ELEMENTI DI LOGICA PROBABILISTICA 29

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ELEMENTI DI LOGICA PROBABILISTICA 29"

Transcript

1 ELEMENTI DI LOGICA PROBABILISTICA Lo schema delle scommesse di de Finetti. La nostra analisi della logica probabilistica si è fino a qui basata su due assunzioni. La prima è che la logica dei gradi di convinzione sia vincolata dalla (relazione di) conseguenza classica sugli eventi. Questo è del tutto ragionevole se riteniamo che il ragionamento in condizioni di certezza sia un caso particolare del ragionamento in condizioni di incertezza. E non ci sono motivi cogenti per dubitarne. Dobbiamo però precisare in che modo interpretiamo gli enunciati di EL come eventi Enunciati, fatti ed eventi. Nel nostro sviluppo della logica (proposizionale, classica) della certezza, abbiamo assunto che l insieme delle valutazioni proposizionali fosse abitato da funzioni totali. Insieme al principio di composizionalità questo implica una forma di onniscienza, da parte dei nostri agenti logici: ogni variabile proposizionale è decisa 21 da ogni valutazione, e di conseguenza lo è ogni enunciato in EL. Non sembra esserci molto spazio per l incertezza in questo quadro, che sembra chiaramente parlare di fatti e non di eventi. Anche questa volta le apparenze sono fuorvianti. Rammentiamo dalla Sezione 2.4 che l oggetto del nostro interesse sono entità che è comodo chiamare agenti logici. È certamente possibile, in tale contesto, contemplare la situazione in cui tutte le variabili proposizionali in L sono decise dalle valutazioni su L, ma senza che il nostro agente sappia come. È questa ignoranza che distingue gli eventi dai fatti. Definizione 3.5 (Eventi). Per un dato agente Ag, 2ELè u n evento se (1) Ag non conosce il valore di verità di (2) Ag conosce le condizioni di verifica di, cioè sa quali sono le condizioni sotto cui si potrà dire se si è verificato oppure no. Un analogia può aiutare la comprensione di questo punto importante e delicato. Pensiamo al mondo come a un film. Il montaggio è eseguito in modo tale che a ogni fotogramma venga decisa una (nuova) variabile proposizionale e che all ultimo fotogramma si decida l ultima variable proposizionale di L che ancora rimane da decidere. Supponete ora che 2ELsia una formula particolarmente complicata. Prima dell inizio del film non sapete quale sarà il valore di verità di, ma sapete che alla fine del film avrete tutte le informazioni necessarie per decidere se si è verificato oppure no. Si tratta dunque di un evento. 21 Cioè v(p) 2{0, 1}, perognip 2L.

2 30 HYKEL HOSNI Il rapporto logico tra fatti ed eventi è molto stretto. Per i nostri scopi possiamo addirittura spingerci fino a dire che sono i fatti che permettono di decidere se un certo evento si è verificato oppure no. Il seguente esempio, essenzialmente dovuto a Emile Borel, illustra il punto. Esempio 3.6 (Fatti ed eventi). Supponete di chiedere a un amica di lanciare una moneta da un euro lunedì pomeriggio alle 4 e di nasconderla sotto una tazza. Supponete che sia uscita testa. L enunciato è uscita testa è sicuramente un fatto. Martedì mattina l enunciato che sta per è uscita croce è certamente deciso da questo fatto, ma per voi è un evento fino a che non avrete modo di sollevare la tazza e verificarne l occorrenza. Esercizio 14. Sia la formalizzazione di l aereo da Londra a Pisa è in orario. Si tratta di un evento o di un fatto? Argomentare brevemente Incertezza e probabilità. La seconda assunzione che abbiamo fatto senza discussione è che l incertezza del nostro agente logico sia rappresentata formalmente dalla sua funzione di probabilità. Benché la probabilità nasca 22 come misura dell incertezza, non abbiamo alcuna garanzia, a meno di argomentare dettagliatamente, sul fatto che una funzione d insieme monotona, normalizzata e (finitamente) additiva, come quella della definizione 3.2 sia una misura adeguata dell incertezza del nostro agente. Un altro modo di formulare la domanda è questo: Perché (P1) e (P2) nella definizione 3.2 sono proprietà desiderabili dei gradi di convinzione razionale di un agente idealizzato? Il compito che a ronteremo nella parte rimanente di questa sezione è quindi giustificare la nostra scelta di formalizzare i gradi di convinzione attraverso funzioni di probabilità sull insieme degli eventi EL. Per farlo useremo lo schema delle scommesse introdotto da Bruno de Finetti intorno alla fine degli anni 20 del secolo scorso. 23 Esempio 3.7. Vi o rono 24 di scommettere su chi sarà il capo del prossimo governo della Repubblica italiana, cioè simultaneamente sugli eventi 1, 2, 3, 4 a cui assegnate le seguenti probabilità: 22 Con un travaglio di oltre un secolo tra la fine del 1500 e l inizio del De Finetti, B Sul Significato Soggettivo Della Probabilità. Fundamenta Mathematicae 17: L esempio non può sviluppare quello discusso durante la lezione del 21 gennaio Quando ho scritto quell esempio non contemplavo l ipotesi che Bersani potesse arrivare primo senza vincere. La logica classica è ovviamente inadeguata come modello degli eventi politici del Belpaese.

3 ELEMENTI DI LOGICA PROBABILISTICA 31 P ( 1 )=p 1 (governerà Berlusconi) P ( 2 )=p 2 (governerà Bersani) P ( 3 )=p 3 (governerà Grillo) P ( 4 )=p 4 (governerà un candidato che ha avuto più di un quarto dei voti) Nello schema delle scommesse che stiamo per sviluppare interpretiamo p i,i= 1, 2, 3, 4 come il prezzo di un biglietto che vi dà diritto a ricevere 1 se si verifica i e 0 altrimenti (con una perdita netta di p i.) Risulta chiaro che, sotto l ipotesi di essere obbligati a comprare tutti e quattro i biglietti simultaneamente, debba essere soddisfatta l equazione p 4 = p 1 + p 2 + p 3. (3.3) Se così non fosse vi esporreste a perdita certa causata dal fatto che sareste disposti a pagare due cifre diverse per biglietti logicamente equivalenti 25. Esporsi alla possibilità logica della perdita certa rappresenta un tipo di comportamento ovviamente irrazionale. Uno cioè che rivela opinioni incoerenti o gradi di convinzione inammissibili. Nell esempio precedente è facile vedere come l additività della funzione di probabilità (cioè P2) ci permetta di evitare la perdita sicura e costituisca quindi una condizione necessaria per la coerenza delle opinioni soggettive. Vedremo adesso come l interpretazione della probabilità come prezzo ci permetta di rendere questa conclusione matematicamente precisa ed estenderne notevolmente le conseguenze. Prima di entrare nel dettaglio dell argomento è utile anticiparne i due passi principali: (1) identificazione dei gradi di convinzione di un agente con la sua disposizione a compiere determinate scelte (scommettere a favore o contro certi eventi) (2) dimostrazione che la condizione necessaria e su ciente a nché l agente eviti di compiere scelte ovviamente irrazionali è che i suoi gradi di convinzione soddisfino (P1) e (P2). Il punto (1) consiste nella formalizzazione del problema (informale) di definire il concetto di scelta ovviamente irrazionale da cui concludiamo l incoerenza delle opinioni. Il punto di arrivo è un astrazione del problema originario che chiameremo il problema di de Finetti. All interno di quest ultimo possiamo a rontare il punto (2) in modo matematico. Dimostreremo cioè il teorema di coerenza di de Finetti. 25 Poiché uno e uno solo sarà il capo del governo, segue chiaramente che 4 W 3 i=1 i

4 32 HYKEL HOSNI Figura 3. Bruno de Finetti ( ). Osservazione 3.8. È opportuno tenere ben presente fin da ora che l identificazione a cui arriveremo dei gradi di convinzione razionale con i gradi di probabilità non vale in senso assoluto. Dipende invece dalle ipotesi che facciamo in (1) nella costruzione del modello e in particolare dall idealizzazione dell agente e dall astrazione del problema di scelta che introdurremo a breve. Si tratta, in altre parole, di un modello normativo che si applica soltanto a una classe specifica di problemi Il problema di scelta. Siano 2EL, p 2 [0, 1] e 2 R che assumiamo espresso in una qualche divisa, per esempio Euro. Una scommessa è una variable aleatoria a valori reali. Denotiamo le scommesse con F, G ecc., eventualmente con opportuni pedici. Il problema di scelta di de Finetti (o più semplicemente, il problema di scelta) che vogliamo costruire cattura l interazione tra due agenti Allibratore e Giocatrice le cui caratteristiche vedremo tra un attimo. Lo scopo del problema di scelta è quello di rendere analizzabile il comportamento di scelta di Allibratore in modo da permetterci di misurare i suoi gradi di convinzione. 26 In statistica, economia, intelligenza artificiale, filosofia della scienza, ecc., l ideologizzazione del dibattito sui fondamenti della probabilità raggiunge picchi imbarazzanti. È bene immunizzarsi subito.

5 ELEMENTI DI LOGICA PROBABILISTICA 33 Definizione 3.9. Uno schema di scommesse è una coppia (,!) dove EL è un insieme finito di eventi e! :! [0, 1] è un assegnamento. L intuizione è che un assegnamento corrisponda alla pubblicazione da parte di Allibratore delle sue quote di scommessa per gli eventi in. Le scommesse sono regolate da un contratto che ha le seguenti clausole: (C0) Il contratto è valido soltanto per eventi; (C1) Allibratore pubblica, per ogni evento i 2 le sue quote p i 2 [0, 1]; (C2) Giocatrice, ha facoltà di puntare una quantità 2 R a suo piacimento e di scegliere tra le variabili aleatorie F p ( ) ea p ( ) dove e F p ( ) = ( (1 p) se v( ) =1 p se v( ) =0, A p ( ) = ( p se v( ) =0 (1 p) se v( ) =1. Ne risulta che F p ( ) è il valore (monetario) che Giocatrice ottiene puntando unità su alla quota p. Analogamete A p ( ) è il ricavo che ottiene puntando unità contro alla quota p. Osservazione La scelta tra F p ( ) ea p ( ) si riduce e ettivamente alla scelta del segno di. Se Scommettitrice vuole scommmettere contro, deve moltiplicare il prezzo della scommessa per la puntata negativa. Questo è particolarmente chiaro da visualizzare se rappresentiamo il ricavo di Giocatrice con la matrice della figura 4. v( ) =1 v( ) =0 F p ( ) (1 p) p A p ( ) (1 p) p Figura 4. La matrice di ricavo di Giocatrice L astrazione del problema. (1) Il problema di scelta di de Finetti è quindi un gioco in forma estesa a somma zero. La prima mossa è di Allibratore, che sceglie, per ogni

6 34 HYKEL HOSNI i nello schema, un assegnamento p i. Successivamente Giocatrice ha la scelta tra pagare F p ( ) ea p ( ). Nel momento in cui Allibratore fa la sua scelta dei p i, sa che successivamente Giocatrice farà la propria, e potrà farla in numero illimitato di volte. Giocatrice può cioè scommettere un numero arbitrario di volte. (2) Poiché il valore combinato di F p ( ) e A p ( ) è 0, la scelta di un valore negativo di S equivale alla decisione unilaterale di Giocatrice di scambiare ruolo con Al. 27 (3) Per evitare distorsioni dovute al decremento dell utilità marginale si assume 28 che i valori in euro siano piccoli L idealizzazione degli agenti. Assumiamo che Allibratore e Giocatrice siano agenti idealizzati e in particolare che: (Id 1 ) siano logicamente onniscienti e infallibili (Id 2 ) siano immuni da limitazioni computazionali (Id 3 ) siano indi erenti rispetto al rischio (cioè no provino attrazione né repulsione a scommettere) (Id 4 ) abbiano a disposizione somme illimitate di denaro Gli agenti reali (io, voi, ecc) violano spesso le assunzioni (Id 1 ) (Id 4 ). Questo significa che l argomento che stiamo costruendo non ha valore descrittivo. Detto altrimenti, non spiega il comportamento di scelta che osserviamo (sperimentalmente) negli individui e non è questo l obiettivo. Siamo invece interessati a capire come dovrebbe scegliere nel problema di de Finetti un individuo che non si trovi ad essere limitato da tempo, denaro, disattenzione ecc. A queste idealizzazioni, si aggiunge la seguente assunzione fondamentale. Assunzione 3.11 (Desiderabilità delle vincite). Allibratore e Giocatrice preferiscono le vincite rispetto alle perdite. La discussione sull ipotesi di desiderabilità delle vincite è per certi aspetti molto debole, ma per altri ricca di insidie. Basti pensare ai fiumi di inchiostro che sono stati stampati sull idea di razionalità economica incarnata da homo economicus Questa è senza dubbio la principale astrazione del problema di de Finetti rispetto alla pratica reale delle scommesse. Nessun allibratore reale prenderebbe mai in considerazione l ipotesi di vendere una scommessa per una quantità negativa di denaro! 28 Un assunzione che de Finetti chiama ipotesi di rigidità. 29 Gli interessati possono farsi un idea sfogliando Camerer, C., and Fehr, E When Does Economic Man Dominate Social Behavior? Science 311 (5757):

7 ELEMENTI DI LOGICA PROBABILISTICA 35 Per noi si tratta di una discussione marginale. È infatti chiaro che sotto (Id 3 ) preferire la vincita (monetaria) rispetto alla perdita sia una condizione riassumibile nel fatto che gli agenti hanno un obiettivo. Le implicazioni morali della massimizzazione del valore monetario sono quindi del tutto irrilevanti. Ci possiamo facilmente spingere fino a dire che l unico vero ruolo delle controparti monetarie nello schema delle scommesse di de Finetti è quello di permetterci di fare i conti. Binmore, K Economic Man or Straw Man? Behavioral and Brain Sciences 28:

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Teoria dei Giochi non Cooperativi

Teoria dei Giochi non Cooperativi Politecnico di Milano Descrizione del gioco Egoismo Razionalità 1 L insieme dei giocatori 2 La situazione iniziale 3 Le sue possibili evoluzioni 4 I suoi esiti finali I Giochi della teoria Perché studiare

Dettagli

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado)

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado) L esito della prossima estrazione del lotto L esito del lancio di una moneta o di un dado Il sesso di un nascituro, così come il suo peso alla nascita o la sua altezza.. Il tempo di attesa ad uno sportello

Dettagli

Laboratorio di dinamiche socio-economiche

Laboratorio di dinamiche socio-economiche Dipartimento di Matematica Università di Ferrara giacomo.albi@unife.it www.giacomoalbi.com 21 febbraio 2012 Seconda parte: Econofisica La probabilità e la statistica come strumento di analisi. Apparenti

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520:

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520: Fig. 10.bis.1 Variazioni percentuali Variazione percentuale di x dalla data zero alla data uno: x1 x 0 %x = 100% x 0 = variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del

Dettagli

Decisioni in condizioni di rischio. Roberto Cordone

Decisioni in condizioni di rischio. Roberto Cordone Decisioni in condizioni di rischio Roberto Cordone Decisioni in condizioni di rischio Rispetto ai problemi in condizioni di ignoranza, oltre all insieme Ω dei possibili scenari, è nota una funzione di

Dettagli

TEORIA DELL UTILITÀ E DECISION PROCESS

TEORIA DELL UTILITÀ E DECISION PROCESS TEORIA DELL UTILITÀ E DECISION PROCESS 1 UTILITÀ Classicamente sinonimo di Desiderabilità Fisher (1930):... uno degli elementi che contribuiscono ad identificare la natura economica di un bene e sorge

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

Teoria dei Giochi. In generale è possibile distinguere i giochi in due classi principali:

Teoria dei Giochi. In generale è possibile distinguere i giochi in due classi principali: Teoria dei Giochi Dr. Giuseppe Rose (Ph.D., M.Sc., London) Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 1 1 Nozioni introduttive La teoria

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

Progetto costo I. O. I.A. A 5 9 4 B 8 15 9 C 4 3 3 D 9 7 1

Progetto costo I. O. I.A. A 5 9 4 B 8 15 9 C 4 3 3 D 9 7 1 Tecniche di Valutazione Economica Processo di aiuto alla decisione lezione 13.04.2005 Modello di valutazione Dobbiamo riuscire a mettere insieme valutazioni che sono espresse con dimensioni diverse. Abbiamo

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

Capitolo 23: Scelta in condizioni di incertezza

Capitolo 23: Scelta in condizioni di incertezza Capitolo 23: Scelta in condizioni di incertezza 23.1: Introduzione In questo capitolo studiamo la scelta ottima del consumatore in condizioni di incertezza, vale a dire in situazioni tali che il consumatore

Dettagli

COME MASSIMIZZARE UNA FUNZIONE DI UTILITÀ

COME MASSIMIZZARE UNA FUNZIONE DI UTILITÀ icroeconomia Douglas Bernheim, ichael Whinston Copyright 009 The cgraw-hill Companies srl COE ASSIIZZARE UNA FUNZIONE DI UTILITÀ Supponiamo che il reddito mensile di Elena sia pari a Y e sia interamente

Dettagli

Scelte in condizioni di rischio e incertezza

Scelte in condizioni di rischio e incertezza CAPITOLO 5 Scelte in condizioni di rischio e incertezza Esercizio 5.1. Tizio ha risparmiato nel corso dell anno 500 euro; può investirli in obbligazioni che rendono, in modo certo, il 10% oppure in azioni

Dettagli

Scelte in condizione di incertezza

Scelte in condizione di incertezza Scelte in condizione di incertezza Tutti i problemi di decisione che abbiamo considerato finora erano caratterizzati dal fatto che ogni possibile scelta dei decisori portava a un esito certo. In questo

Dettagli

La probabilità frequentista e la legge dei grandi numeri

La probabilità frequentista e la legge dei grandi numeri La probabilità frequentista e la legge dei grandi numeri La definizione di probabilità che abbiamo finora considerato è anche nota come probabilità a priori poiché permette di prevedere l'esito di un evento

Dettagli

Domanda e offerta di lavoro

Domanda e offerta di lavoro Domanda e offerta di lavoro 1. Assumere (e licenziare) lavoratori Anche la decisione di assumere o licenziare lavoratori dipende dai costi che si devono sostenere e dai ricavi che si possono ottenere.

Dettagli

La Massimizzazione del profitto

La Massimizzazione del profitto La Massimizzazione del profitto Studio del comportamento dell impresa, soggetto a vincoli quando si compiono scelte. Ora vedremo un modello per analizzare le scelte di quantità prodotta e come produrla.

Dettagli

Bruno de Finetti, probabilità e logica

Bruno de Finetti, probabilità e logica Bruno de Finetti, probabilità e logica Daniele Mundici Dipartimento di Matematica e Informatica Università di Firenze Viale Morgagni 67/a 50134 Firenze mundici@math.unifi.it Qual è la probabilità p che

Dettagli

Richiami di microeconomia

Richiami di microeconomia Capitolo 5 Richiami di microeconomia 5. Le preferenze e l utilità Nell analisi microeconomica si può decidere di descrivere ogni soggetto attraverso una funzione di utilità oppure attraverso le sue preferenze.

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

1. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di 40, fra di esse vi sia un solo asso, di qualunque seme.

1. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di 40, fra di esse vi sia un solo asso, di qualunque seme. Esercizi difficili sul calcolo delle probabilità. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di, fra di esse vi sia un solo asso, di qualunque seme. Le parole a caso

Dettagli

La teoria dell utilità attesa

La teoria dell utilità attesa La teoria dell utilità attesa 1 La teoria dell utilità attesa In un contesto di certezza esiste un legame biunivoco tra azioni e conseguenze: ad ogni azione corrisponde una e una sola conseguenza, e viceversa.

Dettagli

Note di matematica per microeconomia

Note di matematica per microeconomia Note di matematica per microeconomia Luigi Balletta Funzioni di una variabile (richiami) Una funzione di variabile reale ha come insieme di partenza un sottoinsieme di R e come insieme di arrivo un sottoinsieme

Dettagli

Tasso di interesse e capitalizzazione

Tasso di interesse e capitalizzazione Tasso di interesse e capitalizzazione Tasso di interesse = i = somma che devo restituire dopo un anno per aver preso a prestito un euro, in aggiunta alla restituzione dell euro iniziale Quindi: prendo

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 8 marzo 2012 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2012.html DECISORI RAZIONALI INTERAGENTI di Fioravante Patrone,

Dettagli

Giochi e decisioni strategiche

Giochi e decisioni strategiche Teoria dei Giochi Giochi e decisioni strategiche Strategie dominanti L equilibrio di Nash rivisitato Giochi ripetuti Giochi sequenziali Minacce impegni e credibilità Deterrenza all entrata 1 Giochi e decisioni

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

F p ( ) A p ( ). F p 0( ) A p 0( ), (3.4)

F p ( ) A p ( ). F p 0( ) A p 0( ), (3.4) 36 HYKEL HOSNI 3.1.6. Opinioni rivelate. Siamo ora nella posizione di vedere come il problema di scelta di de Finetti ci permetta di definire in modo operativo i gradi di convizione di Allibratore, e successivamente

Dettagli

Lezione 15: Un po di cose in generale

Lezione 15: Un po di cose in generale Lezione 15: Un po di cose in generale Abbiamo visto come possiamo associare ad alcune forme del piano o dello spazio delle espressioni analitiche che le rappresentano. Come un equazione sia una relazione

Dettagli

Università di Milano Bicocca. Esercitazione 6 di Matematica per la Finanza. 14 Maggio 2015

Università di Milano Bicocca. Esercitazione 6 di Matematica per la Finanza. 14 Maggio 2015 Università di Milano Bicocca Esercitazione 6 di Matematica per la Finanza 14 Maggio 2015 Esercizio 1 Un agente presenta una funzione di utilitá u(x) = ln(1 + 6x). Egli dispone di un progetto incerto che

Dettagli

L avversione al rischio e l utilità attesa

L avversione al rischio e l utilità attesa L avversione al rischio e l utilità attesa Kreps: "Microeconomia per manager" 1 ARGOMENTI DI QUESTA LEZIONE In questa lezione introdurremo il modello dell utilità attesa, che descrive le scelte individuali

Dettagli

OFFERTA DI LAVORO [Borjas 1.1-1.7]

OFFERTA DI LAVORO [Borjas 1.1-1.7] OFFERTA DI LAVORO [Borjas 1.1-1.7] hi lavora nel mercato? dipende, offerta di lavoro varia tra tipi di persona (uomini/donne, giovani/adulti) tra Paesi (configurazioni diverse) nel tempo (al variare delle

Dettagli

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi. Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:

Dettagli

Modelli di Ottimizzazione

Modelli di Ottimizzazione Capitolo 2 Modelli di Ottimizzazione 2.1 Introduzione In questo capitolo ci occuperemo più nel dettaglio di quei particolari modelli matematici noti come Modelli di Ottimizzazione che rivestono un ruolo

Dettagli

Non ho idea se è la prima volta che vedi un mio prodotto oppure se in passato le nostre strade si sono già incrociate, poco importa

Non ho idea se è la prima volta che vedi un mio prodotto oppure se in passato le nostre strade si sono già incrociate, poco importa Benvenuto/a o bentornato/a Non ho idea se è la prima volta che vedi un mio prodotto oppure se in passato le nostre strade si sono già incrociate, poco importa Non pensare di trovare 250 pagine da leggere,

Dettagli

Dall italiano al linguaggio della logica proposizionale

Dall italiano al linguaggio della logica proposizionale Dall italiano al linguaggio della logica proposizionale Dall italiano al linguaggio della logica proposizionale Enunciati atomici e congiunzione In questa lezione e nelle successive, vedremo come fare

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

di informazione asimmetrica:

di informazione asimmetrica: Informazione asimmetrica In tutti i modelli che abbiamo considerato finora abbiamo assunto (implicitamente) che tutti gli agenti condividessero la stessa informazione (completa o incompleta) a proposito

Dettagli

La scelta in condizioni di incertezza

La scelta in condizioni di incertezza La scelta in condizioni di incertezza 1 Stati di natura e utilità attesa. L approccio delle preferenza per gli stati Il problema posto dall incertezza riformulato (state-preference approach). L individuo

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

Possiamo calcolare facilmente il valore attuale del bond A e del bond B come segue: VA A = 925.93 = 1000/1.08 VA B = 826.45 = 1000/(1.

Possiamo calcolare facilmente il valore attuale del bond A e del bond B come segue: VA A = 925.93 = 1000/1.08 VA B = 826.45 = 1000/(1. Appendice 5A La struttura temporale dei tassi di interesse, dei tassi spot e del rendimento alla scadenza Nel capitolo 5 abbiamo ipotizzato che il tasso di interesse rimanga costante per tutti i periodi

Dettagli

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio DUE PROPOSTE DI ANALISI MATEMATICA Lorenzo Orio Introduzione Il lavoro propone argomenti di analisi matematica trattati in maniera tale da privilegiare l intuizione e con accorgimenti nuovi. Il tratta

Dettagli

Educare al pensiero probabilistico a scuola Ines Marazzani N.R.D. Bologna

Educare al pensiero probabilistico a scuola Ines Marazzani N.R.D. Bologna Educare al pensiero probabilistico a scuola Ines Marazzani N..D. Bologna Questo articolo è stato oggetto di pubblicazione in: Marazzani I. (2002). Educare al pensiero probabilistico a scuola. In. D Amore

Dettagli

CHE RENDIMENTI È POSSIBILE OTTENERE?

CHE RENDIMENTI È POSSIBILE OTTENERE? CHE RENDIMENTI È POSSIBILE OTTENERE? Se metti in soldi in banca che tasso di interesse ti danno? Il 2% forse. Se compri obbligazioni quale rendimento ti puoi aspettare? Quelle buone e non troppo rischiose

Dettagli

Giacomo Bruno RENDITE DA 32.400 AL MESE!

Giacomo Bruno RENDITE DA 32.400 AL MESE! Giacomo Bruno RENDITE DA 32.400 AL MESE! Report collegato a: FARE SOLDI ONLINE CON GOOGLE Il programma per inserire annunci pubblicitari su Google - Mini Ebook Gratuito - INVIALO GRATIS A TUTTI I TUOI

Dettagli

Scelta intertemporale: Consumo vs. risparmio

Scelta intertemporale: Consumo vs. risparmio Scelta intertemporale: Consumo vs. risparmio Fino a questo punto abbiamo considerato solo modelli statici, cioè modelli che non hanno una dimensione temporale. In realtà i consumatori devono scegliere

Dettagli

Modello probabilistico di un esperimento aleatorio. Psicometria 1 - Lezione 6 Lucidi presentati a lezione AA 2000/2001 dott.

Modello probabilistico di un esperimento aleatorio. Psicometria 1 - Lezione 6 Lucidi presentati a lezione AA 2000/2001 dott. Modello probabilistico di un esperimento aleatorio Psicometria 1 - Lezione 6 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek 1 Un esperimento è il processo attraverso il quale un osservazione

Dettagli

1 LA RAPPRESENTAZIONE DEGLI SCAMBI IN UN ECONOMIA DI BARATTO

1 LA RAPPRESENTAZIONE DEGLI SCAMBI IN UN ECONOMIA DI BARATTO Capitolo I 11 1 LA RAPPRESENTAZIONE DEGLI SCAMBI IN UN ECONOMIA DI BARATTO I fenomeni macroeconomici si manifestano attraverso grandezze monetarie, registrate in appositi schemi contabili il cui insieme

Dettagli

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Si tratta di problemi elementari, formulati nel linguaggio ordinario Quindi, per ogni problema la suluzione proposta è sempre

Dettagli

INTRODUZIONE I CICLI DI BORSA

INTRODUZIONE I CICLI DI BORSA www.previsioniborsa.net 1 lezione METODO CICLICO INTRODUZIONE Questo metodo e praticamente un riassunto in breve di anni di esperienza e di studi sull Analisi Tecnica di borsa con specializzazione in particolare

Dettagli

Unità 1. I Numeri Relativi

Unità 1. I Numeri Relativi Unità 1 I Numeri Relativi Allinizio della prima abbiamo introdotto i 0numeri 1 naturali: 2 3 4 5 6... E quattro operazioni basilari per operare con essi + : - : Ci siamo però accorti che la somma e la

Dettagli

Un modello matematico di investimento ottimale

Un modello matematico di investimento ottimale Un modello matematico di investimento ottimale Tiziano Vargiolu 1 1 Università degli Studi di Padova Liceo Scientifico Benedetti Venezia, giovedì 30 marzo 2011 Outline 1 Preliminari di calcolo delle probabilità

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli

Scelte intertemporali e decisioni di risparmio

Scelte intertemporali e decisioni di risparmio CAPITOLO 4 Scelte intertemporali e decisioni di risparmio Esercizio 4.1. Tizio deve decidere la spesa per consumo corrente, c 0, e quella per consumo futuro,. Le sue preferenze sono rappresentate dalla

Dettagli

2. Semantica proposizionale classica

2. Semantica proposizionale classica 20 1. LINGUAGGIO E SEMANTICA 2. Semantica proposizionale classica Ritorniamo un passo indietro all insieme dei connettivi proposizionali che abbiamo utilizzato nella definizione degli enunciati di L. L

Dettagli

Le scelte del consumatore in condizione di incertezza (cap.5)

Le scelte del consumatore in condizione di incertezza (cap.5) Le scelte del consumatore in condizione di incertezza (cap.5) Che cos è il rischio? Come possiamo indicare le preferenze del consumatore riguardo al rischio? C è chi acquista assicurazione (non ama il

Dettagli

Economia Politica (potete riferirvi al testo di esame di J. Hey o ad altri tipo il Varian)

Economia Politica (potete riferirvi al testo di esame di J. Hey o ad altri tipo il Varian) Introduzione al Corso Nozioni Propedeutiche di base: Economia Politica (potete riferirvi al testo di esame di J. Hey o ad altri tipo il Varian) Matematica generale Metodo e Finalità dell Apprendimento:

Dettagli

I Modelli della Ricerca Operativa

I Modelli della Ricerca Operativa Capitolo 1 I Modelli della Ricerca Operativa 1.1 L approccio modellistico Il termine modello è di solito usato per indicare una costruzione artificiale realizzata per evidenziare proprietà specifiche di

Dettagli

risulta (x) = 1 se x < 0.

risulta (x) = 1 se x < 0. Questo file si pone come obiettivo quello di mostrarvi come lo studio di una funzione reale di una variabile reale, nella cui espressione compare un qualche valore assoluto, possa essere svolto senza necessariamente

Dettagli

Domanda, offerta, beneficio marginale, costo marginale e surplus

Domanda, offerta, beneficio marginale, costo marginale e surplus omanda, offerta, beneficio marginale, costo marginale e surplus Il comportamento dei consumatori relativamente ad un certo bene viene, come noto, descritto di solito tramite una curva di domanda: una curva

Dettagli

Massimo A. De Francesco Dipartimento di Economia politica e statistica, Università di 1 Siena Introduzione

Massimo A. De Francesco Dipartimento di Economia politica e statistica, Università di 1 Siena Introduzione Valore dell impresa e decisioni di investimento. Irrilevanza della struttura patrimoniale in condizioni di certezza (prima versione, aprile 2013; versione aggiornata, aprile 2014) Massimo A. De Francesco

Dettagli

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 22: 1 Giugno 2010. Meccanismi Randomizzati

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 22: 1 Giugno 2010. Meccanismi Randomizzati Strumenti della Teoria dei Giochi per l Informatica AA 2009/10 Lecture 22: 1 Giugno 2010 Meccanismi Randomizzati Docente Vincenzo Auletta Note redatte da: Davide Armidoro Abstract In questa lezione descriveremo

Dettagli

SCUOLA DELLA FEDE [4] La risposta dell uomo a Dio [5.03. 2013]

SCUOLA DELLA FEDE [4] La risposta dell uomo a Dio [5.03. 2013] SCUOLA DELLA FEDE [4] La risposta dell uomo a Dio [5.03. 2013] 1. La risposta a Dio che ci parla; a Dio che intende vivere con noi; a Dio che ci fa una proposta di vita, è la fede. Questa sera cercheremo

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Il calcolo delle probabilità ha avuto origine nel Seicento in riferimento a questioni legate al gioco d azzardo e alle scommesse. Oggi trova tante applicazioni in ambiti anche

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA I SISTEMI DI NUMERAZIONE Prof. G. Ciaschetti Fin dall antichità, l uomo ha avuto il bisogno di rappresentare le quantità in modo simbolico. Sono nati

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

ESERCITAZIONE 1. 15 novembre 2012

ESERCITAZIONE 1. 15 novembre 2012 ESERCITAZIONE 1 Economia dell Informazione e dei Mercati Finanziari C.d.L. in Economia degli Intermediari e dei Mercati Finanziari (8 C.F.U.) C.d.L. in Statistica per le decisioni finanziarie ed attuariali

Dettagli

Capitolo 4. Elasticità. Principi di economia (seconda edizione) Robert H. Frank, Ben S. Bernanke. Copyright 2007 - The McGraw-Hill Companies, srl

Capitolo 4. Elasticità. Principi di economia (seconda edizione) Robert H. Frank, Ben S. Bernanke. Copyright 2007 - The McGraw-Hill Companies, srl Capitolo 4 Elasticità In questa lezione introdurremo il concetto di elasticità: un indicatore dell entità con cui domanda e offerta reagiscono a variazioni di prezzo, reddito ed altri elementi. Nella lezione

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Lezione 3 - Probabilità totale, Bayes -Alberi PROBABILITÀ TOTALE TEOREMA DI BAYES ALBERI E GRAFI

Lezione 3 - Probabilità totale, Bayes -Alberi PROBABILITÀ TOTALE TEOREMA DI BAYES ALBERI E GRAFI Lezione 3 - robabilità totale, ayes -lberi ROILITÀ TOTLE TEOREM DI YES LERI E GRFI GRUO MT06 Dip. Matematica, Università di Milano - robabilità e Statistica per le Scuole Medie -SILSIS - 2007 Lezione 3

Dettagli

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana Schemi delle Lezioni di Matematica Generale Pierpaolo Montana Al-giabr wa al-mukabalah di Al Khuwarizmi scritto approssimativamente nel 820 D.C. Manuale arabo da cui deriviamo due nomi: Algebra Algoritmo

Dettagli

Dall italiano alla logica proposizionale

Dall italiano alla logica proposizionale Rappresentare l italiano in LP Dall italiano alla logica proposizionale Sandro Zucchi 2009-10 In questa lezione, vediamo come fare uso del linguaggio LP per rappresentare frasi dell italiano. Questo ci

Dettagli

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete Funzioni in due variabili Raccolta di FAQ by Andrea Prevete 1) Cosa intendiamo, esattamente, quando parliamo di funzione reale di due variabili reali? Quando esiste una relazione fra tre variabili reali

Dettagli

PREVEDERE LE VENDITE PER IL REVENUE MANAGEMENT

PREVEDERE LE VENDITE PER IL REVENUE MANAGEMENT Lezione n. 2 - PREVISIONE 1 PREVEDERE LE VENDITE PER IL REVENUE MANAGEMENT AUTORI Paolo Desinano Centro Italiano di Studi Superiori sul Turismo di Assisi Riccardo Di Prima Proxima Service INTRODUZIONE

Dettagli

Insegnare relatività. nel XXI secolo

Insegnare relatività. nel XXI secolo Insegnare relatività nel XXI secolo L ' e s p e r i m e n t o d i H a f e l e e K e a t i n g È il primo dei nuovi esperimenti, realizzato nel 1971. Due orologi atomici sono stati montati su due aerei

Dettagli

Guardiamo ora però la cosa da un altro punto di vista analizzando il seguente grafico a forma di torta. La torta in 5 parti

Guardiamo ora però la cosa da un altro punto di vista analizzando il seguente grafico a forma di torta. La torta in 5 parti L EQUIVALENZA FRA I NUMERI RAZIONALI (cioè le frazioni), I NUMERI DECIMALI (quelli spesso con la virgola) ED I NUMERI PERCENTUALI (quelli col simbolo %). Ora vedremo che ogni frazione (sia propria, che

Dettagli

Il cervello è un computer?

Il cervello è un computer? Corso di Intelligenza Artificiale a.a. 2012/13 Viola Schiaffonati Il cervello è un computer? Definire l obiettivo L obiettivo di queste due lezioni è di analizzare la domanda, apparentemente semplice,

Dettagli

Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di

Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di Capitalizzazione e attualizzazione finanziaria Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di interesse rappresenta quella quota di una certa somma presa

Dettagli

MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti. Enrico Saltari Università di Roma La Sapienza

MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti. Enrico Saltari Università di Roma La Sapienza MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti Enrico Saltari Università di Roma La Sapienza 1 Dotazioni iniziali Il consumatore dispone ora non di un dato reddito monetario ma di un ammontare

Dettagli

Scheda n.5: variabili aleatorie e valori medi

Scheda n.5: variabili aleatorie e valori medi Scheda n.5: variabili aleatorie e valori medi October 26, 2008 1 Variabili aleatorie Per la definizione rigorosa di variabile aleatoria rimandiamo ai testi di probabilità; essa è non del tutto immediata

Dettagli

Incertezza, assicurazioni, deterrenza

Incertezza, assicurazioni, deterrenza Incertezza, assicurazioni, deterrenza (anche questo è adattato da altri pezzi per mancanza di tempo) Scelta sotto incertezza come scelta tra lotterie L esperienza ci insegna che in generale le conseguenze

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Dispense di Filosofia del Linguaggio

Dispense di Filosofia del Linguaggio Dispense di Filosofia del Linguaggio Vittorio Morato II settimana Gottlob Frege (1848 1925), un matematico e filosofo tedesco, è unanimemente considerato come il padre della filosofia del linguaggio contemporanea.

Dettagli

LE MEDIE MOBILI CENTRATE

LE MEDIE MOBILI CENTRATE www.previsioniborsa.net 2 lezione METODO CICLICO LE MEDIE MOBILI CENTRATE Siamo rimasti a come risolvere il precedente problema del ritardo sulle medie mobili Quindi cosa dobbiamo fare? Dobbiamo semplicemente

Dettagli

Discuteremo di. Domanda individuale e domanda di mercato. Scelta razionale

Discuteremo di. Domanda individuale e domanda di mercato. Scelta razionale Discuteremo di. La determinazione dell insieme delle alternative all interno del quale sceglie il consumatore La descrizione e la rappresentazione delle sue preferenze Come si determina la scelta ottima

Dettagli

IL COUNSELING NELLE PROFESSIONI D AIUTO

IL COUNSELING NELLE PROFESSIONI D AIUTO IL COUNSELING NELLE PROFESSIONI D AIUTO Obiettivi: Conoscere le peculiarità del counseling nelle professioni d aiuto Individuare le abilità del counseling necessarie per svolgere la relazione d aiuto Analizzare

Dettagli

Guida per gli acquirenti

Guida per gli acquirenti Guida per gli acquirenti Abbiamo creato una breve guida per i privati al fine di fornire le informazioni più importanti per l acquisto di un azienda. Desiderate avere una vostra azienda? L acquisto di

Dettagli

Università di Siena Sede di Grosseto Secondo Semestre 2010-2011. Macroeconomia. Paolo Pin ( pin3@unisi.it ) Lezione 3 18 Aprile 2011

Università di Siena Sede di Grosseto Secondo Semestre 2010-2011. Macroeconomia. Paolo Pin ( pin3@unisi.it ) Lezione 3 18 Aprile 2011 Università di Siena Sede di Grosseto Secondo Semestre 2010-2011 Macroeconomia Paolo Pin ( pin3@unisi.it ) Lezione 3 18 Aprile 2011 Nuovo Orario Riassunto lezione precedente Definizione e misurazione: PIL

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Gli OLS come statistica descrittiva

Gli OLS come statistica descrittiva Gli OLS come statistica descrittiva Cos è una statistica descrittiva? È una funzione dei dati che fornisce una sintesi su un particolare aspetto dei dati che a noi interessa; naturalmente, è auspicabile

Dettagli

2 Progetto e realizzazione di funzioni ricorsive

2 Progetto e realizzazione di funzioni ricorsive 2 Progetto e realizzazione di funzioni ricorsive Il procedimento costruttivo dato dal teorema di ricorsione suggerisce due fatti importanti. Una buona definizione ricorsiva deve essere tale da garantire

Dettagli

CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI

CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI 31 CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI INTRODUZIONE L'obbiettivo di questo capitolo è quello di presentare in modo sintetico ma completo, la teoria della stabilità

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli