Ricerca Automatica. Esercitazione 3. Ascensore. Ascensore. Ascensore

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Ricerca Automatica. Esercitazione 3. Ascensore. Ascensore. Ascensore"

Transcript

1 Ascensore Ricerca Automatica Esercitazione In un grattacielo ci sono coppie formate da marito e moglie. Il cancello delle scale viene chiuso e l unico modo per scendere è con l ascensore che può portare persone alla volta e deve sempre portare almeno un passeggero. I mariti non vogliono che le rispettive mogli si ritrovino in presenza di altri mariti se non sono presenti essi stessi. Come devono scendere le coppie senza crisi di gelosia? Formalizzare la soluzione come un problema di ricerca. Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 0 Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 1 Ascensore Ascensore (a) (2 p.) caratterizzare lo spazio degli stati lo stato iniziale e lo stato obiettivo (a) r. Lo spazio degli stati è costituito dalle possibili disposizioni tra piano terra ed ultimo piano delle coppie e dell ascensore. Una possibile rappresentazione dello stato è data da: C C C boolean dove C = boolean boolean, in cui il valore 1 rappresenta la posizione all ultimo piano e si assume che in una coppia vengano indicati nell ordine moglie e marito. stato iniziale: <c(1, 1), c(1, 1), c(1, 1), 1 > stato finale: <c(0, 0),c(0, 0),c(0, 0), 0 > Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 2 (b) (2 p.) caratterizzare gli operatori (b) r. Gli operatori sono: scendi(x) dove x rappresenta una combinazione di persone compresa tra 1 e, l operatore è applicabile se le persone indicate sono all ultimo piano e se l ascensore si trova all ultimo piano; x può essere rappresentato con le stesse convenzioni usate per lo stato: ad esempio c(0, 1), c(0, 1), c(0, 1) è un parametro valido per l operazione sali(x) dove x rappresenta una combinazione di persone compresa tra 1 e, l operatore è applicabile se le persone indicate e l ascensore si trovano al piano terra; la condizione di applicabilità degli operatori richiede inoltre che quando una moglie si trova in ascensore o al Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione

2 Ascensore piano terra o all ultimo piano senza marito, non siano presenti anche altri mariti: Ad esempio c(1, 0),c(X,1),c(X,X) non è una configurazione ammissibile. (c) (2 p.) costruire gli stati raggiungibili a partire dallo stato iniziale con un singolo operatore (c) r. Y = scendi(c(1, 1), c(0, 0), c(0, 0)) S = stato(c(0, 0), c(1, 1), c(1, 1), 0) ; Y = scendi(c(0, 1), c(0, 1), c(0, 1)) S = stato(c(1, 0), c(1, 0), c(1, 0), 0) ; Y = scendi(c(1, 0), c(1, 0), c(1, 0)) S = stato(c(0, 1), c(0, 1), c(0, 1), 0) ; Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 4 Y = scendi(c(1, 0), c(1, 0), c(0, 0)) S = stato(c(0, 1), c(0, 1), c(1, 1), 0) ; Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 5 Y = scendi(c(1, 0), c(0, 0), c(1, 0)) S = stato(c(0, 1), c(1, 1), c(0, 1), 0) ; Y = scendi(c(1, 0), c(0, 0), c(0, 0)) S = stato(c(0, 1), c(1, 1), c(1, 1), 0) ; Y = scendi(c(0, 0), c(1, 1), c(0, 0)) S = stato(c(1, 1), c(0, 0), c(1, 1), 0) ; S = stato(c(1, 1), c(1, 1), c(0, 0), 0) ; Y = scendi(c(0, 0), c(0, 0), c(1, 0)) S = stato(c(1, 1), c(1, 1), c(0, 1), 0) ; Y = scendi(c(0, 0), c(1, 0), c(1, 0)) S = stato(c(1, 1), c(0, 1), c(0, 1), 0) ; Y = scendi(c(0, 0), c(1, 0), c(0, 0)) S = stato(c(1, 1), c(0, 1), c(1, 1), 0) ; Y = scendi(c(0, 0), c(0, 0), c(1, 1)) Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 6 Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 7

3 Ascensore Torri di Hanoi (d) (4 p.) costruire una soluzione con la tecnica di ricerca in profondità. (d) r. stato(c(1, 1), c(1, 1), c(1, 1), 1) scendi(c(1, 0), c(1, 0), c(1, 0)) stato(c(0, 1), c(0, 1), c(0, 1), 0) sali(c(0, 0), c(0, 0), c(1, 0)) stato(c(0, 1), c(0, 1), c(1, 1), 1) scendi(c(0, 1), c(0, 1), c(0, 1)) stato(c(0, 0), c(0, 0), c(1, 0), 0) sali(c(0, 0), c(0, 0), c(0, 1)) stato(c(0, 0), c(0, 0), c(1, 1), 1) scendi(c(0, 0), c(0, 0), c(1, 1)) stato(c(0, 0), c(0, 0), c(0, 0), 0) Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 8 Il gioco delle Torri di Hanoi ha origine da un antica leggenda Vietnamita, secondo la quale un gruppo di monaci sta spostando una torre di 64 dischi (secondo la leggenda, quando i monaci avranno finito, verrà la fine del mondo). Lo spostamento della torre di dischi avviene secondo le seguenti regole: inizialmente, la torre di dischi di dimensione decrescente è posizionata su un perno 1; l obiettivo è quello di spostarla su un perno 2, usando un perno di appoggio; le condizioni per effettuare gli spostamenti sono: tutti i dischi, tranne quello spostato, devono stare su una delle torri Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 9 è possibile spostare un solo disco alla volta, dalla cima di una torre alla cima di un altra torre; un disco non può mai stare su un disco più piccolo. Formalizzare la soluzione del gioco delle torri di Hanoi come un problema di ricerca. Lo stato iniziale, uno stato intermedio, e lo stato finale per un insieme di 6 dischi sono mostrati nelle seguenti figure: caratterizzare lo spazio degli stati caratterizzare lo stato iniziale e lo stato obiettivo definire gli operatori costruire l albero di ricerca con la tecnica di ricerca a profondità limitata con n = per il problema di dischi. Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 10 Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 11

4 Torri di Hanoi: stati Torri di Hanoi: stati caratterizzare lo spazio degli stati lo stato iniziale e lo stato obiettivo gli stati vengono rappresentati tramite terne di liste ordinate (in ordine crescente) di interi (LO), che indicano il diametro dei dischi. LO LO LO < [1, 2, ], [], [] > < [], [1, 2, ], [] > Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 12 Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 1 Torri di Hanoi: operatori Slot machine definire gli operatori muovi1() :< [X Xs],Y,Z > < Xs,Y,[X Z] > muovi2() :< X,[Y Ys],Z > < X,Ys,[Y Z] > muovi12() :< [X Xs],Y,Z > < Xs,[X Y ],Z > muovi21() :< X,[Y Ys],Z > < [Y X],Y s,z > muovi1() :< X,Y,[Z Zs] > < [Z X],Y,Zs > muovi2() :< X,Y,[Z Zs] > < X,[Z Y ],Zs > muovisd si può eseguire se la condizione sul diametro dei dischi è soddisfatta nello stato destinazione. Inoltre il disco da spostare deve essere presente nello stato sorgente, ma questo è implicato dalla definizione con le liste non vuote. Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 14 Si consideri il seguente gioco: un display mostra un numero costituito da tre cifre c 1, c 2 e c appartenenti all insieme {0, 1, 2}. Sotto ogni cifra c i è presente un pulsante p i. Il giocatore può premere i pulsanti - uno alla volta - in successione. L effetto della pressione del pulsante p i è quello di sostituire alla cifra c i la somma modulo delle altre due cifre. Modellare la soluzione del gioco come problema di ricerca in un opportuno spazio degli stati. Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 15

5 Slot machine: stati Slot machine: operatori Descrivere lo spazio degli stati; Lo spazio degli stati è rappresentato dai valori dei pulsanti: P P P con P = {0, 1, 2}. stato iniziale < 0, 1, 2 > stato finale < 2, 1, 0 > Descrivere gli operatori; b1 :<X,Y,Z> < Y + Z, Y, Z > b2 :<X,Y,Z > < X,X+ Z, Z > b2 :<X,Y,Z> <X,Y,X + Y > Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 16 Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 17 Slot machine: soluzione Supporre che all inizio il display mostri 0, 1, 2 ; rappresentare l albero di ricerca che si ottiene visitando lo spazio degli stati in ampiezza a partire da tale stato iniziale e fino a individuare la più breve pressione di tasti che conduce allo stato 2, 1, 0 (si eviti di espandere più volte uno stesso stato); b :< 0, 1, 2 > < 0, 1, 1 > b1 :< 0, 1, 1 > < 2, 1, 1 > b :< 2, 1, 1 > < 2, 1, 0 > Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 18 Ricerca: domande 1. La ricerca in profondità può non terminare su alberi di ricerca con fattore di ramificazione finito [vero o falso?]; 2. Se il fattore di ramificazione è finito e lo spazio degli stati ha profondità infinita, la ricerca in ampiezza è completa [vero o falso?];. La ricerca in ampiezza espande sempre meno nodi rispetto a quella in profondità [vero o falso?]. 4. Il costo di spazio della ricerca in profondità è lineare nella profondità dell albero di ricerca [vero o falso?]. 5. A differenza degli algoritmi di ricerca in ampiezza, gli algoritmi ad approfondimento iterativo possono trovare come prima soluzione una soluzione che richiede un numero di passi non minimale [vero o falso?] Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 19

6 6. Un euristica si considera ammissibile quando non è mai inferiore del costo effettivo per raggiungere l obiettivo [vero o falso?]. 7. Definire la funzione di valutazione dei nodi usata dall algoritmo A* e spiegare la differenza con la ricerca golosa. 8. Descrivere il principio della ricerca simulated annealing. Domande e Risposte 1 (e)(2 p.) Illustrare le differenze tra la ricerca golosa e la ricerca euristica con A*. (e) r. La ricerca golosa minimizza il costo stimato per ottenere la soluzione, mentre la ricerca A* minimizza il costo del cammino totale, cioè il costo per raggiungere il nodo corrente + il il costo stimato per ottenere la soluzione. Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 20 Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 21 Domande e Risposte 2 (e)(2 p.) Qual è il vantaggio principale della ricerca ad approfondimento iterativo rispetto alla ricerca in ampiezza e rispetto alla ricerca in profondità. (e) r. Rispetto alla ricerca in ampiezza la ricerca ad approfondimento iterativo usa meno memoria (lineare anzichè esponenziale) e rispetto alla ricerca in profondità è completa ed ottimale (se il fattore di ramificazione è finito). Intelligenza Artificiale Daniele Nardi, 2004 Esercitazione 22

Intelligenza Artificiale

Intelligenza Artificiale Intelligenza Artificiale Esercizi e Domande di Esame Tecniche di Ricerca e Pianificazione Esercizi Griglia Si consideri un ambiente costituito da una griglia n n in cui si muove un agente che può spostarsi

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 7-8 9 7 9-8 79

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 3 5 7-8 9 57

Dettagli

Ricerca informata. Scelta dell euristica

Ricerca informata. Scelta dell euristica Ricerca informata Scelta dell euristica SMA* (Simplified Memory-Bounded A*) SMA* espande sempre la foglia migliore finché la memoria è piena A questo punto deve cancellare un nodo in memoria SMA* cancella

Dettagli

Intelligenza Artificiale. Lezione 14. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 14 0

Intelligenza Artificiale. Lezione 14. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 14 0 Intelligenza Artificiale Lezione 14 Intelligenza Artificiale Daniele Nardi, 2003 Lezione 14 0 Sommario Russell & Norvig Capitolo 4, Paragrafi 3 4 IDA* SMA* Ricerca Hill-climbing Simulated annealing Intelligenza

Dettagli

Intelligenza Artificiale. Lezione 6bis. Intelligenza Artificiale Daniele Nardi, 2004 Lezione 6bis 0

Intelligenza Artificiale. Lezione 6bis. Intelligenza Artificiale Daniele Nardi, 2004 Lezione 6bis 0 Intelligenza Artificiale Lezione 6bis Intelligenza Artificiale Daniele Nardi, 2004 Lezione 6bis 0 Sommario CSP RN 3.8, 4.3, 4.5 Giochi RN 5 Intelligenza Artificiale Daniele Nardi, 2004 Lezione 6bis 1 Problemi

Dettagli

Parte I. Relazioni di ricorrenza

Parte I. Relazioni di ricorrenza Parte I Relazioni di ricorrenza 1 Capitolo 1 Relazioni di ricorrenza 1.1 Modelli Nel seguente capitolo studieremo le relazioni di ricorrenza. Ad esempio sono relazioni di ricorrenza a n = a n 1 + n, a

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

Ricerca non informata in uno spazio di stati

Ricerca non informata in uno spazio di stati Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A5_2 V2.4 Ricerca non informata in uno spazio di stati Il contenuto del documento è liberamente utilizzabile dagli

Dettagli

Problemi di soddisfacimento di vincoli. Formulazione di problemi CSP. Colorazione di una mappa. Altri problemi

Problemi di soddisfacimento di vincoli. Formulazione di problemi CSP. Colorazione di una mappa. Altri problemi Problemi di soddisfacimento di vincoli Maria Simi a.a. 2014/2015 Problemi di soddisfacimento di vincoli (CSP) Sono problemi con una struttura particolare, per cui conviene pensare ad algoritmi specializzati

Dettagli

Ricorsione. Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona.

Ricorsione. Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona. Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Sommario Implementazione di Utilizzo ricorsione per processare dati in java vs. multipla

Dettagli

FONDAMENTI DI INTELLIGENZA ARTIFICIALE M 15 Luglio 2010 Tempo a disposizione 2h 45min Risultato 32/32 punti

FONDAMENTI DI INTELLIGENZA ARTIFICIALE M 15 Luglio 2010 Tempo a disposizione 2h 45min Risultato 32/32 punti FONDAMENTI DI INTELLIGENZA ARTIFICIALE M Luglio 2010 Tempo a disposizione 2h 45min Risultato 32/32 punti Esercizio 1 (punti 4) Si formalizzino il logica dei predicati del I ordine le seguenti frasi: Ogni

Dettagli

Esercizi Capitolo 6 - Alberi binari di ricerca

Esercizi Capitolo 6 - Alberi binari di ricerca Esercizi Capitolo 6 - Alberi binari di ricerca Alberto Montresor 23 settembre 200 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Dispensa 19 Ricorsione A. Miola Marzo 2012 http://www.dia.uniroma3.it/~java/fondinf/ Ricorsione 1 Contenuti q Funzioni e domini definiti

Dettagli

Implementazione del gioco del Bantumi Corso di Intelligenza Artificiale 2012

Implementazione del gioco del Bantumi Corso di Intelligenza Artificiale 2012 Implementazione del gioco del Bantumi Corso di Intelligenza Artificiale 2012 Nicola Febbrari Università degli Studi di Verona Facoltà MM.FF.NN. nicola.febbrari@studenti.univr.it 22 gennaio 2013 1 Introduzione

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 9/0/06 (Cognome) (Nome) (Matricola) Esercizio. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Intelligenza Artificiale. Metodi di ricerca

Intelligenza Artificiale. Metodi di ricerca Intelligenza Artificiale Metodi di ricerca Marco Piastra Metodi di ricerca - 1 Ricerca nello spazio degli stati (disegno di J.C. Latombe) I nodi rappresentano uno stato Gli archi (orientati) una transizione

Dettagli

Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado

Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado Categoria Student Per studenti degli ultimi due anni della scuola secondaria di secondo grado. Risposta A). Il triangolo ABC ha la stessa altezza del triangolo AOB ma base di lunghezza doppia (il diametro

Dettagli

INFORMATICA GENERALE Prof. Alberto Postiglione Dipartimento Scienze della Comunicazione Università degli Studi di Salerno

INFORMATICA GENERALE Prof. Alberto Postiglione Dipartimento Scienze della Comunicazione Università degli Studi di Salerno INFORMATICA GENERALE Prof. Alberto Postiglione Dipartimento Scienze della Comunicazione Università degli Studi di Salerno UD 3.1b: Costrutti di un Algoritmo Dispense 1.2 I Costrutti di base 13 apr 2010

Dettagli

Teoria dei Giochi. Teoria dei Giochi

Teoria dei Giochi. Teoria dei Giochi Teoria dei Giochi E uno strumento decisionale, utile per operare previsioni sul risultato quando un decisore deve operare in concorrenza con altri decisori. L ipotesi principale su cui si basa la TdG è

Dettagli

CTVClient. Dopo aver inserito correttamente i dati, verrà visualizzata la schermata del tabellone con i giorni e le ore.

CTVClient. Dopo aver inserito correttamente i dati, verrà visualizzata la schermata del tabellone con i giorni e le ore. CTVClient Il CTVClient è un programma per sistemi operativi Windows che permette la consultazione e la prenotazione delle ore dal tabellone elettronico del Circolo Tennis Valbisenzio. Per utilizzarlo è

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

L algebra di Boole. Cenni Corso di Reti Logiche B. Mariagiovanna Sami

L algebra di Boole. Cenni Corso di Reti Logiche B. Mariagiovanna Sami L algebra di Boole Cenni Corso di Reti Logiche B Mariagiovanna Sami Algebra Booleana: sistema algebrico Operazione: Operazione α sull'insieme S={s1,s2,...} = funzione che da SxS (prodotto cartesiano S

Dettagli

Progetto e Ottimizzazione di Reti 1. Presentazione del Corso

Progetto e Ottimizzazione di Reti 1. Presentazione del Corso Progetto e Ottimizzazione di Reti 1. Presentazione del Corso PAOLO NOBILI (M-Z) ANTONIO SASSANO (A-L) Università di Roma La Sapienza Dipartimento di Informatica e Sistemistica Corso di Laurea in Ingegneria

Dettagli

Ricerca euristica. Funzioni di valutazione euristica. Esempi di euristica. Strategia best-first: esempio. Algoritmo di ricerca Best-First 03/03/15

Ricerca euristica. Funzioni di valutazione euristica. Esempi di euristica. Strategia best-first: esempio. Algoritmo di ricerca Best-First 03/03/15 Ricerca euristica Ricerca euristica Maria Simi a.a. 2014/2015 La ricerca esaustiva non è praticabile in problemi di complessità esponenziale Noi usiamo conoscenza del problema ed esperienza per riconoscere

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale

Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale di Francesco Maria Milizia francescomilizia@libero.it Model Checking vuol dire cercare di stabilire se una formula è vera

Dettagli

Problemi computazionali

Problemi computazionali Problemi computazionali Intrattabilità e classi computazionali Decidibilità e Trattabilità Problemi decidibili possono richiedere tempi di risoluzione elevati: Torri di Hanoi Decidibilità e Trattabilità

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 19/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

b i 1,1,1 1,1,1 0,1,2 0,3,4

b i 1,1,1 1,1,1 0,1,2 0,3,4 V o Appello // RICERCA OPERATIVA - Corso A (a.a. 9/) Nome Cognome: Corso di Laurea: L C6 LS LM Matricola: ) Si consideri il problema di flusso di costo minimo in figura. Si verifichi se il flusso ammissibile

Dettagli

Ricerca Operativa A.A. 2007/2008

Ricerca Operativa A.A. 2007/2008 Ricerca Operativa A.A. 2007/2008 9. Cenni su euristiche e metaeuristiche per ottimizzazione combinatoria Motivazioni L applicazione di metodi esatti non è sempre possibile a causa della complessità del

Dettagli

3. Gli algoritmi di ottimizzazione.

3. Gli algoritmi di ottimizzazione. Marcello Salmeri - Progettazione Automatica di Circuiti e Sistemi Elettronici Capitolo 3-3. Gli algoritmi di ottimizzazione. I grafi. La teoria dei grafi è un comodo strumento per la definizione e la formalizzazione

Dettagli

CORSO di AUTOMAZIONE INDUSTRIALE

CORSO di AUTOMAZIONE INDUSTRIALE CORSO di AUTOMAZIONE INDUSTRIALE (cod. 8469) APPELLO del 10 Novembre 2010 Prof. Emanuele Carpanzano Soluzioni Esercizio 1 (Domande generali) 1.a) Controllo Modulante Tracciare qualitativamente la risposta

Dettagli

Introduzione ai tipi di dato astratti: applicazione alle liste

Introduzione ai tipi di dato astratti: applicazione alle liste Universitàdegli Studi di L Aquila Facoltàdi Scienze M.F.N. Corso di Laurea in Informatica Corso di Laboratorio di Algoritmi e Strutture Dati A.A. 2005/2006 Introduzione ai tipi di dato astratti: applicazione

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

REGOLAMENTO IRONMAN 2 50 LINEE

REGOLAMENTO IRONMAN 2 50 LINEE REGOLAMENTO IRONMAN 2 50 LINEE Slot machine a 5 rulli e 50 linee Lo scopo del gioco Iron Man 2 50 Linee è ottenere una combinazione vincente di simboli dopo la rotazione dei rulli. Per giocare: Il valore

Dettagli

FONDAMENTI DI INTELLIGENZA ARTIFICIALE (8 CFU)

FONDAMENTI DI INTELLIGENZA ARTIFICIALE (8 CFU) FONDAMENTI DI INTELLIGENZA ARTIFICIALE (8 CFU) 13 Febbraio 2015 Tempo a disposizione: 2 h Risultato: 32/32 punti Esercizio 1 (punti 6) Si esprimano in logica dei predicati del I ordine le seguenti frasi:

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli

Contenuto e scopo presentazione. Vehicle Scheduling. Motivazioni VSP

Contenuto e scopo presentazione. Vehicle Scheduling. Motivazioni VSP Contenuto e scopo presentazione Vehicle Scheduling 08/03/2005 18.00 Contenuto vengono introdotti modelli e metodi per problemi di Vehicle Scheduling Problem (VSP) Scopo fornire strumenti di supporto alle

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 8 marzo 2012 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2012.html DECISORI RAZIONALI INTERAGENTI di Fioravante Patrone,

Dettagli

Intelligenza Artificiale Ing. Tiziano Papini

Intelligenza Artificiale Ing. Tiziano Papini Intelligenza Artificiale Ing. Tiziano Papini Email: papinit@dii.unisi.it Web: http://www.dii.unisi.it/~papinit Constraint Satisfaction metodi costruttivi Intelligenza Artificiale - CSP Tiziano Papini -

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

Funzione logaritmo con. funzione inversa della funzione di

Funzione logaritmo con. funzione inversa della funzione di FUNZIONE LOGARITMO a è la base della funzione logaritmo ed è una costante positiva fissata e diversa da 1 x è l argomento della funzione logaritmo e varia nel dominio Funzione logaritmo con funzione inversa

Dettagli

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,...

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... Entropia Motivazione Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... ) s,s 2,s 3,... ognuno dei quali appartiene ad un alfabeto A di M elementi.? Quant è l informazione portata

Dettagli

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x

Dettagli

Corso di Esercitazioni di Programmazione

Corso di Esercitazioni di Programmazione Corso di Esercitazioni di Programmazione Introduzione Dott.ssa Sabina Rossi Informazioni Pagina web del corso: News Orari Mailing list Lezioni Esercitazioni Date esami Risultati esami.. http://www.dsi.unive.it/~prog1

Dettagli

Raffinamento dello schema e forme normali. T. Catarci, M. Scannapieco, Corso di Basi di Dati, A.A. 2008/2009, Sapienza Università di Roma

Raffinamento dello schema e forme normali. T. Catarci, M. Scannapieco, Corso di Basi di Dati, A.A. 2008/2009, Sapienza Università di Roma Raffinamento dello schema e forme normali 1 Forme Normali Le forme normali consentono di valutare la qualità delle relazione Sono state proposte diverse forme normali che includono, in ordine di generalità:

Dettagli

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo)

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) Se si ha un problema lineare e' possibile risolverlo in piu' modi (equivalenti ) - Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) - Trovare soluzione ottima duale (con il simplesso

Dettagli

APPENDICE NOZIONI BASE E VARIE

APPENDICE NOZIONI BASE E VARIE pag. 131 Appendice: Nozioni base e varie G. Gerla APPENDICE NOZIONI BASE E VARIE 1. Funzioni e relazioni di equivalenza Questi appunti sono rivolti a persone che abbiano già una conoscenza elementare della

Dettagli

La programmazione con vincoli in breve. La programmazione con vincoli in breve

La programmazione con vincoli in breve. La programmazione con vincoli in breve Obbiettivi Introdurre la nozione di equivalenza di CSP. Dare una introduzione intuitiva dei metodi generali per la programmazione con vincoli. Introdurre il framework di base per la programmazione con

Dettagli

4.1 Modelli di calcolo analisi asintotica e ricorrenze

4.1 Modelli di calcolo analisi asintotica e ricorrenze 4 Esercizi Prima Parte 4.1 Modelli di calcolo analisi asintotica e ricorrenze Esercizio 4 1 Rispondere alle seguenti domande: 1. Come misuriamo l efficienza di un algoritmo?. Quali sono gli algoritmi più

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Flusso di costo minimo È dato un grafo direzionato G = (N, A). Ad ogni arco (i, j) A è associato il costo c ij

Dettagli

Minimo Albero Ricoprente

Minimo Albero Ricoprente Minimo lbero Ricoprente Pag. 1/20 Minimo lbero Ricoprente Il problema della definizione di un Minimo lbero Ricoprente trova applicazione pratica in diverse aree di studio, quali ad esempio la progettazione

Dettagli

Realizza i tuoi progetti con grande facilità. Con KomPonGo ti basteranno pochi click per creare nuovi schemi di pallettizzazione.

Realizza i tuoi progetti con grande facilità. Con KomPonGo ti basteranno pochi click per creare nuovi schemi di pallettizzazione. KomPonGo 3D Software for palletizing solutions Creare schemi di pallettizzazione non è mai stato così semplice. KomPonGo è un software innovativo che consente di soddisfare le esigenze produttive della

Dettagli

Ricerca con avversari

Ricerca con avversari Ricerca con avversari Roberto Tagliaferri Dipartimento di Informatica Università di Salerno ( Sa ) 84084 Fisciano rtagliaferri@unisa.it Indice I giochi Decisioni ottime nei giochi L algoritmo minimax Potatura

Dettagli

Approcci esatti per il job shop

Approcci esatti per il job shop Approcci esatti per il job shop Riferimenti lezione: Carlier, J. (1982) The one-machine sequencing problem, European Journal of Operational Research, Vol. 11, No. 1, pp. 42-47 Carlier, J. & Pinson, E.

Dettagli

FONDAMENTI DI INTELLIGENZA ARTIFICIALE 1 parte (6 CFU) 12 Luglio 2012 Tempo a disposizione: 2 h Risultato: 32/32 punti

FONDAMENTI DI INTELLIGENZA ARTIFICIALE 1 parte (6 CFU) 12 Luglio 2012 Tempo a disposizione: 2 h Risultato: 32/32 punti FONDAMENTI DI INTELLIGENZA ARTIFICIALE 1 parte (6 CFU) 12 Luglio 2012 Tempo a disposizione: 2 h Risultato: 32/32 punti Esercizio 1 (7 punti) Si formalizzi in logica dei predicati del primo ordine la seguente

Dettagli

2) Codici univocamente decifrabili e codici a prefisso.

2) Codici univocamente decifrabili e codici a prefisso. Argomenti della Lezione ) Codici di sorgente 2) Codici univocamente decifrabili e codici a prefisso. 3) Disuguaglianza di Kraft 4) Primo Teorema di Shannon 5) Codifica di Huffman Codifica di sorgente Il

Dettagli

Complessità computazionale degli algoritmi

Complessità computazionale degli algoritmi Complessità computazionale degli algoritmi Lezione n. 3.bis I precursori dei calcolatore Calcolatore di Rodi o di Andikithira 65 a.c. Blaise Pascale pascalina XVII secolo Gottfried Leibniz Joseph Jacquard

Dettagli

B-Tree. Struttura dati usata in applicazioni che necessitano di gestire insiemi di chiavi ordinate Una variante (B+-Tree) è diffusa in:

B-Tree. Struttura dati usata in applicazioni che necessitano di gestire insiemi di chiavi ordinate Una variante (B+-Tree) è diffusa in: B-Tree Prof. Rudolf Bayer Struttura dati usata in applicazioni che necessitano di gestire insiemi di chiavi ordinate Una variante (B+-Tree) è diffusa in: Filesystem: btrfs, NTFS, ReiserFS, NSS, XFS, JFS

Dettagli

Barriere assorbenti nelle catene di Markov e una loro applicazione al web

Barriere assorbenti nelle catene di Markov e una loro applicazione al web Università Roma Tre Facoltà di Scienze M.F.N Corso di Laurea in Matematica a.a. 2001/2002 Barriere assorbenti nelle catene di Markov e una loro applicazione al web Giulio Simeone 1 Sommario Descrizione

Dettagli

Kangourou Italia Gara del 15 marzo 2007 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado

Kangourou Italia Gara del 15 marzo 2007 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado Testi_07.qxp 6-04-2007 2:07 Pagina 28 Kangourou Italia Gara del 5 marzo 2007 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado I quesiti dal N. al N. 0 valgono 3 punti

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

Ricorsione. Corso di Fondamenti di Informatica

Ricorsione. Corso di Fondamenti di Informatica Dipartimento di Informatica e Sistemistica Antonio Ruberti Sapienza Università di Roma Ricorsione Corso di Fondamenti di Informatica Laurea in Ingegneria Informatica (Canale di Ingegneria delle Reti e

Dettagli

Informatica 3. LEZIONE 23: Indicizzazione. Modulo 1: Indicizzazione lineare, ISAM e ad albero Modulo 2: 2-3 trees, B-trees e B + -trees

Informatica 3. LEZIONE 23: Indicizzazione. Modulo 1: Indicizzazione lineare, ISAM e ad albero Modulo 2: 2-3 trees, B-trees e B + -trees Informatica 3 LEZIONE 23: Indicizzazione Modulo 1: Indicizzazione lineare, ISAM e ad albero Modulo 2: 2-3 trees, B-trees e B + -trees Informatica 3 Lezione 23 - Modulo 1 Indicizzazione lineare, ISAM e

Dettagli

Intelligenza Artificiale Ing. Tiziano Papini

Intelligenza Artificiale Ing. Tiziano Papini Intelligenza Artificiale Ing. Tiziano Papini Email: papinit@dii.unisi.it Web: http://www.dii.unisi.it/~papinit Constraint Satisfaction Introduzione Intelligenza Artificiale - CSP Tiziano Papini - 2011

Dettagli

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica

Dettagli

Algoritmi Euristici introduzione. Vittorio Maniezzo Università di Bologna

Algoritmi Euristici introduzione. Vittorio Maniezzo Università di Bologna 9 Algoritmi Euristici introduzione Vittorio Maniezzo Università di Bologna 1 Molti problemi reali richiedono soluzioni algoritmiche I camion devono essere instradati VRP, NP-hard I depositi o i punti di

Dettagli

I tipi di dato astratti

I tipi di dato astratti I tipi di dato astratti.0 I tipi di dato astratti c Diego Calvanese Fondamenti di Informatica Corso di Laurea in Ingegneria Elettronica A.A. 001/00.0 0 I tipi di dato astratti La nozione di tipo di dato

Dettagli

Algoritmi di clustering

Algoritmi di clustering Algoritmi di clustering Dato un insieme di dati sperimentali, vogliamo dividerli in clusters in modo che: I dati all interno di ciascun cluster siano simili tra loro Ciascun dato appartenga a uno e un

Dettagli

1. Considerazioni generali

1. Considerazioni generali 1. Considerazioni generali Modelli di shop scheduling In molti ambienti produttivi l esecuzione di un job richiede l esecuzione non simultanea di un certo numero di operazioni su macchine dedicate. Ogni

Dettagli

Analisi Grafica Manuale d uso

Analisi Grafica Manuale d uso Analisi Grafica Manuale d uso S.r.l. P.zza L. da Vinci, 7 20133 Milano tel: +39 2 2367490 e-mail: info@maind.it web: www.maind.it 1 Sommario 1. Introduzione... 3 1.1. Uso del programma... 3 1.2. Il menù

Dettagli

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete Funzioni in due variabili Raccolta di FAQ by Andrea Prevete 1) Cosa intendiamo, esattamente, quando parliamo di funzione reale di due variabili reali? Quando esiste una relazione fra tre variabili reali

Dettagli

Calcolo combinatorio

Calcolo combinatorio Calcolo combinatorio (da un file della Prof.ssa Marchisio, con alcune modifiche e integrazioni) Calcolo combinatorio branca della matematica che studia i modi per raggruppare e/o ordinare, secondo date

Dettagli

Elementi di Psicometria

Elementi di Psicometria Elementi di Psicometria 12-Correlazione vers. 1.1 (27 novembre 2012) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca 2011-2012 G. Rossi (Dip. Psicologia)

Dettagli

Esercitazioni di Calcolo Numerico 23-30/03/2009, Laboratorio 2

Esercitazioni di Calcolo Numerico 23-30/03/2009, Laboratorio 2 Esercitazioni di Calcolo Numerico 23-30/03/2009, Laboratorio 2 [1] Metodo di Bisezione gli estremi a e b di un intervallo reale trovi uno zero della funzione f(x) nell intervallo [a, b] usando il metodo

Dettagli

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO 1. Load Balancing Un istanza del problema del load balancing consiste di una sequenza p 1,..., p n di interi positivi (pesi dei job) e un

Dettagli

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 8// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x x x + x x x + x 8 x Base

Dettagli

Note operative per Windows 7

Note operative per Windows 7 Note operative per Windows 7 AVVIO E ARRESTO DEL SISTEMA All avvio del computer, quando l utente preme l interruttore di accensione, vengono attivati i processi di inizializzazione con i quali si effettua

Dettagli

Algebra booleana e circuiti logici. a cura di: Salvatore Orlando

Algebra booleana e circuiti logici. a cura di: Salvatore Orlando lgebra booleana e circuiti logici a cura di: Salvatore Orlando rch. Elab. - S. Orlando lgebra & Circuiti Elettronici I calcolatori operano con segnali elettrici con valori di potenziale discreti sono considerati

Dettagli

Basi di dati. Introduzione. Una breve introduzione sulla suite di OpenOffice.org e la gestione dei database

Basi di dati. Introduzione. Una breve introduzione sulla suite di OpenOffice.org e la gestione dei database Basi di dati Introduzione Una breve introduzione sulla suite di OpenOffice.org e la gestione dei database OpenOffice.org (www.openoffice.org) è un potente software opensource che ha, quale scopo primario,

Dettagli

Appunti sulla Macchina di Turing. Macchina di Turing

Appunti sulla Macchina di Turing. Macchina di Turing Macchina di Turing Una macchina di Turing è costituita dai seguenti elementi (vedi fig. 1): a) una unità di memoria, detta memoria esterna, consistente in un nastro illimitato in entrambi i sensi e suddiviso

Dettagli

REGOLAMENTO TENNIS STAR

REGOLAMENTO TENNIS STAR REGOLAMENTO TENNIS STAR Slot machine a 5 rulli e 40 linee Lo scopo del gioco Tennis Star è ottenere una combinazione vincente di simboli dopo la rotazione dei rulli. Per giocare: Il valore del gettone

Dettagli

MANUALE D USO DEL CONTATEMPO

MANUALE D USO DEL CONTATEMPO MANUALE D USO DEL CONTATEMPO Accendere il dispositivo con l apposito interruttore, l alimentazione può essere data dalla rete a 220V o, in mancanza, da batterie tampone ricaricabili almeno 40 minuti 1

Dettagli

Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT

Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT Giuditta Franco Corso di Laurea in Bioinformatica - AA 2012/2013 Uno dei più grossi risultati nell informatica degli

Dettagli

Sistemi Informativi Multimediali Indicizzazione multidimensionale

Sistemi Informativi Multimediali Indicizzazione multidimensionale Indicizzazione nei sistemi di IR (1) Sistemi Informativi Multimediali Indicizzazione multidimensionale ugusto elentano Università a Foscari Venezia La struttura fondamentale di un sistema di information

Dettagli

10 - Programmare con gli Array

10 - Programmare con gli Array 10 - Programmare con gli Array Programmazione e analisi di dati Modulo A: Programmazione in Java Paolo Milazzo Dipartimento di Informatica, Università di Pisa http://www.di.unipi.it/ milazzo milazzo di.unipi.it

Dettagli

Specifica parte IIC. Caso di studio. Caso di studio. Caso di studio. Leggere Sez. 5.5.4.2 Ghezzi et al.

Specifica parte IIC. Caso di studio. Caso di studio. Caso di studio. Leggere Sez. 5.5.4.2 Ghezzi et al. Caso di studio Specifica parte IIC Leggere Sez. 5.5.4.2 Ghezzi et al. Un sistema di controllo di n ascensori deve essere installato in un palazzo di m piani. I costruttori forniscono gli ascensori e i

Dettagli

SISTEMI DI CONDOTTE: Il dimensionamento idraulico

SISTEMI DI CONDOTTE: Il dimensionamento idraulico SISTEMI DI CONDOTTE: Il dimensionamento idraulico Carlo Ciaponi Università degli Studi di Pavia Dipartimento di Ingegneria Idraulica e Ambientale Posizione del del problema Rete da progettare di cui è

Dettagli

Manuale elettronico Selection CAD

Manuale elettronico Selection CAD Manuale elettronico Selection CAD Versione: 1.0 Nome: IT_AutoCAD_V1.PDF Argomenti: 1 Nozioni generali su Selection CAD (AutoCAD)...2 2 Interfaccia AutoCAD...2 2.1 Funzioni di menu...2 2.2 Funzioni delle

Dettagli

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Esercizi II parte Esercizio 1 Discutere la correttezza di ciascuna delle seguenti affermazioni. Dimostrare formalmente la validità

Dettagli

Tecniche di riconoscimento statistico

Tecniche di riconoscimento statistico On AIR s.r.l. Tecniche di riconoscimento statistico Applicazioni alla lettura automatica di testi (OCR) Parte 4 Reti neurali per la classificazione Ennio Ottaviani On AIR srl ennio.ottaviani@onairweb.com

Dettagli

Algoritmi e strutture dati. Codici di Huffman

Algoritmi e strutture dati. Codici di Huffman Algoritmi e strutture dati Codici di Huffman Memorizzazione dei dati Quando un file viene memorizzato, esso va memorizzato in qualche formato binario Modo più semplice: memorizzare il codice ASCII per

Dettagli

REGOLAMENTO FRANKIE DETTORI MAGIC 7

REGOLAMENTO FRANKIE DETTORI MAGIC 7 REGOLAMENTO FRANKIE DETTORI MAGIC 7 Slot machine a 5 rulli e 25 linee Lo scopo di Frankie Dettori Magic 7 è ottenere una combinazione vincente di simboli dopo la rotazione dei rulli. Per giocare: Il valore

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

DIPARTIMENTO DI ELETTRONICA E INFORMAZIONE. La Ricorsione. Marco D. Santambrogio marco.santambrogio@polimi.it Ver. aggiornata al 29 Maggio 2014

DIPARTIMENTO DI ELETTRONICA E INFORMAZIONE. La Ricorsione. Marco D. Santambrogio marco.santambrogio@polimi.it Ver. aggiornata al 29 Maggio 2014 La Ricorsione Marco D. Santambrogio marco.santambrogio@polimi.it Ver. aggiornata al 29 Maggio 2014 Obiettivi La ricorsione Ricordate la sigla GNU GNU = GNU is Not Unix GNU = GNU is Not Unix GNU = GNU is

Dettagli

ESERCIZI. Realizzare un progetto PHP che mostri il contenuto di una. messaggio a piacere) in un elemento psenza usare l operatore di concatenazione.

ESERCIZI. Realizzare un progetto PHP che mostri il contenuto di una. messaggio a piacere) in un elemento psenza usare l operatore di concatenazione. PHP COSTRUTTI DEL LINGUAGGIO Realizzare un progetto PHP che produca una pagina HTML il cui contenuto sia un elemento di tipo h1che presenti il messaggio Ciao Mondo. Si svolga l esercizio con una sola istruzione.

Dettagli

Politecnico di Milano. Reti Wireless. Seminari didattici. Dalla teoria alla soluzione. Ilario Filippini

Politecnico di Milano. Reti Wireless. Seminari didattici. Dalla teoria alla soluzione. Ilario Filippini Politecnico di Milano Reti Wireless Seminari didattici Dalla teoria alla soluzione Ilario Filippini 2 Approccio euristico 3 Obiettivo dell approccio euristico 4 Tipi di euristiche Dalla teoria alla soluzione

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenziali e logaritmi Corso di accompagnamento in matematica Lezione 4 Sommario 1 La funzione esponenziale Proprietà Grafico 2 La funzione logaritmo Grafico Proprietà 3 Equazioni / disequazioni esponenziali

Dettagli