sin y t h v sin t gt h 0.41s g

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "sin y t h v sin t gt h 0.41s g"

Transcript

1 E - Nello scoccare un tiro libero, un cestista lancia il pallone facendolo partire da. m dal suolo con inclinazione iniziale di 35 sull orizzontale. Considerando puntiformi pallone e canestro, si assuma quest ultimo sia posto a 3.4 m dal suolo e a distanza orizzontale di.9 m dalla linea del tiro libero (su cui si trova il cestista). Si calcoli quanto deve valere, in modulo, la velocità iniziale del pallone affinché il pallone centri il canestro, e quanto tempo trascorre dall istante il cui viene lanciato all istante in cui centra il canestro. Quale è la massima altezza dal suolo raggiunta dal pallone? (si trascuri la resistenza dell aria) Sol. Scegliendo un sistema di riferimento con origine nei piedi del giocatore, verso positivo delle ascisse diretto verso il canestro, verso positivo delle ordinate diretto verso l alto, le equazioni del moto del pallone sono: x t v cost 0 y t v0 sint gt hg Al tempo t c il pallone deve entrare nel canestro quindi si avrà: xtc dv0 costc yt h v sint gt h c c 0 c c g Dove d è la distanza orizzontale tra il giocatore ed il canestro, h c l altezza del canestro dal suolo e h g l altezza da cui il giocatore scocca il tiro. Ricavando la traiettoria si ottiene subito: Con questa velocità il tempo di volo sarà: d g v0 8.6ms cos dtan hc hg t c dtan hc hg 0.4s g Per conoscere l altezza massima del pallone basta imporre che che la velocità lungo y si annulli all istante t m altezza massima raggiunta sarà quindi: 0 sin 0 v t v gt t m 0 m m v sin g v0sin v0sin ytmv0 sin g hg hg v0 sin 3.44m g g g E Si consideri il sistema in figura, in cui la carrucola ha massa trascurabile e le tre masse puntiformi sono identiche. Se il piano orizzontale è ben lubrificato (quindi con attrito trascurabile), occorre una certa forza applicata orizzontalmente alla massa a sinistra come in figura per tenere in equilibrio il sistema. n una situazione normale, invece, il coefficiente di attrito dinamico tra le due masse e il piano vale 0.. Applicando una forza sempre orizzontalmente come in figura ma di modulo doppio rispetto al caso

2 precedente di equilibrio senza attrito, il sistema (partendo da fermo) si muove: si calcoli quanto tempo impiega la massa a destra a salire di un metro, e si calcoli il rapporto tra le tensioni delle funi. Sol. Scegliendo una ascissa curvilinea con verso positivo verso il basso, nella situazione iniziale si ha: ma T ma TT ma mg T 3 e accelerazioni sono uguali ed il sistema è in equilibrio quindi: T T mg Quando si applica la nuova forza le equazioni diventano: ma T mg ma TT mg ma mg T 3 e tre accelerazioni sono uguali e tenendo conto che = mg si ha: ma T mg ma TT mg ma3 mg T 3ma mg mg gg g a 0.g 3 3 mg 6 T mg mg mg g 6 T mat mg m mgmg 3 5 T T l tempo impiegato a salire di un metro sarà: t 0.66s a E3 Una stazione spaziale è realizzata come in figura: un omogeneo di massa kg e raggio 6 m, con 4 bracci costituiti da 4 aste sottili omogenee identiche, lunghe m di massa kg l una. e aste sono disposte sul come prolungamenti di due diametri ortogonali (cfr. figura). l sistema viene messo in rotazione nello spazio (quindi senza alcun attrito) da una forza applicata tangenzialmente al come in figura, di modulo. 0 5 N, agente per 4 minuti, che gli conferisce una certa velocità angolare. nfine, a un certo punto, i bracci si staccano tutti contemporaneamente dal. Quanto tempo impiega il, rimasto senza bracci, a compiere un giro intero? (facoltativo e qualitativo) Cosa cambierebbe se i 4

3 bracci della stazione spaziale, posti sempre come prolungamenti di diametri, non fossero su diametri ortogonali (come, ad esempio, nella figura nel riquadro piccolo)? Sol. a seconda equazione cardinale si scrive in questo caso r* Risolvendo si ha: aste aste a velocità angolare raggiunta dal prima dello stacco delle aste è quindi: Dopo lo stacco delle quattro aste la velocità sarà: Cioè: r t t r aste aste aste Da questo momento in poi il moto è in assenza di forze esterne, si conserva il momento angolare ed il tempo necessario a compiere un giro sarà: t aste Resta solo da calcolare il momento d inerzia della stazione spaziale prima e dopo. Per il da solo si può usare tranquillamente il momento di inerzia rispetto all asse passante per il suo centro: M Per le aste basta utilizzare il teorema di Steiner partendo ad esempio dal momento di inerzia rispetto al baricentro: E tenendo conto che ogni baricentro dista dall asse di rotazione di una quantità pari a: M asta r d r

4 Quindi avremo: aste Mr 4* Masta Masta r Tenendo conto che anche in questo caso: Si avrà: 3 r 4 M M asta 93.5M r aste E quindi: Si avrà anche: aste 87 t t 8*0 rads M r Mentre la velocità di regime sarà: l tempo impiegato a fare un giro sarà quindi: 87* rad s rad t 4s rad s Se le aste cambiassero posizione non cambierebbe nulla perché le aste sono sempre poste lungo la superficie del e quindi la distanza del loro baricentro dall asse di rotazione non cambia E4 n una sorta di campionato di giochi senza frontiere, un atleta sostiene la prova illustrata in figura: deve mantenere ferma la sbarra AB, omogenea e di massa 0 kg, incernierata nel punto B e formante 30 con la verticale, tramite una fune tesa ortogonale alla sbarra e ad essa fissata nel punto O tale che OA = AB/3. l gioco consiste nell aumentare progressivamente il valore della massa sospesa all estremo A della sbarra, finché il concorrente non cede. Sapendo che l atleta in figura è in grado di applicare, in quella situazione, una forza massima di 550 N, si calcoli il massimo valore della massa sospesa per cui egli riesce a tenere fermo il sistema come descritto. Quanto vale la reazione vincolare della cerniera quando l atleta è al massimo dello sforzo?

5 Sol. All equilibrio la risultante dei momenti delle forze esterne deve essere nulla: Per i dati del problema E quindi si ha: mbloccogsin 30Mastag sin 30lsin 90 0 Si ricava quindi la forza che deve esercitare l atleta: Da cui segue: n queste condizioni, le reazioni sono tali che: E quindi: l 3 mbloccog Mastag mblocco Masta mbloccog Mastag 3g m 4 M 3g max asta blocco Rx max cos R M m g y asta blocco Rx Ry R 0.47kN.05kN.5kN 4.8kg max sin max E5 Si considerino tre blocchi metallici. Si sa che i primi due sono di piombo e di rame e hanno massa rispettivamente 640 g e 380 g. l terzo blocco ha massa 50 g, ed è costituito da una lega metallica sconosciuta. tre blocchi vengono riscaldati separatamente, e raggiungono dopo un certo tempo le temperature di 84 C, 75 C, 9 C (piombo, rame e lega rispettivamente). n questa situazione vengono quindi immersi in un grosso contenitore contenente acqua e ghiaccio all equilibrio, completamente isolato dall esterno. Si verifica che al raggiungimento dell equilibrio si sono fusi 96 g di ghiaccio. Si calcoli il calore specifico della lega metallica di cui è fatto il terzo cubetto Sol. dati suggeriscono che il ghiaccio non si è sciolto completamente. Quindi, la temperatura finale della miscela acqua+ghiaccio+blocchi è 0 C. l calore ceduto dai tre blocchi si scrive allora: Q m c T m c T m c T ced Pb Pb ipb Cu Cu icu lega lega ilega

6 l calore assorbito dal ghiaccio è invece: Q m ass gh f Da cui: c lega mgh f mpbcpb TiPb mcuccu TiCu J 93 C m T kg lega ilega

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011.

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011. Cognome Nome Numero di matricola Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 00/0 Prova in itinere del 4/3/0. Tempo a disposizione: h30 Modalità di risposta: scrivere la formula

Dettagli

Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali

Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali A) Applicazione del teorema dell impulso + conservazione quantità di moto Problema n. 1: Un blocco A di massa m = 4 kg è

Dettagli

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema Esercizio 1 Una trave omogenea di lunghezza L e di massa M è appoggiata in posizione orizzontale su due fulcri lisci posti alle sue estremità. Una massa m è appoggiata sulla trave ad una distanza L/3 da

Dettagli

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009 Fisica Generale I (primo modulo) A.A. 2008-09, 9 febbraio 2009 Esercizio 1. Due corpi di massa M 1 = 10kg e M 2 = 5Kg sono collegati da un filo ideale passante per due carrucole prive di massa, come in

Dettagli

Compito di Fisica Generale (Meccanica) 16/01/2015

Compito di Fisica Generale (Meccanica) 16/01/2015 Compito di Fisica Generale (Meccanica) 16/01/2015 1) Un cannone spara un proiettile di massa m con un alzo pari a. Si calcoli in funzione dell angolo ed in presenza dell attrito dell aria ( schematizzato

Dettagli

Problemi di dinamica del punto materiale

Problemi di dinamica del punto materiale Problemi di dinamica del punto materiale 1. Un corpo di massa M = 200 kg viene lanciato con velocità v 0 = 36 km/ora su un piano inclinato di un angolo θ = 30 o rispetto all orizzontale. Nel salire, il

Dettagli

IV ESERCITAZIONE. Esercizio 1. Soluzione

IV ESERCITAZIONE. Esercizio 1. Soluzione Esercizio 1 IV ESERCITAZIONE Un blocco di massa m = 2 kg è posto su un piano orizzontale scabro. Una forza avente direzione orizzontale e modulo costante F = 20 N agisce sul blocco, inizialmente fermo,

Dettagli

M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno.

M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Problema 1: Si consideri un corpo rigido formato da una sfera omogenea di raggio R e massa M 1 e da una sbarretta omogenea di lunghezza L, massa M

Dettagli

Soluzioni della prova scritta Fisica Generale 1

Soluzioni della prova scritta Fisica Generale 1 Corso di Laurea in Ingegneria Biomedica, dell Informazione, Elettronica e Informatica Canale 2 (S. Amerio, L. Martucci) Padova, 26 giugno 20 Soluzioni della prova scritta Fisica Generale Problema Una palla

Dettagli

Esercizi sul corpo rigido.

Esercizi sul corpo rigido. Esercizi sul corpo rigido. Precisazioni: tutte le figure geometriche si intendono omogenee, se non è specificato diversamente tutti i vincoli si intendono lisci salvo diversamente specificato. Abbreviazioni:

Dettagli

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013 POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 2012-13 I a prova in itinere, 10 maggio 2013 Giustificare le risposte e scrivere in modo chiaro e leggibile.

Dettagli

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. Un angolo di un radiante equivale circa a: (a) 60 gradi (b) 32 gradi (c) 1 grado (d) 90 gradi (e) la domanda è assurda.

Dettagli

Compito di Fisica Generale (Meccanica) 17/01/2013

Compito di Fisica Generale (Meccanica) 17/01/2013 Compito di Fisica Generale (Meccanica) 17/01/2013 1) Un proiettile massa m è connesso ad una molla di costante elastica k e di lunghezza a riposo nulla. Supponendo che il proiettile venga lanciato a t=0

Dettagli

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ).

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ). ESERCIZI 1) Un razzo viene lanciato verticalmente dalla Terra e sale con accelerazione a = 20 m/s 2. Dopo 100 s il combustibile si esaurisce e il razzo continua a salire fino ad un altezza massima h. a)

Dettagli

Compito di Fisica Generale (Meccanica) 10/01/2012

Compito di Fisica Generale (Meccanica) 10/01/2012 Compito di Fisica Generale (Meccanica) 10/01/2012 1) In un piano orizzontale sono assegnati due assi cartesiani x e y. Uno strato di liquido occupa lo spazio fra y = 0 ed y = d e si muove a velocità costante

Dettagli

[3] Un asta omogenea di sezione trascurabile, di massa M = 2.0 kg e lunghezza l = 50 cm, può ruotare senza attrito in un piano verticale x y attorno a

[3] Un asta omogenea di sezione trascurabile, di massa M = 2.0 kg e lunghezza l = 50 cm, può ruotare senza attrito in un piano verticale x y attorno a [1] Un asta rigida omogenea di lunghezza l = 1.20 m e massa m = 2.5 kg reca ai due estremi due corpi puntiformi di massa pari a 0.2 kg ciascuno. Tale sistema è in rotazione in un piano orizzontale attorno

Dettagli

M? La forza d attrito coinvolta è quella tra i due blocchi occorre quindi visualizzare la reazione normale al piano di contatto Il diagramma delle

M? La forza d attrito coinvolta è quella tra i due blocchi occorre quindi visualizzare la reazione normale al piano di contatto Il diagramma delle 6.25 (6.29 VI ed) vedi dispense cap3-mazzoldi-dinamica-part2 Dueblocchisonocomeinfiguraconm=16kg, M=88kgeconcoeff. d attrito statico tra i due blocchi pari a = 0.38. La superficie su cui poggia M è priva

Dettagli

Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto

Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto Problema n. 1: Un carro armato, posto in quiete su un piano orizzontale, spara una granata

Dettagli

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017 Esercizio n. 1 Un punto materiale di massa m è vincolato a muoversi sotto l azione della gravità su un vincolo bilaterale (vedi figura) formato da un arco di circonferenza, AB, sotteso ad un angolo di

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE II compitino di FISICA, 17 Giugno 2010

CORSO DI LAUREA IN SCIENZE BIOLOGICHE II compitino di FISICA, 17 Giugno 2010 CORSO DI LAUREA IN SCIENZE BIOLOGICHE II compitino di FISICA, 17 Giugno 2010 1) Due cariche +2q e q sono fissate lungo l asse x, rispettivamente nei punti O = (0,0) ed A=(d,0), con d = 2 m. Determinare:

Dettagli

Compito di Fisica Generale (Meccanica) 25/01/2011

Compito di Fisica Generale (Meccanica) 25/01/2011 Compito di Fisica Generale (Meccanica) 25/01/2011 1) Un punto materiale di massa m è vincolato a muoversi su di una guida orizzontale. Il punto è attaccato ad una molla di costante elastica k. La guida

Dettagli

CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica.

CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica. CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica. Questo capitolo vuole fornire una serie di esempi pratici dei concetti illustrati nei capitoli precedenti con qualche approfondimento. Vediamo subito

Dettagli

Fondamenti di Meccanica Esame del

Fondamenti di Meccanica Esame del Politecnico di Milano Fondamenti di Meccanica Esame del 0.02.2009. In un piano verticale un asta omogenea AB, di lunghezza l e massa m, ha l estremo A vincolato a scorrere senza attrito su una guida verticale.

Dettagli

Compito di Fisica Generale (Meccanica) 13/01/2014

Compito di Fisica Generale (Meccanica) 13/01/2014 Compito di Fisica Generale (Meccanica) 13/01/2014 1) Un punto materiale inizialmente in moto rettilineo uniforme è soggetto alla sola forza di Coriolis. Supponendo che il punto si trovi inizialmente nella

Dettagli

Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h

Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h Prova intermedia del 23 novembre 2012 durata della prova: 2h CINEMTIC E CLCL DI QUNTITÀ MECCNICHE Nelsistemadifiguraildiscodicentro ruoy ta intorno al suo centro; il secondo disco rotola senza strisciare

Dettagli

Problema 1: SOLUZIONE: 1) La velocità iniziale v 0 si ricava dal principio di conservazione dell energia meccanica; trascurando

Problema 1: SOLUZIONE: 1) La velocità iniziale v 0 si ricava dal principio di conservazione dell energia meccanica; trascurando Problema : Un pallina di gomma, di massa m = 0g, è lanciata verticalmente con un cannoncino a molla, la cui costante elastica vale k = 4 N/cm, ed è compressa inizialmente di δ. Dopo il lancio, la pallina

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012 1) Un corpo di massa m = 1 kg e velocità iniziale v = 5 m/s si muove su un piano orizzontale scabro, con coefficiente di attrito

Dettagli

FISICA per SCIENZE BIOLOGICHE A.A. 2013/2014 1) FLUIDI V= 5 dm3 a= 2 m/s2 aria = g / cm 3 Spinta Archimedea Tensione della fune

FISICA per SCIENZE BIOLOGICHE A.A. 2013/2014 1) FLUIDI V= 5 dm3 a= 2 m/s2 aria = g / cm 3 Spinta Archimedea Tensione della fune FISICA per SCIENZE BIOLOGICHE A.A. 2013/2014 II Compitino 26 Giugno 2014 1) FLUIDI Un bambino trattiene un palloncino, tramite una sottile fune. Il palloncino ha volume V= 5 dm 3. La sua massa, senza il

Dettagli

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I):

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni Parte I: 06-07-06 Problema. Un punto si muove nel piano xy con equazioni xt = t 4t, yt = t 3t +. si calcolino le leggi orarie per le

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013 Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 013 Problema 1 Un cubo di legno di densità ρ = 800 kg/m 3 e lato a = 50 cm è inizialmente in quiete, appoggiato su un piano orizzontale.

Dettagli

Esercizi di Statica - Moti Relativi

Esercizi di Statica - Moti Relativi Esercizio 1 Esercizi di Statica - Moti Relativi Esercitazioni di Fisica LA per ingegneri - A.A. 2004-2005 Un punto materiale di massa m = 0.1 kg (vedi sotto a sinistra)é situato all estremitá di una sbarretta

Dettagli

Meccanica Applicata alle Macchine

Meccanica Applicata alle Macchine Meccanica Applicata alle Macchine 06-11-013 TEMA A 1. Un cilindro ed una sfera omogenei di uguale massa m ed uguale raggio r sono collegati tra loro da un telaio di massa trascurabile mediante coppie rotoidali

Dettagli

MOMENTI DI INERZIA PER CORPI CONTINUI

MOMENTI DI INERZIA PER CORPI CONTINUI MOMENTI D INERZIA E PENDOLO COMPOSTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOMENTI

Dettagli

Esercitazione 3. Soluzione. F y dy = 0 al 2 dy = 0.06 J

Esercitazione 3. Soluzione. F y dy = 0 al 2 dy = 0.06 J Esercitazione 3 Esercizio 1 - Lavoro Una particella è sottoposta ad una forza F = axy û x ax 2 û y, dove û x e û y sono i versori degli assi x e y e a = 6 N/m 2. Si calcoli il lavoro compiuto dalla forza

Dettagli

Dinamica del punto materiale: problemi con gli oscillatori.

Dinamica del punto materiale: problemi con gli oscillatori. Dinamica del punto materiale: problemi con gli oscillatori. Problema: Una molla ideale di costante elastica k = 300 Nm 1 e lunghezza a riposo l 0 = 1 m pende verticalmente avendo un estremità fissata ad

Dettagli

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente

Dettagli

3. Si dica per quali valori di p e q la seguente legge e` dimensionalmente corretta:

3. Si dica per quali valori di p e q la seguente legge e` dimensionalmente corretta: Esercizi su analisi dimensionale: 1. La legge oraria del moto di una particella e` x(t)=a t 2 +b t 4, dove x e` la posizione della particella e t il tempo. Si determini le dimensioni delle costanti a e

Dettagli

direzione x. [x = 970,89 m ; θ = ]

direzione x. [x = 970,89 m ; θ = ] Prof. Roberto Capone Corso di Fisica e Geologia Mod. FISICA Esempi Prove scritte La velocità angolare di una ruota diminuisce uniformemente da 24000 giri al minuto a 18000 giri al minuto in 10 secondi.

Dettagli

Esame scritto del corso di Fisica 2 del Corso di laurea in Informatica A.A (Prof. Anna Sgarlata)

Esame scritto del corso di Fisica 2 del Corso di laurea in Informatica A.A (Prof. Anna Sgarlata) Esame scritto del corso di Fisica 2 del 2.09.20 Corso di laurea in Informatica A.A. 200-20 (Prof. Anna Sgarlata) COMPITO A Problema n. Un asta pesante di massa m = 6 kg e lunga L= m e incernierata nel

Dettagli

Risoluzione problema 1

Risoluzione problema 1 UNIVERSITÀ DEGLI STUDI DI PDOV FCOLTÀ DI INGEGNERI Ing. MeccanicaMat. Pari. 015/016 1 prile 016 Una massa m 1 =.5 kg si muove nel tratto liscio di un piano orizzontale con velocita v 0 = 4m/s. Essa urta

Dettagli

UNIVERSITÀ DI CATANIA - FACOLTÀ DI INGEGNERIA D.M.F.C.I. C.L. INGEGNERIA ELETTRONICA (A-Z) A.A. 2008/2009

UNIVERSITÀ DI CATANIA - FACOLTÀ DI INGEGNERIA D.M.F.C.I. C.L. INGEGNERIA ELETTRONICA (A-Z) A.A. 2008/2009 COMPITO DI FISICA SPERIMENTALE I DEL 05/12/2008 1. Un proiettile di massa M=10 kg, nel vertice della sua traiettoria parabolica esplode in due frammenti di massa m 1 e m 2 che vengono proiettati nella

Dettagli

Secondo Appello Estivo del corso di Fisica del

Secondo Appello Estivo del corso di Fisica del Secondo Appello Estivo del corso di Fisica del 25.7.2012 Corso di laurea in Informatica A.A. 2011-2012 (Prof. Paolo Camarri) Cognome: Nome: Matricola: Anno di immatricolazione: Problema n.1 Una semisfera

Dettagli

Nota: per la risoluzione si mostrino chiaramente i diagrammi delle forze per il blocchetto e per la lastra

Nota: per la risoluzione si mostrino chiaramente i diagrammi delle forze per il blocchetto e per la lastra FISICA GENERALE I - Sede di Spezia - Prova A di Meccanica del 15/02/2016 ME 1 Un blocchetto di massa =5.0 è appoggiato sopra una di massa =10 e tra e blocchetto vi è attrito con coefficiente statico =0.90

Dettagli

l 1 l 2 Uncorpo viene lanciato su per un piano scabro inclinato di 45 rispetto all orizzontale

l 1 l 2 Uncorpo viene lanciato su per un piano scabro inclinato di 45 rispetto all orizzontale 1. Uncorpo viene lanciato su per un piano scabro inclinato di 45 rispetto all orizzontale (µ d = 1/2). Detto T S il tempo necessario al punto per raggiungere la quota massima e T D il tempo che, a partire

Dettagli

MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA prova del Problema N.1. Problema N.2

MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA prova del Problema N.1. Problema N.2 MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA.2011-2012 prova del 01-02-2013 Problema N.1 Il sistema meccanico illustrato in figura giace nel piano verticale. L asta AB con baricentro G 2 è incernierata

Dettagli

una parete di altezza h = 2 m dopo un intervallo di

una parete di altezza h = 2 m dopo un intervallo di 17 settembre 2013 Prova scritta di Fisica Generale per Edile (esercizi 1, 2,3) Prova scritta di Fisica Generale per Edile-Architettura (esercizi 1,2,4) Come fare lo scritto: Giustificare partendo da leggi

Dettagli

Esercizi sulla Dinamica del punto materiale. I. Leggi di Newton, ovvero equazioni del moto

Esercizi sulla Dinamica del punto materiale. I. Leggi di Newton, ovvero equazioni del moto Esercizi sulla Dinamica del punto materiale. I. Leggi di Newton, ovvero equazioni del moto Principi della dinamica. Aspetti generali 1. Un aereo di massa 25. 10 3 kg viaggia orizzontalmente ad una velocità

Dettagli

Prova scritta del corso di Fisica e Fisica 1 con soluzioni

Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prof. F. Ricci-Tersenghi 17/02/2014 Quesiti 1. Un frutto si stacca da un albero e cade dentro una piscina. Sapendo che il ramo da cui si è staccato

Dettagli

Esercizio 5. Risoluzione

Esercizio 5. Risoluzione Esercizio 1 Un sasso viene lasciato cadere da fermo in un pozzo; il rumore dell impatto con l acqua giunge all orecchio del lanciatore dopo un intervallo di tempo t* = 10s. Sapendo che il suono si propaga

Dettagli

Esame 28 Giugno 2017

Esame 28 Giugno 2017 Esame 28 Giugno 2017 Roberto Bonciani e Paolo Dore Corso di Fisica Generale 1 Dipartimento di atematica Università degli Studi di Roma La Sapienza Anno Accademico 2016-2017 Esame - Fisica Generale I 28

Dettagli

III ESERCITAZIONE. Soluzione. (F x û x + F y û y ) (dx û x + dy û y ) (1)

III ESERCITAZIONE. Soluzione. (F x û x + F y û y ) (dx û x + dy û y ) (1) III ESERCITAZIONE 1. Lavoro Una particella è sottoposta ad una forza F =axy û x ax û y, dove a=6 N/m e û x e û y sono i versori degli assi x e y. Si calcoli il lavoro compiuto dalla forza F quando la particella

Dettagli

Fisica Generale I (primo e secondo modulo) A.A , 2 settembre 2009

Fisica Generale I (primo e secondo modulo) A.A , 2 settembre 2009 Fisica Generale I (primo e secondo modulo) A.A. 2008-2009, 2 settembre 2009 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale

Dettagli

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo.

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo. Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): 04-02-2016 Problema 1. Un punto materiale si muove nel piano su una guida descritta dall equazione y = sin kx [ = 12m, k

Dettagli

Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007

Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 y Nel sistema di figura posto in un piano verticale il carrello A scorre con vinco- q, R M lo liscio lungo l asse verticale. Il

Dettagli

Moto del Punto - Cinematica del Punto

Moto del Punto - Cinematica del Punto Moto del Punto - Cinematica del Punto Quiz 1 Posizione, spostamento e traiettoria 1. Un ciclista si sposta di 10km in una direzione formante un angolo di 30 rispetto all asse x di un fissato riferimento.

Dettagli

ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA

ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA 1) Descrivi, per quanto possibile, il moto rappresentato in ciascuno dei seguenti grafici: s a v t t t S(m) 2) Il moto di un punto è rappresentato

Dettagli

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. Se il caffè costa 4000 /kg (lire al chilogrammo), quanto costa all incirca alla libbra? (a) 1800 ; (b) 8700 ; (c) 18000

Dettagli

Esercizio Soluzione: Esercizio Soluzione: Esercizio Soluzione: Esercizio

Esercizio Soluzione: Esercizio Soluzione: Esercizio Soluzione: Esercizio Un ragazzo di massa 50 kg si lascia scendere da una pertica alta 12 m e arriva a terra con una velocità di 6 m/s. Supponendo che la velocità iniziale sia nulla: 1. si calcoli di quanto variano l energia

Dettagli

Anno Accademico Fisica I 12 CFU Esercitazione n.7: Dinamica dei corpi rigidi

Anno Accademico Fisica I 12 CFU Esercitazione n.7: Dinamica dei corpi rigidi Anno Accademico 2016-2017 Fisica I 12 CFU Esercitazione n.7: Dinamica dei corpi rigidi Esercizio n.1 Una carrucola, costituita da due dischi sovrapposti e solidali fra loro di massa M = 20 kg e m = 15

Dettagli

Esercizi di Statica. Esercitazioni di Fisica per ingegneri - A.A

Esercizi di Statica. Esercitazioni di Fisica per ingegneri - A.A Esercizio 1 Esercizi di Statica Esercitazioni di Fisica per ingegneri - A.A. 2011-2012 Un punto materiale di massa m = 0.1 kg (vedi FIG.1) è situato all estremità di una sbarretta indeformabile di peso

Dettagli

Anno Accademico Fisica I 12 CFU Esercitazione n.8: Dinamica dei corpi rigidi

Anno Accademico Fisica I 12 CFU Esercitazione n.8: Dinamica dei corpi rigidi Anno Accademico 2015-2016 Fisica I 12 CFU Esercitazione n.8: Dinamica dei corpi rigidi Esercizio n.1 Una carrucola, costituita da due dischi sovrapposti e solidali fra loro di massa M = 20 kg e m = 15

Dettagli

Prova scritta di Fisica - Faenza, 28/01/2016 CdS in Chimica e Tecnologie per l'ambiente e per i materiali - curriculum materiali Nota:

Prova scritta di Fisica - Faenza, 28/01/2016 CdS in Chimica e Tecnologie per l'ambiente e per i materiali - curriculum materiali Nota: Prova scritta di Fisica - Faenza, 28/01/2016 CdS in Chimica e Tecnologie per l'ambiente e per i materiali - curriculum materiali Punteggio: Problemi Vero/Falso: +1 risposta corretta, 0 risposta sbagliata

Dettagli

Fisica Generale I (primo e secondo modulo) A.A , 15 luglio 2009

Fisica Generale I (primo e secondo modulo) A.A , 15 luglio 2009 Fisica Generale I (primo e secondo modulo) A.A. 2008-09, 15 luglio 2009 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale 1 e

Dettagli

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Soluzioni Teoria Enunciare sinteticamente chiarendo il

Dettagli

Problemi e domande d esame tratte dalle prove di accertamento in itinere degli anni precedenti

Problemi e domande d esame tratte dalle prove di accertamento in itinere degli anni precedenti Problemi e domande d esame tratte dalle prove di accertamento in itinere degli anni precedenti Problema 1 Un disco omogeneo di massa m=2 kg e raggio R= 0.3 m ruota in un piano orizzontale intorno all asse

Dettagli

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare Moto di rotazione Rotazione dei corpi rigidi ϑ(t) ω z R asse di rotazione v m

Dettagli

Soluzione: In direzione verticale non c è movimento, perciò F N mg = 0. Quindi, in ogni caso, la forza normale è pari a 24.5 N.

Soluzione: In direzione verticale non c è movimento, perciò F N mg = 0. Quindi, in ogni caso, la forza normale è pari a 24.5 N. Un oggetto con massa pari a 2500 g è appoggiato su un pavimento orizzontale. Il coefficiente d attrito statico è s = 0.80 e il coefficiente d attrito dinamico è k = 0.60. Determinare la forza d attrito

Dettagli

Fisica Generale I (primo e secondo modulo) A.A , 1 Febbraio 2010

Fisica Generale I (primo e secondo modulo) A.A , 1 Febbraio 2010 Fisica Generale I (primo e secondo modulo) A.A. 2009-0, Febbraio 200 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale e 2 per

Dettagli

Esercizio 5. Risoluzione

Esercizio 5. Risoluzione Esercizio 1 Un sasso viene lasciato cadere da fermo in un pozzo; il rumore dell impatto con l acqua giunge all orecchio del lanciatore dopo un intervallo di tempo t* = 10s. Sapendo che il suono si propaga

Dettagli

Meccanica Teorica e Applicata I prova in itinere AA 06-07

Meccanica Teorica e Applicata I prova in itinere AA 06-07 I prova in itinere 06-07 Esercizio 1. F p D P E Tracciare i diagrammi delle azioni interne per la struttura rappresentata in figura. D=D=DE==L. Il triangolo F è isoscele rettangolo. Esercizio 2. fs P Q

Dettagli

Esercizio 1 Meccanica del Punto

Esercizio 1 Meccanica del Punto Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa

Dettagli

Lezione 2 Legge di Newton e sue applicazioni

Lezione 2 Legge di Newton e sue applicazioni Lezione Legge di Newton e sue applicazioni.1 Legge di Newton e sue applicazioni La legge di Newton F = F x = i f (f x) i = ma x i = m a = F y = i (f y) i = ma y i F z = i (f z) i = ma z Serway, Cap 4 Proponiamo

Dettagli

Corsi di Laurea per le Professioni Sanitarie. Cognome Nome Corso di Laurea Data

Corsi di Laurea per le Professioni Sanitarie. Cognome Nome Corso di Laurea Data CLPS12006 Corsi di Laurea per le Professioni Sanitarie Cognome Nome Corso di Laurea Data 1) Essendo la densità di un materiale 10.22 g cm -3, 40 mm 3 di quel materiale pesano a) 4*10-3 N b) 4 N c) 0.25

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 28 gennaio 2014

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 28 gennaio 2014 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 28 gennaio 2014 1) Un bambino lancia una palla verso l alto, lungo la verticale, con velocità iniziale pari a v 0 = 2 m/s. Calcolare: a) il

Dettagli

Fisica 1 (Esame Completo) Ing. Informatica/Elettrica/Elettronica 24/07/2017. Nome: Cognome: CdL: Mat.

Fisica 1 (Esame Completo) Ing. Informatica/Elettrica/Elettronica 24/07/2017. Nome: Cognome: CdL: Mat. Fisica 1 (Esame Completo) Ing. Informatica/Elettrica/Elettronica 24/07/2017 Fila A Nome: Cognome: CdL: Mat. PROBLEMA 1. Un bambino spara orizzontalmente con la sua pistola ad acqua da un altezza di 1,6

Dettagli

CLASSE 3 D. CORSO DI FISICA prof. Calogero Contrino IL QUADERNO DELL ESTATE

CLASSE 3 D. CORSO DI FISICA prof. Calogero Contrino IL QUADERNO DELL ESTATE LICEO SCIENTIFICO GIUDICI SAETTA E LIVATINO RAVANUSA ANNO SCOLASTICO 2013-2014 CLASSE 3 D CORSO DI FISICA prof. Calogero Contrino IL QUADERNO DELL ESTATE 20 esercizi per restare in forma 1) Un corpo di

Dettagli

SIMULAZIONE PRIMO ESONERO (ES. SVOLTI) DEL

SIMULAZIONE PRIMO ESONERO (ES. SVOLTI) DEL SIMULAZIONE PRIMO ESONERO (ES. SVOLTI) DEL 27-03-2014 ESERCIZIO 1 Un ragazzo, in un parco divertimenti, entra in un rotor. Il rotor è una stanza cilindrica che può essere messa in rotazione attorno al

Dettagli

DINAMICA - FORZE E ATTRITO

DINAMICA - FORZE E ATTRITO DINAMICA - FORZE E ATTRITO 1 Un treno viaggia con accelerazione costante in modulo pari ad a. a. In uno dei vagoni, una massa m pende dal soffitto attaccata ad una corda. Trovare l angolo tra la corda

Dettagli

m = 53, g L = 1,4 m r = 25 cm

m = 53, g L = 1,4 m r = 25 cm Un pendolo conico è formato da un sassolino di 53 g attaccato ad un filo lungo 1,4 m. Il sassolino gira lungo una circonferenza di raggio uguale 25 cm. Qual è: (a) la velocità del sassolino; (b) la sua

Dettagli

Conservazione dell energia

Conservazione dell energia mercoledì 15 gennaio 2014 Conservazione dell energia Problema 1. Un corpo inizialmente fermo, scivola su un piano lungo 300 m ed inclinato di 30 rispetto all orizzontale, e, dopo aver raggiunto la base,

Dettagli

Modello di Prova Scritta Fisica I. Corso di Laurea in Ottica ed Optometria

Modello di Prova Scritta Fisica I. Corso di Laurea in Ottica ed Optometria Modello di 1) Dati i vettori aa = 3xx + 2yy + zz e bb = xx + zz determinare cc = 3aa + bb dd = aa 4bb aa bb aa xxbb. Determinare altresì il modulo del vettore cc. 2) Un blocco di 5.00 kg viene lanciato

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Fisica Generale I A.A , 16 Giugno Esercizi di meccanica relativi al primo modulo del corso

Fisica Generale I A.A , 16 Giugno Esercizi di meccanica relativi al primo modulo del corso Fisica Generale I A.A. 2013-2014, 16 Giugno 2014 Esercizi di meccanica relativi al primo modulo del corso Esercizio I.1 m 1 m 2 θ Due corpi di massa m 1 = 14 Kg ed m 2 = 2 Kg sono collegati da un filo

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA Facoltà di Ingegneria

UNIVERSITA DEGLI STUDI DI BRESCIA Facoltà di Ingegneria UNIVERSITA DEGLI STUDI DI BRESCIA Facoltà di Ingegneria ESAME DI STATO DI ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE (Lauree di primo livello DM 509/99 e DM 270/04 e Diploma Universitario)

Dettagli

Esercizi terzo principio

Esercizi terzo principio Esercizi terzo principio Esercitazioni di Fisica LA per ingegneri - A.A. 2004-2005 Esercizio 2 Una palla da biliardo di raggio R =5cm è in quiete sul piano del tavolo da gioco. Ad un certo istante le viene

Dettagli

MECCANICA APPLICATA ALLE MACCHINE L

MECCANICA APPLICATA ALLE MACCHINE L Università degli Studi di Bologna II Facoltà di Ingegneria con sede a Cesena MECCANICA ALICATA ALLE MACCHINE L Corso di Laurea in INGEGNEIA MECCANICA Corso di Laurea in INGEGNEIA AEOSAZIALE Anno Accademico

Dettagli

Esercizi Terzo Principio della Dinamica

Esercizi Terzo Principio della Dinamica Esercizi Terzo Principio della Dinamica Esercitazioni di Fisica LA per ingegneri - A.A. 2007-2008 Esercizio 1 Una ruota di massa m = 5kg (modellare la ruota come un disco) è inizialmente in quiete alla

Dettagli

Esercizi Concetto di energia

Esercizi Concetto di energia Esercizi Concetto di energia 1. Determinare il numero reale m in modo che il vettore X = (m, - m, m - 1) risulti complanare con i vettori: U = ( 3,, 1) e V = (-1,,-1). Soluzione: Se i vettori X, U e V

Dettagli

Esame di Scienze sperimentali - Fisica. Materiale ammesso

Esame di Scienze sperimentali - Fisica. Materiale ammesso 1. Materiale personale Ogni studente può portare: Materiale ammesso del materiale per scrivere e disegnare (penna, matita, gomma, riga, squadra, goniometro, compasso); una calcolatrice non grafica; il

Dettagli

m1. 75 gm m gm h. 28 cm Calcolo le velocità iniziali prima dell'urto prendendo positiva quella della massa 1: k 1

m1. 75 gm m gm h. 28 cm Calcolo le velocità iniziali prima dell'urto prendendo positiva quella della massa 1: k 1 7 Una molla ideale di costante elastica k 48 N/m, inizialmente compressa di una quantità d 5 cm rispetto alla sua posizione a riposo, spinge una massa m 75 g inizialmente ferma, su un piano orizzontale

Dettagli

MOTO NEL PIANO Esercizi numerici 1 Da un aereo che vola a 450 m/s in direzione orizzontale viene lasciato cadere un pacco di aiuti alimentari.

MOTO NEL PIANO Esercizi numerici 1 Da un aereo che vola a 450 m/s in direzione orizzontale viene lasciato cadere un pacco di aiuti alimentari. MOTO NEL PIANO Esercizi numerici 1 Da un aereo che vola a 450 m/s in direzione orizzontale viene lasciato cadere un pacco di aiuti alimentari. La quota dell aereo è 250 m. Qual è il tempo di volo del pacco?

Dettagli

Esercizio (tratto dal Problema 3.35 del Mazzoldi 2)

Esercizio (tratto dal Problema 3.35 del Mazzoldi 2) 1 Esercizio (tratto dal Problema 3.35 del Mazzoldi 2) Un corpo sale lungo un piano inclinato (θ 18 o ) scabro (µ S 0.35, µ D 0.25), partendo dalla base con velocità v 0 10 m/s e diretta parallelamente

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 16 Febbraio 2016

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 16 Febbraio 2016 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 16 Febbraio 016 1) Un corpo di massa M= kg si muove lungo una guida AB, liscia ed irregolare, partendo dal punto A a quota H = 9m, fino al

Dettagli

Alcuni problemi di meccanica

Alcuni problemi di meccanica Alcuni problemi di meccanica Giuseppe Dalba Sommario Questi appunti contengono cinque problemi risolti di statica e dinamica del punto materiale e dei corpi rigidi. Gli ultimi quattro problemi sono stati

Dettagli

Tutorato di Fisica 1 - AA 2014/15

Tutorato di Fisica 1 - AA 2014/15 Tutorato di Fisica - AA 04/5 Emanuele Fabbiani 8 febbraio 05 Quantità di moto e urti. Esercizio Un carrello di massa M = 0 kg è fermo sulle rotaie. Un uomo di massa m = 60 kg corre alla velocità v i =

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

Esercitazioni di fisica

Esercitazioni di fisica Esercitazioni di fisica Alessandro Berra 4 marzo 2014 1 Cinematica 1 Un corpo puntiforme, partendo da fermo, si muove per un tempo t 1 = 10 s con accelerazione costante a 1 = g/3, prosegue per t 2 = 15

Dettagli