Ricerca Automatica. Esercitazione 3. Ascensore. Ascensore. Ascensore

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Ricerca Automatica. Esercitazione 3. Ascensore. Ascensore. Ascensore"

Transcript

1 Ascensore Ricerca Automatica Esercitazione In un grattacielo ci sono coppie formate da marito e moglie. Il cancello delle scale viene chiuso e l unico modo per scendere è con l ascensore che può portare persone alla volta e deve sempre portare almeno un passeggero. I mariti non vogliono che le rispettive mogli si ritrovino in presenza di altri mariti se non sono presenti essi stessi. Come devono scendere le coppie senza crisi di gelosia? Formalizzare la soluzione come un problema di ricerca. Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 0 Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 1 Ascensore Ascensore (a) (2 p.) caratterizzare lo spazio degli stati lo stato iniziale e lo stato obiettivo (a) r. Lo spazio degli stati è costituito dalle possibili disposizioni tra piano terra ed ultimo piano delle coppie e dell ascensore. Una possibile rappresentazione dello stato è data da: C C C boolean dove C = boolean boolean, in cui il valore 1 rappresenta la posizione all ultimo piano e si assume che in una coppia vengano indicati nell ordine moglie e marito. stato iniziale: <c(1, 1), c(1, 1), c(1, 1), 1 > stato finale: <c(0, 0),c(0, 0),c(0, 0), 0 > Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 2 (b) (2 p.) caratterizzare gli operatori (b) r. Gli operatori sono: scendi(x) dove x rappresenta una combinazione di persone compresa tra 1 e, l operatore è applicabile se le persone indicate sono all ultimo piano e se l ascensore si trova all ultimo piano; x può essere rappresentato con le stesse convenzioni usate per lo stato: ad esempio c(0, 1), c(0, 1), c(0, 1) è un parametro valido per l operazione sali(x) dove x rappresenta una combinazione di persone compresa tra 1 e, l operatore è applicabile se le persone indicate e l ascensore si trovano al piano terra; la condizione di applicabilità degli operatori richiede inoltre che quando una moglie si trova in ascensore o al Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione

2 Ascensore piano terra o all ultimo piano senza marito, non siano presenti anche altri mariti: Ad esempio c(1, 0),c(X,1),c(X,X) non è una configurazione ammissibile. (c) (2 p.) costruire gli stati raggiungibili a partire dallo stato iniziale con un singolo operatore (c) r. Y = scendi(c(1, 1), c(0, 0), c(0, 0)) S = stato(c(0, 0), c(1, 1), c(1, 1), 0) ; Y = scendi(c(0, 1), c(0, 1), c(0, 1)) S = stato(c(1, 0), c(1, 0), c(1, 0), 0) ; Y = scendi(c(1, 0), c(1, 0), c(1, 0)) S = stato(c(0, 1), c(0, 1), c(0, 1), 0) ; Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 4 Y = scendi(c(1, 0), c(1, 0), c(0, 0)) S = stato(c(0, 1), c(0, 1), c(1, 1), 0) ; Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 5 Y = scendi(c(1, 0), c(0, 0), c(1, 0)) S = stato(c(0, 1), c(1, 1), c(0, 1), 0) ; Y = scendi(c(1, 0), c(0, 0), c(0, 0)) S = stato(c(0, 1), c(1, 1), c(1, 1), 0) ; Y = scendi(c(0, 0), c(1, 1), c(0, 0)) S = stato(c(1, 1), c(0, 0), c(1, 1), 0) ; S = stato(c(1, 1), c(1, 1), c(0, 0), 0) ; Y = scendi(c(0, 0), c(0, 0), c(1, 0)) S = stato(c(1, 1), c(1, 1), c(0, 1), 0) ; Y = scendi(c(0, 0), c(1, 0), c(1, 0)) S = stato(c(1, 1), c(0, 1), c(0, 1), 0) ; Y = scendi(c(0, 0), c(1, 0), c(0, 0)) S = stato(c(1, 1), c(0, 1), c(1, 1), 0) ; Y = scendi(c(0, 0), c(0, 0), c(1, 1)) Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 6 Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 7

3 Ascensore Torri di Hanoi (d) (4 p.) costruire una soluzione con la tecnica di ricerca in profondità. (d) r. stato(c(1, 1), c(1, 1), c(1, 1), 1) scendi(c(1, 0), c(1, 0), c(1, 0)) stato(c(0, 1), c(0, 1), c(0, 1), 0) sali(c(0, 0), c(0, 0), c(1, 0)) stato(c(0, 1), c(0, 1), c(1, 1), 1) scendi(c(0, 1), c(0, 1), c(0, 1)) stato(c(0, 0), c(0, 0), c(1, 0), 0) sali(c(0, 0), c(0, 0), c(0, 1)) stato(c(0, 0), c(0, 0), c(1, 1), 1) scendi(c(0, 0), c(0, 0), c(1, 1)) stato(c(0, 0), c(0, 0), c(0, 0), 0) Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 8 Il gioco delle Torri di Hanoi ha origine da un antica leggenda Vietnamita, secondo la quale un gruppo di monaci sta spostando una torre di 64 dischi (secondo la leggenda, quando i monaci avranno finito, verrà la fine del mondo). Lo spostamento della torre di dischi avviene secondo le seguenti regole: inizialmente, la torre di dischi di dimensione decrescente è posizionata su un perno 1; l obiettivo è quello di spostarla su un perno 2, usando un perno di appoggio; le condizioni per effettuare gli spostamenti sono: tutti i dischi, tranne quello spostato, devono stare su una delle torri Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 9 è possibile spostare un solo disco alla volta, dalla cima di una torre alla cima di un altra torre; un disco non può mai stare su un disco più piccolo. Formalizzare la soluzione del gioco delle torri di Hanoi come un problema di ricerca. Lo stato iniziale, uno stato intermedio, e lo stato finale per un insieme di 6 dischi sono mostrati nelle seguenti figure: caratterizzare lo spazio degli stati caratterizzare lo stato iniziale e lo stato obiettivo definire gli operatori costruire l albero di ricerca con la tecnica di ricerca a profondità limitata con n = per il problema di dischi. Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 10 Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 11

4 Torri di Hanoi: stati Torri di Hanoi: stati caratterizzare lo spazio degli stati lo stato iniziale e lo stato obiettivo gli stati vengono rappresentati tramite terne di liste ordinate (in ordine crescente) di interi (LO), che indicano il diametro dei dischi. LO LO LO < [1, 2, ], [], [] > < [], [1, 2, ], [] > Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 12 Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 1 Torri di Hanoi: operatori Slot machine definire gli operatori muovi1() :< [X Xs],Y,Z > < Xs,Y,[X Z] > muovi2() :< X,[Y Ys],Z > < X,Ys,[Y Z] > muovi12() :< [X Xs],Y,Z > < Xs,[X Y ],Z > muovi21() :< X,[Y Ys],Z > < [Y X],Y s,z > muovi1() :< X,Y,[Z Zs] > < [Z X],Y,Zs > muovi2() :< X,Y,[Z Zs] > < X,[Z Y ],Zs > muovisd si può eseguire se la condizione sul diametro dei dischi è soddisfatta nello stato destinazione. Inoltre il disco da spostare deve essere presente nello stato sorgente, ma questo è implicato dalla definizione con le liste non vuote. Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 14 Si consideri il seguente gioco: un display mostra un numero costituito da tre cifre c 1, c 2 e c appartenenti all insieme {0, 1, 2}. Sotto ogni cifra c i è presente un pulsante p i. Il giocatore può premere i pulsanti - uno alla volta - in successione. L effetto della pressione del pulsante p i è quello di sostituire alla cifra c i la somma modulo delle altre due cifre. Modellare la soluzione del gioco come problema di ricerca in un opportuno spazio degli stati. Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 15

5 Slot machine: stati Slot machine: operatori Descrivere lo spazio degli stati; Lo spazio degli stati è rappresentato dai valori dei pulsanti: P P P con P = {0, 1, 2}. stato iniziale < 0, 1, 2 > stato finale < 2, 1, 0 > Descrivere gli operatori; b1 :<X,Y,Z> < Y + Z, Y, Z > b2 :<X,Y,Z > < X,X+ Z, Z > b2 :<X,Y,Z> <X,Y,X + Y > Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 16 Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 17 Slot machine: soluzione Supporre che all inizio il display mostri 0, 1, 2 ; rappresentare l albero di ricerca che si ottiene visitando lo spazio degli stati in ampiezza a partire da tale stato iniziale e fino a individuare la più breve pressione di tasti che conduce allo stato 2, 1, 0 (si eviti di espandere più volte uno stesso stato); b :< 0, 1, 2 > < 0, 1, 1 > b1 :< 0, 1, 1 > < 2, 1, 1 > b :< 2, 1, 1 > < 2, 1, 0 > Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 18 Ricerca: domande 1. La ricerca in profondità può non terminare su alberi di ricerca con fattore di ramificazione finito [vero o falso?]; 2. Se il fattore di ramificazione è finito e lo spazio degli stati ha profondità infinita, la ricerca in ampiezza è completa [vero o falso?];. La ricerca in ampiezza espande sempre meno nodi rispetto a quella in profondità [vero o falso?]. 4. Il costo di spazio della ricerca in profondità è lineare nella profondità dell albero di ricerca [vero o falso?]. 5. A differenza degli algoritmi di ricerca in ampiezza, gli algoritmi ad approfondimento iterativo possono trovare come prima soluzione una soluzione che richiede un numero di passi non minimale [vero o falso?] Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 19

6 6. Un euristica si considera ammissibile quando non è mai inferiore del costo effettivo per raggiungere l obiettivo [vero o falso?]. 7. Definire la funzione di valutazione dei nodi usata dall algoritmo A* e spiegare la differenza con la ricerca golosa. 8. Descrivere il principio della ricerca simulated annealing. Domande e Risposte 1 (e)(2 p.) Illustrare le differenze tra la ricerca golosa e la ricerca euristica con A*. (e) r. La ricerca golosa minimizza il costo stimato per ottenere la soluzione, mentre la ricerca A* minimizza il costo del cammino totale, cioè il costo per raggiungere il nodo corrente + il il costo stimato per ottenere la soluzione. Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 20 Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 21 Domande e Risposte 2 (e)(2 p.) Qual è il vantaggio principale della ricerca ad approfondimento iterativo rispetto alla ricerca in ampiezza e rispetto alla ricerca in profondità. (e) r. Rispetto alla ricerca in ampiezza la ricerca ad approfondimento iterativo usa meno memoria (lineare anzichè esponenziale) e rispetto alla ricerca in profondità è completa ed ottimale (se il fattore di ramificazione è finito). Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 22

Intelligenza Artificiale

Intelligenza Artificiale Intelligenza Artificiale Esercizi e Domande di Esame Tecniche di Ricerca e Pianificazione Esercizi Griglia Si consideri un ambiente costituito da una griglia n n in cui si muove un agente che può spostarsi

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 3 5 7-8 9 57

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

Implementazione del gioco del Bantumi Corso di Intelligenza Artificiale 2012

Implementazione del gioco del Bantumi Corso di Intelligenza Artificiale 2012 Implementazione del gioco del Bantumi Corso di Intelligenza Artificiale 2012 Nicola Febbrari Università degli Studi di Verona Facoltà MM.FF.NN. nicola.febbrari@studenti.univr.it 22 gennaio 2013 1 Introduzione

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Dispensa 19 Ricorsione A. Miola Marzo 2012 http://www.dia.uniroma3.it/~java/fondinf/ Ricorsione 1 Contenuti q Funzioni e domini definiti

Dettagli

Contenuto e scopo presentazione. Vehicle Scheduling. Motivazioni VSP

Contenuto e scopo presentazione. Vehicle Scheduling. Motivazioni VSP Contenuto e scopo presentazione Vehicle Scheduling 08/03/2005 18.00 Contenuto vengono introdotti modelli e metodi per problemi di Vehicle Scheduling Problem (VSP) Scopo fornire strumenti di supporto alle

Dettagli

Problemi di soddisfacimento di vincoli. Formulazione di problemi CSP. Colorazione di una mappa. Altri problemi

Problemi di soddisfacimento di vincoli. Formulazione di problemi CSP. Colorazione di una mappa. Altri problemi Problemi di soddisfacimento di vincoli Maria Simi a.a. 2014/2015 Problemi di soddisfacimento di vincoli (CSP) Sono problemi con una struttura particolare, per cui conviene pensare ad algoritmi specializzati

Dettagli

Ricerca non informata in uno spazio di stati

Ricerca non informata in uno spazio di stati Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A5_2 V2.4 Ricerca non informata in uno spazio di stati Il contenuto del documento è liberamente utilizzabile dagli

Dettagli

Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado

Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado. Risposta A). Il triangolo ABC ha la stessa altezza del triangolo AOB ma base di lunghezza doppia (il diametro

Dettagli

Esercizi Capitolo 6 - Alberi binari di ricerca

Esercizi Capitolo 6 - Alberi binari di ricerca Esercizi Capitolo 6 - Alberi binari di ricerca Alberto Montresor 23 settembre 200 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile

Dettagli

Ricorsione. Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona.

Ricorsione. Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona. Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Sommario Implementazione di Utilizzo ricorsione per processare dati in java vs. multipla

Dettagli

Intelligenza Artificiale. Metodi di ricerca

Intelligenza Artificiale. Metodi di ricerca Intelligenza Artificiale Metodi di ricerca Marco Piastra Metodi di ricerca - 1 Ricerca nello spazio degli stati (disegno di J.C. Latombe) I nodi rappresentano uno stato Gli archi (orientati) una transizione

Dettagli

FONDAMENTI DI INTELLIGENZA ARTIFICIALE M 15 Luglio 2010 Tempo a disposizione 2h 45min Risultato 32/32 punti

FONDAMENTI DI INTELLIGENZA ARTIFICIALE M 15 Luglio 2010 Tempo a disposizione 2h 45min Risultato 32/32 punti FONDAMENTI DI INTELLIGENZA ARTIFICIALE M Luglio 2010 Tempo a disposizione 2h 45min Risultato 32/32 punti Esercizio 1 (punti 4) Si formalizzino il logica dei predicati del I ordine le seguenti frasi: Ogni

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

Ricerca Operativa A.A. 2007/2008

Ricerca Operativa A.A. 2007/2008 Ricerca Operativa A.A. 2007/2008 9. Cenni su euristiche e metaeuristiche per ottimizzazione combinatoria Motivazioni L applicazione di metodi esatti non è sempre possibile a causa della complessità del

Dettagli

Ricerca con avversari

Ricerca con avversari Ricerca con avversari Roberto Tagliaferri Dipartimento di Informatica Università di Salerno ( Sa ) 84084 Fisciano rtagliaferri@unisa.it Indice I giochi Decisioni ottime nei giochi L algoritmo minimax Potatura

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

FONDAMENTI DI INTELLIGENZA ARTIFICIALE (8 CFU)

FONDAMENTI DI INTELLIGENZA ARTIFICIALE (8 CFU) FONDAMENTI DI INTELLIGENZA ARTIFICIALE (8 CFU) 13 Febbraio 2015 Tempo a disposizione: 2 h Risultato: 32/32 punti Esercizio 1 (punti 6) Si esprimano in logica dei predicati del I ordine le seguenti frasi:

Dettagli

CORSO di AUTOMAZIONE INDUSTRIALE

CORSO di AUTOMAZIONE INDUSTRIALE CORSO di AUTOMAZIONE INDUSTRIALE (cod. 8469) APPELLO del 10 Novembre 2010 Prof. Emanuele Carpanzano Soluzioni Esercizio 1 (Domande generali) 1.a) Controllo Modulante Tracciare qualitativamente la risposta

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 8 marzo 2012 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2012.html DECISORI RAZIONALI INTERAGENTI di Fioravante Patrone,

Dettagli

Ricorsione. Corso di Fondamenti di Informatica

Ricorsione. Corso di Fondamenti di Informatica Dipartimento di Informatica e Sistemistica Antonio Ruberti Sapienza Università di Roma Ricorsione Corso di Fondamenti di Informatica Laurea in Ingegneria Informatica (Canale di Ingegneria delle Reti e

Dettagli

Raffinamento dello schema e forme normali. T. Catarci, M. Scannapieco, Corso di Basi di Dati, A.A. 2008/2009, Sapienza Università di Roma

Raffinamento dello schema e forme normali. T. Catarci, M. Scannapieco, Corso di Basi di Dati, A.A. 2008/2009, Sapienza Università di Roma Raffinamento dello schema e forme normali 1 Forme Normali Le forme normali consentono di valutare la qualità delle relazione Sono state proposte diverse forme normali che includono, in ordine di generalità:

Dettagli

Minimo Albero Ricoprente

Minimo Albero Ricoprente Minimo lbero Ricoprente Pag. 1/20 Minimo lbero Ricoprente Il problema della definizione di un Minimo lbero Ricoprente trova applicazione pratica in diverse aree di studio, quali ad esempio la progettazione

Dettagli

1. Considerazioni generali

1. Considerazioni generali 1. Considerazioni generali Modelli di shop scheduling In molti ambienti produttivi l esecuzione di un job richiede l esecuzione non simultanea di un certo numero di operazioni su macchine dedicate. Ogni

Dettagli

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO 1. Load Balancing Un istanza del problema del load balancing consiste di una sequenza p 1,..., p n di interi positivi (pesi dei job) e un

Dettagli

MANUALE D USO DEL CONTATEMPO

MANUALE D USO DEL CONTATEMPO MANUALE D USO DEL CONTATEMPO Accendere il dispositivo con l apposito interruttore, l alimentazione può essere data dalla rete a 220V o, in mancanza, da batterie tampone ricaricabili almeno 40 minuti 1

Dettagli

3. Gli algoritmi di ottimizzazione.

3. Gli algoritmi di ottimizzazione. Marcello Salmeri - Progettazione Automatica di Circuiti e Sistemi Elettronici Capitolo 3-3. Gli algoritmi di ottimizzazione. I grafi. La teoria dei grafi è un comodo strumento per la definizione e la formalizzazione

Dettagli

Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale

Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale di Francesco Maria Milizia francescomilizia@libero.it Model Checking vuol dire cercare di stabilire se una formula è vera

Dettagli

Approcci esatti per il job shop

Approcci esatti per il job shop Approcci esatti per il job shop Riferimenti lezione: Carlier, J. (1982) The one-machine sequencing problem, European Journal of Operational Research, Vol. 11, No. 1, pp. 42-47 Carlier, J. & Pinson, E.

Dettagli

FONDAMENTI DI INTELLIGENZA ARTIFICIALE 1 parte (6 CFU) 12 Luglio 2012 Tempo a disposizione: 2 h Risultato: 32/32 punti

FONDAMENTI DI INTELLIGENZA ARTIFICIALE 1 parte (6 CFU) 12 Luglio 2012 Tempo a disposizione: 2 h Risultato: 32/32 punti FONDAMENTI DI INTELLIGENZA ARTIFICIALE 1 parte (6 CFU) 12 Luglio 2012 Tempo a disposizione: 2 h Risultato: 32/32 punti Esercizio 1 (7 punti) Si formalizzi in logica dei predicati del primo ordine la seguente

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenziali e logaritmi Corso di accompagnamento in matematica Lezione 4 Sommario 1 La funzione esponenziale Proprietà Grafico 2 La funzione logaritmo Grafico Proprietà 3 Equazioni / disequazioni esponenziali

Dettagli

Sistemi Informativi Multimediali Indicizzazione multidimensionale

Sistemi Informativi Multimediali Indicizzazione multidimensionale Indicizzazione nei sistemi di IR (1) Sistemi Informativi Multimediali Indicizzazione multidimensionale ugusto elentano Università a Foscari Venezia La struttura fondamentale di un sistema di information

Dettagli

Lezione 10. La classificazione dell Intelligenza Artificiale

Lezione 10. La classificazione dell Intelligenza Artificiale Lezione 10 Intelligenza Artificiale Cosa è l Intelligenza Artificiale Elaborazione del linguaggio naturale La visione artificiale L apprendimento nelle macchine La classificazione dell Intelligenza Artificiale

Dettagli

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x

Dettagli

Modellazione 3D con elementi solidi. Esempio guidato 10 Pag. 1

Modellazione 3D con elementi solidi. Esempio guidato 10 Pag. 1 Esempio guidato 10 Modellazione 3D con elementi solidi Esempio guidato 10 Pag. 1 Esempio guidato 10 Modellazione 3D con elementi solidi In questo Tutorial si illustra la procedura per la modellazione 3D

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

B-Tree. Struttura dati usata in applicazioni che necessitano di gestire insiemi di chiavi ordinate Una variante (B+-Tree) è diffusa in:

B-Tree. Struttura dati usata in applicazioni che necessitano di gestire insiemi di chiavi ordinate Una variante (B+-Tree) è diffusa in: B-Tree Prof. Rudolf Bayer Struttura dati usata in applicazioni che necessitano di gestire insiemi di chiavi ordinate Una variante (B+-Tree) è diffusa in: Filesystem: btrfs, NTFS, ReiserFS, NSS, XFS, JFS

Dettagli

Barriere assorbenti nelle catene di Markov e una loro applicazione al web

Barriere assorbenti nelle catene di Markov e una loro applicazione al web Università Roma Tre Facoltà di Scienze M.F.N Corso di Laurea in Matematica a.a. 2001/2002 Barriere assorbenti nelle catene di Markov e una loro applicazione al web Giulio Simeone 1 Sommario Descrizione

Dettagli

Corso di Esercitazioni di Programmazione

Corso di Esercitazioni di Programmazione Corso di Esercitazioni di Programmazione Introduzione Dott.ssa Sabina Rossi Informazioni Pagina web del corso: News Orari Mailing list Lezioni Esercitazioni Date esami Risultati esami.. http://www.dsi.unive.it/~prog1

Dettagli

DIPARTIMENTO DI ELETTRONICA E INFORMAZIONE. La Ricorsione. Marco D. Santambrogio marco.santambrogio@polimi.it Ver. aggiornata al 29 Maggio 2014

DIPARTIMENTO DI ELETTRONICA E INFORMAZIONE. La Ricorsione. Marco D. Santambrogio marco.santambrogio@polimi.it Ver. aggiornata al 29 Maggio 2014 La Ricorsione Marco D. Santambrogio marco.santambrogio@polimi.it Ver. aggiornata al 29 Maggio 2014 Obiettivi La ricorsione Ricordate la sigla GNU GNU = GNU is Not Unix GNU = GNU is Not Unix GNU = GNU is

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

Il principio di induzione e i numeri naturali.

Il principio di induzione e i numeri naturali. Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

Introduzione ai tipi di dato astratti: applicazione alle liste

Introduzione ai tipi di dato astratti: applicazione alle liste Universitàdegli Studi di L Aquila Facoltàdi Scienze M.F.N. Corso di Laurea in Informatica Corso di Laboratorio di Algoritmi e Strutture Dati A.A. 2005/2006 Introduzione ai tipi di dato astratti: applicazione

Dettagli

1 Giochi a due, con informazione perfetta e somma zero

1 Giochi a due, con informazione perfetta e somma zero 1 Giochi a due, con informazione perfetta e somma zero Nel gioco del Nim, se semplificato all estremo, ci sono due giocatori I, II e una pila di 6 pedine identiche In ogni turno di gioco I rimuove una

Dettagli

SVILUPPO DI UN SISTEMA DI SORVEGLIANZA MEDIANTE ROBOT MOBILI.

SVILUPPO DI UN SISTEMA DI SORVEGLIANZA MEDIANTE ROBOT MOBILI. SVILUPPO DI UN SISTEMA DI SORVEGLIANZA MEDIANTE ROBOT MOBILI. 1. ABSTRACT In questo progetto si intende costruire un sistema di sorveglianza mediante l uso di robot mobili. L idea base è quella di usare

Dettagli

Comparatori. Comparatori di uguaglianza

Comparatori. Comparatori di uguaglianza Comparatori Scopo di un circuito comparatore é il confronto tra due codifiche binarie. Il confronto può essere effettuato per verificare l'uguaglianza oppure una relazione d'ordine del tipo "maggiore",

Dettagli

La programmazione con vincoli in breve. La programmazione con vincoli in breve

La programmazione con vincoli in breve. La programmazione con vincoli in breve Obbiettivi Introdurre la nozione di equivalenza di CSP. Dare una introduzione intuitiva dei metodi generali per la programmazione con vincoli. Introdurre il framework di base per la programmazione con

Dettagli

CTVClient. Dopo aver inserito correttamente i dati, verrà visualizzata la schermata del tabellone con i giorni e le ore.

CTVClient. Dopo aver inserito correttamente i dati, verrà visualizzata la schermata del tabellone con i giorni e le ore. CTVClient Il CTVClient è un programma per sistemi operativi Windows che permette la consultazione e la prenotazione delle ore dal tabellone elettronico del Circolo Tennis Valbisenzio. Per utilizzarlo è

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Flusso di costo minimo È dato un grafo direzionato G = (N, A). Ad ogni arco (i, j) A è associato il costo c ij

Dettagli

Intelligenza Artificiale. Lezione 23. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 0

Intelligenza Artificiale. Lezione 23. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 0 Intelligenza Artificiale Lezione 23 Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 0 Azioni e cambiamento Il calcolo delle situazioni Pianificazione Deduttiva (Capitolo 11 delle dispense, 7.6

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Esercizi II parte Esercizio 1 Discutere la correttezza di ciascuna delle seguenti affermazioni. Dimostrare formalmente la validità

Dettagli

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 8// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x x x + x x x + x 8 x Base

Dettagli

REGOLAMENTO PINK PANTHER

REGOLAMENTO PINK PANTHER REGOLAMENTO PINK PANTHER Slot machine a 5 rulli e 40 linee Lo scopo del gioco Pink Panther è ottenere una combinazione vincente di simboli dopo la rotazione dei rulli. Per giocare: Il valore del gettone

Dettagli

Metodologia di calcolo per pompe a ingranaggi esterni Articolo pubblicato sulla rivista oleodinamica e pneumatica 03/2013 Gibellini Matteo

Metodologia di calcolo per pompe a ingranaggi esterni Articolo pubblicato sulla rivista oleodinamica e pneumatica 03/2013 Gibellini Matteo In questo articolo verrà descritta la metodologia di calcolo per la progettazione delle pompe a ingranaggi esterni con dentatura ad evolvente sviluppato dall autore per conto di Galtech S.p.A. con l obiettivo

Dettagli

Tipologie di pianificatori. Pianificazione. Partial Order Planning. E compiti diversi. Pianificazione gerarchica. Approcci integrati

Tipologie di pianificatori. Pianificazione. Partial Order Planning. E compiti diversi. Pianificazione gerarchica. Approcci integrati Tipologie di pianificatori Pianificazione Intelligenza Artificiale e Agenti II modulo Pianificazione a ordinamento parziale (POP) (HTN) pianificazione logica (SatPlan) Pianificazione come ricerca su grafi

Dettagli

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete Funzioni in due variabili Raccolta di FAQ by Andrea Prevete 1) Cosa intendiamo, esattamente, quando parliamo di funzione reale di due variabili reali? Quando esiste una relazione fra tre variabili reali

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 5 marzo 25 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo25.html MODALITÀ DI ESAME È previsto un appello alla fine

Dettagli

Algoritmi. Matricole dispari Prof.ssa Anselmo. Pre-appello del 15 Gennaio 2015. Attenzione:

Algoritmi. Matricole dispari Prof.ssa Anselmo. Pre-appello del 15 Gennaio 2015. Attenzione: COGNOME: Nome: Algoritmi Matricole dispari Prof.ssa Anselmo Pre-appello del 15 Gennaio 2015 Attenzione: Inserire i propri dati nell apposito spazio soprastante e sottostante. Non voltare la pagina finché

Dettagli

Parte 3: Gestione dei progetti, Shop scheduling

Parte 3: Gestione dei progetti, Shop scheduling Parte : Gestione dei progetti, Shop scheduling Rappresentazione reticolare di un progetto Insieme di attività {,...,n} p i durata (nota e deterministica dell attività i) relazione di precedenza fra attività:

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

REGOLAMENTO KONG THE 8 TH WONDER OF THE WORLD

REGOLAMENTO KONG THE 8 TH WONDER OF THE WORLD REGOLAMENTO KONG THE 8 TH WONDER OF THE WORLD Slot machine a 5 rulli e 20 linee Lo scopo del gioco Kong The 8 th Wonder of the World è ottenere una combinazione vincente di simboli dopo la rotazione dei

Dettagli

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica

Dettagli

Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione

Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione Fondamenti di Informatica Michele Ceccarelli Università del Sannio ceccarelli@unisannio.it Angelo Ciaramella DMI-Università degli

Dettagli

Introduzione. Il principio di localizzazione... 2 Organizzazioni delle memorie cache... 4 Gestione delle scritture in una cache...

Introduzione. Il principio di localizzazione... 2 Organizzazioni delle memorie cache... 4 Gestione delle scritture in una cache... Appunti di Calcolatori Elettronici Concetti generali sulla memoria cache Introduzione... 1 Il principio di localizzazione... 2 Organizzazioni delle memorie cache... 4 Gestione delle scritture in una cache...

Dettagli

Politecnico di Milano. Reti Wireless. Seminari didattici. Dalla teoria alla soluzione. Ilario Filippini

Politecnico di Milano. Reti Wireless. Seminari didattici. Dalla teoria alla soluzione. Ilario Filippini Politecnico di Milano Reti Wireless Seminari didattici Dalla teoria alla soluzione Ilario Filippini 2 Approccio euristico 3 Obiettivo dell approccio euristico 4 Tipi di euristiche Dalla teoria alla soluzione

Dettagli

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( )

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( ) Algebra di Boole Circuiti logici: componenti hardware preposti all'elaborazione delle informazioni binarie. PORTE LOGICHE (logical gate): circuiti di base. Allo scopo di descrivere i comportamenti dei

Dettagli

Basi di dati. Introduzione. Una breve introduzione sulla suite di OpenOffice.org e la gestione dei database

Basi di dati. Introduzione. Una breve introduzione sulla suite di OpenOffice.org e la gestione dei database Basi di dati Introduzione Una breve introduzione sulla suite di OpenOffice.org e la gestione dei database OpenOffice.org (www.openoffice.org) è un potente software opensource che ha, quale scopo primario,

Dettagli

13: Il test del software. 13Test.1

13: Il test del software. 13Test.1 13: Il test del software 13Test.1 Concetti fondamentali Costo estremamente elevato Filosofia distruttiva Eseguire un programma con l intento di trovare degli errori; Un caso di test e ben studiato se ha

Dettagli

REGOLAMENTO TOP TRUMPS CELEBS

REGOLAMENTO TOP TRUMPS CELEBS REGOLAMENTO TOP TRUMPS CELEBS Slot machine a 5 rulli e 20 linee Lo scopo del gioco Top Trumps Celebs è ottenere una combinazione vincente di simboli dopo la rotazione dei rulli. Per giocare: Il valore

Dettagli

Avviare il computer e collegarsi in modo sicuro utilizzando un nome utente e una password.

Avviare il computer e collegarsi in modo sicuro utilizzando un nome utente e una password. Uso del computer e gestione dei file Primi passi col computer Avviare il computer e collegarsi in modo sicuro utilizzando un nome utente e una password. Spegnere il computer impiegando la procedura corretta.

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

Intelligenza Artificiale (lucidi lezione introduttiva)

Intelligenza Artificiale (lucidi lezione introduttiva) Intelligenza Artificiale (lucidi lezione introduttiva) Prof. Alfonso Gerevini Dipartimento di Elettronica per l Automazione Facoltà di Ingegneria Università degli Studi di Brescia 1 Che cosa è l Intelligenza

Dettagli

REGOLAMENTO FISHING WITH BUDDIES

REGOLAMENTO FISHING WITH BUDDIES REGOLAMENTO FISHING WITH BUDDIES Slot machine a 5 rulli e 20 linee Fishing with Buddies è un gioco multigiocatore dove fino a 5 giocatori possono giocare insieme. L'obiettivo di Fishing with Buddies è

Dettagli

Analisi dei requisiti e casi d uso

Analisi dei requisiti e casi d uso Analisi dei requisiti e casi d uso Indice 1 Introduzione 2 1.1 Terminologia........................... 2 2 Modello del sistema 4 2.1 Requisiti hardware........................ 4 2.2 Requisiti software.........................

Dettagli

Algebra booleana e circuiti logici. a cura di: Salvatore Orlando

Algebra booleana e circuiti logici. a cura di: Salvatore Orlando lgebra booleana e circuiti logici a cura di: Salvatore Orlando rch. Elab. - S. Orlando lgebra & Circuiti Elettronici I calcolatori operano con segnali elettrici con valori di potenziale discreti sono considerati

Dettagli

ESERCIZI - SERIE N. 5

ESERCIZI - SERIE N. 5 ESERCIZI - SERIE N. 5 Formalizzazione con diagramma a stati e implementazione di automi Obiettivi: fornire strumenti metodologici e paradigmi di riferimento per formalizzare e implementare automi, descritti

Dettagli

Architettura dei Calcolatori Algebra delle reti Logiche

Architettura dei Calcolatori Algebra delle reti Logiche Architettura dei Calcolatori Algebra delle reti Logiche Ing. dell Automazione A.A. 20/2 Gabriele Cecchetti Algebra delle reti logiche Sommario: Segnali e informazione Algebra di commutazione Porta logica

Dettagli

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

CONI, CILINDRI, SUPERFICI DI ROTAZIONE CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).

Dettagli

Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche

Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche Docente: Michele Nappi mnappi@unisa.it www.dmi.unisa.it/people/nappi 089-963334 ALGEBRA DI COMMUTAZIONE Lo scopo di questa algebra

Dettagli

Manuale elettronico Selection CAD

Manuale elettronico Selection CAD Manuale elettronico Selection CAD Versione: 1.0 Nome: IT_AutoCAD_V1.PDF Argomenti: 1 Nozioni generali su Selection CAD (AutoCAD)...2 2 Interfaccia AutoCAD...2 2.1 Funzioni di menu...2 2.2 Funzioni delle

Dettagli

NORMALIZZAZIONE DI SCHEMI RELAZIONALI. Prof.ssa Rosalba Giugno

NORMALIZZAZIONE DI SCHEMI RELAZIONALI. Prof.ssa Rosalba Giugno NORMALIZZAZIONE DI SCHEMI RELAZIONALI Prof.ssa Rosalba Giugno PROBLEMA GENERALE La progettazione concettuale e logica produce uno schema relazionale che rappresenta la realta dei dati nella nostra applicazione.

Dettagli

Le funzioni elementari. La struttura di R. Sottrazione e divisione

Le funzioni elementari. La struttura di R. Sottrazione e divisione Le funzioni elementari La struttura di R La struttura di R è definita dalle operazioni Addizione e moltiplicazione. Proprietà: Commutativa Associativa Distributiva dell addizione rispetto alla moltiplicazione

Dettagli

10 - Programmare con gli Array

10 - Programmare con gli Array 10 - Programmare con gli Array Programmazione e analisi di dati Modulo A: Programmazione in Java Paolo Milazzo Dipartimento di Informatica, Università di Pisa http://www.di.unipi.it/ milazzo milazzo di.unipi.it

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

DATABASE SU EXCEL: I FILTRI

DATABASE SU EXCEL: I FILTRI DATABASE SU EXCEL: I FILTRI È possibile mettere in relazione i dati in base a determinati criteri di ricerca e creare un archivio di dati E necessario creare delle categorie di ordinamento in base alle

Dettagli

ControlloCosti. Cubi OLAP. Controllo Costi Manuale Cubi

ControlloCosti. Cubi OLAP. Controllo Costi Manuale Cubi ControlloCosti Cubi OLAP I cubi OLAP Un Cubo (OLAP, acronimo di On-Line Analytical Processing) è una struttura per la memorizzazione e la gestione dei dati che permette di eseguire analisi in tempi rapidi,

Dettagli

I numeri reali. Note per il corso di Analisi Matematica 1. G. Mauceri. a.a. 2003-04

I numeri reali. Note per il corso di Analisi Matematica 1. G. Mauceri. a.a. 2003-04 I numeri reali Note per il corso di Analisi Matematica 1 G. Mauceri a.a. 2003-04 2 I numeri reali Contents 1 Introduzione 3 2 Gli assiomi di campo 3 3 Gli assiomi dell ordine 4 4 Valore assoluto 5 5 I

Dettagli

EMERGENCE OF SELF ORGANIZATION AND SEARCH FOR OPTIMAL ENTERPRISE STRUCTURE: AI EVOLUTIONARY METHODS APPLIED TO AGENT BASED PROCESS SIMULATION

EMERGENCE OF SELF ORGANIZATION AND SEARCH FOR OPTIMAL ENTERPRISE STRUCTURE: AI EVOLUTIONARY METHODS APPLIED TO AGENT BASED PROCESS SIMULATION EMERGENCE OF SELF ORGANIZATION AND SEARCH FOR OPTIMAL ENTERPRISE STRUCTURE: AI EVOLUTIONARY METHODS APPLIED TO AGENT BASED PROCESS SIMULATION remond@di.unito.it Department of Computer Science University

Dettagli

Il guadagno informativo negli alberi decisionali: un nuovo approccio

Il guadagno informativo negli alberi decisionali: un nuovo approccio Il guadagno informativo negli alberi decisionali: un nuovo approccio Sommario Descrizione del problema... 2 Il guadagno informativo di Nanni... 3 Il software Weka... 3 Cos è Weka... 3 Il guadagno Informativo

Dettagli

The Micro Rider RIDUCI I COSTI FINO AL 36%, AUMENTI LA PRODUTTIVITÀ DEL 43% E RECUPERI VELOCEMENTE IL TUO INVESTIMENTO!

The Micro Rider RIDUCI I COSTI FINO AL 36%, AUMENTI LA PRODUTTIVITÀ DEL 43% E RECUPERI VELOCEMENTE IL TUO INVESTIMENTO! The Micro Rider RIDUCI I COSTI FINO AL 36%, AUMENTI LA PRODUTTIVITÀ DEL 43% E RECUPERI VELOCEMENTE IL TUO INVESTIMENTO! Progettata per essere più produttiva, perché piccola e veloce Mxr LAVA E ASCIUGA

Dettagli

Miglioramento di algoritmi di elaborazione di immagini da scanner 3D tramite Simulated Annealing

Miglioramento di algoritmi di elaborazione di immagini da scanner 3D tramite Simulated Annealing Miglioramento di algoritmi di elaborazione di immagini da scanner 3D tramite Simulated Annealing Marco Derboni 1, Evelina Lamma 1, Antonio Zaccaro 2 1 Dipartimento di Ingegneria, Via Saragat 1, 44122 Ferrara

Dettagli

Alberi Decisionali di Vito Madaio

Alberi Decisionali di Vito Madaio Tecnica degli Alberi Decisionali Cosa è un albero decisionale Un albero decisionale è la dimostrazione grafica di una scelta effettuata o proposta. Non sempre ciò che istintivamente ci appare più interessante

Dettagli

Argomenti avanzati. La creazione di costanti definite dall'utente.

Argomenti avanzati. La creazione di costanti definite dall'utente. Argomenti avanzati In questa guida vedremo due argomenti che rientrano sotto il genere di utili, ma spesso non sono utilizzati. Il primo argomento discute la creazione di costanti definite dall'utente.

Dettagli

Prova di Laboratorio di Programmazione

Prova di Laboratorio di Programmazione Prova di Laboratorio di Programmazione 6 febbraio 015 ATTENZIONE: Non è possibile usare le classi del package prog.io del libro di testo. Oltre ai metodi richiesti in ciascuna classe, è opportuno implementare

Dettagli

PROGRAMMA DEL CORSO. Teoria

PROGRAMMA DEL CORSO. Teoria CORSO DI LAUREA in BIOLOGIA PROGRAMMA DEL CORSO INTRODUZONE ALL INFORMATICA A.A. 2014-15 Docente: Annamaria Bria Esercitatori: Salvatore Ielpa Barbara Nardi PROGRAMMA DEL CORSO Teoria 1. Cosa si intende

Dettagli

Scansione. Stampante/copiatrice WorkCentre C2424

Scansione. Stampante/copiatrice WorkCentre C2424 Scansione In questo capitolo sono inclusi i seguenti argomenti: "Nozioni di base sulla scansione" a pagina 4-2 "Installazione del driver di scansione" a pagina 4-4 "Regolazione delle opzioni di scansione"

Dettagli

ANTENNA HALF-SLOPER. PER 160m

ANTENNA HALF-SLOPER. PER 160m ANTENNA HALF-SLOPER BY IK4CIE Vittorio PER 160m Anzitutto preciso che si chiama "sloper" e non "slooper" dal vocabolo inglese "slope" che vuole dire "inclinato". Il termine "sloper" indica un dipolo completo

Dettagli