IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione."

Transcript

1 IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI Lezione 40: Filtro di Kalman - introduzione Cenni storici Filtro di Kalman e filtro di Wiener Formulazione del problema Struttura ricorsiva della soluzione 40-1

2 Cenni storici Il Filtro di Kalman venne sviluppato, alla fine degli anni 50, dall ingegnere di origine ungherese R.E. Kalman mentre lavorava presso la NASA allo sviluppo del programma spaziale americano. Al suo nome viene talvolta affiancato quello del suo collega R.S. Bucy. La motivazione applicativa che portò allo sviluppo del filtro fu lo sviluppo di algoritmi che permettessero di tracciare, cioè di determinare posizione e velocità con la maggior precisione possibile, dei satelliti, e successivamente delle navette spaziali, lanciati nell ambito del programma spaziale. Nello sviluppo del filtro, grande attenzione venne dedicata agli aspetti implementativi, cercando di ottenere una soluzione a questo problema di stima che fosse computazionalmente economica e numericamente robusta. Infatti si doveva implementare questo algoritmo su dispositivi di calcolo dalle prestazioni assai limitate. 40-2

3 Confronto tra Filtro di Kalman e filtro di Wiener L interesse del Filtro di Kalman (e la fama del suo autore) non risiede tanto nell aver risolto un importante problema applicativo, quanto nell aver inquadrato brillantemente un problema di stima all interno della Teoria dei Sistemi, che in quegli anni, per merito dello stesso Kalman, compiva passi decisivi, scoprendo nozioni quali controllabilità, osservabilità, controllo ottimo, dualità, etc. Da un punto di vista dei contenuti il filtro di Kalman é una generalizzazione del filtro di Wiener. Infatti risolve un problema di stima a MEQM per segnali non stazionari e, potenzialmente almeno, per sistemi non lineari. Per questo motivo il filtro di Kalman opera nel dominio del tempo. Il filtro di Wiener appare quindi come un sottoprodotto del filtro di Kalman, ottenuto quando il filtro di Kalman raggiunge lo stato stazionario. Come il filtro di Wiener, anche il filtro di Kalman ha una versione tempo discreta e una versione tempo continua (più difficile da ricavare). 40-3

4 Formulazione del problema (1/3) (caso lineare t.d.) Si consideri il seguente sistema dinamico lineare, t.d., sottoposto ad ingressi aleatori x(k + 1) = Ax(k) + Bu(k) + w(k) (1) y(k) = Cx(k) + v(k) dove x(k) è lo stato, u(k) l ingresso, y(k) l uscita, w(k) il disturbo di processo e v(k) il disturbo di misura. Osservazione - Tutte queste grandezze (e non solo lo stato) possono essere vettoriali. Si adottano le seguenti ipotesi statistiche: w(k) WN (0, Q) v(k) WN (0, R) x(0) (m0, P0) x(0), w(l), v(j) fra loro incorrelati l, j 0 Osservazione - Anche se non espressamente indicato, tutti i parametri del modello possono variare nel tempo. 40-4

5 Formulazione del problema (2/3) L informazione disponibile è rappresentata dalle misure {y k = y(1), y(2),..., y(k)}. Si desidera stimare il valore assunto dallo stato. Più precisamente si desidera calcolare: ˆx(j k) R n : stima lineare a MEQM di x(j) basata sulle osservazioni y k. P (j k) = E[ x(j k) x (j k)]: matrice di varianza dell errore di stima x(j k) = x(j) ˆx(j k) Inoltre il calcolo deve avvenire in maniera ricorsiva rispetto agli indici j e/o k. La stima cioè deve essere generata da equazioni ricorsive. 40-5

6 Formulazione del problema (3/3) Classificazione della stima: Predizione se j > k. Filtraggio se j = k. Interpolazione se j < k. Osservazione - Il filtro di Kalman in sostanza mira a stimare lo stato di un sistema dinamico sulla base di misure sull uscita in un contesto statistico. Lo stesso problema viene affrontato nell Analisi dei Sistemi in un contesto deterministico, cioè in assenza di disturbi, e viene risolto introducendo il ricostruttore dello stato. Come vedremo il filtro di Kalman appare una generalizzazione del ricostruttore dello stato. 40-6

7 Struttura ricorsiva della soluzione(1/2) Nella formulazione del problema sono individuati due indici temporali: j che denota l istante per il quale desideriamo la stima; k che denota l istante dell ultima misura disponibile. Quando cerchiamo una soluzione ricorsiva dobbiamo quindi specificare rispetto a quale indice temporale la ricorsione deve avvenire. Il filtro di Kalman ha una struttura ricorsiva particolare, secondo la quale vengono aggiornate, in prima battuta, la stima ˆx(j k) e la matrice di varianza P (j k). Essa è rappresentata dal seguente grafo: y(k) ˆx(k k 1) = ˆx(k k) = ˆx(k + 1 k) P (k k 1) = P (k k) = P (k + 1 k) (3) La struttura ricorsiva sopra descritta rappresenta il nucleo del Filtro di Kalman. Essa si articola in due aggiornamenti: Aggiornamento alla misura: la stima predittiva (e la rispettiva matrice di varianza dell errore) viene aggiornata per effetto di una nuova misura diventando una stima filtrata. 40-7

8 Aggiornamento temporale: la stima filtrata viene aggiornata per inseguire l evoluzione dello stato, diventando nuovamente stima predittiva, ma all istante successivo. Le frecce del grafo sopra descritto indicano le informazioni necessarie per calcolare una certa grandezza. Risulta pertanto: L aggiornamento della matrice di varianza avviene indipendentemente dalle misure e dalla stima dello stato. Di fatto può essere precalcolato. L aggiornamento della stima dello stato ad un nuova misura, dipende non solo dalla misura (ovvio), ma anche dalla matrice di varianza dell errore di stima. Quest ultima pertanto non solo consente di valutare la qualità della stima ma è indispensabile per ottenerla. Rappresenta quindi un onere computazionale inevitabile.

9 Struttura ricorsiva della soluzione(2/2) Dopo aver implementato la ricorsione di base è possibile implementare altre due ricorsioni per calcolare: Stima predittiva (nel futuro): ˆx(k + l k) = ˆx(k + l + 1 k) P (k + l k) = P (k + l k) l = 1, 2,... (4) Interpolazione (nel passato) y(k + l + 1) ˆx(k k + l) = ˆx(k k + l + 1) P (k k + l) = P (k k + l + 1) l = 1, 2,... (5) 40-9

Computazione per l interazione naturale: Modelli dinamici

Computazione per l interazione naturale: Modelli dinamici Computazione per l interazione naturale: Modelli dinamici Corso di Interazione Naturale Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it boccignone.di.unimi.it/in_2015.html

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. CLASSE quinta INDIRIZZO AFM-SIA-RIM-TUR UdA n. 1 Titolo: LE FUNZIONI DI DUE VARIABILI E L ECONOMIA Utilizzare le strategie del pensiero razionale negli aspetti dialettici e algoritmici per affrontare situazioni

Dettagli

COMPITO DI SEGNALI E SISTEMI 18 Dicembre 2004

COMPITO DI SEGNALI E SISTEMI 18 Dicembre 2004 COMPIO DI SEGNALI E SISEMI 8 Dicembre 4 Esercizio Si consideri il modello di stato a tempo discreto descritto dalle seguenti equazioni: x(k + = Ax(k + Bu(k = x(k + u(k, v(k = Cx(k = [ ] x(k, k Z + i Si

Dettagli

Automazione Industriale (scheduling+mms) scheduling+mms. adacher@dia.uniroma3.it

Automazione Industriale (scheduling+mms) scheduling+mms. adacher@dia.uniroma3.it Automazione Industriale (scheduling+mms) scheduling+mms adacher@dia.uniroma3.it Introduzione Sistemi e Modelli Lo studio e l analisi di sistemi tramite una rappresentazione astratta o una sua formalizzazione

Dettagli

Ringraziamenti dell editore. Introduzione. Parte I MODELLISTICA 1

Ringraziamenti dell editore. Introduzione. Parte I MODELLISTICA 1 romane.pdf 24-07-2008 18:14:24-7 - ( ) Prefazione Ringraziamenti dell editore Introduzione XIII XVI XVII Parte I MODELLISTICA 1 1 Modelli di trasferimento di risorse 3 1.1 Variabili di stato e variabili

Dettagli

Lezione 2 Aprile 19, Il filtro di Kalman: derivazione delle equazioni

Lezione 2 Aprile 19, Il filtro di Kalman: derivazione delle equazioni PSC: Progettazione di sistemi di controllo III Trim. 2007 Lezione 2 Aprile 19, 2007 Docente: Luca Schenato Stesori: Schenato 2.1 Il filtro di Kalman: derivazione delle equazioni Si consideri il modello

Dettagli

INTRODUZIONE ALLO STUDIO DEI SISTEMI DI CONTROLLLO AUTOMATICO: APPROCCIO CLASSICO APPROCCIO MODERNO

INTRODUZIONE ALLO STUDIO DEI SISTEMI DI CONTROLLLO AUTOMATICO: APPROCCIO CLASSICO APPROCCIO MODERNO INTRODUZIONE ALLO STUDIO DEI SISTEMI DI CONTROLLLO AUTOMATICO: APPROCCIO CLASSICO APPROCCIO MODERNO CARATTERISTICHE DELLE METODOLOGIE E DELL APPROCCIO CLASSICO : a) Fa riferimento essenzialmente al dominio

Dettagli

INTRODUZIONE AL CONTROLLO OTTIMO

INTRODUZIONE AL CONTROLLO OTTIMO INTRODUZIONE AL CONTROLLO OTTIMO Teoria dei Sistemi Ingegneria Elettronica, Informatica e TLC Prof. Roberto Zanasi, Dott. Giovanni Azzone DII - Università di Modena e Reggio Emilia AUTOLAB: Laboratorio

Dettagli

su web che riportano documentazione e software dedicati agli argomenti trattati nel libro, riportandone, alla fine dei rispettivi capitoli, gli

su web che riportano documentazione e software dedicati agli argomenti trattati nel libro, riportandone, alla fine dei rispettivi capitoli, gli Prefazione Non è facile definire che cosa è un problema inverso anche se, ogni giorno, facciamo delle operazioni mentali che sono dei metodi inversi: riconoscere i luoghi che attraversiamo quando andiamo

Dettagli

Identificazione dei Modelli e Analisi dei Dati 1

Identificazione dei Modelli e Analisi dei Dati 1 POLITECNICO DI MILANO Identificazione dei Modelli e Analisi dei Dati 1 Appunti Stefano Invernizzi Anno accademico 2010-2011 Corso del prof. Sergio Bittanti Sommario Introduzione al corso... 5 I modelli...

Dettagli

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro Segnali e Sistemi Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione 2. Notazione............................. 2 2 Classificazione

Dettagli

Federico Laschi. Conclusioni

Federico Laschi. Conclusioni Lo scopo di questa tesi è stato quello di proporre alcuni algoritmi di allocazione dinamica della capacità trasmissiva, basati su tecniche di predizione on-line dei processi di traffico. Come prima analisi

Dettagli

SISTEMA DI CONTROLLO ORIENTAMENTO PANNELLI SOLARI

SISTEMA DI CONTROLLO ORIENTAMENTO PANNELLI SOLARI SISTEMA DI CONTROLLO ORIENTAMENTO PANNELLI SOLARI Lezione 1: User Requirements, Modellizzazione e Identificazione. 1.1 Introduzione: Un cliente ha chiesto la realizzazione di un sistema per l'orientamento

Dettagli

I Modelli della Ricerca Operativa

I Modelli della Ricerca Operativa Capitolo 1 I Modelli della Ricerca Operativa 1.1 L approccio modellistico Il termine modello è di solito usato per indicare una costruzione artificiale realizzata per evidenziare proprietà specifiche di

Dettagli

Mattia Zanella mattia.zanella@unife.it www.mattiazanella.eu

Mattia Zanella mattia.zanella@unife.it www.mattiazanella.eu mattia.zanella@unife.it www.mattiazanella.eu Department of Mathematics and Computer Science, University of Ferrara, Italy Ferrara, 1 Maggio 216 Programma della lezione Seminario II Equazioni differenziali

Dettagli

MPC di sistemi non lineari output feedback and tracking

MPC di sistemi non lineari output feedback and tracking MPC di sistemi non lineari output feedback and tracking Dipartimento di Informatica e Sistemistica Via Ferrata 1, 27100 Pavia Riccardo.Scattolini@unipv.it http://conpro.unipv.it/lab/ 1 Stato dell arte

Dettagli

Sensori e trasduttori. Dispense del corso ELETTRONICA L Luca De Marchi

Sensori e trasduttori. Dispense del corso ELETTRONICA L Luca De Marchi Sensori e trasduttori Dispense del corso ELETTRONICA L Luca De Marchi Gli Obiettivi Struttura generale di sistemi di controllo e misura Sensori, trasduttori, attuatori Prima classificazione dei sistemi-sensori

Dettagli

Distributed P2P Data Mining. Autore: Elia Gaglio (matricola n 809477) Corso di Sistemi Distribuiti Prof.ssa Simonetta Balsamo

Distributed P2P Data Mining. Autore: Elia Gaglio (matricola n 809477) Corso di Sistemi Distribuiti Prof.ssa Simonetta Balsamo Distributed P2P Data Mining Autore: (matricola n 809477) Corso di Sistemi Distribuiti Prof.ssa Simonetta Balsamo A.A. 2005/2006 Il settore del Data Mining Distribuito (DDM): Data Mining: cuore del processo

Dettagli

Localizzabilità Non Lineare e Telecamere Panoramiche: Applicazioni a Squadre di Robot

Localizzabilità Non Lineare e Telecamere Panoramiche: Applicazioni a Squadre di Robot UNIVERSITÀ DEGLI STUDI DI SIENA FACOLTÀ DI INGEGNERIA Corso di Laurea in Ingegneria Informatica, RA Localizzabilità Non Lineare e Telecamere Panoramiche: Applicazioni a Squadre di Robot Relatore Chiar.mo

Dettagli

Motore in corrente continua Controllo in retroazione dello stato e Osservatore dello stato Controllo ottimo

Motore in corrente continua Controllo in retroazione dello stato e Osservatore dello stato Controllo ottimo Motore in corrente continua Controllo in retroazione dello stato e Osservatore dello stato Controllo ottimo Esercitazioni di Controlli Automatici LS (Prof. C. Melchiorri) Si consideri il motore elettrico

Dettagli

UNIVERSITA DI PISA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA ELETTRONICA ANNO ACCADEMICO 2004-2005 TESI DI LAUREA

UNIVERSITA DI PISA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA ELETTRONICA ANNO ACCADEMICO 2004-2005 TESI DI LAUREA UNIVERSITA DI PISA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA ELETTRONICA ANNO ACCADEMICO 2004-2005 TESI DI LAUREA SVILUPPO DI METODI DECONVOLUTIVI PER L INDIVIDUAZIONE DI SORGENTI INDIPENDENTI

Dettagli

Bilancio Bilancio consolidato

Bilancio Bilancio consolidato Bilancio Bilancio consolidato Un metodo di calcolo per muoversi nel labirinto delle partecipazioni di Amedeo De Luca (*) In questo contributo si fonisce un metodo di calcolo dei tassi di partecipazione

Dettagli

Fondamenti di Automatica. Unità 3 Equilibrio e stabilità di sistemi dinamici

Fondamenti di Automatica. Unità 3 Equilibrio e stabilità di sistemi dinamici Fondamenti di Automatica Unità 3 Equilibrio e stabilità di sistemi dinamici Equilibrio e stabilità di sistemi dinamici Equilibrio di sistemi dinamici Linearizzazione di sistemi dinamici Stabilità interna

Dettagli

Regressione non lineare con un modello neurale feedforward

Regressione non lineare con un modello neurale feedforward Reti Neurali Artificiali per lo studio del mercato Università degli studi di Brescia - Dipartimento di metodi quantitativi Marco Sandri (sandri.marco@gmail.com) Regressione non lineare con un modello neurale

Dettagli

2.1.2 Formulazione del test PSD Le potenzialità del metodo pseudodinamico si possono facilmente comprendere considerando l equazione (1.2.1.

2.1.2 Formulazione del test PSD Le potenzialità del metodo pseudodinamico si possono facilmente comprendere considerando l equazione (1.2.1. .1. Formulazione del test PSD Le potenzialità del metodo pseudodinamico si possono facilmente comprendere considerando l equazione (1..1.1) 17 Ma(t)+Cv(t)+S(d(t)) = f ex (t): (.1..1) applicata direttamente

Dettagli

Introduzione all elaborazione di immagini Part II

Introduzione all elaborazione di immagini Part II Introduzione all elaborazione di immagini Part II Obiettivi delle tecniche di elaborazione di immagini: miglioramento di qualità (image enhancement) ripristino di qualità o restauro (image restoration)

Dettagli

= E(X t+k X t+k t ) 2 + 2E [( X t+k X t+k t + E

= E(X t+k X t+k t ) 2 + 2E [( X t+k X t+k t + E 1. Previsione per modelli ARM A Questo capitolo è dedicato alla teoria della previsione lineare per processi stocastici puramente non deterministici, cioè per processi che ammettono una rappresentazione

Dettagli

Sistemi Informativi Territoriali. Map Algebra

Sistemi Informativi Territoriali. Map Algebra Paolo Mogorovich Sistemi Informativi Territoriali Appunti dalle lezioni Map Algebra Cod.735 - Vers.E57 1 Definizione di Map Algebra 2 Operatori locali 3 Operatori zonali 4 Operatori focali 5 Operatori

Dettagli

Rappresentazione nello spazio degli stati

Rappresentazione nello spazio degli stati Chapter 1 Rappresentazione nello spazio degli stati La modellazione di un sistema lineare di ordine n, fornisce un insieme di equazioni differenziali che una volta trasformate nel dominio discreto, possono

Dettagli

Indice. Capitolo 1 Introduzione... 1. Capitolo 2 Rappresentazioni lineari e modelli di sistemi da diverse discipline... 9

Indice. Capitolo 1 Introduzione... 1. Capitolo 2 Rappresentazioni lineari e modelli di sistemi da diverse discipline... 9 Indice Capitolo 1 Introduzione... 1 Capitolo 2 Rappresentazioni lineari e modelli di sistemi da diverse discipline... 9 2.1 Alcuni semplici modelli.............................. 10 2.1.a Un sistema meccanico

Dettagli

UNIT 2 I modelli matematici ricchi di informazione Corso di Controlli Automatici Prof. Tommaso Leo Corso di Controlli Automatici Prof.

UNIT 2 I modelli matematici ricchi di informazione Corso di Controlli Automatici Prof. Tommaso Leo Corso di Controlli Automatici Prof. UNIT 2 I modelli matematici ricchi di informazione Corso di Controlli Automatici Prof. Tommaso Leo Corso di Controlli Automatici Prof. Tommaso Leo 1 Indice UNIT 2 I modelli matematici ricchi di informazione

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli

MATEMATICA nella REALTA

MATEMATICA nella REALTA MATEMATICA nella REALTA Lucia Della Croce Giulia Maggi Ada Pulvirenti Dipartimento di Matematica Università di Pavia Piano Lauree Scientifiche Pavia 29 Settembre 2010 Attività proposte A. S. 2010 2011

Dettagli

e-dva - eni-depth Velocity Analysis

e-dva - eni-depth Velocity Analysis Lo scopo dell Analisi di Velocità di Migrazione (MVA) è quello di ottenere un modello della velocità nel sottosuolo che abbia dei tempi di riflessione compatibili con quelli osservati nei dati. Ciò significa

Dettagli

SISTEMI DI CONDOTTE: Il dimensionamento idraulico

SISTEMI DI CONDOTTE: Il dimensionamento idraulico SISTEMI DI CONDOTTE: Il dimensionamento idraulico Carlo Ciaponi Università degli Studi di Pavia Dipartimento di Ingegneria Idraulica e Ambientale Posizione del del problema Rete da progettare di cui è

Dettagli

Fondamenti dei linguaggi di programmazione

Fondamenti dei linguaggi di programmazione Fondamenti dei linguaggi di programmazione Aniello Murano Università degli Studi di Napoli Federico II 1 Riassunto delle lezioni precedenti Prima Lezione: Introduzione e motivazioni del corso; Sintassi

Dettagli

Ottimizzazione non Vincolata

Ottimizzazione non Vincolata Dipartimento di Informatica e Sitemistica Università di Roma Corso Dottorato Ingegneria dei Sistemi 15/02/2010, Roma Outline Ottimizzazione Non Vincolata Introduzione Ottimizzazione Non Vincolata Algoritmi

Dettagli

lezione 18 AA 2015-2016 Paolo Brunori

lezione 18 AA 2015-2016 Paolo Brunori AA 2015-2016 Paolo Brunori Previsioni - spesso come economisti siamo interessati a prevedere quale sarà il valore di una certa variabile nel futuro - quando osserviamo una variabile nel tempo possiamo

Dettagli

Procedure di calcolo implicite ed esplicite

Procedure di calcolo implicite ed esplicite Procedure di calcolo implicite ed esplicite Il problema della modellazione dell impatto tra corpi solidi a medie e alte velocità. La simulazione dell impatto tra corpi solidi in caso di urti a media velocità,

Dettagli

Analisi Statistica Spaziale

Analisi Statistica Spaziale Analisi Statistica Spaziale Posa D., De Iaco S. posa@economia.unile.it s.deiaco@economia.unile.it UNIVERSITÀ del SALENTO DIP.TO DI SCIENZE ECONOMICHE E MATEMATICO-STATISTICHE FACOLTÀ DI ECONOMIA ANNO ACCADEMICO

Dettagli

RICERCA OPERATIVA RICERCA OPERATIVA RICERCA OPERATIVA (PROBLEMI

RICERCA OPERATIVA RICERCA OPERATIVA RICERCA OPERATIVA (PROBLEMI RICERCA OPERATIVA RICERCA OPERATIVA (PROBLEMI DI SCELTA) Il termine RICERCA OPERATIVA sembra sia stato usato per la prima volta nel 1939, ma già precedentemente alcuni scienziati si erano occupati di problemi

Dettagli

Algoritmo per il rilevamento di targhe

Algoritmo per il rilevamento di targhe Algoritmo per il rilevamento di targhe 19 maggio 2008 Nell affrontare il problema del riconoscimento delle targhe sono stati sviluppati due algoritmi che basano la loro ricerca su criteri differenti. Lo

Dettagli

Elementi Finiti: stime d errore e adattività della griglia

Elementi Finiti: stime d errore e adattività della griglia Elementi Finiti: stime d errore e adattività della griglia Elena Gaburro Università degli studi di Verona Master s Degree in Mathematics and Applications 05 giugno 2013 Elena Gaburro (Università di Verona)

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi dei sistemi dinamici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Analisi dei

Dettagli

Il sapere tende oggi a caratterizzarsi non più come un insieme di contenuti ma come un insieme di metodi e di strategie per risolvere problemi.

Il sapere tende oggi a caratterizzarsi non più come un insieme di contenuti ma come un insieme di metodi e di strategie per risolvere problemi. E. Calabrese: Fondamenti di Informatica Problemi-1 Il sapere tende oggi a caratterizzarsi non più come un insieme di contenuti ma come un insieme di metodi e di strategie per risolvere problemi. L'informatica

Dettagli

Analisi di scenario File Nr. 10

Analisi di scenario File Nr. 10 1 Analisi di scenario File Nr. 10 Giorgio Calcagnini Università di Urbino Dip. Economia, Società, Politica giorgio.calcagnini@uniurb.it http://www.econ.uniurb.it/calcagnini/ http://www.econ.uniurb.it/calcagnini/forecasting.html

Dettagli

Disciplina: SISTEMI AUTOMATICI. Classi: III AES PROF. IANNETTA SIMONE PROF. SAPORITO ETTORE. Ore settimanali previste: 4

Disciplina: SISTEMI AUTOMATICI. Classi: III AES PROF. IANNETTA SIMONE PROF. SAPORITO ETTORE. Ore settimanali previste: 4 Programmazione modulare annuale Indirizzo: Elettrotecnica Disciplina: SISTEMI AUTOMATICI Classi: III AES PROF. IANNETTA SIMONE PROF. SAPORITO ETTORE Ore settimanali previste: 4 Prerequisiti per l'accesso

Dettagli

Indice. Nota degli autori. 1 Capitolo 1 Introduzione alla ricerca operativa

Indice. Nota degli autori. 1 Capitolo 1 Introduzione alla ricerca operativa XI Nota degli autori 1 Capitolo 1 Introduzione alla ricerca operativa 1 1.1 Premessa 1 1.2 Problemi di ottimizzazione 6 1.3 Primi approcci ai modelli di ottimizzazione 13 1.4 Uso del risolutore della Microsoft

Dettagli

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S Teoria delle code Sistemi stazionari: M/M/1 M/M/1/K M/M/S Fabio Giammarinaro 04/03/2008 Sommario INTRODUZIONE... 3 Formule generali di e... 3 Leggi di Little... 3 Cosa cerchiamo... 3 Legame tra N e le

Dettagli

COORDINAMENTO E GESTIONE DI PROGETTI COMPLESSI

COORDINAMENTO E GESTIONE DI PROGETTI COMPLESSI COORDINAMENTO E GESTIONE DI PROGETTI COMPLESSI 1. - Formulazione del problema Supponiamo di dover organizzare e gestire un progetto complesso, quale puó essere la costruzione di un edificio, oppure la

Dettagli

Modellazione e Analisi di Reti Elettriche

Modellazione e Analisi di Reti Elettriche Modellazione e Analisi di eti Elettriche Modellazione e Analisi di eti Elettriche Davide Giglio Introduzione alle eti Elettriche e reti elettriche costituite da resistori, condensatori e induttori (bipoli),

Dettagli

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico Competenza matematica n. BIENNIO, BIENNIO Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico, rappresentandole anche sotto forma grafica BIENNIO BIENNIO Operare sui dati comprendendone

Dettagli

Digital Signal Processing: Introduzione

Digital Signal Processing: Introduzione Corso di Elettronica dei sistemi programmabili Digital Signal Processing: Introduzione Stefano Salvatori Definizioni DSP: Digital Signal Processing Signal: tutti sappiamo cosa sia un segnale; Signal Processing:

Dettagli

Workshop "VALUTAZIONE DEL RISCHIO IDRAULICO IN AMBITO MONTANO ED APPLICAZIONE DELLA DIRETTIVA ALLUVIONI"

Workshop VALUTAZIONE DEL RISCHIO IDRAULICO IN AMBITO MONTANO ED APPLICAZIONE DELLA DIRETTIVA ALLUVIONI Workshop "VALUTAZIONE DEL RISCHIO IDRAULICO IN AMBITO MONTANO ED APPLICAZIONE DELLA DIRETTIVA ALLUVIONI" Ing. Giorgio Cesari Autorità di bacino del Fiume Tevere Distretto Idrografico dell Appennino Centrale

Dettagli

Lezione 20: Stima dello stato di un sistema dinamico

Lezione 20: Stima dello stato di un sistema dinamico ELABORAZIONE dei SEGNALI nei SISTEMI di CONTROLLO Lezione 20: Stima dello stato di un sistema dinamico Motivazioni Formulazione del problema Osservazione dello stato Osservabilità Osservatore asintotico

Dettagli

Lezione 9: Cambio di base

Lezione 9: Cambio di base Lezione 9: Cambio di base In questa lezione vogliamo affrontare uno degli argomenti piu ostici per lo studente e cioè il cambio di base all interno di uno spazio vettoriale, inoltre cercheremo di capire

Dettagli

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D)

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D) ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI () Calcolo delle corrispondenze Affrontiamo il problema centrale della visione stereo, cioè la ricerca automatica di punti corrispondenti tra immagini Chiamiamo

Dettagli

PIANO DI LAVORO DI MATEMATICA Docente: MARIATERESA COSENTINO

PIANO DI LAVORO DI MATEMATICA Docente: MARIATERESA COSENTINO CLASSE IC Classico ANNO SCOLASTICO 2012-2013 PIANO DI LAVORO DI MATEMATICA Docente: MARIATERESA COSENTINO Gli allievi, in generale, si dedicano allo studio della matematica e della fisica con diligenza

Dettagli

La funzione di trasferimento

La funzione di trasferimento Sommario La funzione di trasferimento La funzione di trasferimento Poli e zeri della funzione di trasferimento I sistemi del primo ordine Esempi La risposta a sollecitazioni La funzione di trasferimento

Dettagli

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 22: 1 Giugno 2010. Meccanismi Randomizzati

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 22: 1 Giugno 2010. Meccanismi Randomizzati Strumenti della Teoria dei Giochi per l Informatica AA 2009/10 Lecture 22: 1 Giugno 2010 Meccanismi Randomizzati Docente Vincenzo Auletta Note redatte da: Davide Armidoro Abstract In questa lezione descriveremo

Dettagli

TEORIA DEI SISTEMI E DEL CONTROLLO LM in Ingegneria Informatica e Ingegneria Elettronica

TEORIA DEI SISTEMI E DEL CONTROLLO LM in Ingegneria Informatica e Ingegneria Elettronica TEORIA DEI SISTEMI E DEL CONTROLLO LM in Ingegneria Informatica e Ingegneria Elettronica http://www.dii.unimore.it/~lbiagiotti/teoriasistemicontrollo.html Stima dello stato in presenza di disturbi: il

Dettagli

I.S.I.S. Zenale e Butinone - Dipartimento di Matematica P.A.L. CLASSE 5^ TECNICO TUR. a.s. 14/15 pag.1

I.S.I.S. Zenale e Butinone - Dipartimento di Matematica P.A.L. CLASSE 5^ TECNICO TUR. a.s. 14/15 pag.1 I.S.I.S. Zenale e Butinone - Dipartimento di Matematica P.A.L. CLASSE 5^ TECNICO TUR. a.s. 14/15 pag.1 ISTITUTO STATALE ISTRUZIONE SUPERIORE ZENALE E BUTINONE Vale la pena di insegnare un argomento solo

Dettagli

PERT e CPM Cenni storici

PERT e CPM Cenni storici CPM e PERT PERT e CPM Le tecniche CPM (Critical Path Method) e PERT (Program Evaluation and Review Technique) consentono lo sviluppo del programma di un progetto attraverso la programmazione delle attività

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

CIRCUITI INTELLIGENTI Parte 5: PCA e ICA

CIRCUITI INTELLIGENTI Parte 5: PCA e ICA Ing. Simone SCARDAPANE Circuiti e Algoritmi per l Elaborazione dei Segnali Anno Accademico 2012/2013 Indice della Lezione 1. Analisi delle Componenti Principali 2. Auto-Associatori 3. Analisi delle Componenti

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

Lezione 16. Motori elettrici: introduzione

Lezione 16. Motori elettrici: introduzione Lezione 16. Motori elettrici: introduzione 1 0. Premessa Un azionamento è un sistema che trasforma potenza elettrica in potenza meccanica in modo controllato. Esso è costituito, nella sua forma usuale,

Dettagli

4. Matrici e Minimi Quadrati

4. Matrici e Minimi Quadrati & C. Di Natale: Matrici e sistemi di equazioni di lineari Formulazione matriciale del metodo dei minimi quadrati Regressione polinomiale Regressione non lineare Cross-validazione e overfitting Regressione

Dettagli

Identificazione di sistemi dinamici

Identificazione di sistemi dinamici Scuola universitaria professionale della Svizzera italiana SUP SI Dipartimento Tecnologie Innovative Identificazione di sistemi dinamici Ivan Furlan 21 dicembre 2011 Identificazione di sistemi dinamici

Dettagli

Lezione 16: La luce strutturata

Lezione 16: La luce strutturata Robotica A Lezione 16: La luce strutturata Modificare la luce per semplificare i calcoli Con una sola telecamera In generale, non si possono misurare le distanze. Non tutti gli oggetti possono essere assimilati

Dettagli

General Linear Model. Esercizio

General Linear Model. Esercizio Esercizio General Linear Model Una delle molteplici applicazioni del General Linear Model è la Trend Surface Analysis. Questa tecnica cerca di individuare, in un modello di superficie, quale tendenza segue

Dettagli

Compressione del Segnale (Audio)

Compressione del Segnale (Audio) Compressione del Segnale (Audio) Carlo Caini e Alessandro Vanelli Coralli Argomenti della Presentazione Introduzione Perché comprimere Come comprimere Esempi di Algoritmi di compressione Codifiche predittive

Dettagli

Stabilizzazione Video. Video Digitali

Stabilizzazione Video. Video Digitali Stabilizzazione Video Video Digitali Stabilizzazione video STABILIZZARE:assicurare il mantenimento di una condizione di equilibrio constante,generalmente identificabile nell'assenza di oscillazioni o variazioni

Dettagli

5. Requisiti del Software II

5. Requisiti del Software II 5. Requisiti del Software II Come scoprire cosa? Andrea Polini Ingegneria del Software Corso di Laurea in Informatica (Ingegneria del Software) 5. Requisiti del Software II 1 / 22 Sommario 1 Generalità

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Università di Napoli Parthenope Facoltà di Ingegneria Corso di Comunicazioni Elettriche docente: Prof. Vito Pascazio 1 a Lezione: 9/04/003 Sommario Caratterizzazione energetica di processi aleatori Processi

Dettagli

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici C. Vergara 3. Metodo della fattorizzazione LU per la risoluzione di un sistema lineare Errori di arrotondamento. Prima di affrontare la

Dettagli

LICEO CLASSICO C. CAVOUR DISCIPLINA : MATEMATICA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA

LICEO CLASSICO C. CAVOUR DISCIPLINA : MATEMATICA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA 1. OBIETTIVI SPECIFICI DELLA DISCIPLINA PROGRAMMAZIONE PER COMPETENZE Le prime due/tre settimane sono state dedicate allo sviluppo di un modulo di allineamento per

Dettagli

Specializzazione Elettronica ed Elettrotecnica Articolazione Automazione. Elettronica ed Elettrotecnica - Classe 3^

Specializzazione Elettronica ed Elettrotecnica Articolazione Automazione. Elettronica ed Elettrotecnica - Classe 3^ Specializzazione Elettronica ed Elettrotecnica Articolazione Automazione Elettronica ed Elettrotecnica - Classe 3^ Elettrotecnica Tipologie di segnali Unità di misura delle grandezze elettriche Simbologia

Dettagli

Introduzione: l uso degli indicatori per l analisi del turismo

Introduzione: l uso degli indicatori per l analisi del turismo Introduzione: l uso degli indicatori per l analisi del turismo L obiettivo del laboratorio, come già detto in precedenza, è di descrivere e utilizzare degli strumenti che ci consentono di valutare il mercato

Dettagli

LABORATORY OF AUTOMATION SYSTEMS ADAPTIVE CONTROLLERS

LABORATORY OF AUTOMATION SYSTEMS ADAPTIVE CONTROLLERS Laboratory of Automation Systems p. 1/46 LABORATORY OF AUTOMATION SYSTEMS ADAPTIVE CONTROLLERS Prof. Claudio Bonivento CASY-DEIS, University of Bologna claudio.bonivento@unibo.it Laboratory of Automation

Dettagli

Indice. Notazioni generali

Indice. Notazioni generali Indice Notazioni generali XIII 1 Derivati e arbitraggi 1 1.1 Opzioni 1 1.1.1 Finalità 3 1.1.2 Problemi 4 1.1.3 Leggi di capitalizzazione 4 1.1.4 Arbitraggi e formula di Put-Call Parity 5 1.2 Prezzo neutrale

Dettagli

L idea alla base del PID èdi avere un architettura standard per il controllo di processo

L idea alla base del PID èdi avere un architettura standard per il controllo di processo CONTROLLORI PID PID L idea alla base del PID èdi avere un architettura standard per il controllo di processo Può essere applicato ai più svariati ambiti, dal controllo di una portata di fluido alla regolazione

Dettagli

PIANO DI LAVORO DEL PROFESSORE

PIANO DI LAVORO DEL PROFESSORE ISTITUTO DI ISTRUZIONE SUPERIORE STATALE IRIS V ERSA RI - Cesano Maderno (MB) PIANO DI LAVORO DEL PROFESSORE Indirizzo LICEO TECNICO MATERIA M ATEMATICA APPLICATA ANNO SCOLASTICO 2011-2012 PROF PIZZILEO

Dettagli

Corso di Visione Artificiale. Filtri parte I. Samuel Rota Bulò

Corso di Visione Artificiale. Filtri parte I. Samuel Rota Bulò Corso di Visione Artificiale Filtri parte I Samuel Rota Bulò Filtri spaziali Un filtro spaziale è caratterizzato da un intorno e un'operazione che deve essere eseguita sui pixels dell'immagine in quell'intorno.

Dettagli

Informatica 3. Informatica 3. LEZIONE 10: Introduzione agli algoritmi e alle strutture dati. Lezione 10 - Modulo 1. Importanza delle strutture dati

Informatica 3. Informatica 3. LEZIONE 10: Introduzione agli algoritmi e alle strutture dati. Lezione 10 - Modulo 1. Importanza delle strutture dati Informatica 3 Informatica 3 LEZIONE 10: Introduzione agli algoritmi e alle strutture dati Modulo 1: Perchè studiare algoritmi e strutture dati Modulo 2: Definizioni di base Lezione 10 - Modulo 1 Perchè

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

APPUNTI SUI METODI PERT-C.P.M.

APPUNTI SUI METODI PERT-C.P.M. APPUNTI SUI METODI PERT-C.P.M. (corso di ricerca operativa) A cura di: Antonio Scalera 1 PERT/C.P.M. I metodi Pert e C.P.M. studiano lo sviluppo di un progetto attraverso la programmazione delle attività

Dettagli

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO Capitolo 14 EORIA PERURBAIVA DIPENDENE DAL EMPO Nel Cap.11 abbiamo trattato metodi di risoluzione dell equazione di Schrödinger in presenza di perturbazioni indipendenti dal tempo; in questo capitolo trattiamo

Dettagli

Dispositivi Minimamente Invasivi

Dispositivi Minimamente Invasivi Dispositivi Minimamente Invasivi per Diagnosi, Monitoraggio e Terapia Esercitazione 11 Alessandro Tognetti Nicola Carbonaro a.tognetti@centropiaggio.unipi.it tti@ t i i i i it nicola.carbonaro@centropiaggio.unipi.it

Dettagli

Parte 6. Applicazioni lineari

Parte 6. Applicazioni lineari Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R

Dettagli

Feature Selection per la Classificazione

Feature Selection per la Classificazione 1 1 Dipartimento di Informatica e Sistemistica Sapienza Università di Roma Corso di Algoritmi di Classificazione e Reti Neurali 20/11/2009, Roma Outline Feature Selection per problemi di Classificazione

Dettagli

La dinamica degli edifici e le prove sperimentali. Studio del comportamento dinamico di una struttura

La dinamica degli edifici e le prove sperimentali. Studio del comportamento dinamico di una struttura La dinamica degli edifici e le prove sperimentali La Norma UNI 9916 prende in considerazione in modo esplicito il caso della misura delle vibrazioni finalizzata allo: Studio del comportamento dinamico

Dettagli

Specializzazione Elettronica ed Elettrotecnica Articolazione Elettrotecnica. Elettronica ed Elettrotecnica - Classe 3^

Specializzazione Elettronica ed Elettrotecnica Articolazione Elettrotecnica. Elettronica ed Elettrotecnica - Classe 3^ Specializzazione Elettronica ed Elettrotecnica Articolazione Elettrotecnica Elettronica ed Elettrotecnica - Classe 3^ 1- Reti elettriche in corrente continua Grandezze elettriche fondamentali e loro legami,

Dettagli

MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO

MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO PIANO DI LAVORO CLASSE 4 ES A.S. 2014-2015 MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO INS. TECNICO-PRATICO: PROF. BARONI MAURIZIO MODULO 1: SISTEMI E MODELLI (30 ore)

Dettagli

1. Very Long Baseline Interferometry (VLBI), 2. Satellite Laser Ranging (SLR)

1. Very Long Baseline Interferometry (VLBI), 2. Satellite Laser Ranging (SLR) Geodesia Dal greco Γεωδαισια: divisione della Terra Discipline collegate alla geodesia: 1. studio della forma del pianeta; 2. studio del campo di gravità del pianeta. Misure geodetiche: misure legate e

Dettagli

Modelli finanziari per i tassi di interesse

Modelli finanziari per i tassi di interesse MEBS Lecture 3 Modelli finanziari per i tassi di interesse MEBS, lezioni Roberto Renò Università di Siena 3.1 Modelli per la struttura La ricerca di un modello finanziario che descriva l evoluzione della

Dettagli

Osvaldo Maria Grasselli Sergio Galeani Controllo di sistemi a più ingressi e più uscite. Volume 1

Osvaldo Maria Grasselli Sergio Galeani Controllo di sistemi a più ingressi e più uscite. Volume 1 A09 158 Osvaldo Maria Grasselli Sergio Galeani Controllo di sistemi a più ingressi e più uscite Volume 1 Copyright MMXII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele

Dettagli

MODELLO DI REGRESSIONE PER DATI DI PANEL

MODELLO DI REGRESSIONE PER DATI DI PANEL MODELLO DI REGRESSIONE PER DAI DI PANEL 5. Introduzione Storicamente l analisi econometrica ha proceduto in due distinte direzioni: lo studio di modelli macroeconomici, sulla base di serie temporali di

Dettagli