Minicorso Stocks Trading Analisys

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Minicorso Stocks Trading Analisys"

Transcript

1 MINICORSO: Soks marke Trading Analisys (pare 1/5) di Andrea Saviano Pare 1 Miniorso Soks Trading Analisys di Andrea Saviano Vedo prevedo sravedo, premessa L analisi enia e l albero di Naale Il bravo sienziao: sandard e normale, innanziuo Hisoria magisra viae es Premessa Da empo immemore l uomo si è hieso se è possibile prevedere gli eveni fuuri relaivi ad un qualsiasi eveno (foreasing) o se sia possibile omprendere il perhé eri eveni si ripeano on una era frequenza o iliià oppure perhé ere siuazioni appaiano quasi legae ra loro ome vi fosse un ero livello di orrelazione he evidenzia, seppur empiriamene, l esisenza di un iseresi 1 ioè una memoria. Tui onosiamo almeno per ulura generale due effei: effeo Giuseppe (Genesi, 41:2-4), dopo una lunga fase di prosperià (vahe grasse), in modo apparenemene improvviso e inspiegabile, si ha una prolungaa fase d indigenza (vahe magre); effeo Noè (Genesi, 7:11), un eveno ragio (il diluvio) si realizza improvvisamene, in maniera imprevisa e in modo persisene. 1 L'iseresi è la araerisia di un sisema di reagire in riardo alle solleiazioni appliae in dipendenza dello sao preedene. hp://www.webalie.i/saviano.andrea 1/5

2 MINICORSO: Soks marke Trading Analisys (pare 1/5) di Andrea Saviano Le due ose si fondono nel definire he la ransazione ra una fase prolungaa di benessere e quella d indigenza è quasi sempre repenina. Se sendiamo più sul pariolare, possiamo suddividere un ilo eonomio nelle segueni fasi: fase di prosperià, o boom, nella quale il PIL rese rapidamene; fase di reessione, individuaa da una diminuzione del PIL in almeno due rimesri onseuivi; fase di depressione, in ui la produzione risagna e la disoupazione si maniene a livelli elevai; fase di ripresa, in ui il PIL inizia nuovamene a resere; il sospeo he esisa un omporameno ilio nell eonomia risula minimo, piuoso rimane il dubbio se vi sia una ripeiivià e una orrelazione ra un ilo e i preedeni, ioè se quesa iliià sia un fenomeno asuale o se sia possibile realizzare un inferenza saisia sui dai disponibili. L analisi enia e l albero di Naale Ora, se una suessione di eveni ombina una omponene asuale on un proesso seleivo in modo he solo eri risulai asuali possano perdurare, ale suessione viene dea soasia e il quesio he i si pone è dunque di queso ipo, ioè se sia possibile individuare una suessione di ale ipo piuoso he porsi l obieivo irraggiungibile di desrivere punualmene gli eveni fuuri. Queso è un oneo basilare del meodo sienifio, quello he repua una formula buona in quano effiae a desrivere la generalià. Un esempio può essere uile per omprendere il fine ulimo del meodo sienifio e ome esso lo si possa appliare anhe ai merai finanziari ramie lo sviluppo di srumeni di analisi enia. Si pensi al omune abee naalizio. È osa era he sia faile disinguere un albero di Naale da un asagno, da un melo o da un alloro (queso anhe senza essere degli esperi in boania). Tale albero può essere desrio on grande generalià per: il suo aspeo onio; la spiaa araerisia auo-similare. hp://www.webalie.i/saviano.andrea 2/5

3 MINICORSO: Soks marke Trading Analisys (pare 1/5) di Andrea Saviano La prima araerisia è spiaamene grossolana, la seonda è l elemeno base del maonino he permee la faile realizzazione di abei arifiiali, ioè he lo shema he osiuise i rami e uno shema he si ripee uguale a se sesso ma, uavia,permee he ogni abee sia differene dagli alri. Quello he alla persona omune ineressa è però rionosere un abee da un asagno, da un melo o da un alloro, senza sendere nel rionosere per nome ogni singolo abee. Si raa ioè di appliare il rasoio di Okham, he onsise nell appliazione di due banali onei: non molipliare gli elemeni più del neessario; non onsiderare la pluralià se non è neessario; sineizzabili nel fao he una legge generale e universale è valida, appliabile ed effiae anhe se non è in grado di definire aluni eveni osì poo probabili da poersi definirsi anomalie. Nani e gigani ovvero miopi, asigmaii e presbii Inroduiamo quindi in analisi enia i onei saisii e probabilisii di: valore aeso, si raa del valore he un indie saisio assumerà per la legge dei grandi numeri; variabile aleaoria, è il risulao numerio di un esperimeno quando queso non è prevedibile on erezza ossia non è deerminisio. Ora, la saisia è una magnifia saola piena di arezzi, in ui uno non eslude l alro e in ui i prinipi ardini vanno sempre riordai, perhé gli effei di più variabilià si sraifiano su un proesso nauralmene saio, rendendo lo sesso dinamio e variabile nel empo. Riordiamo qui he il oneo di saiià è ineso nella naurale variabilià on la quale un errore gaussiano si aompagna alla regisrazione di un generio paramero araerizzao da osanza, ovvero di ome la presenza di vari elemeni inonrollabili faia osillare la regisrazione di un paramero inorno ad un valore enrale desrivendo, per grandi numeri, un andameno a ampana on errore medio pari a zero e saro quadraio medio sandardizzao pari a 1. Queso signifia he se io sono in grado di ripulire un insieme di dai delle varie ause provae, iò he mi resa è un paramero saio seondo quano preedenemene asserio. Poo impora he io per ripulire ale dao uilizzi il più svariao insieme di srumeni maemaii, l imporane è he finhé l insieme dei dai non si ompora ome una variabile gaussiana allora sono in presenza di una qualhe ausa era he almeno grossolanamene devo deerminare. Quesa premessa è neessaria perhé mole orreni di pensiero relaive agli srumeni e ai meodi da appliare in analisi enia desrivono l un l alra ome nani o Pigmei, in realà ognuna di esse risula miope, asigmaia o presbie perhé l analisi enia non onsise in un unio grimaldello in grado di sassinare ue le serraure, piuoso deve divenare un insieme di grimaldelli è in grado di aprire (on desrezza più he on sasso) la maggior pare delle serraure. Il bravo sienziao: sandard e normale, innanzi uo La prima domanda he i dobbiamo porre da sienziai è: «Siamo in grado di desrivere il fenomeno in maniera esaa ramie una funzione?» hp://www.webalie.i/saviano.andrea 3/5

4 MINICORSO: Soks marke Trading Analisys (pare 1/5) di Andrea Saviano La risposa impliia a ale domanda he ogni bravo sienziao onose è: «Non esise aluna funzione maemaia in grado di definire in maniera esaa e punuale qualsiasi fenomeno naurale.» La seonda domanda del bravo sienziao è allora: «Se non esise aluna possibilià di generare una funzione maemaia in grado di definire in maniera esaa e punuale qualsiasi fenomeno naurale, allora è forse inuile sudiare il fenomeno nel enaivo di desriverlo ramie una legge generale e universale?» La risposa impliia a quesa seonda domanda he ogni bravo sienziao onose è: «Esise sempre la possibilià di desrivere ramie funzioni maemaihe, seppur in maniera grossolana, qualsiasi fenomeno naurale. Tale funzione, pur non riusendo a desrive il fenomeno nella sua punualià, lo desrive nella sua globalià e le leggi he ne derivano hanno validià universale. Tale regola è in grado di prevedere le ipologie di eveno, un aumeno o una diminuzione della probabilià he l eveno si verifihi, uavia non è in grado di rinraiare in senso deerminisio il ome, il dove e il quando. In ompenso è in grado di legare la manifesazione dell eveno al suo perhé.» Hisoria magisra viae es Sviluppo in serie di Fourier Analisi R/S Queso ipo di analisi ha lo sopo produrre un indie adimensionale H, deo esponene di Hurs 2, analizzando il modo di omporarsi del rapporo ra lo saro delle medie e la deviazione sandard di un ero numero di osservazioni (da ui il nome di Resaled Range Analysis). I passi da eseguire sono i segueni: si onsidera una serie soria di N dai x 1, x 2, x N ; si fissa n N in modo da formare delle soo-serie onigue y ognuna di lunghezza n: per ogni y si alola il valor medio Y e la somma umulaa degli sari della media Y e lo saro quadraio medio S : Y n ( y Y ) = = 1 si alola per ogni soo-serie la saisia (R/S) ; max = ( Y ) min( Y ) si alola la media dei valori (R/S) oenendo il valore punuale (R/S) n ; si ripare dal puno onsiderando un alro valore di n. Essendo: max(y ) 0; min(y ) 0; per ui il rapporo (R/S) 0. Una vola rovaa la suessione dei valori (R/S) n si può simare l esponene H di Hurs ramie la relazione: S = n H dove è una osane. Passando ai logarimi si oiene: 2 Harold Edwin Hurs ( ) idrologo inglese he geò le basi dell analisi saisia ramie un indie he poesse verifiare se l andameno di un ero numero di osservazioni poesse rienersi asuale oppure orrelao. hp://www.webalie.i/saviano.andrea 4/5

5 MINICORSO: Soks marke Trading Analisys (pare 1/5) di Andrea Saviano R log = log( ) + H log( n) S In ui H appare ome un oeffiiene di un equazione lineare he può essere esrapolaa on il meodo dei minimi quadrai. È sao dimosrao da Mandelbro he H [0.1], menre Feller ha dimosrao he per eveni ompleamene indipendeni on varianza finia: π = n In definiiva si ha: H<0.5 anipersisenza, siuazione nella quale è molo probabile he i dai osservai endano ad alernarsi (nel aso in esame: a un movimeno negaivo è prevedibile segua un movimeno posiivo); H=0.5 asuale, non vi è aluna dipendenza saisia (orrelazione) sul lungo periodo ioè il presene non influenza il fuuro (random walk); H>0.5 persisene, i dai non sono indipendeni per ui ra loro esise una orrelazione, in praia il rend ende a persisere nel empo oppure il omporameno di un dao periodo influenza quello del periodo suessivo, il livello di queso ipo di persisenza è ano maggiore quano più H 1 (rend reforing). Una vola deerminao H è possibile simare l impao he il presene ha sul fuuro araverso la relazione he lega H al oeffiiene di orrelazione C(H): C ( H ) = 2 risula: C(H)<0 0<H<0.5; C(H)=0 H=0.5; C(H)>0 0.5<H<1.05; Come aerameno empirio si possono mesolare le osservazioni in maniera asuale e verifiare se il oeffiiene H s avviina a 0.5 quando invee in preedenza se ne sosava di molo. 2 H 1 1 hp://www.webalie.i/saviano.andrea 5/5

CAPITOLO 4 Misurazioni nel dominio del tempo Pagina 46 CAPITOLO 4 MISURAZIONI NEL DOMINIO DEL TEMPO CON CONTATORE NUMERICO

CAPITOLO 4 Misurazioni nel dominio del tempo Pagina 46 CAPITOLO 4 MISURAZIONI NEL DOMINIO DEL TEMPO CON CONTATORE NUMERICO CAPIOLO 4 Misurazioni nel dominio del empo Pagina 46 CAPIOLO 4 MISURAZIONI NEL DOMINIO DEL EMPO CON CONAORE NUMERICO Misurare il empo he inerorre ra due eveni signifia onfronare due inervalli di empo,

Dettagli

Modelli statistici per caratterizzare canali affetti da multipath

Modelli statistici per caratterizzare canali affetti da multipath Rihiami sul anale di omuniazione radio Modulo di Modulo Tenihe di Avanzae Informazione di Trasmissione e Codifia a.a. a.a. 2009-2010 2007-08 1 Rihiami sul anale di omuniazione radio Modelli saisii per

Dettagli

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo) V A = AMPIEZZA = lunghezza di V A ALTERNATA Proiezione di V X ISTANTE = velocià angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un inervallo di empo) DEVE ESSERE COSTANTE Angolo

Dettagli

La previsione della domanda nella supply chain

La previsione della domanda nella supply chain La previsione della domanda nella supply chain La previsione della domanda 1 Linea guida Il ruolo della prerevisione nella supply chain Le caraerisiche della previsione Le componeni della previsione ed

Dettagli

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Lezione 10 (BAG cap. 9) Il asso naurale di disoccupazione e la curva di Phillips Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia In queso capiolo Inrodurremo uno degli oggei più conosciui

Dettagli

Lezione n.7. Variabili di stato

Lezione n.7. Variabili di stato Lezione n.7 Variabili di sao 1. Variabili di sao 2. Funzione impulsiva di Dirac 3. Generaori impulsivi per variabili di sao disconinue 3.1 ondizioni iniziali e generaori impulsivi In quesa lezione inrodurremo

Dettagli

RISPOSTA NEL DOMINIO DEL TEMPO

RISPOSTA NEL DOMINIO DEL TEMPO RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia

Dettagli

Sommario. Introduzione. Progetto di alberi di trasmissione Concentrazione di tensioni

Sommario. Introduzione. Progetto di alberi di trasmissione Concentrazione di tensioni 3 La orsione Sommario Inroduzione Alberi saiamene indeerminai Carihi orsionali su alberi irolari Momeno dovuo a ensioni inerne Deformazioni angenziali parallele all asse Progeo di alberi di rasmissione

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Universià di Napoli Parenope Facolà di Ingegneria Corso di Comunicazioni Elerice docene: Prof. Vio Pascazio a Lezione: 7/04/003 Sommario Caraerizzazione energeica di processi aleaori Processi aleaori nel

Dettagli

Apertura nei Mercati Finanziari

Apertura nei Mercati Finanziari Lezione 20 (BAG cap. 6.2, 6.4-6.5 e 18.5-18.6) La poliica economica in economia apera Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Aperura nei Mercai Finanziari 1) Gli invesiori possono

Dettagli

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo Media Mobile di ampiezza k (k pari) Esempio: Vendie mensili di shampoo Mese y 1 266,0 2 145,9 3 183,1 4 119,3 5 180,3 6 168,5 7 231,8 8 224,5 9 192,8 10 122,9 11 336,5 12 185,9 1 194,3 2 149,5 3 210,1

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 007 008 Prova dell 8 febbraio 008 Nome Cognome Maricola Esercizio (6 puni) La vendia raeale di un bene di valore 000 prevede il pagameno di rae mensili posicipae cosani calcolae

Dettagli

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche LEZIONE 3 INDICATORI DELLE RINCIALI VARIABILI MACROECONOMICHE Argomeni raai: definizione e misurazione delle segueni variabili macroecomiche Livello generale dei prezzi, Tasso d inflazione, π IL nominale,

Dettagli

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1 La programmazione aggregaa nella supply chain La programmazione aggregaa nella supply chain 1 Linea guida Il ruolo della programmazione aggregaa nella supply chain Il problema della programmazione aggregaa

Dettagli

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio METODI DECISIONALI PER L'AZIENDA www.lvprojec.com Do. Loi Nevio Generalià sui sisemi dinamici. Variabili di sao, di ingresso, di uscia. Sisemi discrei. Sisemi lineari. Paper: Dynamic Modelling Do. Loi

Dettagli

Struttura dei tassi per scadenza

Struttura dei tassi per scadenza Sruura dei assi per scadenza /45-Unià 7. Definizione del modello ramie gli -coupon bonds preseni sul mercao Ipoesi di parenza Sul mercao sono preseni all isane ZCB che scadono fra,2,,n periodi Periodo:

Dettagli

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice Eserciazione 7: Modelli di crescia: arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Popolazione sabile e sazionaria. Viviana Amai 03/06/200 Modelli di crescia Nella

Dettagli

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale Teoria della Finanza Aziendale Rischio e Valuazione degli invesimeni 9 1-2 Argomeni raai Coso del capiale aziendale e di progeo Misura del bea Coso del capiale e imprese diversificae Rischio e flusso di

Dettagli

VALORE EFFICACE DEL VOLTAGGIO

VALORE EFFICACE DEL VOLTAGGIO Fisica generale, a.a. /4 TUTOATO 8: ALO EFFC &CCUT N A.C. ALOE EFFCE DEL OLTAGGO 8.. La leura con un mulimero digiale del volaggio ai morsei di un generaore fornisce + in coninua e 5.5 in alernaa. Tra

Dettagli

TECNICA DELLE ASSICURAZIONI

TECNICA DELLE ASSICURAZIONI TECNICA DELLE ASSICURAZIONI E DELLE FORME PENSIONISTICHE Prof. Annamaria Olivieri a.a. 25/26 Esercizi: eso. Una socieà di calcio si impegna a risarcire con 5 euro il proprio allenaore, in caso di licenziameno

Dettagli

Lezione 11. Inflazione, produzione e crescita della moneta

Lezione 11. Inflazione, produzione e crescita della moneta Lezione 11 (BAG cap. 10) Inflazione, produzione e crescia della monea Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Tre relazioni ra produzione, disoccupazione e inflazione Legge di Okun

Dettagli

flusso in uscita (FU) Impresa flusso in entrata (FE)

flusso in uscita (FU) Impresa flusso in entrata (FE) Analisi degli invesimeni Il bilancio è una sinesi a poseriori della siuazione di un'azienda. La valuazione degli invesimeni è un enaivo di valuare a priori la validià delle scele dell'azienda. L'invesimeno

Dettagli

Ma nel dettaglio, come si svolge una seduta di allenamento con la metodica SPLIT SYSTEM?

Ma nel dettaglio, come si svolge una seduta di allenamento con la metodica SPLIT SYSTEM? LO SPLIT SYSTEM Di Fabio Zonin Volee oenere oimi guadagni di forza e massa e enere conemporaneamene soo conrollo la percenuale di grasso corporeo e farlo allenandovi solo per un ora re vole la seimana?

Dettagli

Il condensatore. Carica del condensatore: tempo caratteristico

Il condensatore. Carica del condensatore: tempo caratteristico Il condensaore IASSUNTO: apacia ondensaori a geomeria piana, cilindrica, sferica La cosane dielerica ε r ondensaore ceramico, a cara, eleroliico Il condensaore come elemeno di circuio: ondensaori in serie

Dettagli

Corso di. Economia Politica

Corso di. Economia Politica Prof.ssa Blanchard, Maria Laura Macroeconomia Parisi, PhD; Una parisi@eco.unibs.i; prospeiva europea, DEM Universià Il Mulino di 2011 Brescia Capiolo I. Un Viaggio inorno al mondo Corso di Economia Poliica

Dettagli

V AK. Fig.1 Caratteristica del Diodo

V AK. Fig.1 Caratteristica del Diodo 1 Raddrizzaore - Generalià I circuii raddrizzaori uilizzano componeni come i Diodi che presenano la caraerisica di unidirezionalià, cioè permeono il passaggio della correne solo in un verso. In figura

Dettagli

A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI

A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI A.A. 2013/14 Eserciazione - IRPEF TESTO E SOLUZIONI Esercizio 1 - IRPEF Il signor X, che vive solo e non ha figli, ha percepio, nel corso dell anno correne, i segueni reddii: - Reddii da lavoro dipendene

Dettagli

1.7. Il modello completo e le sue proprietà

1.7. Il modello completo e le sue proprietà La Teoria Generale 1 1.7. Il modello compleo e le sue proprieà Il ragionameno svolo fino a queso puno è valido per un livello dao del salario nominale e dei prezzi. Le grandezze preseni nel modello, per

Dettagli

4 La riserva matematica

4 La riserva matematica 4 La riserva maemaica 4.1 Inroduzione La polizza, come si è viso, viene cosruia in modo da essere in equilibrio auariale alla daa di sipula = 0 e rispeo alla base ecnica del I ordine: se X è il flusso

Dettagli

Esercizio 1 ( es 1 lez 11) La matrice è diagonalizzabile: verificare, trovando la matrice diagonalizzante, che A è simile a A.

Esercizio 1 ( es 1 lez 11) La matrice è diagonalizzabile: verificare, trovando la matrice diagonalizzante, che A è simile a A. Eserciio ( es le La marice è diagonaliabile: verificare, rovando la marice diagonaliane, che è simile a. Esisono re auovalori: mol.alg(- dim V - ; mol.alg( dim V ; mol.alg(- dim V -. Esise una marice simile

Dettagli

4 Il Canale Radiomobile

4 Il Canale Radiomobile Pare IV G. Reali: Il canale radiomobile 4 Il Canale Radiomobile 4.1 INTRODUZIONE L evoluzione fondamenale nella filisofia di progeo delle rei di comunicazione indoor è il passaggio dalla modalià di rasmissione

Dettagli

RELAZIONE FINALE: MODELLAZIONE DEI PREZZI DELL ENERGIA ELETTRICA: UN ESEMPIO

RELAZIONE FINALE: MODELLAZIONE DEI PREZZI DELL ENERGIA ELETTRICA: UN ESEMPIO RELAZIONE FINALE: MODELLAZIONE DEI PREZZI DELL ENERGIA ELETTRICA: UN ESEMPIO RELATORE: CH.MO PROF. LISI FRANCESCO LAUREANDO: CANELLA FRANCESCO MATRICOLA: 45835 ANNO ACCADEMICO: 003-004 4 Alla mia famiglia

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI

FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI CAPITOLO FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI Sono le funzioni aveni come dominio e codominio dei sooinsiemi dei numeri reali; esse sono alla base dei modelli maemaici preseni in ogni campo

Dettagli

Movimento nei fluidi : prima parte Applicazioni della meccanica dei fluidi

Movimento nei fluidi : prima parte Applicazioni della meccanica dei fluidi In questa sezione vi sono argomenti he non fanno normalmente parte di un orso tradizionale di Fisia. Si tratta di una breve esursione nei viini ampi della biologia e della zoologia: appliazioni delle leggi

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Esercizi di Maemaica Finanziaria Copyrigh SDA Bocconi Faori nanziari Classi care e rappresenare gra camene i segueni faori nanziari per : (a) = + ; 8 (b) = ( + ; ) (c) = (d) () = ; (e) () = ( + ; ) (f)

Dettagli

6 IL TASSO DI CAMBIO

6 IL TASSO DI CAMBIO Il asso di cambio 111 6 IL TASSO DI CAMBIO Il sisema economico silizzao dal quale siamo parii nel capiolo 1 si basa sul barao. In esso quindi non roviamo monea né ano meno la necessià di converire grandezze

Dettagli

La Riassicurazione. Prof. Cerchiara Rocco Roberto. email: rocco.cerchiara@unical.it. Materiale e Riferimenti

La Riassicurazione. Prof. Cerchiara Rocco Roberto. email: rocco.cerchiara@unical.it. Materiale e Riferimenti Prof. R.R. Cerciara La Riassicurazione Prof. Cerciara Rocco Robero email: rocco.cerciara@unical.i Maeriale e Riferimeni 1. Lucidi disribuii in aula. Daboni, pagg. 13-17 e 137-148 (Leggere Riassicurazione

Dettagli

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p =

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p = 5. Rette e piani in R 3 ; sfere. In questo paragrafo studiamo le rette, i piani e le sfere in R 3. Ci sono due modi per desrivere piani e rette in R 3 : mediante equazioni artesiane oppure mediante equazioni

Dettagli

I mercati dei beni e i mercati finanziari in economia aperta

I mercati dei beni e i mercati finanziari in economia aperta I mercai dei beni e i mercai finanziari in economia apera Economia apera Mercai dei beni: l opporunià per i consumaori e le imprese di scegliere ra beni nazionali e beni eseri. Mercai delle aivià finanziarie:

Dettagli

2. Politiche di gestione delle scorte

2. Politiche di gestione delle scorte deerminisica variabile nel empo Quando la domanda viaria nel empo, il problema della gesione dell invenario divena preamene dinamico. e viene deo di lo-sizing. Consideriamo il caso in cui la domanda pur

Dettagli

Processi stocastici. Corso Segnale e Rumore Giorgio Brida Giugno/luglio 2007 Pagina 1 di 33

Processi stocastici. Corso Segnale e Rumore Giorgio Brida Giugno/luglio 2007 Pagina 1 di 33 Processi socasici Inroduzione isemi lineari e sazionari; luuazioni casuali, derive e disurbi; processi socasici sazionari in senso lao, unzione di auocorrelazione e spero di poenza; risposa di un sisema

Dettagli

CBM a.s. 2012/2013 PROBLEMA DELLE SCORTE

CBM a.s. 2012/2013 PROBLEMA DELLE SCORTE CBM a.s. 212/213 PROBLEMA DELLE SCORTE Chiamiamo SCORTA ogni riserva di materiali presente all interno del sistema produttivo in attesa di essere sottoposto ad un proesso di trasformazione o di distribuzione.

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA

UNIVERSITA DEGLI STUDI DI PADOVA UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE TESI DI LAUREA IN STATISTICA ECONOMIA E FINANZA STIMA DELLA VOLATILITA NEI MERCATI FINANZIARI CON DATI INFRA-GIORNALIERI: ALCUNI CONFRONTI

Dettagli

Corso di Comunicazioni Elettriche. 2 RICHIAMI DI TEORIA DEI SEGNALI Prof. Giovanni Schembra TEORIA DEI SEGNALI DETERMINATI

Corso di Comunicazioni Elettriche. 2 RICHIAMI DI TEORIA DEI SEGNALI Prof. Giovanni Schembra TEORIA DEI SEGNALI DETERMINATI Corso di Comunicazioni Eleriche RICHIAMI DI TEORIA DEI SEGNALI Pro. Giovanni Schembra Richiami di Teoria dei segnali TEORIA DEI SEGNALI DETERMINATI Richiami di Teoria dei segnali Valori caraerisici di

Dettagli

Il modello di Black-Scholes. Il modello di Black-Scholes/2

Il modello di Black-Scholes. Il modello di Black-Scholes/2 Il modello di Black-Scholes Si raa sosanzialmene del modello in empo coninuo che si oiene facendo endere a 0 nel modello binomiale. Come vedremo, è un modello di fondamenale imporanza, e per esso a Myron

Dettagli

Analisi e valutazione degli investimenti

Analisi e valutazione degli investimenti Analisi e valuazione degli invesimeni Indice del modulo L analisi degli invesimeni e conceo di invesimeno Il valore finanziario del empo e aualizzazione Capializzazione e aualizzazione Il coso opporunià

Dettagli

Provincia di Treviso

Provincia di Treviso Treviso, 21 dicembre 2004 OGGETTO: Gesione rifiui urbani e assimilai Servizio pubblico inegraivo di gesione rifiui speciali Adempimeni relaivi alla compilazione di formulari di idenificazione, regisri

Dettagli

L'UTILIZZO DI TRADING RULES IN MODELLI A CAMBIAMENTO DI REGIME (SWITCHING REGIMES)

L'UTILIZZO DI TRADING RULES IN MODELLI A CAMBIAMENTO DI REGIME (SWITCHING REGIMES) L'UTILIZZO DI TRADING RULES IN MODELLI A CAMBIAMENTO DI REGIME (SWITCHING REGIMES) Monica Billio Universià Ca Foscari e GRETA, Venezia Michele Paron GRETA, Venezia Inroduzione. Moli meodi di analisi ecnica

Dettagli

Moltiplicazione di segnali lineari

Moltiplicazione di segnali lineari Moliplicazione di segnali lineari Processo non lineare: x ( x ( x ( Meodologia uilizzaa per: Campionameno ed acquisizione dai Processi di comunicazione (modulazione Abbiamo viso con il campionameno dei

Dettagli

Introduzione all analisi delle serie storiche e dei metodi di previsione

Introduzione all analisi delle serie storiche e dei metodi di previsione Inroduzione all analisi delle serie soriche e dei meodi di previsione Indice. Capiolo inroduivo,. Inroduzione.2 Fasi di un analisi di previsione e sruura delle dispense 2. Meodi e srumeni di base, 5 2.

Dettagli

Il modello Neo-Keynesiano, politica monetaria e dinamica dell inflazione. Perché l inflazione è persistente?

Il modello Neo-Keynesiano, politica monetaria e dinamica dell inflazione. Perché l inflazione è persistente? SAGGIO AD INVITO Il modello Neo-Keynesiano, poliica monearia e dinamica dell inflazione. Perché l inflazione è persisene? Guido Ascari* Universià degli Sudi di Pavia Quesa rassegna, dopo aver brevemene

Dettagli

Gestione della produzione MRP e MRPII

Gestione della produzione MRP e MRPII Sommario Gesione della produzione e Inroduzione Classificazione Misure di presazione La Disina Base Logica Lo Sizing in II Inroduzione Inroduzione Def: Gesire la produzione significa generare e sfruare

Dettagli

Cenni di Matematica Finanziaria

Cenni di Matematica Finanziaria Cenni di Maemaica Finanziaria M.Leizia Guerra Facolà di Economia Universià di Urbino Carlo Bo Leggi e regimi finanziari Operazioni finanziarie elemenari Un conrao finanziario ra due soggei Alfa e Bea prevede

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTÀ DI ECONOMIA FEDERICO CAFFÈ

UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTÀ DI ECONOMIA FEDERICO CAFFÈ UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTÀ DI ECONOMIA FEDERICO CAFFÈ CORSO DI LAUREA IN ECONOMIA E COMMERCIO Tesi di laurea IL RUOLO DELL ESPANSIONE DELLA DOMANDA DI CONSUMI NELLA CRESCITA ECONOMICA: ALCUNE

Dettagli

Lezione 15. Lezione 15. ADC di tipo Flash. ADC di tipo Flash. ADC di tipo Flash. ADC di tipo Flash. Sommario. Materiale di riferimento

Lezione 15. Lezione 15. ADC di tipo Flash. ADC di tipo Flash. ADC di tipo Flash. ADC di tipo Flash. Sommario. Materiale di riferimento Sommario Lezione 15 Converiore di ipo Flash Converiore a gradinaa Converiore a rampa Converiore ad approssimazioni successive (SA) Converiore di ipo SigmaDela Esempi di converiori preseni a bordo di mc

Dettagli

LEZIONE 10. Il finanziamento dell istruzione. Economia del Settore Pubblico. Modalità dell intervento pubblico. Il finanziamento dell istruzione

LEZIONE 10. Il finanziamento dell istruzione. Economia del Settore Pubblico. Modalità dell intervento pubblico. Il finanziamento dell istruzione Economia del Seore Pubblico Laura Vici laura.vici@unibo.i www2.dse.unibo.i/lvici/edsp_ii.hm Modalià dell inerveno pubblico Regolamenazione Finanziameno: parziale o inegrale? Produzione: pubblica o privaa?

Dettagli

MOMENTI E CENTRAGGIO DEL VELIVOLO

MOMENTI E CENTRAGGIO DEL VELIVOLO x 1 x ISTITUZIONI DI INGEGNERIA AEROSAZIALE OENTI E CENTRAGGIO VELIVOLO OENTI E CENTRAGGIO DEL VELIVOLO er il alolo delle prestazioni in volo orizzontale rettilineo ed uniforme, il velivolo può essere

Dettagli

Strumenti derivati: aspetti introduttivi. Outline. Il contratto forward. Generalità sugli strumenti derivati. Payoff del contratto forward

Strumenti derivati: aspetti introduttivi. Outline. Il contratto forward. Generalità sugli strumenti derivati. Payoff del contratto forward Srumeni derivai: aspei inroduivi Ouline Conrai forward, fuures e opzioni: descrizione degli srumeni ed esempi di sraegie operaive Prof. Fabio Bellini fabio.bellini@unimib.i Universià di Milano Bicocca

Dettagli

Corso di Economia del Lavoro Daniele Checchi Blanchard-Amighini-Giavazzi cap.4 anno 2014-15

Corso di Economia del Lavoro Daniele Checchi Blanchard-Amighini-Giavazzi cap.4 anno 2014-15 Corso i Economia el Lavoro Daniele Checchi Blanchar-Amighini-Giavazzi cap.4 anno 2014-15 I MERCATI FINANZIARI Esise una grane varieà i aivià finanziarie. Il risparmiaore eve scegliere in quali forme eenere

Dettagli

Regime dinamico nel dominio del tempo

Regime dinamico nel dominio del tempo egime dinamico nel dominio del empo Appuni a cura dell Ingg. Basoccu Gian Piero e Marras Luca Tuors del corso di LTTOTNIA per meccanici e chimici A. A 3/4 e 4/5 Ulimo aggiornameno // Appuni a cura degli

Dettagli

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI TEPUS PECUNIA EST COLLANA DI ATEATICA PER LE SCIENZE ECONOICHE FINANZIARIE E AZIENDALI 3 Direore Bearice VENTURI Universià degli Sudi di Cagliari Comiao scienifico Umbero NERI Universiy of aryland Russel

Dettagli

Capitolo III: I Regolatori

Capitolo III: I Regolatori SCC Cap. III: Regolaor Capolo III: I Regolaor III-1: Inrouzone Il regolaore ha l ompo sablre l azone orreva a apporare n ngresso al proesso, per mezzo ell auaore; l segnale n usa al regolaore (s) è funzone

Dettagli

Azionamenti Elettrici

Azionamenti Elettrici Azionameni Elerici 2.4. CONVERTITORI DC/DC... 33 2.4.1. Conrollo dei converiori DC/DC... 33 2.4.2. FullBridge converer (DC/DC)... 34 2.4.2.1. PWM con commuazione di ensione bipolare...35 2.4.2.2. PWM con

Dettagli

In questo caso entrambi i gruppi chiedono copertura completa: q = d = 100.

In questo caso entrambi i gruppi chiedono copertura completa: q = d = 100. Soluzione dell Esercizio 1: Assicurazioni a) In un mercao perfeamene concorrenziale, deve valere la condizione di profii aesi nulli: E(P)=0. E possibile mosrare che ale condizione implica che l impresa

Dettagli

Soluzione degli esercizi del Capitolo 2

Soluzione degli esercizi del Capitolo 2 Sisemi di auomazione indusriale - C. Boniveno, L. Genili, A. Paoli 1 degli esercizi del Capiolo 2 dell Esercizio E2.1 Il faore di uilizzazione per i processi in esame è U = 8 16 + 12 48 + 6 24 = 1. L algorimo

Dettagli

LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Però offre una diversa spiegazione delle fluttuazioni economiche:

LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Però offre una diversa spiegazione delle fluttuazioni economiche: LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Edward Presco, Finn Kydland, Rober King, ecc. Si inserisce nel filone della NMC: - Equilibrio generale walrasiano; - incerezza e dinamica:

Dettagli

Facoltà di Agraria - Università di Sassari Anno Accademico 2004-2005. Analisi Costi e Benefici

Facoltà di Agraria - Università di Sassari Anno Accademico 2004-2005. Analisi Costi e Benefici Facolà di Agraria - Universià di Sassari Anno Accademico 004-005 Dispense Corso di Pianificazione e Difesa del erriorio Docene: Luciano Guierrez Analisi Cosi e Benefici. Inroduzione. Decisioni individuali

Dettagli

Anche sugli impianti in esercizio è possibile intervenire attuando una serie di soluzioni in grado di ridurre sensibilmente il consumo di energia.

Anche sugli impianti in esercizio è possibile intervenire attuando una serie di soluzioni in grado di ridurre sensibilmente il consumo di energia. Risparmio Energeico Risparmio Energeico per Scale e Tappei Mobili La riduzione dei consumi di energia proveniene dalle foni fossili non rinnovabili (perolio, carbone) è una delle priorià assolue, insieme

Dettagli

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine Lezione 4 Ripoe canoniche dei iemi del primo e del econdo ordine Parameri caraeriici della ripoa allo calino Per ripoe canoniche i inendono le ripoe dei iemi dinamici ai egnali coiddei canonici (impulo,

Dettagli

Appunti e Domande di Affidabilità e Controllo della Qualità

Appunti e Domande di Affidabilità e Controllo della Qualità Appuni e Domande di Affidabilià e Conrollo della Qualià Auori: eagleone - eagleone2 (a) in.i lubo23 lubo23 (a) infinio.i Ulima revisione: 14/11/24 by eagleone 1 Inroduzione...4 Disclaimer...4 Dirii e permessi

Dettagli

9. Conversione Analogico/Digitale

9. Conversione Analogico/Digitale 9.1. Generalià 9. Conversione Analogico/Digiale 9.1. Generalià In un converiore analogico/digiale, il problema di fondo consise nello sabilire la corrispondenza ra la grandezza analogica di ingresso (che

Dettagli

3 CORRENTE ELETTRICA E CIRCUITI

3 CORRENTE ELETTRICA E CIRCUITI 3 ONT LTT UT lessandro ola Descrizione dell esperienza di Galvani Nel 79 il medico bolognese Luigi Galvani nell ambio dello sudio delle azioni eleriche sugli organi animali osservò che occando con uno

Dettagli

Trasformata di Fourier (1/7)

Trasformata di Fourier (1/7) 1 rasormaa di Fourier (1/7 + De: Un segnale x( è impulsivo se x ( d < + F : + j X( x( e π d F{ x( }, < < + F -1 + jπ 1 : x( X( e d F { X( }, < < + X( è una rappresenazione di x( nel dominio della requenza

Dettagli

IL FENOMENO DELLA LONGEVITA ED IL RISCHIO DI MODELLO: ANALISI E MISURA

IL FENOMENO DELLA LONGEVITA ED IL RISCHIO DI MODELLO: ANALISI E MISURA IL FENOMENO DELLA LONGEVITA ED IL RISCHIO DI MODELLO: ANALISI E MISURA Valeria D Amao Doorao in Maemaica per l Analisi economica e la Finanza XX Ciclo Coordinaore: Prof. Emilia Di Lorenzo Tuor: Prof. Emilia

Dettagli

Dai segnali analogici a quelli numerici

Dai segnali analogici a quelli numerici Appuni di eoria dei Segnali a.a. 200/20 L.Verdoliva In queso capiolo descriveremo i passi che subisce un segnale analogico quando viene discreizzao per oenere un segnale numerico (conversione A/D), e quelle

Dettagli

CONSOB QUADERNI DI FINANZA L INDIVIDUAZIONE DI FENOMENI DI ABUSO STUDI E RICERCHE NAZIONALE PER LE SOCIETÀ E LA BORSA COMMISSIONE

CONSOB QUADERNI DI FINANZA L INDIVIDUAZIONE DI FENOMENI DI ABUSO STUDI E RICERCHE NAZIONALE PER LE SOCIETÀ E LA BORSA COMMISSIONE CONSOB COMMISSIONE NAZIONALE PER LE SOCIETÀ E LA BORSA QUADERNI DI FINANZA STUDI E RICERCHE L INDIVIDUAZIONE DI FENOMENI DI ABUSO DI MERCATO NEI MERCATI FINANZIARI: UN APPROCCIO QUANTITATIVO M. MINENNA

Dettagli

Tema 3. Insiemi, elementi di logica, calcolo combinatorio, relazioni e funzioni

Tema 3. Insiemi, elementi di logica, calcolo combinatorio, relazioni e funzioni Tema 3 Iniemi, elemeni di logica, calcolo combinaorio, relazioni e funzioni 3.1 Queii di livello bae 3.1.1 Si coniderino i egueni enunciai: n è un muliplo di 3 o è un numero pari, e inolre è minore di

Dettagli

7 I convertitori Analogico/Digitali.

7 I convertitori Analogico/Digitali. 7 I converiori Analogico/Digiali. 7 1. Generalià Un volmero numerico, come si evince dal nome, è uno srumeno che effeua misure di ensione mediane una conversione analogicodigiale della grandezza in ingresso

Dettagli

DISPENSA DI ECONOMIA DEL TURISMO. Parte Seconda: Offerta, Sostenibilità e Impatto. Jan van der Borg

DISPENSA DI ECONOMIA DEL TURISMO. Parte Seconda: Offerta, Sostenibilità e Impatto. Jan van der Borg DISPENSA DI ECONOMIA DEL TURISMO. Pare Seconda: Offera, Sosenibilià e Impao Jan van der Borg Dicembre 2009 CAPITOLO 1: L OFFERTA TURISTICA 1.1 Offera urisica In prima approssimazione possiamo definire

Dettagli

Fabio Grasso LA PREVIDENZA COMPLEMENTARE: I PROFILI TECNICI

Fabio Grasso LA PREVIDENZA COMPLEMENTARE: I PROFILI TECNICI Fabio Grasso Direore Diparimeno di Scienze Saisiche Presidene Area Didaica delle Scienze Saisiche, Auariali e Finanziarie Universià degli Sudi di Roma La Sapienza LA PREVIDENZA COMPLEMENTARE: I PROFILI

Dettagli

Conversione Analogico-Digitale

Conversione Analogico-Digitale Capiolo 4 Conversione Analogico-Digiale I segnali del mondo reale sono analogici, menre un elaboraore digiale è in grado di memorizzare e raare esclusivamene sequenze finie di bi. Per raare con ecniche

Dettagli

( n i c e t o m e t a ) www.metaformazione.it

( n i c e t o m e t a ) www.metaformazione.it ( n i c e o m e a ) www.meaformazione.i www.meaformazione.i ( n i c e o m e a ) Le aziende sono sisemi con specificià e paricolarià che le rendono uniche. Come accerarsi della compaibilià ra formazione

Dettagli

COMPORTAMENTO SISMICO DELLE STRUTTURE

COMPORTAMENTO SISMICO DELLE STRUTTURE COMPORTAMENTO SISMICO DELLE STRUTTURE Durane un erreoo, le oscillazioni del erreno di fondazione provocano nelle sovrasani sruure delle oscillazioni forzae. Quando il erreoo si arresa, i ovieni della sruura

Dettagli

MODELLI PER LA STRUTTURA A TERMINE DEI TASSI

MODELLI PER LA STRUTTURA A TERMINE DEI TASSI Alma Maer Sudiorum Universià di Bologna FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Maemaica Maeria di Tesi: Maemaica per le applicazioni economiche e finanziarie MODELLI PER

Dettagli

Ottobre 2009. ING ClearFuture

Ottobre 2009. ING ClearFuture Oobre 2009 ING ClearFuure Una crescia cosane. Con una solida proezione nel empo. ING ClearFuure è la soluzione assicuraiva Uni Linked di dirio lussemburghese, realizzaa apposiamene da ING Life Luxembourg

Dettagli

COME RISOLVERE GLI ESERCIZI DI ANALISI MATEMATICA 2

COME RISOLVERE GLI ESERCIZI DI ANALISI MATEMATICA 2 COME RISOLVERE GLI ESERCIZI DI ANALISI MATEMATICA Ecco una piccola e semplice guida che illusra come risolvere, a grandi linee gli esercii proposi agli esami di Analisi Maemaica (del DM 509/99, cioè successione

Dettagli

La Finanza di Progetto per la realizzazione e gestione di un parco Eolico

La Finanza di Progetto per la realizzazione e gestione di un parco Eolico SUSTAINABLE ENERGY FORUM - Le nuove froniere della produzione di energia pulia La Finanza di Progeo per la realizzazione e gesione di un parco Eolico Roma, 6 Giugno 2007 Gabriele FERRANTE Unià ecnica Finanza

Dettagli

LA DINAMICA DEL DEBITO PUBBLICO. UN ANALISI DEL CASO ITALIANO, 1980-1996

LA DINAMICA DEL DEBITO PUBBLICO. UN ANALISI DEL CASO ITALIANO, 1980-1996 Liuc Papers n. 33, Serie Economia e Impresa 8, seembre 1996 LA DINAMICA DEL DEBITO PUBBLICO. UN ANALISI DEL CASO ITALIANO, 1980-1996 Angelo Marano Inroduzione Le dimensioni anomale che il debio pubblico

Dettagli

Modelli di Ricerca Operativa per il Lot Sizing

Modelli di Ricerca Operativa per il Lot Sizing Modelli di Ricerca Oeraiva er il Lo Sizing Corso di Modelli di Sisemi di Produzione I Sommario Inroduzione La gesione delle score (Problema e modelli) Parameri Fondamenali (cosi di e soccaggio) Aroccio

Dettagli

1 2-6 7-74 Commento * Continuazione riga! Viene ignorato tutto quello che viene scritto dopo questo carattere [etichett a]

1 2-6 7-74 Commento * Continuazione riga! Viene ignorato tutto quello che viene scritto dopo questo carattere [etichett a] La programmazione è l'arte di far ompiere al omputer una suessione di operazioni atte ad ottenere il risultato voluto. Srivere un programma è un po' ome dialogare ol omputer, dobbiamo fornirgli delle informazioni

Dettagli

SELEZIONE DI UN PORTAFOGLIO MEDIANTE LA FORZA RELATIVA

SELEZIONE DI UN PORTAFOGLIO MEDIANTE LA FORZA RELATIVA UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA, ECONOMIA E FINANZA SELEZIONE DI UN PORTAFOGLIO MEDIANTE LA FORZA RELATIVA RELATORE: Ch.mo Prof. Francesco

Dettagli

In questi ultimi tre anni le società di assicurazione europee hanno. Polizze vita l Approfondimenti

In questi ultimi tre anni le società di assicurazione europee hanno. Polizze vita l Approfondimenti Polizze via l Approfondimeni Incorporare le aese dell assicurao nell ALM In quesi ulimi anni le socieà di assicurazione europee hanno affinao l uilizzo dell ALM nel ramo via. I loro sforzi, uavia, si sono

Dettagli

Programmazione della produzione a lungo termine e gestione delle scorte

Programmazione della produzione a lungo termine e gestione delle scorte Programmazione della produzione a lungo ermine e gesione delle score Coneso. Il problema della gesione delle score consise nel pianificare e conrollare i processi di approvvigionameno dei magazzini di

Dettagli

I RENDIMENTI LE SERIE STORICHE FINANZIARIE

I RENDIMENTI LE SERIE STORICHE FINANZIARIE I EDIMETI LE SEIE STOICHE FIAZIAIE Aivià finanziarie Azioni es. Capialia, Mediase,... Tioli di sao BOT, BT, Tassi di cambio Euro/Dollaro, Euro/Serlina, Indici di Borsa S&/MIB, CAC4, ETF Tassi di ineresse

Dettagli

273 CAPITOLO 18: PALI DI FONDAZIONE IN CONDIZIONI DI ESERCIZIO

273 CAPITOLO 18: PALI DI FONDAZIONE IN CONDIZIONI DI ESERCIZIO 27 nrouzione Per i pali si può fare un iscorso analogo a quello viso per le fonazioni superficiali. Si è viso che nel caso elle fonazioni superficiali l analisi ella eformabilià ella sruura non poeva essere

Dettagli

Analisi funzionale. Riccarda Rossi Lezione 9

Analisi funzionale. Riccarda Rossi Lezione 9 Riarda Rossi Lezione 9 Caratterizzazione della onvergenza debole in L p (Ω) Siano 1 < p < e {f n}, f L p (Ω): allora f n f in L p (Ω) Teorema di ompattezza debole in L p (Ω) Teorema Siano 1 < p < e {f

Dettagli

DIMENSIONAMENTO DELLA STAZIONE DI SOLLEVAMENTO A SERVIZIO DI UN SOTTOPASSO

DIMENSIONAMENTO DELLA STAZIONE DI SOLLEVAMENTO A SERVIZIO DI UN SOTTOPASSO DIMENSIONAMENTO DELLA STAZIONE DI SOLLEVAMENTO A SERVIZIO DI UN SOTTOPASSO Appliazione: Dimensionare l impianto di sollevamento per il sottopasso illustrato alle figure 3.60 e 3.61. Elaborazione delle

Dettagli

Compressori e ventilatori. Impianti frigoriferi

Compressori e ventilatori. Impianti frigoriferi Sheda riassuntiva 10 apitolo 13 Compressori e ventilatori. Impianti frigoriferi Compressori e ventilatori I ompressori si possono lassifiare seondo lo shema seguente: Volumetrii alternativi rotativi Dinamii

Dettagli

Introduzione all analisi quantitativa dei beni pubblici. Italo M. Scrocchia

Introduzione all analisi quantitativa dei beni pubblici. Italo M. Scrocchia Diparimeno di Scienze Economiche, Maemaiche e Saisiche Universià degli Sudi di Foggia Inroduzione all analisi quaniaiva dei beni pubblici Ialo M. Scrocchia Quaderno n. 27/2008 Esemplare fuori commercio

Dettagli

LS-DYNA3D ABAQUS-explicit PAMCRASH RADIOSS. Vediamo come si sviluppa la soluzione esplicita del problema

LS-DYNA3D ABAQUS-explicit PAMCRASH RADIOSS. Vediamo come si sviluppa la soluzione esplicita del problema Anlisi rnsiori L'nlisi dinmic rnsiori (de nche nlisi emporle) è un ecnic che consene di deerminre l rispos dinmic di un sruur sogge d un generic eccizione emporle Gli eei emporli sono li d rendere imporni

Dettagli