Minicorso Stocks Trading Analisys

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Minicorso Stocks Trading Analisys"

Transcript

1 MINICORSO: Soks marke Trading Analisys (pare 1/5) di Andrea Saviano Pare 1 Miniorso Soks Trading Analisys di Andrea Saviano Vedo prevedo sravedo, premessa L analisi enia e l albero di Naale Il bravo sienziao: sandard e normale, innanziuo Hisoria magisra viae es Premessa Da empo immemore l uomo si è hieso se è possibile prevedere gli eveni fuuri relaivi ad un qualsiasi eveno (foreasing) o se sia possibile omprendere il perhé eri eveni si ripeano on una era frequenza o iliià oppure perhé ere siuazioni appaiano quasi legae ra loro ome vi fosse un ero livello di orrelazione he evidenzia, seppur empiriamene, l esisenza di un iseresi 1 ioè una memoria. Tui onosiamo almeno per ulura generale due effei: effeo Giuseppe (Genesi, 41:2-4), dopo una lunga fase di prosperià (vahe grasse), in modo apparenemene improvviso e inspiegabile, si ha una prolungaa fase d indigenza (vahe magre); effeo Noè (Genesi, 7:11), un eveno ragio (il diluvio) si realizza improvvisamene, in maniera imprevisa e in modo persisene. 1 L'iseresi è la araerisia di un sisema di reagire in riardo alle solleiazioni appliae in dipendenza dello sao preedene. hp://www.webalie.i/saviano.andrea 1/5

2 MINICORSO: Soks marke Trading Analisys (pare 1/5) di Andrea Saviano Le due ose si fondono nel definire he la ransazione ra una fase prolungaa di benessere e quella d indigenza è quasi sempre repenina. Se sendiamo più sul pariolare, possiamo suddividere un ilo eonomio nelle segueni fasi: fase di prosperià, o boom, nella quale il PIL rese rapidamene; fase di reessione, individuaa da una diminuzione del PIL in almeno due rimesri onseuivi; fase di depressione, in ui la produzione risagna e la disoupazione si maniene a livelli elevai; fase di ripresa, in ui il PIL inizia nuovamene a resere; il sospeo he esisa un omporameno ilio nell eonomia risula minimo, piuoso rimane il dubbio se vi sia una ripeiivià e una orrelazione ra un ilo e i preedeni, ioè se quesa iliià sia un fenomeno asuale o se sia possibile realizzare un inferenza saisia sui dai disponibili. L analisi enia e l albero di Naale Ora, se una suessione di eveni ombina una omponene asuale on un proesso seleivo in modo he solo eri risulai asuali possano perdurare, ale suessione viene dea soasia e il quesio he i si pone è dunque di queso ipo, ioè se sia possibile individuare una suessione di ale ipo piuoso he porsi l obieivo irraggiungibile di desrivere punualmene gli eveni fuuri. Queso è un oneo basilare del meodo sienifio, quello he repua una formula buona in quano effiae a desrivere la generalià. Un esempio può essere uile per omprendere il fine ulimo del meodo sienifio e ome esso lo si possa appliare anhe ai merai finanziari ramie lo sviluppo di srumeni di analisi enia. Si pensi al omune abee naalizio. È osa era he sia faile disinguere un albero di Naale da un asagno, da un melo o da un alloro (queso anhe senza essere degli esperi in boania). Tale albero può essere desrio on grande generalià per: il suo aspeo onio; la spiaa araerisia auo-similare. hp://www.webalie.i/saviano.andrea 2/5

3 MINICORSO: Soks marke Trading Analisys (pare 1/5) di Andrea Saviano La prima araerisia è spiaamene grossolana, la seonda è l elemeno base del maonino he permee la faile realizzazione di abei arifiiali, ioè he lo shema he osiuise i rami e uno shema he si ripee uguale a se sesso ma, uavia,permee he ogni abee sia differene dagli alri. Quello he alla persona omune ineressa è però rionosere un abee da un asagno, da un melo o da un alloro, senza sendere nel rionosere per nome ogni singolo abee. Si raa ioè di appliare il rasoio di Okham, he onsise nell appliazione di due banali onei: non molipliare gli elemeni più del neessario; non onsiderare la pluralià se non è neessario; sineizzabili nel fao he una legge generale e universale è valida, appliabile ed effiae anhe se non è in grado di definire aluni eveni osì poo probabili da poersi definirsi anomalie. Nani e gigani ovvero miopi, asigmaii e presbii Inroduiamo quindi in analisi enia i onei saisii e probabilisii di: valore aeso, si raa del valore he un indie saisio assumerà per la legge dei grandi numeri; variabile aleaoria, è il risulao numerio di un esperimeno quando queso non è prevedibile on erezza ossia non è deerminisio. Ora, la saisia è una magnifia saola piena di arezzi, in ui uno non eslude l alro e in ui i prinipi ardini vanno sempre riordai, perhé gli effei di più variabilià si sraifiano su un proesso nauralmene saio, rendendo lo sesso dinamio e variabile nel empo. Riordiamo qui he il oneo di saiià è ineso nella naurale variabilià on la quale un errore gaussiano si aompagna alla regisrazione di un generio paramero araerizzao da osanza, ovvero di ome la presenza di vari elemeni inonrollabili faia osillare la regisrazione di un paramero inorno ad un valore enrale desrivendo, per grandi numeri, un andameno a ampana on errore medio pari a zero e saro quadraio medio sandardizzao pari a 1. Queso signifia he se io sono in grado di ripulire un insieme di dai delle varie ause provae, iò he mi resa è un paramero saio seondo quano preedenemene asserio. Poo impora he io per ripulire ale dao uilizzi il più svariao insieme di srumeni maemaii, l imporane è he finhé l insieme dei dai non si ompora ome una variabile gaussiana allora sono in presenza di una qualhe ausa era he almeno grossolanamene devo deerminare. Quesa premessa è neessaria perhé mole orreni di pensiero relaive agli srumeni e ai meodi da appliare in analisi enia desrivono l un l alra ome nani o Pigmei, in realà ognuna di esse risula miope, asigmaia o presbie perhé l analisi enia non onsise in un unio grimaldello in grado di sassinare ue le serraure, piuoso deve divenare un insieme di grimaldelli è in grado di aprire (on desrezza più he on sasso) la maggior pare delle serraure. Il bravo sienziao: sandard e normale, innanzi uo La prima domanda he i dobbiamo porre da sienziai è: «Siamo in grado di desrivere il fenomeno in maniera esaa ramie una funzione?» hp://www.webalie.i/saviano.andrea 3/5

4 MINICORSO: Soks marke Trading Analisys (pare 1/5) di Andrea Saviano La risposa impliia a ale domanda he ogni bravo sienziao onose è: «Non esise aluna funzione maemaia in grado di definire in maniera esaa e punuale qualsiasi fenomeno naurale.» La seonda domanda del bravo sienziao è allora: «Se non esise aluna possibilià di generare una funzione maemaia in grado di definire in maniera esaa e punuale qualsiasi fenomeno naurale, allora è forse inuile sudiare il fenomeno nel enaivo di desriverlo ramie una legge generale e universale?» La risposa impliia a quesa seonda domanda he ogni bravo sienziao onose è: «Esise sempre la possibilià di desrivere ramie funzioni maemaihe, seppur in maniera grossolana, qualsiasi fenomeno naurale. Tale funzione, pur non riusendo a desrive il fenomeno nella sua punualià, lo desrive nella sua globalià e le leggi he ne derivano hanno validià universale. Tale regola è in grado di prevedere le ipologie di eveno, un aumeno o una diminuzione della probabilià he l eveno si verifihi, uavia non è in grado di rinraiare in senso deerminisio il ome, il dove e il quando. In ompenso è in grado di legare la manifesazione dell eveno al suo perhé.» Hisoria magisra viae es Sviluppo in serie di Fourier Analisi R/S Queso ipo di analisi ha lo sopo produrre un indie adimensionale H, deo esponene di Hurs 2, analizzando il modo di omporarsi del rapporo ra lo saro delle medie e la deviazione sandard di un ero numero di osservazioni (da ui il nome di Resaled Range Analysis). I passi da eseguire sono i segueni: si onsidera una serie soria di N dai x 1, x 2, x N ; si fissa n N in modo da formare delle soo-serie onigue y ognuna di lunghezza n: per ogni y si alola il valor medio Y e la somma umulaa degli sari della media Y e lo saro quadraio medio S : Y n ( y Y ) = = 1 si alola per ogni soo-serie la saisia (R/S) ; max = ( Y ) min( Y ) si alola la media dei valori (R/S) oenendo il valore punuale (R/S) n ; si ripare dal puno onsiderando un alro valore di n. Essendo: max(y ) 0; min(y ) 0; per ui il rapporo (R/S) 0. Una vola rovaa la suessione dei valori (R/S) n si può simare l esponene H di Hurs ramie la relazione: S = n H dove è una osane. Passando ai logarimi si oiene: 2 Harold Edwin Hurs ( ) idrologo inglese he geò le basi dell analisi saisia ramie un indie he poesse verifiare se l andameno di un ero numero di osservazioni poesse rienersi asuale oppure orrelao. hp://www.webalie.i/saviano.andrea 4/5

5 MINICORSO: Soks marke Trading Analisys (pare 1/5) di Andrea Saviano R log = log( ) + H log( n) S In ui H appare ome un oeffiiene di un equazione lineare he può essere esrapolaa on il meodo dei minimi quadrai. È sao dimosrao da Mandelbro he H [0.1], menre Feller ha dimosrao he per eveni ompleamene indipendeni on varianza finia: π = n In definiiva si ha: H<0.5 anipersisenza, siuazione nella quale è molo probabile he i dai osservai endano ad alernarsi (nel aso in esame: a un movimeno negaivo è prevedibile segua un movimeno posiivo); H=0.5 asuale, non vi è aluna dipendenza saisia (orrelazione) sul lungo periodo ioè il presene non influenza il fuuro (random walk); H>0.5 persisene, i dai non sono indipendeni per ui ra loro esise una orrelazione, in praia il rend ende a persisere nel empo oppure il omporameno di un dao periodo influenza quello del periodo suessivo, il livello di queso ipo di persisenza è ano maggiore quano più H 1 (rend reforing). Una vola deerminao H è possibile simare l impao he il presene ha sul fuuro araverso la relazione he lega H al oeffiiene di orrelazione C(H): C ( H ) = 2 risula: C(H)<0 0<H<0.5; C(H)=0 H=0.5; C(H)>0 0.5<H<1.05; Come aerameno empirio si possono mesolare le osservazioni in maniera asuale e verifiare se il oeffiiene H s avviina a 0.5 quando invee in preedenza se ne sosava di molo. 2 H 1 1 hp://www.webalie.i/saviano.andrea 5/5

CAPITOLO 4 Misurazioni nel dominio del tempo Pagina 46 CAPITOLO 4 MISURAZIONI NEL DOMINIO DEL TEMPO CON CONTATORE NUMERICO

CAPITOLO 4 Misurazioni nel dominio del tempo Pagina 46 CAPITOLO 4 MISURAZIONI NEL DOMINIO DEL TEMPO CON CONTATORE NUMERICO CAPIOLO 4 Misurazioni nel dominio del empo Pagina 46 CAPIOLO 4 MISURAZIONI NEL DOMINIO DEL EMPO CON CONAORE NUMERICO Misurare il empo he inerorre ra due eveni signifia onfronare due inervalli di empo,

Dettagli

Modelli statistici per caratterizzare canali affetti da multipath

Modelli statistici per caratterizzare canali affetti da multipath Rihiami sul anale di omuniazione radio Modulo di Modulo Tenihe di Avanzae Informazione di Trasmissione e Codifia a.a. a.a. 2009-2010 2007-08 1 Rihiami sul anale di omuniazione radio Modelli saisii per

Dettagli

Osservabilità (1 parte)

Osservabilità (1 parte) eoria dei sisemi - Capiolo 9 sservabilià ( pare) Inroduzione al problema della osservabilià: osservazione e ricosruzione. Sai indisinguibili e sai non osservabili...3 Soospazi di osservabilià e non osservabilià

Dettagli

La volatilità delle attività finanziarie

La volatilità delle attività finanziarie 4.30 4.5 4.0 4.5 4.0 4.05 4.00 3.95 3.90 3.85 3.80 3.75 3.70 3.65 3.60 3.55 3.50 3.45 3.40 3.35 3.30 3.5 3.0 3.5 3.0 3.05 3.00.95.70.65.60.55.50.45.40.35.30.5.0.5.0.05.00.95.90.85.80.75.70.65.60.55.50.45.40.35.30.5.0.5.0.05.00

Dettagli

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo) V A = AMPIEZZA = lunghezza di V A ALTERNATA Proiezione di V X ISTANTE = velocià angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un inervallo di empo) DEVE ESSERE COSTANTE Angolo

Dettagli

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere DIPRTIMENTO DI SCIENZE POLITICHE Modello di Solow (1) 1 a. a. 2015-2016 ppuni dalle lezioni. Uso riservao Maurizio Zenezini Consideriamo un economia (chiusa e senza inerveno dello sao) in cui viene prodoo

Dettagli

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Lezione 10 (BAG cap. 9) Il asso naurale di disoccupazione e la curva di Phillips Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia In queso capiolo Inrodurremo uno degli oggei più conosciui

Dettagli

Lezione n.12. Gerarchia di memoria

Lezione n.12. Gerarchia di memoria Lezione n.2 Gerarchia di memoria Sommario: Conceo di gerarchia Principio di localià Definizione di hi raio e miss raio La gerarchia di memoria Il sisema di memoria è molo criico per le presazioni del calcolaore.

Dettagli

La previsione della domanda nella supply chain

La previsione della domanda nella supply chain La previsione della domanda nella supply chain La previsione della domanda 1 Linea guida Il ruolo della prerevisione nella supply chain Le caraerisiche della previsione Le componeni della previsione ed

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Universià di Napoli Parenope Facolà di Ingegneria Corso di Comunicazioni Elerice docene: Prof. Vio Pascazio a Lezione: 7/04/003 Sommario Caraerizzazione energeica di processi aleaori Processi aleaori nel

Dettagli

SCELTE INTERTEMPORALI E DEBITO PUBBLICO

SCELTE INTERTEMPORALI E DEBITO PUBBLICO SCELTE INTERTEMPORALI E DEBITO PUBBLICO Lo sudio delle poliiche economiche con il modello IS-LM permee di analizzare gli effei di breve periodo delle decisioni di poliica fiscale e monearia del governo.

Dettagli

Lezione n.7. Variabili di stato

Lezione n.7. Variabili di stato Lezione n.7 Variabili di sao 1. Variabili di sao 2. Funzione impulsiva di Dirac 3. Generaori impulsivi per variabili di sao disconinue 3.1 ondizioni iniziali e generaori impulsivi In quesa lezione inrodurremo

Dettagli

Sommario. Introduzione. Progetto di alberi di trasmissione Concentrazione di tensioni

Sommario. Introduzione. Progetto di alberi di trasmissione Concentrazione di tensioni 3 La orsione Sommario Inroduzione Alberi saiamene indeerminai Carihi orsionali su alberi irolari Momeno dovuo a ensioni inerne Deformazioni angenziali parallele all asse Progeo di alberi di rasmissione

Dettagli

Operazioni finanziarie. Operazioni finanziarie

Operazioni finanziarie. Operazioni finanziarie Operazioni finanziarie Una operazione finanziaria è uno scambio di flussi finanziari disponibili in isani di empo differeni. Disinguiamo ra: operazioni finanziarie in condizioni di cerezza, quando ui gli

Dettagli

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo Media Mobile di ampiezza k (k pari) Esempio: Vendie mensili di shampoo Mese y 1 266,0 2 145,9 3 183,1 4 119,3 5 180,3 6 168,5 7 231,8 8 224,5 9 192,8 10 122,9 11 336,5 12 185,9 1 194,3 2 149,5 3 210,1

Dettagli

RISPOSTA NEL DOMINIO DEL TEMPO

RISPOSTA NEL DOMINIO DEL TEMPO RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 007 008 Prova dell 8 febbraio 008 Nome Cognome Maricola Esercizio (6 puni) La vendia raeale di un bene di valore 000 prevede il pagameno di rae mensili posicipae cosani calcolae

Dettagli

Apertura nei Mercati Finanziari

Apertura nei Mercati Finanziari Lezione 20 (BAG cap. 6.2, 6.4-6.5 e 18.5-18.6) La poliica economica in economia apera Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Aperura nei Mercai Finanziari 1) Gli invesiori possono

Dettagli

La vischiosità dei depositi a vista durante la recente crisi finanziaria: implicazioni in una prospettiva di risk management

La vischiosità dei depositi a vista durante la recente crisi finanziaria: implicazioni in una prospettiva di risk management La vischiosià dei deposii a visa durane la recene crisi finanziaria: implicazioni in una prospeiva di risk managemen Igor Gianfrancesco Camillo Gilibero 31/01/1999 31/07/1999 31/01/2000 31/07/2000 31/01/2001

Dettagli

Giorgio Porcu. Appunti di SISTEMI. ITI Elettronica Classe QUINTA

Giorgio Porcu. Appunti di SISTEMI. ITI Elettronica Classe QUINTA Giorgio Porcu Appuni di SSTEM T Eleronica lasse QUNTA Appuni di SSTEM T Eleronica - lasse QUNTA 1. TEORA DE SSTEM SSTEMA ollezione di elemeni che ineragiscono per realizzare un obieivo. l ermine è applicabile

Dettagli

I confronti alla base della conoscenza

I confronti alla base della conoscenza I confroni alla ase della conoscenza Un dao uaniaivo rae significao dal confrono con alri dai Il confrono è la prima e più immediaa forma di analisi dei dai I confroni Daa una grandezza G, due suoi valori

Dettagli

TECNICA DELLE COSTRUZIONI Effetti Strutturali di Viscosità e Ritiro

TECNICA DELLE COSTRUZIONI Effetti Strutturali di Viscosità e Ritiro TCNIC DLL COSTRUZIONI ffei Sruurali di Visosià e Riiro Prof. G. Manini Polienio di Torino - Diparimeno di Ingegneria Sruurale dile e Geoenia Corso di Tenia delle Cosruzioni 1 1. PRS IN CONTO DL FLUG RLTIVI

Dettagli

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1 La programmazione aggregaa nella supply chain La programmazione aggregaa nella supply chain 1 Linea guida Il ruolo della programmazione aggregaa nella supply chain Il problema della programmazione aggregaa

Dettagli

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche LEZIONE 3 INDICATORI DELLE RINCIALI VARIABILI MACROECONOMICHE Argomeni raai: definizione e misurazione delle segueni variabili macroecomiche Livello generale dei prezzi, Tasso d inflazione, π IL nominale,

Dettagli

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio METODI DECISIONALI PER L'AZIENDA www.lvprojec.com Do. Loi Nevio Generalià sui sisemi dinamici. Variabili di sao, di ingresso, di uscia. Sisemi discrei. Sisemi lineari. Paper: Dynamic Modelling Do. Loi

Dettagli

Analisi delle serie storiche: modelli ARCH e GARCH. Prof. M. Ferrara

Analisi delle serie storiche: modelli ARCH e GARCH. Prof. M. Ferrara Analisi delle serie soriche: modelli ARCH e GARCH Prof. M. Ferrara 1 Scele di porafoglio Markowiz ci insegna che i parameri decisionali fondamenali per operare scele di porafoglio sono: Media Varianza

Dettagli

Struttura dei tassi per scadenza

Struttura dei tassi per scadenza Sruura dei assi per scadenza /45-Unià 7. Definizione del modello ramie gli -coupon bonds preseni sul mercao Ipoesi di parenza Sul mercao sono preseni all isane ZCB che scadono fra,2,,n periodi Periodo:

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fondameni di Teleomuniazioni 6 - SEGNALI IN BANDA ASSANTE E MODULAZIONI rof. Mario Barbera [pare 4] 1 Modulazioni digiali binarie Il segnale m() sia un segnale digiale in banda base, rappresenao

Dettagli

TECNICA DELLE ASSICURAZIONI

TECNICA DELLE ASSICURAZIONI TECNICA DELLE ASSICURAZIONI E DELLE FORME PENSIONISTICHE Prof. Annamaria Olivieri a.a. 25/26 Esercizi: eso. Una socieà di calcio si impegna a risarcire con 5 euro il proprio allenaore, in caso di licenziameno

Dettagli

CINEMATICA. t B - t A = t' A - t B. (851)

CINEMATICA. t B - t A = t' A - t B. (851) CINEMATICA La prima, quesione he iene affronaa è la definizione di onemporaneià o simulaneià. Cosa si dee inendere per eeni simulanei? Sembrerebbe di poer rispondere: eeni he aengono nello sesso isane.

Dettagli

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice Eserciazione 7: Modelli di crescia: arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Popolazione sabile e sazionaria. Viviana Amai 03/06/200 Modelli di crescia Nella

Dettagli

VALORE EFFICACE DEL VOLTAGGIO

VALORE EFFICACE DEL VOLTAGGIO Fisica generale, a.a. /4 TUTOATO 8: ALO EFFC &CCUT N A.C. ALOE EFFCE DEL OLTAGGO 8.. La leura con un mulimero digiale del volaggio ai morsei di un generaore fornisce + in coninua e 5.5 in alernaa. Tra

Dettagli

Lezione 11. Inflazione, produzione e crescita della moneta

Lezione 11. Inflazione, produzione e crescita della moneta Lezione 11 (BAG cap. 10) Inflazione, produzione e crescia della monea Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Tre relazioni ra produzione, disoccupazione e inflazione Legge di Okun

Dettagli

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale Teoria della Finanza Aziendale Rischio e Valuazione degli invesimeni 9 1-2 Argomeni raai Coso del capiale aziendale e di progeo Misura del bea Coso del capiale e imprese diversificae Rischio e flusso di

Dettagli

Differenziazione di prodotto e qualità in monopolio

Differenziazione di prodotto e qualità in monopolio Economia Indusriale Capiolo 7 Differenziazione di prodoo e qualià in monopolio Beoni Michela Gallizioli Giorgio Gaverina Alessandra Rai Nicola Signori Andrea AGENDA Concei di differenziazione vericale

Dettagli

Il condensatore. Carica del condensatore: tempo caratteristico

Il condensatore. Carica del condensatore: tempo caratteristico Il condensaore IASSUNTO: apacia ondensaori a geomeria piana, cilindrica, sferica La cosane dielerica ε r ondensaore ceramico, a cara, eleroliico Il condensaore come elemeno di circuio: ondensaori in serie

Dettagli

UNIVERSITA DEGLI STUDI DI SASSARI. L approccio time series per l analisi e la previsione della disoccupazione sarda

UNIVERSITA DEGLI STUDI DI SASSARI. L approccio time series per l analisi e la previsione della disoccupazione sarda UNIVERSITA DEGLI STUDI DI SASSARI FACOLTA DI SCIENZE POLITICHE MASTER IN STATISTICA APPLICATA L approccio ime series per l analisi e la previsione della disoccupazione sarda Relaore: Prof. Paolo Maana

Dettagli

V AK. Fig.1 Caratteristica del Diodo

V AK. Fig.1 Caratteristica del Diodo 1 Raddrizzaore - Generalià I circuii raddrizzaori uilizzano componeni come i Diodi che presenano la caraerisica di unidirezionalià, cioè permeono il passaggio della correne solo in un verso. In figura

Dettagli

Università di Pisa - Polo della Logistica di Livorno Corso di Laurea in Economia e Legislazione dei Sistemi Logistici. Anno Accademico: 2013/14

Università di Pisa - Polo della Logistica di Livorno Corso di Laurea in Economia e Legislazione dei Sistemi Logistici. Anno Accademico: 2013/14 Universià di isa - olo della Logisica di Livorno Corso di Laurea in Economia e Legislazione dei Sisemi Logisici Anno Accademico: 03/4 CORSO DI SISTEMI DI MOVIMENTAZIONE E STOCCAGGIO Docene: Marino Lupi

Dettagli

Economia e gestione delle imprese - 07. Sommario. Liquidità e solvibilità

Economia e gestione delle imprese - 07. Sommario. Liquidità e solvibilità Economia e gesione delle imprese - 07 Obieivi: Descrivere i processi operaivi della gesione finanziaria nel coneso aziendale. Analizzare le decisioni di invesimeno. Analizzare le decisioni di finanziameno.

Dettagli

flusso in uscita (FU) Impresa flusso in entrata (FE)

flusso in uscita (FU) Impresa flusso in entrata (FE) Analisi degli invesimeni Il bilancio è una sinesi a poseriori della siuazione di un'azienda. La valuazione degli invesimeni è un enaivo di valuare a priori la validià delle scele dell'azienda. L'invesimeno

Dettagli

4 Il Canale Radiomobile

4 Il Canale Radiomobile Pare IV G. Reali: Il canale radiomobile 4 Il Canale Radiomobile 4.1 INTRODUZIONE L evoluzione fondamenale nella filisofia di progeo delle rei di comunicazione indoor è il passaggio dalla modalià di rasmissione

Dettagli

x ( x, x,..., x ) (8.5, 10.3, 9.6, 8.7, 11.2, 9.9, 7.9, 10, 9, 11.1)

x ( x, x,..., x ) (8.5, 10.3, 9.6, 8.7, 11.2, 9.9, 7.9, 10, 9, 11.1) Serie Sorice e Processi Socasici Federico Andreis Inroduzione Desiderando inrodurre inuiivamene il conceo di serie sorica basa fare riferimeno a qualsiasi fenomeno misurabile ce varia nel empo e la cui

Dettagli

1.7. Il modello completo e le sue proprietà

1.7. Il modello completo e le sue proprietà Macroeconomia neoclassica 1 1.7. Il modello compleo e le sue proprieà Disponiamo ora di ui gli elemeni necessari a rappresenare il modello compleo e l equilibrio. I dai del modello sono: 1. numero degli

Dettagli

Corso di. Economia Politica

Corso di. Economia Politica Prof.ssa Blanchard, Maria Laura Macroeconomia Parisi, PhD; Una parisi@eco.unibs.i; prospeiva europea, DEM Universià Il Mulino di 2011 Brescia Capiolo I. Un Viaggio inorno al mondo Corso di Economia Poliica

Dettagli

Ma nel dettaglio, come si svolge una seduta di allenamento con la metodica SPLIT SYSTEM?

Ma nel dettaglio, come si svolge una seduta di allenamento con la metodica SPLIT SYSTEM? LO SPLIT SYSTEM Di Fabio Zonin Volee oenere oimi guadagni di forza e massa e enere conemporaneamene soo conrollo la percenuale di grasso corporeo e farlo allenandovi solo per un ora re vole la seimana?

Dettagli

LA MODELLAZIONE DEGLI IMPIANTI DI CONVERSIONE DELL ENERGIA NEL MERCATO LIBERO. Sergio Rech

LA MODELLAZIONE DEGLI IMPIANTI DI CONVERSIONE DELL ENERGIA NEL MERCATO LIBERO. Sergio Rech LA MODELLAZIONE DEGLI IMPIANTI DI CONVERSIONE DELL ENERGIA NEL MERCATO LIBERO Sergio Rech Diparimeno di Ingegneria Indusriale Universià di Padova Mercai energeici e meodi quaniaivi: un pone ra Universià

Dettagli

4 La riserva matematica

4 La riserva matematica 4 La riserva maemaica 4.1 Inroduzione La polizza, come si è viso, viene cosruia in modo da essere in equilibrio auariale alla daa di sipula = 0 e rispeo alla base ecnica del I ordine: se X è il flusso

Dettagli

1.7. Il modello completo e le sue proprietà

1.7. Il modello completo e le sue proprietà La Teoria Generale 1 1.7. Il modello compleo e le sue proprieà Il ragionameno svolo fino a queso puno è valido per un livello dao del salario nominale e dei prezzi. Le grandezze preseni nel modello, per

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO

ESAME DI STATO DI LICEO SCIENTIFICO ESAME DI STATO DI LICEO SCIENTIFICO SIMULAZIONE DELLA II PROVA A.S. 014-15 Indirizzo: SCIENTIFICO Tema di: MATEMATICA 1 Nome del candidao Classe Il candidao risolva uno dei due problemi; il problema da

Dettagli

Esercizio 1 ( es 1 lez 11) La matrice è diagonalizzabile: verificare, trovando la matrice diagonalizzante, che A è simile a A.

Esercizio 1 ( es 1 lez 11) La matrice è diagonalizzabile: verificare, trovando la matrice diagonalizzante, che A è simile a A. Eserciio ( es le La marice è diagonaliabile: verificare, rovando la marice diagonaliane, che è simile a. Esisono re auovalori: mol.alg(- dim V - ; mol.alg( dim V ; mol.alg(- dim V -. Esise una marice simile

Dettagli

Sviluppare una metodologia di analisi per valutare la convenienza economica di un nuovo investimento, tenendo conto di alcuni fattori rilevanti:

Sviluppare una metodologia di analisi per valutare la convenienza economica di un nuovo investimento, tenendo conto di alcuni fattori rilevanti: Analisi degli Invesimeni Obieivo: Sviluppare una meodologia di analisi per valuare la convenienza economica di un nuovo invesimeno, enendo cono di alcuni faori rilevani: 1. Dimensione emporale. 2. Grado

Dettagli

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p =

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p = 5. Rette e piani in R 3 ; sfere. In questo paragrafo studiamo le rette, i piani e le sfere in R 3. Ci sono due modi per desrivere piani e rette in R 3 : mediante equazioni artesiane oppure mediante equazioni

Dettagli

Crescita e Convergenza economica nei modelli neoclassici

Crescita e Convergenza economica nei modelli neoclassici MACEOECONOMIA AVANZATA Crescia e Convergenza economica nei modelli neoclassici Pasquale Tridico Universià di Roma Tre ridico@uniroma3.i Il seso fao silizzao di KAldor non vi sono prove significaive di

Dettagli

STUDIO DELL ASIMMETRIA DELLE

STUDIO DELL ASIMMETRIA DELLE Universià degli Sudi di Padova FACOLTÀ DI SCIENZE STATISTICHE CORSO DI LAUREA SPECIALISTICA IN SCIENZE STATISTICHE, ECONOMICHE, FINANZIARIE E AZIENDALI TESI DI LAUREA STUDIO DELL ASIMMETRIA DELLE DISTRIBUZIONI

Dettagli

del segnale elettrico trifase

del segnale elettrico trifase Rappresenazione del segnale elerico rifase Gli analizzaori di poenza e di energia Qualisar+ consenono di visualizzare isananeamene le caraerisiche di una ree elerica rifase. Rappresenazione emporale I

Dettagli

RELAZIONE FINALE: MODELLAZIONE DEI PREZZI DELL ENERGIA ELETTRICA: UN ESEMPIO

RELAZIONE FINALE: MODELLAZIONE DEI PREZZI DELL ENERGIA ELETTRICA: UN ESEMPIO RELAZIONE FINALE: MODELLAZIONE DEI PREZZI DELL ENERGIA ELETTRICA: UN ESEMPIO RELATORE: CH.MO PROF. LISI FRANCESCO LAUREANDO: CANELLA FRANCESCO MATRICOLA: 45835 ANNO ACCADEMICO: 003-004 4 Alla mia famiglia

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI

FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI CAPITOLO FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI Sono le funzioni aveni come dominio e codominio dei sooinsiemi dei numeri reali; esse sono alla base dei modelli maemaici preseni in ogni campo

Dettagli

A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI

A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI A.A. 2013/14 Eserciazione - IRPEF TESTO E SOLUZIONI Esercizio 1 - IRPEF Il signor X, che vive solo e non ha figli, ha percepio, nel corso dell anno correne, i segueni reddii: - Reddii da lavoro dipendene

Dettagli

La valutazione d azienda: conciliazione tra metodo diretto ed indiretto

La valutazione d azienda: conciliazione tra metodo diretto ed indiretto Valuazione d azienda La valuazione d azienda: conciliazione ra meodo direo ed indireo di Maeo Versiglioni (*) e Filippo Riccardi (**) La meodologia maggiormene uilizzaa per la valuazione d azienda, è quella

Dettagli

Trasformazioni di Galileo

Trasformazioni di Galileo Principio di Relaivià Risrea (peciale) e si sceglie un dr rispeo al uale le leggi della fisica sono scrie nella forma più semplice (dr ineriale) allora le sesse leggi valgono in ualunue alro dr in moo

Dettagli

6 IL TASSO DI CAMBIO

6 IL TASSO DI CAMBIO Il asso di cambio 111 6 IL TASSO DI CAMBIO Il sisema economico silizzao dal quale siamo parii nel capiolo 1 si basa sul barao. In esso quindi non roviamo monea né ano meno la necessià di converire grandezze

Dettagli

2. Verifica dell apparato sperimentale Acquisizione ed analisi dati

2. Verifica dell apparato sperimentale Acquisizione ed analisi dati . Verifica dell appara sperimenale Acquisizine ed analisi dai Una vla deerminaa la lgica di rigger e la ensine di lavr dei fmliplicari, pssiam acquisire in md aumaic gli eveni significaivi ed effeuare

Dettagli

2. Politiche di gestione delle scorte

2. Politiche di gestione delle scorte deerminisica variabile nel empo Quando la domanda viaria nel empo, il problema della gesione dell invenario divena preamene dinamico. e viene deo di lo-sizing. Consideriamo il caso in cui la domanda pur

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Esercizi di Maemaica Finanziaria Copyrigh SDA Bocconi Faori nanziari Classi care e rappresenare gra camene i segueni faori nanziari per : (a) = + ; 8 (b) = ( + ; ) (c) = (d) () = ; (e) () = ( + ; ) (f)

Dettagli

A. Quantità edificatorie e densità territoriale...1

A. Quantità edificatorie e densità territoriale...1 Cara di Urbanisica I Pro.ssa Arch. Fabiola Fraini Cara di Urbanisica I --- a.a. 2003/2004 PROGETTO PER UN AMBITO URBANO NEL QUARTIERE DI CENTOCELLE Laboraorio progeuale annuale INDICAZIONI RIGUARDO LE

Dettagli

Misura della velocità della luce

Misura della velocità della luce CORSO DI LABORATORIO DI FISICA A Misura dea veoià dea ue Sopo de esperienza è a misura sperimenae dea veoià dea ue, mediane a misura de empo di riardo ra due impusi aser, generai onemporaneamene, he perorrono

Dettagli

Movimento nei fluidi : prima parte Applicazioni della meccanica dei fluidi

Movimento nei fluidi : prima parte Applicazioni della meccanica dei fluidi In questa sezione vi sono argomenti he non fanno normalmente parte di un orso tradizionale di Fisia. Si tratta di una breve esursione nei viini ampi della biologia e della zoologia: appliazioni delle leggi

Dettagli

Analisi e valutazione degli investimenti

Analisi e valutazione degli investimenti Analisi e valuazione degli invesimeni Indice del modulo L analisi degli invesimeni e conceo di invesimeno Il valore finanziario del empo e aualizzazione Capializzazione e aualizzazione Il coso opporunià

Dettagli

Moltiplicazione di segnali lineari

Moltiplicazione di segnali lineari Moliplicazione di segnali lineari Processo non lineare: x ( x ( x ( Meodologia uilizzaa per: Campionameno ed acquisizione dai Processi di comunicazione (modulazione Abbiamo viso con il campionameno dei

Dettagli

ITI GALILEO FERRARIS S. GIOVANNI LA PUNTA APPUNTI DI TELECOMUNICAZIONI PER IL 5 ANNO IND. ELETTRONICA E TELECOMUNICAZIONI

ITI GALILEO FERRARIS S. GIOVANNI LA PUNTA APPUNTI DI TELECOMUNICAZIONI PER IL 5 ANNO IND. ELETTRONICA E TELECOMUNICAZIONI ITI GALILEO FERRARIS S. GIOVANNI LA PUNTA APPUNTI DI TELECOMUNICAZIONI PER IL 5 ANNO IND. ELETTRONICA E TELECOMUNICAZIONI Prof. Ing. R. M. Poro A cura della TELECOMUNICAZIONI Con il ermine elecomunicazioni

Dettagli

La Riassicurazione. Prof. Cerchiara Rocco Roberto. email: rocco.cerchiara@unical.it. Materiale e Riferimenti

La Riassicurazione. Prof. Cerchiara Rocco Roberto. email: rocco.cerchiara@unical.it. Materiale e Riferimenti Prof. R.R. Cerciara La Riassicurazione Prof. Cerciara Rocco Robero email: rocco.cerciara@unical.i Maeriale e Riferimeni 1. Lucidi disribuii in aula. Daboni, pagg. 13-17 e 137-148 (Leggere Riassicurazione

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA

UNIVERSITA DEGLI STUDI DI PADOVA UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE TESI DI LAUREA IN STATISTICA ECONOMIA E FINANZA STIMA DELLA VOLATILITA NEI MERCATI FINANZIARI CON DATI INFRA-GIORNALIERI: ALCUNI CONFRONTI

Dettagli

Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza

Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza Nome..Cognome. classe D Gennaio 0 erifica: Parabola e circonferenza. Dai la definizione di parabola. Considera la parabola di fuoco F(,) e direrice r:, deermina: a) l equazione dell asse b) le coordinae

Dettagli

Introduzione all analisi delle serie storiche e dei metodi di previsione

Introduzione all analisi delle serie storiche e dei metodi di previsione Inroduzione all analisi delle serie soriche e dei meodi di previsione Indice. Capiolo inroduivo,. Inroduzione.2 Fasi di un analisi di previsione e sruura delle dispense 2. Meodi e srumeni di base, 5 2.

Dettagli

Processi stocastici. Corso Segnale e Rumore Giorgio Brida Giugno/luglio 2007 Pagina 1 di 33

Processi stocastici. Corso Segnale e Rumore Giorgio Brida Giugno/luglio 2007 Pagina 1 di 33 Processi socasici Inroduzione isemi lineari e sazionari; luuazioni casuali, derive e disurbi; processi socasici sazionari in senso lao, unzione di auocorrelazione e spero di poenza; risposa di un sisema

Dettagli

CBM a.s. 2012/2013 PROBLEMA DELLE SCORTE

CBM a.s. 2012/2013 PROBLEMA DELLE SCORTE CBM a.s. 212/213 PROBLEMA DELLE SCORTE Chiamiamo SCORTA ogni riserva di materiali presente all interno del sistema produttivo in attesa di essere sottoposto ad un proesso di trasformazione o di distribuzione.

Dettagli

MODELLI AFFLUSSI DEFLUSSI

MODELLI AFFLUSSI DEFLUSSI MODELLI AFFLUSSI DEFLUSSI Al ecnico si presenano moli casi in cui non è sufficiene la deerminazione delle massime porae ramie i crieri di similiudine idrologica, precedenemene esposi. Si ciano, a iolo

Dettagli

Un po di teoria. cos è un condensatore?

Un po di teoria. cos è un condensatore? Sudio sperimenale del processo di carica e scarica di un condensaore cos è un condensaore? Un po di eoria Un condensaore è un sisema di due conduori affacciai, dei armaure, separai da un isolane. Esso

Dettagli

Il modello di Black-Scholes. Il modello di Black-Scholes/2

Il modello di Black-Scholes. Il modello di Black-Scholes/2 Il modello di Black-Scholes Si raa sosanzialmene del modello in empo coninuo che si oiene facendo endere a 0 nel modello binomiale. Come vedremo, è un modello di fondamenale imporanza, e per esso a Myron

Dettagli

Gestione della produzione MRP e MRPII

Gestione della produzione MRP e MRPII Sommario Gesione della produzione e Inroduzione Classificazione Misure di presazione La Disina Base Logica Lo Sizing in II Inroduzione Inroduzione Def: Gesire la produzione significa generare e sfruare

Dettagli

Provincia di Treviso

Provincia di Treviso Treviso, 21 dicembre 2004 OGGETTO: Gesione rifiui urbani e assimilai Servizio pubblico inegraivo di gesione rifiui speciali Adempimeni relaivi alla compilazione di formulari di idenificazione, regisri

Dettagli

Regolatori switching

Regolatori switching 2 A4 Regolaori swiching I regolaori di ensione lineari hanno il grave difeo di non consenire il raggiungimeno di valori di efficienza paricolarmene elevai. Infai, in quese archieure gli elemeni di regolazione

Dettagli

Biblioteca di Telepass + 2 biennio TOMO 4. Il portafoglio salvo buon fine: accreditato diretto in c/c e gestione mediante il Conto Anticipi

Biblioteca di Telepass + 2 biennio TOMO 4. Il portafoglio salvo buon fine: accreditato diretto in c/c e gestione mediante il Conto Anticipi Biblioeca di Telepass + biennio TOMO UNITÀ I I prodoi bancari: il fi do e i fi nanziameni alla clienela Il porafoglio salvo buon fine: accrediao direo in c/c e gesione mediane il Cono nicipi Tuorial ESERCIZIO

Dettagli

Capitolo 1 - La termodinamica

Capitolo 1 - La termodinamica Auni di FISICA ECNICA Caiolo Caiolo - La ermodinamia Generalià e definizioni... Sisemi ermodinamii... Equilibrio ermodinamio... 3 Prorieà e sao di un sisema... 4 Sisemi semlii: diagrammi di sao e suerfii

Dettagli

Esercitazione n 2. Morganti Nicola Matr. 642686. Molla ad elica cicilindrica

Esercitazione n 2. Morganti Nicola Matr. 642686. Molla ad elica cicilindrica ar. 64686 olla ad elica cicilindrica Eserciazione n 9 In figura è rappresenao un basameno sospeso anivibrane di una macchina nella quale viene originaa una forza perurbane alernaa sinusoidale di inensià

Dettagli

Cenni di Matematica Finanziaria

Cenni di Matematica Finanziaria Cenni di Maemaica Finanziaria M.Leizia Guerra Facolà di Economia Universià di Urbino Carlo Bo Leggi e regimi finanziari Operazioni finanziarie elemenari Un conrao finanziario ra due soggei Alfa e Bea prevede

Dettagli

I mercati dei beni e i mercati finanziari in economia aperta

I mercati dei beni e i mercati finanziari in economia aperta I mercai dei beni e i mercai finanziari in economia apera Economia apera Mercai dei beni: l opporunià per i consumaori e le imprese di scegliere ra beni nazionali e beni eseri. Mercai delle aivià finanziarie:

Dettagli

ESEMPI DI ESERCIZI SU IRPEF ED IRES

ESEMPI DI ESERCIZI SU IRPEF ED IRES ESEMPI DI ESERCIZI SU IRPEF ED IRES 1. Irpef 1) Dopo avere definio il conceo di progressivià delle impose, si indichino le modalià per la realizzazione di un sisema di impose progressivo. 2) Il signor

Dettagli

BOLLETTINO UNIONE MATEMATICA ITALIANA

BOLLETTINO UNIONE MATEMATICA ITALIANA BOLLETTINO UNIONE MATEMATICA ITALIANA Sezione A La Maemaica nella Socieà e nella Culura Sabrina Mulinacci Valuazione del prezzo delle opzioni Americane: meodi probabilisici Bolleino dell Unione Maemaica

Dettagli

Modelli di base per la politica economica

Modelli di base per la politica economica Modelli di base per la politia eonomia Capitolo Marella Mulino Modelli di base per la politia eonomia Corso di Politia eonomia a.a. 22-23 Modelli di base per la politia eonomia Capitolo Capitolo Modello

Dettagli

DI IDROLOGIA TECNICA PARTE III

DI IDROLOGIA TECNICA PARTE III FCOLT DI INGEGNERI Laurea Specialisica in Ingegneria Civile N.O. Giuseppe T. ronica CORSO DI IDROLOGI TECNIC PRTE III Idrologia delle piene Lezione XVII: I meodi indirei per la valuazione delle porae al

Dettagli

Molle Costruzione di Macchine_ MOLLE

Molle Costruzione di Macchine_ MOLLE OLLE Nella cosruzione di macchine sono uilizzae er: Aenuare gli eei di uri Esalare o ridurre gli eei vibraori Riorare alla osizione iniziale un elemeno di macchina A seconda del io di solleciazione, si

Dettagli

Analisi di Mercato. Facoltà di Economia. La pubblicità. Creare la conoscenza di un prodotto. Creare l'immagine di marca. Influenzare gli atteggiamenti

Analisi di Mercato. Facoltà di Economia. La pubblicità. Creare la conoscenza di un prodotto. Creare l'immagine di marca. Influenzare gli atteggiamenti Obieivi della pubblicià Creare la conoscenza di un prodoo Analisi di Mercao Facolà di Economia francesco mola La pubblicià Creare l'immagine di marca Influenzare gli aeggiameni Rafforzare la fedelà alla

Dettagli

LEZIONE 10. Il finanziamento dell istruzione. Economia del Settore Pubblico. Modalità dell intervento pubblico. Il finanziamento dell istruzione

LEZIONE 10. Il finanziamento dell istruzione. Economia del Settore Pubblico. Modalità dell intervento pubblico. Il finanziamento dell istruzione Economia del Seore Pubblico Laura Vici laura.vici@unibo.i www2.dse.unibo.i/lvici/edsp_ii.hm Modalià dell inerveno pubblico Regolamenazione Finanziameno: parziale o inegrale? Produzione: pubblica o privaa?

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTÀ DI ECONOMIA FEDERICO CAFFÈ

UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTÀ DI ECONOMIA FEDERICO CAFFÈ UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTÀ DI ECONOMIA FEDERICO CAFFÈ CORSO DI LAUREA IN ECONOMIA E COMMERCIO Tesi di laurea IL RUOLO DELL ESPANSIONE DELLA DOMANDA DI CONSUMI NELLA CRESCITA ECONOMICA: ALCUNE

Dettagli

MOMENTI E CENTRAGGIO DEL VELIVOLO

MOMENTI E CENTRAGGIO DEL VELIVOLO x 1 x ISTITUZIONI DI INGEGNERIA AEROSAZIALE OENTI E CENTRAGGIO VELIVOLO OENTI E CENTRAGGIO DEL VELIVOLO er il alolo delle prestazioni in volo orizzontale rettilineo ed uniforme, il velivolo può essere

Dettagli

Il modello Neo-Keynesiano, politica monetaria e dinamica dell inflazione. Perché l inflazione è persistente?

Il modello Neo-Keynesiano, politica monetaria e dinamica dell inflazione. Perché l inflazione è persistente? SAGGIO AD INVITO Il modello Neo-Keynesiano, poliica monearia e dinamica dell inflazione. Perché l inflazione è persisene? Guido Ascari* Universià degli Sudi di Pavia Quesa rassegna, dopo aver brevemene

Dettagli

Strumenti derivati: aspetti introduttivi. Outline. Il contratto forward. Generalità sugli strumenti derivati. Payoff del contratto forward

Strumenti derivati: aspetti introduttivi. Outline. Il contratto forward. Generalità sugli strumenti derivati. Payoff del contratto forward Srumeni derivai: aspei inroduivi Ouline Conrai forward, fuures e opzioni: descrizione degli srumeni ed esempi di sraegie operaive Prof. Fabio Bellini fabio.bellini@unimib.i Universià di Milano Bicocca

Dettagli

Modelli GARCH multivariati con correlazione condizionata dinamica

Modelli GARCH multivariati con correlazione condizionata dinamica Universià degli Sudi di Padova FACOLTÀ DI SCIENZE STATISTICHE TESI DI LAUREA IN SCIENZE STATISTICHE ED ECONOMICHE Modelli GARCH mulivariai con correlazione condizionaa dinamica Relaore: Prof. SILVANO BORDIGNON

Dettagli