Capitolo 5: Macchine di Turing e calcolabilitá secondo Turing

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Capitolo 5: Macchine di Turing e calcolabilitá secondo Turing"

Transcript

1 Capitolo 5: Macchine di Turing e calcolabilitá secondo Turing 1

2 Macchina di Turing (MDT ) Un dispositivo che accede a un nastro (potenzialmente) illimitato diviso in celle contenenti ciascuna un simbolo di un alfabeto fissato, piú il carattere b (cella vuota). La MDT opera sul nastro con una testina: puó leggere o scrivere un carattere in una cella, spostarsi a destra o sinistra. In ogni istante la macchina si trova in uno stato, e la computazione evolve attraverso la funzione di transizione δ: stato corrente + contenuto della cella su cui é la testina = nuovo stato + carattere da scrivere + spostamento. 2

3

4 Definizione 1 Una macchina di Turing deterministica (M DT ) é una sestupla M = Γ, b, Q, q 0, F, δ, dove: Γ é l alfabeto dei simboli di nastro b / Γ é il carattere speciale di cella vuota Q é un insieme non vuoto e finito di stati q 0 Q é lo stato iniziale F Q é l insieme degli stati finali δ é la funzione di transizione, definita come δ : (Q F ) (Γ { b}) Q (Γ { b}) {d, s, i} 3

5

6 Configurazioni e transizioni di una M DT Una configurazione istantanea di una M DT é l insieme del contenuto del nastro, della posizione della testina, e dello stato corrente. Definizione 2 Una configurazione istantanea di una M DT M = Γ, b, Q, q 0, F, δ é una stringa c = xqy, dove: 1. x ΓΓ {ε} (da ora in poi, L Γ ) 2. q Q 3. x Γ Γ { b} (da ora in poi, R Γ ) In xqy, xy rappresenta il contenuto della sezione non vuota del nastro; q é lo stato attuale; la testina é sul primo carattere di y. 4

7 La configurazione iniziale di una M DT prevede che: lo stato iniziale sia q 0 il nastro contenga l input x su x celle contigue (le altre vuote) la testina sia posizionata sul primo carattere di x. La configurazione finale di una MDT prevede che lo stato della macchina sia uno stato finale. Definizione 3 Una configurazione c = xqy si dice iniziale se x = ε, q = q 0, y Γ + { b} Definizione 4 Una configurazione c = xqy si dice finale se q F. 5

8 Funzione di transizione: data una configurazione c, un applicazione di δ produce una configurazione c (c M c ) come segue: 1. c = xqay, con x L Γ, y Γ Γ, a Γ, e δ(q, a) = (q, a, d) = c = xa q y; 2. c = xqy, con x L Γ, a Γ, e δ(q, a) = (q, a, d) = c = xa q b; 3. c = xaqby, con xa ΓΓ, y Γ Γ {ε}, b Γ e δ(q, b) = (q, b, s) = c = xq ab y; 4. c = qby, con y Γ Γ {ε}, b Γ, e δ(q, b) = (q, b, s) = c = q bb y; 5. c = xqay, con x L Γ, β Γ Γ {ε}, a Γ, e δ(q, a) = (q, b, i) = c = xq a y; 6

9 Computazione di una macchina di Turing Definizione 5 Data una macchina di Turing M = Γ, b, Q, q 0, F, δ, e dato un alfabeto di input Σ Γ, una stringa x Σ é accettata ( rifiutata) da M se esiste una computazione di accettazione (di rifiuto) con c 0 = q 0 x. Questa definizione implica che la macchina puó anche non terminare. Si puó sapere se una computazione termina? In altri termini, esiste una macchina M che puó dire se M termina per input x (problema dell halt)? 7

10 Definizione 6 Sia M = Γ, b, Q, q 0, F, δ una macchina di Turing deterministica. M riconosce ( decide) un linguaggio L Σ (con Σ Γ) sse per ogni x Σ esiste una computazione massimale q 0 x M wqz, con w ΓΓ {ε}, z Γ Γ { b}, e dove q F sse x L. Definizione 7 Sia M = Γ, b, Q, q 0, F, δ una macchina di Turing deterministica. M accetta un linguaggio L Σ (con Σ Γ) sse L = {x Σ q 0 x M wqz}, con w ΓΓ {ε}, z Γ Γ { b}, e q F. 8

11 Esempio. MT che accetta 0n1n (n1) M=<X, Y,b,Q,q 0,{q 4 },> Configurazione iniziale: q La MT esegue ripetutamente le seguenti operazioni: rimpiazza lo 0 piu' a sinistra con una X X si muove a destra verso l'1 piu' a sinistra rimpiazza l'1 piu' a sinistra con una Y X0000Y1111 si muove a sinistra verso la X piu' a destra si muove di una cella sullo 0 piu' a sinistra q 0 stato usato prima della sostituzione 0 X q 1 per muoversi a destra verso il primo 1 ed effettuare la sostituzione 1 Y q 2 per muoversi a sinistra verso le X q 3 per verificare che non rimane nessun 1 q 4 stato di accettazione se cercando un 1 trova un b allora rifiuta se cercando uno 0 non ne trova piu' allora se non e' rimasto nessun 1 accetta altrimenti rifiuta

12 Calcolo di funzioni Definizione 8 Sia M = Γ, b, Q, q 0, F, δ una MDT deterministica (un trasduttore) e f : Σ Σ, (Σ Γ); M calcola la funzione f sse per ogni x Γ : 1. se x Σ e f(x) = y allora q 0 x M x bqy, con q F ; 2. se x / Σ, oppure se x Σ e f(x) non definita, allora non esistono computazioni massimali, oppure esistono computazioni massimali che non terminano in uno stato finale. Codifica dei dati. 9

13 Calcolabilitá secondo turing Formalizziamo il concetto di calcolo secondo Turing (avendo a disposizione una definizione formale di algoritmo). Definizione 9 Un linguaggio é decidibile secondo Turing (Tdecidibile) se esiste una macchina di Turing che lo riconosce. Definizione 10 Un linguaggio é semidecidibile secondo Turing (T-semidecidibile) se esiste una macchina di Turing che lo accetta. Problema: Esistono linguaggi T-semidecidibili non T-decidibili? Definizione 11 Una funzione é detta calcolabile secondo Turing (T-calcolabile) se esiste una macchina di Turing che la calcola. 10

14 Esempio. MT che calcola f(x) = x per x*. M=<X, Y, b,q,q 0,{q 6 },> 0/X/d q1 b/b/d q3 X/0/d Y/1/d Configurazione iniziale: q Configurazione finale: bq rimpiazza il carattere piu' a sinistra (0 o 1) con una X o, rispettivamente, con una Y Y (stato q0) si muove a destra verso il primo b (stati q 1 e q 2 ) si muove a destra verso il secondo b e scrive 0 o, rispettivamente, 1 Y b1 (stati q 3 e q 4 ) si muove a sinistra verso la X (o la Y) e la rimpiazza con 0 (1) (stato q 5 ) si muove di una cella a destra sul carattere successivo (stato q 0 ) q0 b/b/d q6 1/Y/D 0/0/d 1/1/d q2 0/0/d 1/1/d 0/0/d 1/1/d q4 0/0/s 1/1/d b/0/s b/1/s 0/0/s 1/1/s b/b/s q5 se in questo ultimo passo trova b allora termina (stato q 6 )

15 Macchine di Turing multinastro Definizione 12 Una macchina di Turing a k 2 nastri (MT M) é una sestupla M (k) = Γ, b, Q, q 0, F, δ k, con Γ = k i=1 Γ i é l unione dei k alfabeti di nastro Γ 1... Γ k. La funzione di transizione é definita come δ (k) : (Q F ) Γ 1... Γ k Q Γ 1... Γ k {d, s, i} (k). La macchina esegue una transizione a partire da uno stato interno q i e con le k testine (una per nastro) posizionate sui caratteri a i1,..., a ik, e con δ (k) (q i, a i1,..., a ik ) = (q j, a j1,..., a jk, z j1,..., z jk ), con z jl {d, s, i}. 11

16 Configurazioni e transizioni di MTM La configurazione di una MT M deve descrivere lo stato, i nastri e i caratteri osservati. Definizione 13 Una configurazione istantanea di una macchina di Turing multinastro é una stringa del tipo q α 1 β 1 α 2 β 2... α k β k dove α i Γ i Γ i {ε} e β i Γ i Γ i { b}, con il simbolo che indica la posizione di ogni testina e un separatore. 12

17 Definizione 14 Una configurazione q α 1 β 1... α k β k si dice iniziale se α i = ε, β 1 Γ 1, β i = Z 0 (i = 2,..., k), e q = q 0. Definizione 15 Una configurazione q α 1 β 1... α k β k finale se q F. si dice Definizione 16 L applicazione della funzione di transizione δ (k) ad una configurazione si dice transizione o mossa o passo computazionale di una MT M. Estensione delle definizioni per M DT. In particolare: Definizione 17 Una MT M M calcola la funzione f(x) se q 0 x Z 0... Z 0 M q x f(x)... b, con q F. 13

18 Equivalenza fra MDT e MT M Macchine di Turing e macchine di Turing multinastro hanno differente potere computazionale? In altri termini, i linguaggi accettati (risp., le funzioni calcolate) da una MDT sono gli stessi accettati (calcolate) da un MT M?? Teorema 18 Data una macchina di Turing M (k) = Γ, b, Q, q 0, F, δ k, esiste una macchina a un nastro che simula t passi di M in O(t 2 ) transizioni usando un alfabeto di dimensione O((2 Γ ) k ). Come conseguenza del teorema, MDT e MT M hanno lo stesso potere computazionale. 14

19 Equivalenza tra MTM e MT Strumento di lavoro: MT a nastro suddiviso in tracce se il nastro ha h tracce la testina puo' leggere/scrivere h caratteri contemporaneamente la corrispondenza tra MT a nastro suddiviso in tracce ed una normale MT e' immediata osservazione: se sulle tracce sono usati gli alfabeti 1, 2,..., h, una MT corrispondente ha un alfabeto con 1 x 2 x...x h Teorema. Data una MTM M=<,b,Q,q 0,F,(k)> a k nastri esiste una MT che simula t passi di Mk in O(t 2 ) passi usando un alfabeto di cardinalità O((2 )k) Dim. costruiamo una MT M'=< ',b,k',q 0 ',F','> con nastro suddiviso in 2k tracce che simula M poi costruiamo una MT M" equivalente a M' le k tracce di posto pari di M' rappresentano i k nastri di M sulle k tracce di posto dispari di M' con il carattere "" indichiamo la posizione delle testine sui k nastri di M

20 il nastro di M' all' inizio della computazione si presenta con tutte le tracce dispari "vuote" tranne la prima per simulare la funzione di transizione di M che e' del tipo: (k)(qi,i1,..,ik) = <qj,j1,..,jk,zj1,..,zjk> la ' deve: rintracciare le posizioni dei marcatori, scrivere e spostare i marcatori, cambiare stato quindi per ogni passo di M, M' deve eseguire un numero di passi proporzionale alla distanza (numero di caselle) tra i due marcatori piu' lontani dopo t passi due marcatori possono essersi allontanati di al piu' O(t) caselle se M esegue t passi, M' ne esegue O(t 2 ) M" esegue gli stessi passi di M' per cio' che riguarda la cardinalita' dell'alfabeto di M" abbiamo da codificare con un solo alfabeto stringhe di 2k simboli cosi' composte: k simboli appartengono a {b,} 1 simbolo appartiene a {b} k-1 simboli appartengono a {b,z 0 } " = 2 k ( +1)( +2) k-1 = O((2 ) k )

21 Esempio. MTM per riconoscere xcx ~ con x{a,b} usiamo 2 nastri: uno di input monodirezionale a sola lettura e uno di lavoro che usiamo come pila durante la scansione di x, fino a c, x viene copiata sul nastro di lavoro durante la scansione di x ~ si confrontano i caratteri con quelli sul nastro di lavoro configurazione iniziale della MTM: q 0 #z#z 0 3 stati: q 0 per scandire x q 1 per scandire ~ x q 2 stato finale copiatura iniziale: (q 0,a,Z 0 )=<q 0,a,A,d,d> (q 0,b,Z 0 )=<q 0,b,B,d,d> copiatura a regime: (q 0,a,b)=<q 0,a,A,d,d> (q 0,b,b)=<q 0,b,B,d,d> passaggio dalla copiatura alla verifica: (q 0,c,b)=<q 1,c,b,d,s>

22 verifica positiva: (q 1,a,A)=<q 1,a,A,d,s> (q 1,b,B)=<q 1,b,B,d,s> accettazione: (q 1,b,b)=<q 2,b,b,i,i> computazione con input acb: q 0 #acb #Z0 q 0 #acb #ab q 1 #acb #a computazione con input bacab: q 0 #bacab #Z 0 q 0 #bacab #Bb q 0 #bacab #BAb q 1 #bacab #BA q 1 #bacab #BA q 1 #bacabb #bba q 2 #bacabb #bba

23 Macchine di Turing non deterministiche (MT ND) Le macchine di Turing non deterministiche hanno un potere computazionale maggiore di quelle deterministiche? Definizione 19 Una macchina di Turing non deterministica (MT ND) é una sestupla M = Γ, b, Q, q 0, F, δ, dove: Γ é l alfabeto dei simboli di nastro b / Γ é il carattere speciale di cella vuota Q é un insieme non vuoto e finito di stati q 0 Q é lo stato iniziale F Q é l insieme degli stati finali δ é la funzione di transizione (parziale), definita come δ : Q Γ P(Q Γ {d, s, i}). 15

24 Definizione 20 Dato una alfabeto Σ Γ, una stringa x Σ é accettata dalla macchina M se esiste una computazione accettante c 0,..., c n di M, con {c 0 = q 0 x}. Definizione 21 Dato una alfabeto Σ Γ, una stringa x Σ é rifiutata dalla macchina M se tutte le computazioni di M sono rifiutanti. Una MT ND rifiuta il suo input se perviene a configurazioni non finali sulle quali non si puó applicare la δ. Cosa succede al calcolo di una funzione tramite una macchina non deterministica? 16

25 Equivalenza fra MDT e MT ND Teorema 22 Per ogni macchina di Turing non deterministica M esiste una macchina di Turing deterministica M D a 3 nastri equivalente. Riduzione di MDT Teorema 23 Per ogni macchina di Turing M = Γ, b, Q, q 0, F, δ esiste una macchina di Turing a M equivalente, con nastro semiinfinito. 17

26 Equivalenza tra MT e MTND Le MTND sono più efficienti ma non più potenti computazionalmente delle MT Teorema. Data una macchina non deterministica M con grado di nondeterminismo d=(m) esiste una MT M D equivalente che simula k passi di M in O(kdk) passi Dim. L'albero di computazione di M viene visitato in ampiezza da M D (perché non in profondità?) M D ha 3 nastri nastro 1: contiene l'input nastro 2: viene usato per generare, in ordine lessicografico, tutte le sequenze finite composte da cifre comprese tra 1 e d nastro 3: nastro di lavoro Per ogni sequenza generata sul nastro 2, M D copia l'input sul nastro 3. Le transizioni di ogni insieme N(q,) sono numerate da 1 a d. Ogni sequenza di lunghezza s sul nastro 2 è in corrispondenza con una computazione di M di s passi Gli s numeri di ogni sequenza (compresi tra 1 e d) sono usati per scegliere ad ogni passo una transizione tra le d possibili Esempio: se s=4 e d=2 e la sequenza è 2122 M D sceglie per la prima mossa la seconda transizione disponibile, per la seconda mossa la prima, ecc.

27 Se su qualche foglia dell'albero di computazione di M c'è uno stato finale, allora M D lo raggiunge in tempo finito altrimenti M D non raggiunge mai uno stato finale. Se M termina in k passi M D ha bisogno di k O( jd j ) = O(kdk) passi j=0 Per dimostare che k O( jd j ) = O(kdk) passi j=0 si può procedere come segue. Tenendo conto del fatto che k d j = (d k+1-1)/(d-1) j=0 e derivando si ottiene: k e quindi jd j-1 = (kd k+1 -(k+1)d k +1)/(d-1) 2 j=1 k jd j = O (kd k ) j=1

28 La Macchina di Turing universale Qual é il potere computazionale della macchina di Turing? Esistono funzioni non calcolabili secondo Turing?? Definizione 24 Sia m : (Σ ) n Σ una funzione a piú argomenti. Una macchina di Turing M calcola m se realizza la computazione q 0 x 1 b... bx n M x 1 b... bx n bqy, con q stato finale sse m(x 1... x n ) = y. 19

29 Definizione 25 Una macchina di Turing U = Γ, b, Q, q 0, F, δ si dice macchina universale se calcola una funzione u : (Γ ) n+1 Γ con la seguente proprietá: data una qualunque macchina di Turing M = Γ, b, Q, q 0, F, δ che calcola la funzione m : (Γ ) n Γ, esiste una stringa c M Γ (una codifica di M) tale che u(c M x 1... x n ) = m(x 1... x n ). La macchina universale é quindi in grado di simulare il comportamento di ogni altra macchina di Turing. Esiste una tale macchina? 20

30 Il problema della terminazione (halting problem): data una macchina di Turing M ed una stringa x, stabilire se M termina la computazione avendo x come input. Teorema 26 Dati un alfabeto Γ ed una codifica che associa ad ogni macchina M = Γ, b, Q, q 0, F, δ una stringa c M Γ. La funzione h(c M, x) = non é T-calcolabile. 1 se M termina su input x, 0 se M non termina su input x. 21

31 3.9 IL PROBLEMA DELLA TERMINAZIONE (HALTING PROBLEM) Data una MT M=<,b,K,q0,F,> sia c M la codifica di M in. Per x* definiamo il predicato della terminazione Dim. Supponiamo che il predicato sia calcolabile, cioè che esista una macchina di Turing H che calcola h. Costruiamo la macchina H' che calcola il predicato h(d M,x) =1 se M con input x termina =0 se M con input x non termina h'(cm) =1 se M con input cm termina =0 se M con input cm non termina Teorema. Il predicato della terminazione delle macchine di Turing non è T-calcolabile. NOTA BENE. Invece è T-calcolabile il predicato: h(c M,x) =1 se M con input x termina = indefinito, altrimenti H' non è altro che la composizione di due macchine: la prima con input cm fornisce cmbcm, la seconda è la macchina H che prende in input e calcola il predicato della terminazione. In altre parole H' è la macchina che verifica se una MT termina quando le viene fornito in input il proprio codice. Possiamo ora costruire una nuova macchina H" che prende in input cm e calcola la funzione: h"(cm) =0 se h'(cm) = 0 =indefinito altrimenti

32 H", cioè, termina con 0 se H' si è fermata con 0 e si mette a ciclare, se H' si è fermata con 1. Cosa accade ora se calcoliamo h"(ch"): h"(ch") =indefinita se h"(ch") è definita =0 se h"(ch") è indefinita In ogni caso abbiamo una contraddizione. Quindi non può esistere la macchina H.

Capitolo 5: Macchine di Turing e calcolabilitá secondo Turing

Capitolo 5: Macchine di Turing e calcolabilitá secondo Turing Capitolo 5: Macchine di Turing e calcolabilitá secondo Turing 1 Macchina di Turing (MDT ) Un dispositivo che accede a un nastro (potenzialmente) illimitato diviso in celle contenenti ciascuna un simbolo

Dettagli

Ma il programma in Fig. 8.2 del libro? Stampa hello, world, dato un input n se e solo se l equazione

Ma il programma in Fig. 8.2 del libro? Stampa hello, world, dato un input n se e solo se l equazione Problemi che i calcolatori non possono risolvere E importante sapere se un programma e corretto, cioe fa uello che ci aspettiamo. E facile vedere che il programma Ma il programma in Fig. 8.2 del libro?

Dettagli

MACCHINE DI TURING E CALCOLABILITA SECONDO TURING

MACCHINE DI TURING E CALCOLABILITA SECONDO TURING PARTE II MACCHINE DI TURING E CALCOLABILITA SECONDO TURING Macchine di Turing ad un nastro e multinastro Macchine di Turing non deterministiche Macchine di Turing e linguaggi di tipo 0 e di tipo 1 Calcolabilita

Dettagli

MACCHINE DI TURING defnizione formale del concetto astratto di algoritmo accettare riconoscimento parziale di tutti i linguaggi di tipo 0

MACCHINE DI TURING defnizione formale del concetto astratto di algoritmo accettare riconoscimento parziale di tutti i linguaggi di tipo 0 MACCHINE DI TURING La macchina di Turing è un automa con testina di scrittura/lettura su un nastro "potenzialmente" illimitato. In ogni istante la macchina si trova in uno stato appartenente ad un insieme

Dettagli

Laurea Specialistica in Informatica - Università di Ferrara 2008-2009 [1]

Laurea Specialistica in Informatica - Università di Ferrara 2008-2009 [1] Laurea Specialistica in Informatica - Università di Ferrara 2008-2009 [1] Macchine di Turing modello di calcolo introdotto dall ingegner Alan Turing nel 1936, per simulare il processo di calcolo umano

Dettagli

Macchine di Turing. Francesco Paoli. Istituzioni di logica, Francesco Paoli (Istituzioni di logica, ) Macchine di Turing 1 / 29

Macchine di Turing. Francesco Paoli. Istituzioni di logica, Francesco Paoli (Istituzioni di logica, ) Macchine di Turing 1 / 29 Macchine di Turing Francesco Paoli Istituzioni di logica, 2016-17 Francesco Paoli (Istituzioni di logica, 2016-17) Macchine di Turing 1 / 29 Alan M. Turing (1912-1954) Francesco Paoli (Istituzioni di logica,

Dettagli

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 macchine di Turing a nastro singolo macchine di Turing multinastro macchine di Turing trasduttrici

Dettagli

Macchina di Turing ... !!... !!! a b b! b a! Nastro di Input. testina. s t q i. s r. Unità di Controllo q j S / D / F

Macchina di Turing ... !!... !!! a b b! b a! Nastro di Input. testina. s t q i. s r. Unità di Controllo q j S / D / F Macchina di Turing Nastro di Input...!!! a b b! b a! testina!!... s r s t q i Unità di Controllo q j Q S / D / F P Definizione Formale Una macchina di Turing deterministica è una sestupla

Dettagli

12. MACCHINE DI TURING E CALCOLABILITA

12. MACCHINE DI TURING E CALCOLABILITA 12. MACCHINE DI TURING E CALCOLABILITA 12.1 Funzioni calcolabili secondo Turing 12.2 Insiemi e linguaggi decidibili e semidecidibili 12.3 Macchine di Turing multinastro e nondeterministiche 12.4 Macchina

Dettagli

Macchine RAM. API a.a. 2013/2014 Gennaio 27, 2014 Flavio Mutti, PhD

Macchine RAM. API a.a. 2013/2014 Gennaio 27, 2014 Flavio Mutti, PhD Macchine RAM API a.a. 2013/2014 Gennaio 27, 2014 Flavio Mutti, PhD 2 Macchina RAM 3 Esercizio Si consideri il linguaggio definito da: L = wcw R w a, b } 1. Codificare un programma RAM per il riconoscimento

Dettagli

Linguaggi Regolari e Linguaggi Liberi

Linguaggi Regolari e Linguaggi Liberi Linguaggi Regolari e Linguaggi Liberi Linguaggi regolari Potere espressivo degli automi Costruzione di una grammatica equivalente a un automa Grammatiche regolari Potere espressivo delle grammatiche 1

Dettagli

AUTOMI A PILA. M.P. Schutzenberger

AUTOMI A PILA. M.P. Schutzenberger UTOMI PIL Introdotti da. G. Oettinger in utomatic Syntactic nalysis and the pushdown store Proc. Symp. pplied Math., 1961 e da M.P. Schutzenberger in Context free languages and pushdown automata Information

Dettagli

Dispense del corso di Linguaggi di programmazione e laboratorio Linguaggi formali(versione non definitiva con diversi refusi) Francesco Sisini

Dispense del corso di Linguaggi di programmazione e laboratorio Linguaggi formali(versione non definitiva con diversi refusi) Francesco Sisini Dispense del corso di Linguaggi di programmazione e laboratorio Linguaggi formali(versione non definitiva con diversi refusi) Francesco Sisini 04 Giugno 2014 Indice 0.1 Automi.................................

Dettagli

MODULO 07 LA MACCHINA DI TURING

MODULO 07 LA MACCHINA DI TURING MODULO 07 LA MACCHINA DI TURING Nel 1936 Alan Turing presenta una definizione di computabilità basata sull osservazione del comportamento di un agente umano che sta eseguendo un calcolo (algoritmo) con

Dettagli

Varianti Macchine di Turing

Varianti Macchine di Turing Varianti Macchine di Turing Esistono definizioni alternative di macchina di Turing. Chiamate Varianti. Tra queste vedremo: MdT a più nastri e MdT non deterministiche. Mostriamo: tutte le varianti ragionevoli

Dettagli

Linguaggio universale, riduzioni, e teorema di Rice. Linguaggio universale, riduzioni, e teorema di Rice

Linguaggio universale, riduzioni, e teorema di Rice. Linguaggio universale, riduzioni, e teorema di Rice l linguaggio universale Il linguaggio universale L u e l insieme delle stringhe binarie che codificano una coppia (M,w) dove w L(M). Esiste una TM U, detta TM universale, tale che L u = L(U). U ha tre

Dettagli

Esercizi di Fondamenti di Informatica per la sicurezza. Stefano Ferrari

Esercizi di Fondamenti di Informatica per la sicurezza. Stefano Ferrari Esercizi di Fondamenti di Informatica per la sicurezza tefano Ferrari 23 dicembre 2003 2 Argomento 1 Grammatiche e linguaggi Esercizi Es. 1.1 Definiti i linguaggi: L 1 = {aa, ab, bc, c} L 2 = {1, 22, 31}

Dettagli

ELEMENTI DI PROGRAMMAZIONE a.a. 2012/13 MACCHINE, ALGORITMI, PROGRAMMI

ELEMENTI DI PROGRAMMAZIONE a.a. 2012/13 MACCHINE, ALGORITMI, PROGRAMMI ELEMENTI DI PROGRAMMAZIONE a.a. 22/3 MACCHINE, ALGORITMI, PROGRAMMI Andrea Prevete, UNINA2 23 UNA GERARCHIA DI MACCHINE macchine combinatorie macchine sequenziali (automi a stati finiti)... macchine di

Dettagli

Forma Normale di Chomsky

Forma Normale di Chomsky 2. Eliminazione delle produzioni unitarie Forma Normale di Chomsky Una produzione si dice unitaria se è della forma A! B. Le produzioni unitarie in pratica consistono in una ridenominazione di variabili,

Dettagli

Forme Normali. Forma normale di Chomsky. E caratterizzata da regole di due tipi. A! BC dove A, B, C $ V N A! a con a $ V T. Forma normale di Greibach

Forme Normali. Forma normale di Chomsky. E caratterizzata da regole di due tipi. A! BC dove A, B, C $ V N A! a con a $ V T. Forma normale di Greibach Forme Normali A partire da una grammatica Context-free G è sempre possibile costruire una grammatica equivalente G ovvero L(G) = L(G ) che abbiano le produzioni in forme particolari, dette forme normali.

Dettagli

Fondamenti di Informatica. Algoritmo. Algoritmo funzionale. Prof.ssa Enrica Gentile Informatica e Comunicazione Digitale a.a.

Fondamenti di Informatica. Algoritmo. Algoritmo funzionale. Prof.ssa Enrica Gentile Informatica e Comunicazione Digitale a.a. Fondamenti di Informatica Prof.ssa Enrica Gentile Informatica e Comunicazione Digitale a.a. 2011-2012 Algoritmo L algoritmo è una sequenza finita di istruzioni, mediante le quali un qualunque operatore

Dettagli

Algoritmi e Principi dell'informatica Seconda Prova in Itinere - 14 Febbraio 2014

Algoritmi e Principi dell'informatica Seconda Prova in Itinere - 14 Febbraio 2014 Algoritmi e Principi dell'informatica Seconda Prova in Itinere - 14 Febbraio 2014 Nome..Cognome.Matr. Laureando Avvisi importanti Il tempo a disposizione è di 1 ora e 30 minuti. Se non verranno risolti

Dettagli

La tesi di Church-Turing

La tesi di Church-Turing ITLCC 2006/11/12 21:06 page 79 #3 Capitolo 5 La tesi di Church-Turing SOMMARIO Sebbene il concetto di algoritmo abbia avuto una lunga storia nel campo della matematica, il concetto formale di algoritmo

Dettagli

Informatica Teorica. Sezione Cremona + Como. Appello del 20 Luglio 2004

Informatica Teorica. Sezione Cremona + Como. Appello del 20 Luglio 2004 Informatica Teorica Sezione Cremona + Como Appello del 20 Luglio 2004 Coloro che recuperano la I prova risolvano gli esercizi e 2 tra quelli indicati qui sotto entro un ora. Coloro che recuperano la II

Dettagli

Università degli Studi di Udine. 1 Automi e Linguaggi. Prova Scritta di Fondamenti dell Informatica II Alcune Soluzioni

Università degli Studi di Udine. 1 Automi e Linguaggi. Prova Scritta di Fondamenti dell Informatica II Alcune Soluzioni Università degli Studi di Udine Prova Scritta di Fondamenti dell Informatica II Alcune Soluzioni 1 Automi e Linguaggi 1. Sia dato p N, p > 0 dimostri che il linguaggio è regolare. L p = { a 0 a 1... a

Dettagli

Tipologie di macchine di Turing

Tipologie di macchine di Turing Tipologie di macchine di Turing - Macchina di Turing standard - Macchina di Turing con un nastro illimitato in una sola direzione - Macchina di Turing multinastro - Macchina di Turing non deterministica

Dettagli

La macchina universale

La macchina universale La macchina universale Una immediata conseguenza della dimostrazione è la seguente Corollario il linguaggio L H = {M (w) M rappresenta una macchina di Turing che si ferma con input w} sull alfabeto {0,1}*

Dettagli

Appunti del corso di Informatica 1 (IN110 Fondamenti) 3 Modelli di calcolo

Appunti del corso di Informatica 1 (IN110 Fondamenti) 3 Modelli di calcolo Università Roma Tre Dipartimento di Matematica e Fisica Corso di Laurea in Matematica Appunti del corso di Informatica 1 (IN110 Fondamenti) 3 Modelli di calcolo Marco Liverani (liverani@mat.uniroma3.it)

Dettagli

Aniello Murano Automi e Pushdown

Aniello Murano Automi e Pushdown Aniello Murano Automi e Pushdown 2 Lezione n. Parole chiave: Automi e PDA Corso di Laurea: Informatica Codice: Email Docente: murano@ na.infn.it A.A. 2008-2009 Calcolabilità, complessità e macchine computazionali

Dettagli

ITLCC 2006/10/6 19:09 page 7 #3

ITLCC 2006/10/6 19:09 page 7 #3 ITLCC 2006/10/6 19:09 page 7 #3 Capitolo 2 Macchine di Turing SOMMARIO In questo capitolo introdurremo il modello di calcolo proposto dal logico matematico inglese Alan Turing, in un suo famoso articolo

Dettagli

Presentazione di gruppi

Presentazione di gruppi Presentazione di gruppi Sia G un gruppo e X un suo sottoinsieme non vuoto, indichiamo con Gp(X) = {x ɛ 1 1 x ɛ 2 2... x ɛ n n x i X, ɛ i = ±1} dove gli elementi di questo insieme sono da intendersi come

Dettagli

Linguaggi Regolari e Linguaggi Liberi

Linguaggi Regolari e Linguaggi Liberi Linguaggi Regolari e Linguaggi Liberi Potenza espressiva degli automi Potenza espressiva delle grammatiche 9/11/2004 Programmazione - Luca Tesei 1 Linguaggi Regolari Tutti i linguaggi che possono essere

Dettagli

ELEMENTI DI PROGRAMMAZIONE a.a. 2013/14 UNA GERARCHIA DI MACCHINE

ELEMENTI DI PROGRAMMAZIONE a.a. 2013/14 UNA GERARCHIA DI MACCHINE ELEMENTI DI PROGRAMMAZIONE a.a. 23/4 UNA GERARCHIA DI MACCHINE Andrea Prevete, UNINA2 24 UNA GERARCHIA DI MACCHINE macchine combinatorie macchine sequenziali (automi a numero finito di stati)... macchine

Dettagli

Le Macchine di Turing

Le Macchine di Turing Le Macchine di Turing Come è fatta una MdT? Una MdT è definita da: un nastro una testina uno stato interno un programma uno stato iniziale Il nastro Il nastro è infinito suddiviso in celle In una cella

Dettagli

Algoritmi e Principi dell Informatica

Algoritmi e Principi dell Informatica Algoritmi e Principi dell Informatica Appello del 20 Febbraio 2012 Chi deve sostenere l esame integrato (API) deve svolgere tutti gli esercizi in 2h e 30 Chi deve sostenere solo il modulo di Informatica

Dettagli

PARTE III MACCHINE A REGISTRI

PARTE III MACCHINE A REGISTRI PARTE III MACCHINE A REGISTRI Macchine a registri (RAM) Modelli di costo RAM e macchine di Turing Macchine a registri elementari 1 3.1 MACCHINE A REGISTRI (RAM: Random Access Machines) Introdotte da Shepherdson

Dettagli

PARTE III MACCHINE A REGISTRI

PARTE III MACCHINE A REGISTRI PARTE III MACCHINE A REGISTRI Macchine a registri (RAM) Modelli di costo RAM e macchine di Turing Macchine a registri elementari 1 3.1 MACCHINE A REGISTRI (RAM: Random Access Machines) Introdotte da Shepherdson

Dettagli

Informatica Teorica. Macchine a registri

Informatica Teorica. Macchine a registri Informatica Teorica Macchine a registri 1 Macchine a registri RAM (Random Access Machine) astrazione ragionevole di un calcolatore nastro di ingresso nastro di uscita unità centrale in grado di eseguire

Dettagli

Automi a pila. Automi a pila

Automi a pila. Automi a pila utomi a pila Un automa a pila (PDA) e in pratica un ǫ-nfa con una pila. In una transizione un PDA: 1 Consuma un simbolo di input. 2 Va in un nuovo stato (o rimane dove e ). 3 Rimpiazza il top della pila

Dettagli

Note aggiuntive al corso di Informatica Teorica a.a

Note aggiuntive al corso di Informatica Teorica a.a Note aggiuntive al corso di Informatica Teorica a.a. 2008-2009 Giorgio Gambosi 1 Equivalenza tra MT multinastro e MT ad un nastro Le macchine di Turing multinastro hanno lo stesso potere computazionale

Dettagli

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia Insiemi, Numeri, Terminologia Prof. Simone Sbaraglia Corso Rapido di Logica Matematica La logica formale definisce le regole cui deve obbedire qualsiasi teoria deduttiva. Una proposizione e` una affermazione

Dettagli

Costruzione di espressioni regolari 4

Costruzione di espressioni regolari 4 ostruzione di espressioni regolari 4 Indicando con d uno dei possibili digits {,, 2,,9} --possiamo esprimere il sotto linguaggio dei digits come d = ( + + 2 +.. + 9) Quale linguaggio produce l espressione:

Dettagli

Turing, i nastri e le macchine

Turing, i nastri e le macchine Turing, i nastri e le macchine Giochiamo con i nastri Avete a disposizione un nastro diviso in sezioni rettangolari, che chiameremo caselle, ognuna delle quali può essere vuota oppure contenere la lettera

Dettagli

controllo stringa a a b a b b c c b a b x y z pila di memoria

controllo stringa a a b a b b c c b a b x y z pila di memoria Gli automi a pila Dagli automi finiti iti agli automi a pila Possiamo ottenere un automa a pila a partire da un automa finito (così come l abbiamo definito in precedenza), attraverso l introduzione di

Dettagli

UNA GERARCHIA DI MACCHINE

UNA GERARCHIA DI MACCHINE ELEMENTI DI PROGRAMMAZIONE a.a. 2015/16 UNA GERARCHIA DI MACCHINE UNA GERARCHIA DI MACCHINE macchine combinatorie macchine sequenziali (automi a numero finito di stati)... macchine di Turing Macchine di

Dettagli

Alcuni Teoremi sulle funzioni continue e uniforme continuità

Alcuni Teoremi sulle funzioni continue e uniforme continuità Alcuni Teoremi sulle funzioni continue e uniforme continuità Teorema 0. Una funzione f(x) è continua in x 0 se e solo se per ogni sucessione {x n } dom(f) con x n x 0 dom(f), risulta f(x n ) f(x 0 ). (Non

Dettagli

L AUTOMA ESECUTORE L AUTOMA ESECUTORE

L AUTOMA ESECUTORE L AUTOMA ESECUTORE L AUTOMA ESECUTORE Metodo Risolutivo (algoritmo) Un automa capace di ricevere dall esterno una descrizione dello algoritmo richiesto DATI Esecutore RISULTATI cioè capace di interpretare un linguaggio (linguaggio

Dettagli

(2) se A A, allora A c A; (3) se {A n } A, allora +

(2) se A A, allora A c A; (3) se {A n } A, allora + 1. Spazi di misura In questo paragrafo accenneremo alla nozione di spazio di misura. Definizione 1. Sia X un insieme non vuoto. Una famiglia A di sottoinsiemi di X è una σ-algebra se : (1) A; (2) se A

Dettagli

Logica proposizionale

Logica proposizionale Logica proposizionale Proposizione: frase compiuta che è sempre o vera o falsa. Connettivi Posti in ordine di precedenza: not, and, or, implica, doppia implicazione Sintassi Le proposizioni sono costituite

Dettagli

Esercizio su MT. Svolgimento

Esercizio su MT. Svolgimento Esercizio su MT Definire una macchina di Turing deterministica M a nastro singolo e i concetti di configurazione e di transizione. Sintetizzare una macchina di Turing trasduttore che trasformi un numero

Dettagli

Le grammatiche formali

Le grammatiche formali Le grammatiche formali Il carattere generativo dei sistemi linguisticii i Consideriamo i la seguente frase: Un gatto rincorre il topo Non facciamo difficoltà a riconoscere che si tratta di una frase sintatticamente

Dettagli

Calcolo e Quanti Una Brevissima Introduzione alla Computazione Quantistica

Calcolo e Quanti Una Brevissima Introduzione alla Computazione Quantistica Calcolo e Quanti Una Brevissima Introduzione alla Computazione Quantistica Ugo Dal Lago Collegio Superiore, Dicembre 202 Parte I Sistemi Classici e Probabilistici Preliminari Insiemi: A, B, C,...; Prodotto

Dettagli

Il concetto di calcolatore e di algoritmo

Il concetto di calcolatore e di algoritmo Il concetto di calcolatore e di algoritmo Elementi di Informatica e Programmazione Percorso di Preparazione agli Studi di Ingegneria Università degli Studi di Brescia Docente: Massimiliano Giacomin Informatica

Dettagli

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 richiami teorici sulle grammatiche di Chomsky esercizivari esercizi su grammatiche ed espressioni regolari

Dettagli

Macchine di Turing: somma di due numeri

Macchine di Turing: somma di due numeri Informatica Teorica 2/2 M.Di Ianni Macchine di Turing: somma di due numeri Vogliamo definire una macchina di Turing che, presi in input due numeri n e m espressi in notazione binaria, calcola il valore

Dettagli

Macchine di Turing. a n B B. Controllo Finito

Macchine di Turing. a n B B. Controllo Finito Macchine di Turing Il modello standard di macchina di Turing era un controllo finito, un nastro di input, diviso in celle, e una testina che prende in considerazione una cella del nastro alla volta. Il

Dettagli

Capitolo 6: Modelli di calcolo per linguaggi imperativi e funzionali

Capitolo 6: Modelli di calcolo per linguaggi imperativi e funzionali Capitolo 6: Modelli di calcolo per linguaggi imperativi e funzionali 1 Modelli imperativi: le RAM (Random Access Machine) I modelli di calcolo imperativi sono direttamente collegati al modello Von Neumann,

Dettagli

Presentazioni di gruppi: generatori e relazioni

Presentazioni di gruppi: generatori e relazioni Presentazioni di gruppi: generatori e relazioni Note per il corso di Geometria 4 (relative alla parte dei 6 crediti) Milano, 2011-2012, M.Dedò N.B. Quanto segue si appoggia fortemente al testo [M] consigliato

Dettagli

Elementi di Informatica e Programmazione

Elementi di Informatica e Programmazione Elementi di Informatica e Programmazione Il concetto di Algoritmo e di Calcolatore Corsi di Laurea in: Ingegneria Civile Ingegneria per l Ambiente e il Territorio Università degli Studi di Brescia Cos

Dettagli

Lunghezza media. Teorema Codice D-ario prefisso per v.c. X soddisfa. L H D (X). Uguaglianza vale sse D l i. = p i. . p.1/27

Lunghezza media. Teorema Codice D-ario prefisso per v.c. X soddisfa. L H D (X). Uguaglianza vale sse D l i. = p i. . p.1/27 Lunghezza media Teorema Codice D-ario prefisso per v.c. X soddisfa L H D (X). Uguaglianza vale sse D l i = p i.. p.1/27 Lunghezza media Teorema Codice D-ario prefisso per v.c. X soddisfa L H D (X). Uguaglianza

Dettagli

Teoria della Complessità Computazionale. Accettazione/riconoscimento di linguaggi in tempo/spazio

Teoria della Complessità Computazionale. Accettazione/riconoscimento di linguaggi in tempo/spazio Teoria della Complessità Computazionale. Obiettivo: classifcare i problemi (risolubili con algoritmi) in base alle risorse di calcolo che richiedono per essere risolti. Risorse: tempo e spazio (memoria)

Dettagli

Espressioni regolari

Espressioni regolari spressioni Regolari Un FA (NFA o DFA) e una macchina a stati finiti che riconosce linguaggi regolari. Una espressione regolare e un modo dichiarativo (o algebrico) per descrivere un linguaggio regolare.

Dettagli

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13)

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) DISPENSA N. 4 Sommario. Dimostriamo il Teorema di Completezza per il Calcolo dei Predicati del I ordine. 1. Teorema di Completezza Dimostriamo il Teorema

Dettagli

Funzioni calcolabili e linguaggi decidibili

Funzioni calcolabili e linguaggi decidibili Informatica Teorica 2012/2013 M.Di Ianni Funzioni calcolabili e linguaggi decidibili Abbiamo definito i concetti di accettabilità e decidibiltà di un linguaggio, che sono correlati al modello di macchina

Dettagli

LIMITI. 1. Definizione di limite.

LIMITI. 1. Definizione di limite. LIMITI 1. Definizione di limite. Sia A un sottoinsieme di IR; se il numero reale x 0 è di accumulazione per A in ogni intorno di x 0 si trovano elementi di A distinti da x 0. Allora ha senso chiedersi

Dettagli

La Macchina RAM Shepherdson e Sturgis (1963)

La Macchina RAM Shepherdson e Sturgis (1963) La Macchina RAM Shepherdson e Sturgis (963) Nastro di ingresso.......... PROGRAM COUNTER Nastro di uscita PROGRAMMA ACCUMULATORE UNITA' ARITMETICA............... 2 3 4 M E M O R I A Formato delle Istruzioni

Dettagli

Complementi di Analisi Matematica Ia. Carlo Bardaro

Complementi di Analisi Matematica Ia. Carlo Bardaro Complementi di Analisi Matematica Ia Carlo Bardaro Capitolo 1 Elementi di topologia della retta reale 1.1 Intorni, punti di accumulazione e insiemi chiusi Sia x 0 IR un fissato punto di IR. Chiameremo

Dettagli

Parole note, nuovi significati: linguaggio, determinismo e infinito

Parole note, nuovi significati: linguaggio, determinismo e infinito Parole note, nuovi significati: linguaggio, determinismo e infinito Angelo Montanari Dipartimento di Matematica e Informatica Università degli Studi di Udine Ciclo di seminari su un Vocabolario Filosofico

Dettagli

Proprietà dei linguaggi regolari

Proprietà dei linguaggi regolari Proprietà dei linguaggi regolari Argomenti della lezione Relazione tra automi, grammatiche ed espressioni regolari Pumping lemma per i linguaggi regolari Equivalenza di automi a stati finiti Le seguenti

Dettagli

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile

Dettagli

Argomenti diagonali. Gianluigi Bellin

Argomenti diagonali. Gianluigi Bellin Argomenti diagonali Gianluigi Bellin November 30, 2010 La cardinalità degli insiemi. Consideriamo la relazione di equivalenza tra insiemi ottenuta ponendo A B se e solo se esiste una biiezione f : A B.

Dettagli

01 - Elementi di Teoria degli Insiemi

01 - Elementi di Teoria degli Insiemi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 01 - Elementi di Teoria degli Insiemi Anno Accademico 2015/2016

Dettagli

Successioni di funzioni: esercizi svolti

Successioni di funzioni: esercizi svolti Successioni di funzioni: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore Esercizio 1 Determinare il limite puntuale delle seguenti successioni di

Dettagli

Capitolo 3: Ottimizzazione non vincolata parte III. E. Amaldi DEI, Politecnico di Milano

Capitolo 3: Ottimizzazione non vincolata parte III. E. Amaldi DEI, Politecnico di Milano Capitolo 3: Ottimizzazione non vincolata parte III E. Amaldi DEI, Politecnico di Milano 3.4 Metodi di ricerca unidimensionale In genere si cerca una soluzione approssimata α k di min g(α) = f(x k +αd k

Dettagli

Ti piacciono le riviste di meccanica? Settant anni di macchine di Turing

Ti piacciono le riviste di meccanica? Settant anni di macchine di Turing Ti piacciono le riviste di meccanica? Settant anni di macchine di Turing Francesco Belardinelli 30 agosto 2005 Indice 1 Algoritmi e procedure effettive 2 1.1 Che cosa è un algoritmo?........................

Dettagli

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno

Dettagli

Macchine di Turing, problemi ricorsivi e ricorsivamente enumerabili

Macchine di Turing, problemi ricorsivi e ricorsivamente enumerabili Macchine di Turing, problemi ricorsivi e ricorsivamente enumerabili roblemi che i calcolatori non possono risolvere E importante sapere se un programma e corretto, cioe fa quello che ci aspettiamo. E facile

Dettagli

In molte applicazioni sorge il problema di sapere in quanti modi possibili si può presentare un certo fenomeno.

In molte applicazioni sorge il problema di sapere in quanti modi possibili si può presentare un certo fenomeno. Definizione Oggetto del calcolo combinatorio è quello di determinare il numero dei modi mediante i quali possono essere associati, secondo prefissate regole, gli elementi di uno stesso insieme o di più

Dettagli

8. Completamento di uno spazio di misura.

8. Completamento di uno spazio di misura. 8. Completamento di uno spazio di misura. 8.1. Spazi di misura. Spazi di misura completi. Definizione 8.1.1. (Spazio misurabile). Si chiama spazio misurabile ogni coppia ordinata (Ω, A), dove Ω è un insieme

Dettagli

Concetti fondamentali

Concetti fondamentali Concetti fondamentali elemento insieme sequenza tutto si riconduce a questi insieme: esempi {,3,5,7,9} insieme dei numeri dispari positivi minori di dieci {Antonio, Beatrice, Carlo, Daria} insieme dei

Dettagli

L aritmetica degli insiemi infiniti Parte I

L aritmetica degli insiemi infiniti Parte I L aritmetica degli insiemi infiniti Parte I Stefano Baratella Versione L A TEX realizzata in collaborazione con Tullio Garbari 1 Prerequisiti La relazione di equipotenza tra insiemi. Definizione 1. Si

Dettagli

Progamma sintetico. Nozioni preliminari Automi Finiti Macchine di Turing Limiti delle macchine di Turing La tesi di Church-Turing Le classi P e NP

Progamma sintetico. Nozioni preliminari Automi Finiti Macchine di Turing Limiti delle macchine di Turing La tesi di Church-Turing Le classi P e NP Progamma sintetico Nozioni preliminari Automi Finiti Macchine di Turing Limiti delle macchine di Turing La tesi di Church-Turing Le classi P e NP Un problema classico Un uomo viaggia con un lupo, una pecora

Dettagli

I metodi formali dell Analisi Lessicale: Le Espressioni Regolar

I metodi formali dell Analisi Lessicale: Le Espressioni Regolar I metodi formali dell Analisi Lessicale: Le Espressioni Regolari (ER) N.Fanizzi - V.Carofiglio 6 aprile 2016 1 Introduzione 2 3 4 5 Espressioni Regolari Dato un alfabeto finito X, una espressione regolare

Dettagli

Informatica/ Ing. Meccanica/ Edile/ Prof. Verdicchio/ 30/06/2016/ Foglio delle domande / VERSIONE 1

Informatica/ Ing. Meccanica/ Edile/ Prof. Verdicchio/ 30/06/2016/ Foglio delle domande / VERSIONE 1 Informatica/ Ing. Meccanica/ Edile/ Prof. Verdicchio/ 30/06/2016/ Foglio delle domande/ VERSIONE 1 1) In Python, se scrivo v = [ ] in un programma, vuol dire che a) v è un quadrato b) v è un insieme vuoto

Dettagli

Definizione di Grammatica

Definizione di Grammatica Corso di Linguaggi e Traduttori 1 AA 2004-05 GRAMMATICHE 1 Definizione di Grammatica Formalmente definiamo un grammatica G mediante una quadrupla ( VN, VT, P, S ) dove: V N e l insieme dei simboli non

Dettagli

Pumping lemma per i linguaggi Context-free

Pumping lemma per i linguaggi Context-free Pumping lemma per i linguaggi Context-free Sia L un linguaggio context-free. E possibile determinare una costante k, dipendente da L, tale che qualunque stringa z! L con z > k si può esprimere come z=

Dettagli

La codifica digitale

La codifica digitale La codifica digitale Codifica digitale Il computer e il sistema binario Il computer elabora esclusivamente numeri. Ogni immagine, ogni suono, ogni informazione per essere compresa e rielaborata dal calcolatore

Dettagli

Corso di Linguaggi e Traduttori 1 AA GRAMMATICHE

Corso di Linguaggi e Traduttori 1 AA GRAMMATICHE Corso di Linguaggi e Traduttori 1 AA 2004-05 GRAMMATICHE 1 Definizione di Grammatica Formalmente definiamo un grammatica G mediante una quadrupla V, V, P S ( ) N T, dove: V N e l insieme dei simboli non

Dettagli

Linguaggi di Programmazione Corso C. Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali. Nicola Fanizzi

Linguaggi di Programmazione Corso C. Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali. Nicola Fanizzi Linguaggi di Programmazione Corso C Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali Nicola Fanizzi (fanizzi@di.uniba.it) Dipartimento di Informatica Università degli Studi di Bari Grammatiche

Dettagli

L AUTOMA ESECUTORE L AUTOMA ESECUTORE

L AUTOMA ESECUTORE L AUTOMA ESECUTORE L AUTOMA ESECUTORE DATI Esecutore Metodo Risolutivo (algoritmo) RISULTATI Un automa capace di ricevere dall esterno una descrizione dello algoritmo richiesto cioè capace di interpretare un linguaggio (linguaggio

Dettagli

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano RELAZIONI, FUNZIONI, INSIEMI NUMERICI C. FRANCHI 1. Relazioni Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano X Y := {(x, y) x X, y Y } dove con (x, y) si intende la coppia ordinata

Dettagli

Algoritmi e Principi dell Informatica

Algoritmi e Principi dell Informatica Algoritmi e Principi dell Informatica Appello del 2 Marzo 2015 Chi deve sostenere l esame integrato (API) deve svolgere tutti gli esercizi in 2 ore e 30 minuti. Chi deve sostenere solo il modulo di Informatica

Dettagli

Reti Sequenziali. Reti Sequenziali. Corso di Architetture degli Elaboratori

Reti Sequenziali. Reti Sequenziali. Corso di Architetture degli Elaboratori Reti Sequenziali Reti Sequenziali Corso di Architetture degli Elaboratori Caratteristiche 1 Caratteristiche delle reti sequenziali Reti combinatorie: il valore in uscita è funzione (con il ritardo indotto

Dettagli

TEN Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2.

TEN Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2. TEN 2008. Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2. Lemma 1. Sia n Z. Sia p > 2 un numero primo. (a) n è un quadrato modulo p se e solo se n p 1 2 1 mod p; (b) Sia n 0

Dettagli

Analisi e Modelli Matematici

Analisi e Modelli Matematici Analisi e Modelli Matematici Marzo - Aprile 2014 Lezione 4 Numeri reali L utilizzo dei numeri negativi e dei numeri complessi è problematico fino all inizio del XIX secolo. 1737: Euler dimostra che e è

Dettagli

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim DIFFERENZIAZIONE 1 Regola della catena Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim = f (x 0 ). x x 0 x x 0 Questa

Dettagli

Proprieta dei Linguaggi regolari

Proprieta dei Linguaggi regolari Proprieta dei Linguaggi regolari Pumping Lemma. Ogni linguaggio regolare soddisfa il pumping lemma. Se qualcuno vi presenta un falso linguaggio regolare, l uso del pumping lemma mostrera una contraddizione.

Dettagli

Introduzione ad alcuni sistemi di logica modale

Introduzione ad alcuni sistemi di logica modale Introduzione ad alcuni sistemi di logica modale Laura Porro 16 maggio 2008 1 Il calcolo proposizionale Prendiamo come primitivi i simboli del Calcolo Proposizionale (PC) tradizionale a due valori 1 : un

Dettagli

Programmazione Lineare

Programmazione Lineare Programmazione Lineare Andrea Scozzari a.a. 2012-2013 March 14, 2013 Andrea Scozzari (a.a. 2012-2013) Programmazione Lineare March 14, 2013 1 / 18 Metodo del Simplesso Dato un problema di PL in forma standard

Dettagli