso Sensori e ivelatori - Ponte di Wheatstone Generatori di Tensione Continua I generatori di tensione continua sono utilizzati per: generare tensioni di riferimento; generare correnti di riferimento;

Dettagli

(Link al materiale in formato html)

(Link al materiale in formato html) Materiale didattico realizzato dal Prof. Giancarlo Fionda insegnante di elettronica. Di seguito è mostrato l'elenco degli argomenti trattati (indice delle dispense): (Link al materiale in formato html)

Dettagli

DOCENTI: Accardo Giovanna Caruti Marco ( ITP)

DOCENTI: Accardo Giovanna Caruti Marco ( ITP) ANNO SCOLASTICO 2016/2017 PROGRAMMAZIONE PREVENTIVA DI ELETTROTECNICA ED ELETTRONICA DOCENTI: Accardo Giovanna Caruti Marco ( ITP) CLASSE 4BEA Ore settimanali: 4 ( 2 in laboratorio) Per un totale di ore

Dettagli

Generatore. Generatore. Un sistema a raggi-x consiste di: Tubo a raggi-x. Sistema di rilevazione

Generatore. Generatore. Un sistema a raggi-x consiste di: Tubo a raggi-x. Sistema di rilevazione Generatore Un sistema a raggi-x consiste di: Tubo a raggi-x Sistema di rilevazione Generatore Il generatore trasferisce la potenza elettrica P (KW) al tubo a raggi-x I parametri U (KV) e I (ma) vengono

Dettagli

Elettronica Amplificatore operazionale ideale; retroazione; stabilità

Elettronica Amplificatore operazionale ideale; retroazione; stabilità Elettronica Amplificatore operazionale ideale; retroazione; stabilità Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Amplificatore operazionale

Dettagli

Un convertitore D/A o digitale/analogico è un dispositivo che ha lo scopo di

Un convertitore D/A o digitale/analogico è un dispositivo che ha lo scopo di Convertitore D/A Un convertitore D/A o digitale/analogico è un dispositivo che ha lo scopo di trasformare un dato digitale in una grandezza analogica, in generale una tensione. Naturalmente vi deve essere

Dettagli

I.I.S.S. G. CIGNA MONDOVI

I.I.S.S. G. CIGNA MONDOVI I.I.S.S. G. CIGNA MONDOVI PROGRAMMAZIONE INDIVIDUALE ANNO SCOLASTICO 2016-2017 CLASSE QUARTA A TRIENNIO TECNICO-ELETTRICO MATERIA ELETTROTECNICA ED ELETTRONICA DOCENTE BONGIOVANNI DARIO MATTEO LIBRI DI

Dettagli

Funzionamento a regime (steady-state) Elettronica Industriale Convertitori DC-DC 1

Funzionamento a regime (steady-state) Elettronica Industriale Convertitori DC-DC 1 Funzionamento a regime (steady-state) Elettronica Industriale Convertitori DC-DC 1 Convertitore Buck (Step-Down) Definizioni: Con le lettere minuscole si indicano le forme d onda associate alle tensioni/correnti

Dettagli

INDICE. Capitolo 3 Caratteristiche dei LED 39

INDICE. Capitolo 3 Caratteristiche dei LED 39 ALIMENTATORI PER LED INDICE Capitolo 1 Introduzione pag. 1 1.0 Illuminazione a LED: un mondo in evoluzione 1 1.1 Contenuti del manuale 6 1.2 Elenco dei circuiti presentati nel manuale 7 1.3 Aspetti di

Dettagli

1N4001 LM317 VI GND. + C1 2200uF. + C2 10uF

1N4001 LM317 VI GND. + C1 2200uF. + C2 10uF Alimentatore con uscita variabile rev. del /06/008 pagina /0 D N400 LM7 SW F T 5 - + 4 D4 D + C 00uF VI GND VO 0 K D N400 + C uf A 4 8 0:8 BIDGE 4,8K + C 0uF,K V Alimentatore con uscita variabile Vogliamo

Dettagli

Regolatori di tensione dissipativi. Regolatori serie. Schema elettrico. Controllo della tensione d uscita Politecnico di Torino 1

Regolatori di tensione dissipativi. Regolatori serie. Schema elettrico. Controllo della tensione d uscita Politecnico di Torino 1 Regolatori di tensione dissipativi 1 Schema elettrico Controllo della tensione d uscita 2 2003 Politecnico di Torino 1 Schema elettrico 3 Schema di principio I regolatori serie sono composti da un elemento

Dettagli

Circuiti elettronici per la elaborazione analogica delle informazioni

Circuiti elettronici per la elaborazione analogica delle informazioni Circuiti elettronici per la elaborazione analogica delle informazioni La maggior parte dei segnali applicati agli ingressi di un sistema elettronico provengono da dispositivi chiamati sensori i quali,

Dettagli

Misure su linee di trasmissione

Misure su linee di trasmissione Appendice A A-1 A-2 APPENDICE A. Misure su linee di trasmissione 1) Misurare, in trasmissione o in riflessione, la lunghezza elettrica TL della linea. 2) Dal valore di TL e dalla lunghezza geometrica calcolare

Dettagli

Laboratorio Didattico Integrato Elettronica - Circuiti LADEC. Guida alle esercitazioni per il corso di. Microelettronica. V. Carboni, C.

Laboratorio Didattico Integrato Elettronica - Circuiti LADEC. Guida alle esercitazioni per il corso di. Microelettronica. V. Carboni, C. Laboratorio Didattico Integrato Elettronica - Circuiti LADEC Guida alle esercitazioni per il corso di Microelettronica V. Carboni, C. Turchetti A.A. 997/98 Dipartimento di Elettronica ed Automatica Laboratorio

Dettagli

Componenti in corrente continua

Componenti in corrente continua Ogni componente reale utilizzato in un circuito è la realizzazione approssimata di un elemento circuitale ideale. Nello studio dei sistemi in cc gli elementi più importanti sono : esistore Generatori campione

Dettagli

Lezione 2: Amplificatori operazionali. Prof. Mario Angelo Giordano

Lezione 2: Amplificatori operazionali. Prof. Mario Angelo Giordano Lezione 2: Amplificatori operazionali Prof. Mario Angelo Giordano L'amplificatore operazionale come circuito integrato è uno dei circuiti lineari maggiormente usati. L'amplificatore operazionale è un amplificatore

Dettagli

Collaudo statico di un ADC

Collaudo statico di un ADC Collaudo statico di un ADC Scopo della prova Verifica del funzionamento di un tipico convertitore Analogico-Digitale. Materiali 1 Alimentatore 1 Oscilloscopio 1 Integrato ADC 0801 o equivalente Alcuni

Dettagli

Sommario CAPITOLO 1 CAPITOLO 2. iii. Le grandezze elettriche... 1. I componenti circuitali... 29

Sommario CAPITOLO 1 CAPITOLO 2. iii. Le grandezze elettriche... 1. I componenti circuitali... 29 Sommario CAPITOLO 1 Le grandezze elettriche............................... 1 1-1 Progetto proposto Regolatore di flusso............................ 2 1-2 I primordi delle scienze elettriche.................................

Dettagli

Le modulazioni impulsive

Le modulazioni impulsive Le modulazioni impulsive a cura di Francesco Galgani (www.galgani.it) Indice 1 Introduzione 2 2 La modulazione PAM 3 2.1 Cenni teorici....................................... 3 2.2 Simulazione con il computer

Dettagli

Alimentatore con uscita variabile

Alimentatore con uscita variabile D N400 LM7 SW F T 5 - + 4 D4 D + C 00uF VI GND VO R 0 R K D N400 + C uf A 4 8 0:8 BRIDGE R4,8K + C 0uF R,K V Versione del 6 ottobre 006 Alimentatore con uscita variabile Vogliamo progettare un alimentatore

Dettagli

Potenza in regime sinusoidale

Potenza in regime sinusoidale 26 Con riferimento alla convenzione dell utilizzatore, la potenza istantanea p(t) assorbita da un bipolo è sempre definita come prodotto tra tensione v(t) e corrente i(t): p(t) = v(t) i(t) Considerando

Dettagli

I S T I T U T O T E C N I C O I N D U S T R I A L E S T A T A L E V E R O N A

I S T I T U T O T E C N I C O I N D U S T R I A L E S T A T A L E V E R O N A I S T I T U T O T E C N I C O I N D U S T R I A L E S T A T A L E G U G L I E L M O M A R C O N I V E R O N A PROGRAMMA PREVENTIVO A.S. 2015/2016 CLASSE 4Ac MATERIA: Elettrotecnica, elettronica e automazione

Dettagli

Elettronica generale - Santolo Daliento, Andrea Irace Copyright The McGraw-Hill srl

Elettronica generale - Santolo Daliento, Andrea Irace Copyright The McGraw-Hill srl 1 1. Per il circuito raddrizzatore a doppia semionda di Fig. 3.21 si valuti la massima tensione inversa che può esser presente su ogni diodo e si disegni l uscita del raddrizzatore nel caso in cui il valore

Dettagli

3- CENNI SUI PRINCIPALI DISPOSITIVI BASATI SULLE GIUNZIONI p-n

3- CENNI SUI PRINCIPALI DISPOSITIVI BASATI SULLE GIUNZIONI p-n 1 3- CENNI SUI PRINCIPALI DISPOSITIVI BASATI SULLE GIUNZIONI p-n Il diodo come raddrizzatore Un semiconduttore contenente una giunzione p-n, come elemento di un circuito elettronico si chiama diodo e viene

Dettagli

Circuiti Integrati : Regolatore di tensione lineare

Circuiti Integrati : Regolatore di tensione lineare Circuiti Integrati : Regolatore di tensione lineare Regolatore di tensione lineare In generale i circuiti ed i sistemi elettronici per funzionare correttamente devono essere alimentati con una determinata

Dettagli

Regolatori di tensione dissipativi. Regolatori LDO. Schema elettrico. Stabilità LDO Politecnico di Torino 1

Regolatori di tensione dissipativi. Regolatori LDO. Schema elettrico. Stabilità LDO Politecnico di Torino 1 Regolatori di tensione dissipativi 1 Schema elettrico Stabilità LDO 2 2003 Politecnico di Torino 1 Schema elettrico 3 Efficienza La tensione di headroom crea dei problemi: Alta potenza dissipata (necessita

Dettagli

Piano di lavoro preventivo

Piano di lavoro preventivo I S T I T U T O T E C N I C O I N D U S T R I A L E S T A T A L E G u g l i e l m o M a r c o n i V e r o n a 1 Piano di lavoro preventivo Anno Scolastico 2015/16 Materia Classe Docenti Materiali didattici

Dettagli

ELETTRONICA APPLICATA E MISURE

ELETTRONICA APPLICATA E MISURE Ingegneria dell Informazione ELETTRONICA APPLICATA E MISURE Dante DEL CORSO De3 ESERCIZI PARTI B e D» Esempi di esercizi da scritti di esame AA 2015-16 01/12/2015-1 ElapDe2-2014 DDC Page 1 2014 DDC 1 De3:

Dettagli

T10 CONVERTITORI A/D E D/A

T10 CONVERTITORI A/D E D/A T10 CONVERTITORI A/D E D/A T10.1 Esplicitare i seguenti acronimi riguardanti i convertitori A/D e D/A: ADC.. DAC.. LSB.. SAR... S&H.. T10.2 Quanto vale l intervallo di quantizzazione in un ADC a 8 bit

Dettagli

Ricadute dirette nel mondo della medicina Nucleare (Risonanza Magnetica Nucleare)

Ricadute dirette nel mondo della medicina Nucleare (Risonanza Magnetica Nucleare) Ricadute dirette nel mondo della medicina Nucleare (Risonanza Magnetica Nucleare) Foto rivelatore Il foto rivelatore è costituito da vari elementi: Fotocatodo Dinodi di accelerazione Anodo di raccolta

Dettagli

Sistemi elettronici di conversione

Sistemi elettronici di conversione Sistemi elettronici di conversione (conversione ac-dc, ac-ac, dc-dc, dc-ac) C. Petrarca Cenni su alcuni componenti elementari Diodo, tiristore, contattore statico, transistore Interruttore ideale interruttore

Dettagli

I convertitori c.a.-c.a. possono essere suddivisi in tre categorie: convertitori a controllo di fase, cicloconvertitori, convertitori a matrice.

I convertitori c.a.-c.a. possono essere suddivisi in tre categorie: convertitori a controllo di fase, cicloconvertitori, convertitori a matrice. Tra i vari tipi di convertitori monostadio, i convertitori c.a.-c.a. sono quelli che presentano il minore interesse applicativo, a causa delle notevoli limitazioni per quanto concerne sia la qualità della

Dettagli

Misura di capacità e fattore di perdita

Misura di capacità e fattore di perdita Capitolo 7 Misura di capacità e fattore di perdita Si vuole determinare la misura della capacità e del fattore di perdita di un cavo elettrico per la media tensione tramite un ponte a trasformatore differenziale

Dettagli

Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: Pilotaggio low-side con MOS. Pilotaggio low-side con BJT

Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: Pilotaggio low-side con MOS. Pilotaggio low-side con BJT Interruttori allo stato solido 1 Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: con MOS con BJT Velocità di commutazione MOS Velocità di commutazione BJT 2 2003 Politecnico

Dettagli

ALLA SCOPERTA DELLA PWM: REGOLATORE DI LUMINOSITA di Antonio Cecere

ALLA SCOPERTA DELLA PWM: REGOLATORE DI LUMINOSITA di Antonio Cecere ... ALLA SCOPERTA DELLA PWM: REGOLATORE DI LUMINOSITA di Antonio Cecere a.cecere@farelettronica.com Questo articolo tratta di un semplice regolatore di luminosità basato sulla tecnica PWM (Pulse Width

Dettagli

MISURE DI POTENZA. (a) (b) Fig. 1

MISURE DI POTENZA. (a) (b) Fig. 1 MISUE DI POENZ. Misure di potenza in circuiti in continua a potenza elettrica (P) dissipata su di un carico () alimentato da una sorgente in continua (E) è data dal prodotto tra la caduta di tensione sul

Dettagli

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica 7.09.0 Problema L interruttore indicato nel circuito in figura commuta nell istante t 0 dalla posizione AA alla posizione BB. Determinare le espressioni delle tensioni v (t) ev (t) per ogni istante di

Dettagli

Elettronica analogica: cenni

Elettronica analogica: cenni Elettronica analogica: cenni VERSIONE 23.5.01 valle del componente di acquisizione dati nella struttura funzionale di un sistema di misura: misurando x y y z sens elab pres ambiente w abbiamo già considerato

Dettagli

L amplificatore operazionale

L amplificatore operazionale L amplificatore operazionale terminali di input terminale di output Alimentazioni: massa nodo comune L amplificatore operazionale ideale Applichiamo 2 tensioni agli input 1 e 2 L amplificatore è sensibile

Dettagli

Indice. VERIFICA Test Problemi svolti Problemi da svolgere 48. non solo teoria

Indice. VERIFICA Test Problemi svolti Problemi da svolgere 48. non solo teoria 0040.indice.fm Page 9 Monday, January 16, 2012 2:38 PM unità di apprendimento 11 I diodi e le loro applicazioni Sezione 11A Diodi e loro applicazioni 1 Premessa 20 2 Il diodo raddrizzatore 20 Diodo ideale

Dettagli

Multivibratore astabile con Amp. Op.

Multivibratore astabile con Amp. Op. Multivibratore astabile con Amp. Op. Il multivibratore astabile è un generatore di onde quadre e rettangolari; esso è un circuito retroazionato positivamente, avente due stati entrambi instabili, che si

Dettagli

Curva caratteristica del transistor

Curva caratteristica del transistor Curva caratteristica del transistor 1 AMPLIFICATORI Si dice amplificatore un circuito in grado di aumentare l'ampiezza del segnale di ingresso. Un buon amplificatore deve essere lineare, nel senso che

Dettagli

CIRCUITO DI CONDIZIONAMENTO PER IL TRASDUTTORE DI TEMPERATURA AD590

CIRCUITO DI CONDIZIONAMENTO PER IL TRASDUTTORE DI TEMPERATURA AD590 CIRCUITO DI CONDIZIONAMENTO PER IL ASDUTTORE DI TEMPERATURA AD590 Gruppo n 5 Urbini Andrea Marconi Simone Classe 5C 2001/2002 SPECIFICHE DEL PROGETTO: realizzare un circuito in grado di trasformare una

Dettagli

Esercitazione Oscilloscopio

Esercitazione Oscilloscopio Esercitazione Oscilloscopio - 1 Esercitazione Oscilloscopio 1 - Oggetto Uso dell oscilloscopio. Rilievo della caratteristica tensione-corrente di un diodo. Misure di capacità mediante misure di sfasamento.

Dettagli

Titolo Descrizione dell arte nota e problema tecnico dell arte nota Riassunto dell invenzione ( consistory clause ) Breve descrizione dei disegni

Titolo Descrizione dell arte nota e problema tecnico dell arte nota Riassunto dell invenzione ( consistory clause ) Breve descrizione dei disegni Fondamenti di proprietà industriale /20 Struttura del brevetto Titolo Descrizione dell arte nota e problema tecnico dell arte nota Riassunto dell invenzione ( consistory clause ) Breve descrizione dei

Dettagli

OSCILLATORE A SFASAMENTO

OSCILLATORE A SFASAMENTO Elettronica Applicata a.a. 2013/2014 Esercitazione N 5 OSCILLATORE A SFASAMENTO Fabio Cioria Andrea Giombetti Giulio Pelosi (fabio.cioria@insono.com) (giombetti@unifi.it) (giulio.pelosi@insono.it) www.echommunity.com/courses.htm

Dettagli

A.S. 2014/15 CLASSE 4 BEE MATERIA: ELETTROTECNICA ED ELETTRONICA

A.S. 2014/15 CLASSE 4 BEE MATERIA: ELETTROTECNICA ED ELETTRONICA A.S. 2014/15 CLASSE 4 BEE MATERIA: ELETTROTECNICA ED ELETTRONICA UNITA DI APPRENDIMENTO 1: RETI ELETTRICHE IN DC E AC Essere capace di applicare i metodi di analisi e di risoluzione riferiti alle grandezze

Dettagli

MST_K15. Regolatore di velocita per Ventole in CC. Controllato in temperatura. Manuale d uso e d installazione

MST_K15. Regolatore di velocita per Ventole in CC. Controllato in temperatura. Manuale d uso e d installazione MST_K15 Regolatore di velocita per Ventole in CC Controllato in temperatura Manuale d uso e d installazione Introduzione Il circuito MST_K15 e' un regolatore di velocità per ventole (Fan Manager) in corrente

Dettagli

Caratteristiche di trasferimento:

Caratteristiche di trasferimento: Trasduttori Introduzione Il trasduttore è l elemento base della misura Per trasduttore intendiamo un dispositivo che trasforma una qualsiasi grandezza fisica in grandezza elettrica Lo scopo di tale trasformazione

Dettagli

CENNI SU ALCUNI DISPOSITIVI ELETTRONICI A STATO SOLIDO

CENNI SU ALCUNI DISPOSITIVI ELETTRONICI A STATO SOLIDO 1 CENNI SU ALCUNI DISPOSITIVI ELETTRONICI A STATO SOLIDO Il diodo come raddrizzatore Un semiconduttore contenente una giunzione p-n, come elemento di un circuito elettronico si chiama diodo e viene indicato

Dettagli

RISONANZA. Fig.1 Circuito RLC serie

RISONANZA. Fig.1 Circuito RLC serie RISONANZA Risonanza serie Sia dato il circuito di fig. costituito da tre bipoli R, L, C collegati in serie, alimentati da un generatore sinusoidale a frequenza variabile. Fig. Circuito RLC serie L impedenza

Dettagli

Esercitazione Multimetro analogico e digitale

Esercitazione Multimetro analogico e digitale Esercitazione Multimetro analogico e digitale - 1 Esercitazione Multimetro analogico e digitale 1 - Oggetto Confronto tra multimetro analogico (OM) e digitale (DMM). Misure di tensioni alternate sinusoidali

Dettagli

ITIS H. HERTZ A.S. 2009/2010 Classe IV Corso Serale - Progetto Sirio Programmazione preventiva del Corso di ELETTRONICA

ITIS H. HERTZ A.S. 2009/2010 Classe IV Corso Serale - Progetto Sirio Programmazione preventiva del Corso di ELETTRONICA ITIS H. HERTZ A.S. 2009/2010 Classe IV Corso Serale - Progetto Sirio Programmazione preventiva del Corso di ELETTRONICA OBIETTIVI FORMATIVI GENERALI DELLA DISCIPLINA L allievo deve essere in grado di:

Dettagli

I.T.I.S. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 2013/14 COGNOME E NOME Data: 27/11/2013

I.T.I.S. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 2013/14 COGNOME E NOME Data: 27/11/2013 I.T.I.. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 03/4 OGNOME E NOME Data: 7//03 Quesito ) (50%) Dato il circuito qui a fianco che rappresenta un oscillatore sinusoidale a ponte

Dettagli

I.P.S.I.A. Di BOCCHIGLIERO Oscillatori ad alta frequenza ---- Materia: Elettronica. prof. Ing. Zumpano Luigi

I.P.S.I.A. Di BOCCHIGLIERO Oscillatori ad alta frequenza ---- Materia: Elettronica. prof. Ing. Zumpano Luigi I.P.S.I.A. Di BOHIGLIERO a.s. 2010/2011 classe III Materia: Elettronica Oscillatori ad alta frequenza alunni : hindamo Michelangelo Bossio Salvatore prof. Ing. Zumpano Luigi IPSIA Bocchigliero Elettronica

Dettagli

MST_K12_FAN. Regolatore di velocita per ventole PC. Manuale d uso e d installazione

MST_K12_FAN. Regolatore di velocita per ventole PC. Manuale d uso e d installazione MST_K12_FAN Regolatore di velocita per ventole PC Manuale d uso e d installazione Page 1 of 7 Indice Argomenti 1.0 Revisioni. pag. 3 2.0 Introduzione.... pag. 3 2.1 Caratteristiche generali... pag. 3 3.0

Dettagli

Il comportamento di un amplificatore ideale, ad esempio di tensione, è descritto dalla relazione lineare V out = A V in (3.1)

Il comportamento di un amplificatore ideale, ad esempio di tensione, è descritto dalla relazione lineare V out = A V in (3.1) Capitolo 3 Amplificazione 3.1 Circuiti attivi Gli elementi circuitali considerati sino ad ora, sia lineari (resistenze, capacità, induttanze e generatori indipendenti), sia non lineari (diodi), sono detti

Dettagli

DAC Digital Analogic Converter

DAC Digital Analogic Converter DAC Digital Analogic Converter Osserviamo lo schema elettrico riportato qui a lato, rappresenta un convertitore Digitale-Analogico a n Bit. Si osservino le resistenze che di volta in volta sono divise

Dettagli

MOSFET o semplicemente MOS

MOSFET o semplicemente MOS MOSFET o semplicemente MOS Sono dei transistor e come tali si possono usare come dispositivi amplificatori e come interruttori (switch), proprio come i BJT. Rispetto ai BJT hanno però i seguenti vantaggi:

Dettagli

Pilotaggio high-side

Pilotaggio high-side Interruttori allo stato solido Introduzione Il pilotaggio high-side è più difficile da realizzare del low-side in quanto nel secondo un capo dell interruttore è a massa Non sempre è possibile il pilotaggio

Dettagli

Motori Motore passo-passo Stadio di potenza PWM Sincrono Stadio di potenza del motore passopasso. Blocchi funzionali. Set point e generatore PWM

Motori Motore passo-passo Stadio di potenza PWM Sincrono Stadio di potenza del motore passopasso. Blocchi funzionali. Set point e generatore PWM RC1 Blocchi funzionai Motori a corrente continua Generatori Circuiti per il controllo dei motori in CC Motori a corrente alternata Circuiti per il controllo dei motori in CA Motori passo-passo Circuiti

Dettagli

MST_K12_INV2 Regolatore di velocita per motori in CC con inversione automatica della rotazione

MST_K12_INV2 Regolatore di velocita per motori in CC con inversione automatica della rotazione MST_K12_INV2 Regolatore di velocita per motori in CC con inversione automatica della rotazione Manuale d uso e d installazione INTRODUZIONE Il progetto MST_K12_INV2 e un semplice regolatore di velocità

Dettagli