Rendering I - geometric processing

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Rendering I - geometric processing"

Transcript

1 Rendering I - geometric processing Dove si descrivono i principali metodi di alto livello utilizzati per ottenere una immagine a partire da una descrizione degli oggetti 3D Introduzione Trasformazioni geometriche Culling e Clipping

2 Grafica al Calcolatore Rendering I - 1 Introduzione Modeling (modellazione) e Rendering sono i due stadi principali della pipeline grafica. Fin ora abbiamo parlato di modellazione. Il termine rendering indica la serie di algoritmi, geometrici e non, a cui si sottopone una data descrizione di una serie di oggetti per ottenere una immagine Le descrizioni possono essere: mesh poligonali superfici parametriche CSG volumetriche Per ogni descrizione esistono tecniche ad hoc. Ci occuperemo nel dettaglio di mesh poligonali, perché: sono la rappresentazione più diffusa le altre rappresentazioni si possono ricondurre a questa.

3 Grafica al Calcolatore Rendering I - 2 Rendering di mesh poligonali L ingresso è una lista di poligoni, e l uscita è una immagine, ovvero una matrice di pixels a ciascuno dei quali è associato un colore. Rendering Modeling front end Geometric processing back end Rasterization Display Transformations Clipping Projection Hidden surface removal Shading Scan conversion La primitiva geometrica che viene processata sono i poligoni Tuttavia il processo può essere object driven oppure image driven, a seconda che il ciclo più esterno sia sui poligoni o sui pixel (Angel pg. 284). Ci occuperemo ora della prima fase della rendering pipeline per le maglie poligonali, che viene chiamata front-end o geometric processing. Il geometric processing consiste delle operazioni di trasformazione (affine), proiezione (prospettica o ortografica) culling e clipping.

4 Grafica al Calcolatore Rendering I - 3 Trasformazioni geometriche Le trasformazioni affini e le proiezioni sono alla base dell elaborazine geometrica (geometric processing) che viene compiuta nella rendering pipeline. Le trasformazioni servono per cambiare la posizione, l orientazione e la forma degli oggetti. Sono fondamentali per semplificare il processo di modellazione geometrica. Per esempio, consentono di posizionare nello spazio oggetti presi da una libreria (es. teiera), o copie di un oggetto definito una volta sola (es. auto sul traghetto). Le proiezioni modellano la formazione della immagine 2D a partire dalla descrizione del mondo 3D. Un ulteriore uso delle trasformazioni è nella animazione, in particolare di oggetti articolati.

5 Grafica al Calcolatore Rendering I - 4 Trasformazioni affini Affrontiamo ora lo studio delle trasformazioni definite sugli spazi visti. In particolare ci interesseremo delle trasformazioni affini, ovvero di quelle trasformazioni che lasciano invariate le combinazioni affini, e delle proiezioni. Studiamo ora le trasformazioni affini che, come vedremo, sono di fondamentale importanza in computer graphics Per definire una trasformazione in genere studieremo come si trasforma un punto generico e da questo ricaveremo la matrice di ordine 4 che agisce sulle coordinate omogenee del punto. Per una trasformazione affine, ovvero una trasformazione che preserva le combinazioni affini, rette parallele vengono trasformate in rette parallele. Usando le coordinate omogenee, si può rappresentare ogni trasformazione affine con una matrice (questo è uno dei motivi per usare le coordinate omogenee, l altro è legato alle proiezioni).

6 Grafica al Calcolatore Rendering I - 5 Traslazioni Una traslazione determinata dal vettore t trasforma il punto P nel punto P = P + t In termini di componenti t = (t x, t y, t z, 0) P = (p x, p y, p z, 1) P = (p x + t x, p y + t y, p z + t z, 1) x y P z t P+t È facile vedere che la matrice di trasformazione T t per le coordinate omogenee è la seguente T t = t x t y t z

7 Grafica al Calcolatore Rendering I - 6 Si vede subito da questa matrice che i vettori non vengono modificati da una traslazione T 1 t = T t Si può dimostrare che se non si fa uso delle coordinate omogenee, ovvero non si distinguono punti e vettori, non è possibile dare una rappresentazione matriciale alla traslazione lungo un vettore

8 Grafica al Calcolatore Rendering I - 7 Rotazioni attorno agli assi coordinati Una rotazione di un angolo θ in senso antiorario (prima regola della mano destra) intorno all asse z determina la seguente trasformazione di un punto P in P z p x = p x cos(θ) p y sin(θ) p θ y = p x sin(θ) + p y cos(θ) p x P P y z = p z Si può facilemente dimostrare che per rotazioni intorno all asse x e y si hanno le seguenti espressioni rispettivamente: p y = p y cos(θ) p z sin(θ) p z = p y sin(θ) + p z cos(θ) p x = p x p z = p z cos(θ) p x sin(θ) p x = p z sin(θ) + p x cos(θ) p y = p y

9 Grafica al Calcolatore Rendering I - 8 Dovrebbe a questo punto essere facile dimostrare che le matrici che rappresentano le rotazioni rispetto agli assi coordinati sono quelle qui riportate Da notare che un vettore viene trasformato da una rotazione (a differenza delle traslazioni che lasciano i vettori inalterati) Le matrici date non commutano R x (θ) = R y (θ) = R z (θ) = cos θ sin θ 0 0 sin θ cos θ cos θ 0 sin θ sin θ 0 cos θ cos θ sin θ 0 0 sin θ cos θ

10 Grafica al Calcolatore Rendering I - 9 Alcuni commenti Le rotazioni rispetto agli assi cartesiani non commutano; provate a ruotare un oggetto (un libro ad esempio) di 90 gradi prima rispetto all asse x e poi rispetto all asse y. Ripetete quindi l operazione prima rispetto all asse y e poi rispetto all asse x. Risultato? Vedremo nel seguito come trattare una rotazione rispetto ad un asse qualsiasi, non solo rispetto ad uno degli assi cartesiani Da notare che le rotazioni lasciano inalterati i punti che si trovano sull asse di rotazione. Si può dimostrare che R x (θ) 1 = R x ( θ) e similmente per gli altri assi Si può dimostrare che le matrici di rotazione date sopra sono ortogonali: R x (θ) 1 = R x (θ) T e similmente per gli altri assi La proprietà di ortogonalità è vera per ogni rotazione, non solo per quelle rispetto agli assi coordinati

11 Grafica al Calcolatore Rendering I - 10 Scalatura Le traslazioni e le rotazioni hanno in comune una importante caratteristica: conservano le distanze tra punti ovvero conservano la lunghezza dei vettori. Esse costituiscono un sottogruppo delle trasformazioni affini chiamate trasformazioni isometriche o rigide. Le trasformazioni affini contengono un altro elemento che non preserva le distanze tra punti e che ci interessa: la scalatura (vi sono altri tipi di trasformazioni affini che non ci interessano) Dato un punto P = (p x, p y, p z, 1) la trasformazione di scala, o scalatura, lo trasforma nel punto P = (s x p x, s y p y, s z p z, 1) dove i valori (s x, s y, s z ) sono i fattori di scala lungo gli assi coordinati Una scalatura è omogenea se s x = s y = s z = s In tal caso i vettori vengono semplicemente allungati o accorciati a seconda che s sia maggiore o minore di 1 Un punto, in una scalatura omogenea, viene semplicemente traslato lungo la retta che passa per l origine e per il punto stesso, allontanandosi o avvicinandosi all origine a seconda che s sia maggiore o minore di 1

12 Grafica al Calcolatore Rendering I - 11 Composizione di Trasformazioni Come si applica ad un punto dello spazio più di una trasformazione? Basta usare l algebra delle matrici Date due trasformazioni rappresentate dalle matrici A e B, la composizione di A seguita da B sarà data dalla matrice BA. Importante: notare l ordine delle matrici; siccome si applica la matrice risultante a sinistra del vettore delle coordinate omogenee, la trasformazione che viene effettuata per prima va a destra. La composizione di trasformazione si estende immediatamente al caso di più di due matrici T = T n T 1

13 Grafica al Calcolatore Rendering I - 12 Come esempio tipico di non commutatività delle trasformazioni affini si può facilemente vedere che data una traslazione lungo il vettore t ed una rotazione di un angolo θ lungo l asse z, si ottiene un risultato completamente diverso effettuando prima la rotazione e poi la traslazione o viceversa Per rendersene conto basta guardare come viene trasformato nei due casi un punto che in partenza si trova nell origine y P y R(θ) t P R(θ) P P t R(θ)M t x M t R(θ) x

14 Grafica al Calcolatore Rendering I - 13 Rotazioni generiche Abbiamo visto come ruotare punti e vettori attorno agli assi coordinati; come si fa a ruotarli attorno ad un asse generico passante per l origine? Una rotazione R θ,u di un angolo θ attorno all asse u si rappresenta con la seguente matrice (dim. sul Buss): (1 c)u 2 x + c (1 c)u x u y su z (1 c)u x u z + su y 0 (1 c)u x u y + su z (1 c)u 2 y + c (1 c)u x u z su x 0 (1 c)u x u z su y (1 c)u x u z + su x (1 c)u 2 z + c Per ruotare attiorno ad un asse generico, bisogna traslare l asse nell origine, ruotare ed infine applicare la traslazione inversa. Viceversa, data una matrice di rotazione (ovvero ortogonale e con determinante positivo), si può risalire all asse u ed angolo θ (formula e dim. sul Buss).

15 Grafica al Calcolatore Rendering I - 14 In generale una rotazione qualsiasi rispetto ad un asse passante per l origine può essere decomposta nel prodotto di tre rotazioni rispetto agli assi coordinati; i tre angoli prendono il nome di angoli di Eulero La rappresentazione con gli angoli di Eulero non è univoca, ovvero a terne diverse può corrispondere la stessa trasformazione. Una delle rappresentazioni di Eulero impiega gli angoli roll (rollio), pitch (beccheggio) e yaw (imbardata), di derivazione aeronautica. Per convenzione, stabiliamo che la rotazione specificata da roll= θ r, pitch= θ p e yaw= θ y è la seguente Infine un teorema importante: R(θ r, θ p, θ y ) = R y (θ y )R x (θ p )R z (θ r )

16 Grafica al Calcolatore Rendering I - 15 Teorema di Eulero: ogni trasformazione lineare rigida di IR 3 che preservi l orientamento a è una rotazione attorno ad un asse passante per l origine. Corollario: ogni trasformazione afine rigida di IR 3 che preservi l orientamento si esprime in modo unico come una composizione di una traslazione ed una rotazione attorno ad un asse passante per l origine. a Ovvero che preservi l orientamento (destrorso, sinistrorso) di una terna

17 Grafica al Calcolatore Rendering I - 16 Cambiamenti di riferimento Fino ad ora abbiamo parlato di trasformazioni sui punti in senso attivo, ovvero il riferimento rimane fisso e i punti vengono mossi L idea di cambiamento di base (trasformazione passiva) che abbiamo già affrontato si ripropone nelli stessi termini anche per i cambiamenti di riferimento Dati due riferimenti (e 1, e 2, e 3, O) e (e 1, e 2, e 3, 0 ) si tratta di trovare una matrice 4 4 che permetta di ottenere le coordinate affini di un punto rispetto al secondo riferimento date le coordinate affini dello stesso punto rispetto al primo Di nuovo in questo caso il punto rimane lo stesso, quello che cambiano sono le sue componenti Le cose vanno esattamente come nel caso dei cambiamenti di base di un riferimento, ovvero che se T è la trasformazione attiva che manda il primo riferimento nel secondo, allora T 1 è la matrice che trasforma le coordinate rispetto al primo riferimento nelle coordinate rispetto al secondo riferimento Attenzione: questo punto sarà molto importante nel seguito, assicurarsi di averlo capito bene

18 Grafica al Calcolatore Rendering I - 17 Proiezioni Le trasformazioni affini sono usate nella rappresentazione del mondo 3D e nella sua manipolazione Per la generazione di una immagine 2D da tale descrizione saranno invece utili un altra classe di trasformazioni: le proiezioni Y image plane X P image P C pinhole Z object d Il modello geometrico più semplice della formazione dell immagine è la pinhole camera (letteralmente: macchina fotografica a foro di spillo.)

19 Grafica al Calcolatore Rendering I - 18 Sia P un punto della scena, di coordinate (x, y, z) e sia P la sua proiezione sul piano vista (o immagine), di coordinate (x, y, z ). Se d è la distanza del foro (o centro di proiezione) C dal piano immagine (distanza focale), allora dalla similarità dei triangoli si ottiene: x d = x y e z d = y (1) z e quindi x = dx z y = dy z z = d (2) Si noti che l immagine è invertita rispetto alla scena, sia destra-sinistra che sopra-sotto, come indicato dal segno meno. Queste equazioni definiscono il processo di formazione dell immagine che prende il nome di proiezione prospettica. In forma matriciale si può effettuare la proiezione prospettica, applicando ai punti P rappresentati in coordinate omogenee ( P = (x, y, z, 1)) la matrice di proiezione prospettica 3 4: M = /d 0 dove d è la distanza tra C ed il piano vista (distanza focale).

20 Grafica al Calcolatore Rendering I - 19 La proiezione P del punto P sul piano vista si trova in due passi: 1. Si applica a P la matrice M ottenendo una 3-pla P = (x, y, z/d); da notare che non rappresenta un punto (la terza componente non è pari a 1) 2. Si normalizza P dividendo le sue componenti per la terza ed ottenendo P = ( x, y, 1) e dunque P = ( x, y ) (z/d) (z/d) (z/d) (z/d) Si ottiene cosìuna tripla P = (x, y, z/d), che rappresenta in coordinate omogenee il punto di coordinate cartesiane P = ( x, y ). P è la proiezione di P sul piano (z/d) (z/d) vista. La divisione prospettica (o normalizzazione proiettiva) indica il passaggio da coordinate omogenee a coordinate cartesiane e consiste nel dividere per l ultima coordinata omogenea e rimuovere l 1 rimanente. Da notare che nella proiezione si perde l informazione di profondità di un punto, ovvero punti con z iniziale di partenza diversa vengono proiettati nello stesso punto sul piano proiettivo Vi è modo di recuperare tale informazione? Vedremo nel seguito che sarà molto importante poter stabilire dati due punti proiettati nella stessa posizione quale dei due ha profondità (distanza dal piano vista) minore

21 Grafica al Calcolatore Rendering I - 20 Chiudiamo l argomento notando che fino ad ora abbiamo parlato delle cosiddette proiezioni prospettiche. Alle volte può risultare utile usare un tipo diverso di proiezione denominata proiezione ortogonale (od ortografica). Tali proiezioni sono definite come l interesezione del piano proiettivo con la retta perpendicolare a tale piano e passante per il punto P che si vuol proiettare È un caso particolare di proiezione parallela Si può dimostrare che usando la disposizione di π data prima, la proiezione ortogonale di P si ottiene applicando la seguente matrice: M = In sostanza l effetto della matrice è quello di rimuovere la componente z.

22 Grafica al Calcolatore Rendering I - 21 Proiezione prospettica attraverso il centro di proiezione (COP) e proiezione ortografica attraverso la direzione di proiezione (DOP).

23 Grafica al Calcolatore Rendering I - 22 Rassegna dei sistemi di coordinate Abbiamo visto come vengono gestite dal punto di vista geometrico le trasformazioni 3D e la proiezione prospettica. In molti sistemi grafici il processo coinvolge diversi sistemi di riferimento e trasformazioni tra di essi. Sistemi diversi definiscono spazi diversi (vedremo alla fine il caso di OpenGL). Spazio oggetto (locale) Spazio mondo (world) Spazio vista o camera Spazio 3D screen Normalized device coord. Spazio immagine Viewport (or window) coord. Object definition Compose scene Define lighting Back face culling Local reflecion model Clipping Shading Hidden surface removal Scan conversion Tras. di modellazione Trasformazione di vista Proiezione Tras. di viewport

24 Grafica al Calcolatore Rendering I - 23 Spazio Locale (local space): è lo spazio dove ciascun singolo oggetto viene definito. Si chiama anche spazio oggetto (object space) o spazio di modellazione (modeling space) Spazio Mondo (world coordinate system): è lo spazio dove la scena o l oggetto completo è rappresentato. Spazio Vista (view space): è un sistema di riferimento centrato sulla telecamera virtuale, che definisce il volume (o frustum) di vista. Si chiama anche camera coordinate system o empheye coordinate system. Spazio 3D-Screen: è lo spazio di vista canonico, che si ottiene trasformando (con deformazione) il volume di vista (frustum) in un parallelepedo. Molte operazioni del processo di rendering avvengono qui (in 3D normalized device coordinates). Spazio Immagine è il sistema di coordinate della immagine finale (pixel). Si ottiene proiettando ortogonalmente il volume di vista canonico e trasformando le coordinate 2D.

25 Grafica al Calcolatore Rendering I - 24 Spazio vista Lo spazio vista (o view space) è un sistema di coordinate centrato sulla telecamera con l aggiunta della specifica di un volume di vista: un view point C, che stabilisce la posizione dell osservatore nel world space e definisce il centro della proiezione. un sistema di riferimento desctrorso UVN centrato sull osservatore, che definisce la direzione di vista - N e la direzione verticale V (U non ha scelta e punta alla destra dell osservatore). un piano vista (view plane), ortogonale a N e distante d da C, sul quale viene proiettata la scena un volume di vista (o frustum), definito da due piani di taglio (clipping) paralleli al view plane, il near plane ed il far plane. L intersezione del frustum con il piano vista definisce la finestra di vista

26 Grafica al Calcolatore Rendering I - 25 far plane y V view plane w near plane z N C U x d θ n h f Il frustum è definito dall angolo di vista (verticale) θ e dal fattore di aspetto a = w/h della finestra di vista.

27 Grafica al Calcolatore Rendering I - 26 In linea di principo, nello spazio vista si potrebbe effettuare la proiezione prospettica, applicando ai punti P la matrice la matrice di proiezione prospettica vista prima. si noti che abbiamo messo il piano vista davanti al centro di proiezione, ma l asse Z punta indietro, quindi le equazioni della proiezione prospettica rimangono inalterate. La proiezione viene effettuata in modo più contorto (apparentemente) di quello appena visto introducendo la trasformazione prospettica (che porta nello spazio 3D-Screen) per poter aggiungere informazione di profondità ai punti proiettati.

28 Grafica al Calcolatore Rendering I - 27 Spazio 3D-Screen Trasformazione prospettica Invece di proiettare i punti, applichiamo loro la trasformazione 3D specificata dalla seguente matrice (parente della matrice di proiezione prospettica a ); M = /d 0 Si ottiene cosìuna 4-pla P = (x, y, z, z/d), che dopo la divisione prospettica sortisce P = ( x, y, d) (z/d) (z/d) Le prime due componenti di P sono le coordinate del punto proiettato. La terza coordinata è inutile, nel senso che è uguale a d per tutti i punti proiettati (infatti il piano vista ha equazione z = d). Si osservi che non viene etteffuata alcuna proiezione, anche se le coordinate del punto proiettato prospetticamente sono disponibili. a Angel chiama questa matrice di trasformazione prospettica

29 Grafica al Calcolatore Rendering I - 28 Si vuole costruire una trasformazione che abbia le stesse coordinate x ed y della proiezione standard, ma che metta nella coordinata z un valore dal quale si possa risalire all ordine di profondità dei punti. A tal scopo sostituiamo la matrice M vista prima con la seguente matrice (che prende il nome di matrice di trasformazione prospettica b ): M = α β 0 0 1/d 0 Applicando M a P si avrà quindi la 4-pla (x, y, αz + β, z/d) che, dopo la divisione prospettica fornisce P = ( x, y, dα dβ/z) (z/d) (z/d) Le prime due componenti sono identiche alla proiezione standard, ma la terza componente (pseudo-profondità) z s = dα dβ/z. per valori opportuni di α e β è una funzione monotona di z. La relazione tra z e z s è non lineare, ma l ordinamento sulla profondità è conservato. b Angel la chiama matrice di normalizzazione prospettica

30 Grafica al Calcolatore Rendering I - 29 Volume di vista canonico La trasformazione (normalizzazione) prospettica mappa il frustum di vista in un parallelepipedo (per α e β opportuni) chiamato volume di vista canonico. Gli oggetti vengono distorti di conseguenza. Proiettando questo parallelepipedo ortogonalmente (ovvero si elimina la terza coordinata cartesiana, z s nel nostro caso) si ottiene la proiezione prospettica desiderata. y y s z x z s x s Se invece si vuole effettuare una proiezione ortogonale (ortografica), basta sostituire la trasformazione prospettica con una trasformazione (affine) che mappa il volume di vista (un parallelepipedo in questo caso) nel volume di vista canonico.

31 Grafica al Calcolatore Rendering I - 30 sintetizzando, la proiezione prospettica viene realizzata in due fasi: proiezione prospettica = trasformazione prospettica + proiezione ortografica

32 Grafica al Calcolatore Rendering I - 31 Diversi sietemi (PHIGS, OpenGL, Renderman,...) adottano convenzioni diverse per le dimensioni del volume di vista canonico. In OpenGL il volume di vista canonico un cubo di lato unitario, in cui il far plane ha equazione z s = 1, ed il near plane z s = 1 Vogliamo dunque scegliere α e β in modo che l intervallo di profondità z [n, f] venga mappato in z s [ 1, 1]. z= f y z= n y=+1 y z z piano immagine piano immagine y= 1 z=+1 z= 1 Nota: il piano vista si prende coincidente con il near plane, dunque d = n.

33 Grafica al Calcolatore Rendering I - 32 Una tale trasformazione è implementata dalla seguente matrice di trasformazione prospettica con M = c/a c α β α = f + n n f β = 2fn n f c = cot(θ/2) Si può verificare trasformando i vertici del frustum di vista. Questa matrice 4 4 viene chiamata anche (in terminologia OpenGL) matrice di proiezione (projection matrix) anche se, a rigore, non effettua una proiezione dello spazio 3D, ma una sua trasformazione. Si noti che abbiamo sempre considerato la trasformazione operata da una matrice in coordinate omogenee composta da: moltiplicazione matrice-vettore seguita da divisione prospettica. Risulterà utile per il clipping separare le due operazioni (vedi pipeline OpenGL).

34 Grafica al Calcolatore Rendering I - 33 Spazio Immagine La trasformazione nello spazio immagine si applica dopo la proiezione ortografica. Dipende dalle caratteristiche del display (in senso ampio) Ai punti proiettati del 3D screen viene applicata una matrice di trasformazione affine che : ripristina il fattore di aspetto corretto per l immagine (distorto dalla trasformazione prospettica) scala e trasla l immagine per aggiustarla alla finestra di vista corrente (es )

35 Grafica al Calcolatore Rendering I - 34 Culling e Clipping Il view frustum culling consiste nel selezionare, mediante un test veloce, i poligoni che intersecano il volume di vista. È riconducibile al problema di rilevare collisioni (trattato più avanti) con il view frustum. Il clipping consiste nel ritagliare le parti dei polgoni che sono solo parzialmente contenuti nel volume di vista. Effetto del clipping evidenziato grazie al near plane che interseca oggetti della scena. c Alan Watt

36 Grafica al Calcolatore Rendering I - 35 Il clipping avviene nello spazio 3D screen: infatti lavorando con il volume di vista canonico, l operazione risulta semplificata, poiché le facce del volume di vista sono ortogonali. I due principali algoritmi di clipping sono (non li vedremo, ma sono spiegati nell Angel, a pg. 288 e seguenti): Cohen-Sutherland Liang-Barsky

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Lezione: rappresentazione. rototraslazioni. Tutte e sole le isometrie (trasf. rigide) = roto-traslazioni = rotazioni (*) + traslazioni

Lezione: rappresentazione. rototraslazioni. Tutte e sole le isometrie (trasf. rigide) = roto-traslazioni = rotazioni (*) + traslazioni [GAME DEV] Mirco Lezione Lezione: rappresentazione rototraslazioni Marco Tarini Reminder Tutte e sole le isometrie (trasf. rigide) = roto-traslazioni = rotazioni (*) + traslazioni Rotazioni (*) : quante

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A.

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A. Travature reticolari piane : esercizi svolti e omenico., Fuschi., isano., Sofi. SRZO n. ata la travatura reticolare piana triangolata semplice illustrata in Figura, determinare gli sforzi normali nelle

Dettagli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli I numeri complessi Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli 1 Introduzione Studiare i numeri complessi può sembrare inutile ed avulso dalla realtà;

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire.

f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire. Consideriamo l insieme P dei punti del piano e una f funzione biiettiva da P in P: f : { P P A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.

Dettagli

Lezione del 28-11-2006. Teoria dei vettori ordinari

Lezione del 28-11-2006. Teoria dei vettori ordinari Lezione del 8--006 Teoria dei vettori ordinari. Esercizio Sia B = {i, j, k} una base ortonormale fissata. ) Determinare le coordinate dei vettori v V 3 complanari a v =,, 0) e v =, 0, ), aventi lunghezza

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Terne pitagoriche e teorema di Pitagora, numeri e triangoli. Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it

Terne pitagoriche e teorema di Pitagora, numeri e triangoli. Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it 3 4 5 Terne pitagoriche e teorema di Pitagora, numeri e triangoli Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it Qualche osservazione preliminare sul Teorema di Pitagora e le terne

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette: FASCI DI RETTE DEFINIZIONE: Si chiama fascio di rette parallele o fascio improprio [erroneamente data la somiglianza effettiva con un fascio!] un insieme di rette che hanno tutte lo stesso coefficiente

Dettagli

1) IL MOMENTO DI UNA FORZA

1) IL MOMENTO DI UNA FORZA 1) IL MOMENTO DI UNA FORZA Nell ambito dello studio dei sistemi di forze, diamo una definizione di momento: il momento è un ente statico che provoca la rotazione dei corpi. Le forze producono momenti se

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Prof. Caterina Rizzi Dipartimento di Ingegneria Industriale

Prof. Caterina Rizzi Dipartimento di Ingegneria Industriale RUOLO DELLA MODELLAZIONE GEOMETRICA E LIVELLI DI MODELLAZIONE PARTE 2 Prof. Caterina Rizzi... IN QUESTA LEZIONE Modelli 2D/3D Modelli 3D/3D Dimensione delle primitive di modellazione Dimensione dell oggettoy

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello.

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. CURVE DI LIVELLO Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. Definizione. Si chiama insieme di livello k della funzione f

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

CNC. Linguaggio ProGTL3. (Ref. 1308)

CNC. Linguaggio ProGTL3. (Ref. 1308) CNC 8065 Linguaggio ProGTL3 (Ref. 1308) SICUREZZA DELLA MACCHINA È responsabilità del costruttore della macchina che le sicurezze della stessa siano abilitate, allo scopo di evitare infortuni alle persone

Dettagli

r.berardi NOTE E SCHEDE OPERATIVE PER APPRENDERE LE PROIEZIONI ORTOGONALI

r.berardi NOTE E SCHEDE OPERATIVE PER APPRENDERE LE PROIEZIONI ORTOGONALI r.berardi NOTE E SCHEDE OPERATIVE PER APPRENDERE LE PROIEZIONI ORTOGONALI 1. Proiezioni Assonometriche e ortogonali 2. Teoria delle proiezioni ortogonali Pag. 1 Pag. 2. 3. SCHEDE OPERATIVE SULLE PROIEZIONI

Dettagli

Fisica quantistica. Introduzione alla polarizzazione e altri sistemi a due livelli. Christian Ferrari. Liceo di Locarno

Fisica quantistica. Introduzione alla polarizzazione e altri sistemi a due livelli. Christian Ferrari. Liceo di Locarno Fisica quantistica Introduzione alla polarizzazione e altri sistemi a due livelli Christian Ferrari Liceo di Locarno Sommario La polarizzazione della luce e del fotone Altri sistemi a due livelli L evoluzione

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA

QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA Michele Impedovo Bollettino dei Docenti di Matematica del Canton Ticino (CH) n 36, maggio 98. Il problema Il lavoro che

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t; CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S

Dettagli

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015 NUMERI. SPAZIO E FIGURE. RELAZIONI, FUNZIONI, MISURE, DATI E PREVISIONI Le sociali e ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA procedure

Dettagli

Appunti ed esercizi. di Meccanica Razionale

Appunti ed esercizi. di Meccanica Razionale Appunti ed esercizi di Meccanica Razionale Università degli Studi di Trieste - Sede di Pordenone Facoltà di Ingegneria Appunti ed esercizi di Meccanica Razionale Luciano Battaia Versione del 29 dicembre

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014)

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) Le grandezze fisiche. Metodo sperimentale di Galilei. Concetto di grandezza fisica e della sua misura. Il Sistema internazionale di Unità

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Studente: SANTORO MC. Matricola : 528

Studente: SANTORO MC. Matricola : 528 CORSO di LAUREA in INFORMATICA Corso di CALCOLO NUMERICO a.a. 2004-05 Studente: SANTORO MC. Matricola : 528 PROGETTO PER L ESAME 1. Sviluppare una versione dell algoritmo di Gauss per sistemi con matrice

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come Numeri complessi 9 Da questi esempi si può osservare che, facendo le successive potene di un numero complesso, i punti corrispondenti girano attorno all origine. Se inoltre > allora i punti si allontanano

Dettagli

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2)) Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Applicazioni Lineari 1. Sia f : R 3 R 3 l applicazione lineare definita da f(x, y, z) = (x + ky + z, x y + 2z, x + y z) per ogni (x,

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

AUTOLIVELLI (orizzontalità ottenuta in maniera automatica); LIVELLI DIGITALI (orizzontalità e lettura alla stadia ottenute in maniera automatica).

AUTOLIVELLI (orizzontalità ottenuta in maniera automatica); LIVELLI DIGITALI (orizzontalità e lettura alla stadia ottenute in maniera automatica). 3.4. I LIVELLI I livelli sono strumenti a cannocchiale orizzontale, con i quali si realizza una linea di mira orizzontale. Vengono utilizzati per misurare dislivelli con la tecnica di livellazione geometrica

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Numeri complessi. x 2 = 1.

Numeri complessi. x 2 = 1. 1 Numeri complessi Nel corso dello studio della matematica si assiste ad una progressiva estensione del concetto di numero. Dall insieme degli interi naturali N si passa a quello degli interi relativi

Dettagli

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano PPUNTI DI SCIENZ DEE COSTRUZIONI Giulio lfano nno ccademico 004-005 ii Indice 1 TRVTURE PINE 1 1.1 Geometria, equilibrio e vincoli...................... 1 1.1.1 Piani di simmetria........................

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

GRANDEZZE ALTERNATE SINUSOIDALI

GRANDEZZE ALTERNATE SINUSOIDALI GRANDEZZE ALTERNATE SINUSOIDALI 1 Nel campo elettrotecnico-elettronico, per indicare una qualsiasi grandezza elettrica si usa molto spesso il termine di segnale. L insieme dei valori istantanei assunti

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI

LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI Prof. Euro Sampaolesi IL CAMPO MAGNETICO TERRESTRE Le linee del magnete-terra escono dal Polo geomagnetico Nord ed entrano nel

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Fuoco, direttrice ed equazione di una parabola traslata. Bruna Cavallaro, Treccani scuola

Fuoco, direttrice ed equazione di una parabola traslata. Bruna Cavallaro, Treccani scuola Fuoco, direttrice ed equazione di una parabola traslata Bruna Cavallaro, Treccani scuola 1 Traslare parabole con fuoco e direttrice Su un piano Oxy disegno una parabola, con fuoco e direttrice. poi traslo

Dettagli

CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE

CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE Consideriamo adesso un corpo esteso, formato da più punti, e che abbia un asse fisso, attorno a cui il corpo può ruotare. In questo caso l

Dettagli

Vediamo ora altre applicazioni dei prismi retti descritti in O1.

Vediamo ora altre applicazioni dei prismi retti descritti in O1. O2 - I PRISMI OTTICI S intende con prisma ottico un blocco di vetro ottico 8 limitato normalmente da superfici piane, di forma spesso prismatica. Un fascio di luce 9 può incidere su una o due delle sue

Dettagli

Analisi Matematica I

Analisi Matematica I Analisi Matematica I Fabio Fagnani, Gabriele Grillo Dipartimento di Matematica Politecnico di Torino Queste dispense contengono il materiale delle lezioni del corso di Analisi Matematica I rivolto agli

Dettagli

> MULTI TASKING > MULTI PROCESS > MULTI CORE

> MULTI TASKING > MULTI PROCESS > MULTI CORE > MULTI TASKING > MULTI PROCESS > MULTI CORE WorkNC V21 multicore 64 bits : Benefici di WorkNC Aumento generale della produttività, grazie alle nuove tecnologie multi-core, 64 bit e Windows 7 Calcolo di

Dettagli

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE a cura di G. SIMONELLI Nel motore a corrente continua si distinguono un sistema di eccitazione o sistema induttore che è fisicamente

Dettagli

Argomento interdisciplinare

Argomento interdisciplinare 1 Argomento interdisciplinare Tecnologia-Matematica Libro consigliato: Disegno Laboratorio - IL MANUALE DI TECNOLOGIA _G.ARDUINO_LATTES studiare da pag.19.da 154 a 162 Unità aggiornata: 7/2012 2 Sono corpi

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

IL MOTO. 1 - Il moto dipende dal riferimento.

IL MOTO. 1 - Il moto dipende dal riferimento. 1 IL MOTO. 1 - Il moto dipende dal riferimento. Quando un corpo è in movimento? Osservando la figura precedente appare chiaro che ELISA è ferma rispetto a DAVIDE, che è insieme a lei sul treno; mentre

Dettagli

Sistemi materiali e quantità di moto

Sistemi materiali e quantità di moto Capitolo 4 Sistemi materiali e quantità di moto 4.1 Impulso e quantità di moto 4.1.1 Forze impulsive Data la forza costante F agente su un punto materiale per un intervallo di tempo t, si dice impulso

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

SISTEMI VINCOLATI. 1. Punto fisso: il vincolo impedisce ogni spostamento del punto.

SISTEMI VINCOLATI. 1. Punto fisso: il vincolo impedisce ogni spostamento del punto. SISTEMI VINCOLATI Definizione 1 Si dice vincolo una qualunque condizione imposta ad un sistema materiale che impedisce di assumere una generica posizione e/o atto di moto. La presenza di un vincolo di

Dettagli

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue:

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue: CAMPO DI ESISTENZA. Poiché la funzione data è una razionale fratta, essa risulta definita su tutto l asse reale tranne che nei punti in cui il denominatore della frazione si annulla, cioè: C.E. { R: 0}

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

LA MATEMATICA PER LE ALTRE DISCIPLINE. Prerequisiti e sviluppi universitari G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R.

LA MATEMATICA PER LE ALTRE DISCIPLINE. Prerequisiti e sviluppi universitari G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R. LA MATEMATICA PER LE ALTRE DISCIPLINE Prerequisiti e sviluppi universitari a cura di G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R. ZAN Unione Matematica Italiana 2006 Ho continuato

Dettagli

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta Francesco Zumbo www.francescozumbo.it http://it.geocities.com/zumbof/ Questi appunti vogliono essere

Dettagli