S::= Aa bb bc A::= 1B 0 B::= 0A 1 C::= Cc d Si scriva un riconoscitore in Prolog del linguaggio generato da G. Suggerimento: si elimini la ricorsione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "S::= Aa bb bc A::= 1B 0 B::= 0A 1 C::= Cc d Si scriva un riconoscitore in Prolog del linguaggio generato da G. Suggerimento: si elimini la ricorsione"

Transcript

1 COMPITO DI LINGUAGGI SIMBOLICI DOCENTE MICHELA MILANO - 11 GENNAIO 2001 Esercizio 1 Si scriva un metaprogramma Prolog che lavori su un programma Prolog P ricevendo in ingresso da utente una lista La di atomi. Il metaprogramma deve produrre una lista LL con lo stesso numero di elementi di La. Ogni elemento ElL di LL corrisponde a un elemento ElLa in La e in particolare è la lista di tutte le teste delle clausole del programma P che hanno lo stesso simbolo predicativo dell atomo ElLa e lo stesso numero di parametri (non devono necessariamente unificare). Al termine della creazione di LL, si scriva una procedura che appiattisca la lista LL in una lista semplice LL1 senza ripetizioni. Esempio: dato il programma P p(a,b):- q(a), r(b). p(3,b). p(4,b). q(5). r(6). E la query: :- meta([p(2,t), r(7), p(x,t)], LL, LL1). Il primo elemento della lista LL contiene [p(a,b), p(3,b), p(4,b)] (si noti che tranne la prima le altre teste delle clausole non unificano con quella definita dall utente p(2,t). Il secondo elemento contiene [r(6)], il terzo [p(a,b), p(3,b), p(4,b)] è uguale al primo Quindi LL = [[p(a,b),p(3,b),p(4,b)],[r(6)],[p(a,b),p(3,b),p(4,b)]] e LL1 = [r(6), p(a,b), p(3,b), p(4,b)] Esercizio 2 Data la grammatica G con scopo S e simboli terminali {a,b,c,d,0,1} S::= Aa bb bc A::= 1B 0 B::= 0A 1 C::= Cc d Si scriva un riconoscitore in Prolog del linguaggio generato da G. Suggerimento: si elimini la ricorsione a sinistra per non entrare in un ciclo infinito Esercizio 3 vincoli([x,y,z,k]):- X::[1..15], Y::[4..23], Z::[7..15], K::[11..19], X > Y, Y = Z, Z K, Y > K, labelling([x,y,z,k). Si descriva il comportamento di un risolutore di vincoli CLP(FD) durante l esecuzione di questo programma fino alla prima soluzione specificando le modifiche del constraint store ad ogni passo

2 Esercizio 4 Dato il programma Prolog: s(0). s(s(x)) :- s(x). p(0). Si rappresenti l'albero di derivazione SLDNF relativo alla query: :- s(y), not(p(y)),!. Esercizio 5 (punti 3) Supponendo di avere un programma Prolog con un unico fatto: p([a,b,c],[a,b,c],[b,c]). Si scrivano i risultati delle seguenti query con relative unificazioni: :- p([x],[x T], T). :- p(x,[x T],T). :- p(a,[x T],T).

3 Esercizio 1 COMPITO DI LINGUAGGI SIMBOLICI DOCENTE MICHELA MILANO 11 GENNAIO 2001 Soluzione meta(la,ll,ll1) :- meta1(la,ll), appiattisci(ll,ll1). % meta(la,ll) meta1([],[]). meta1([ella TLa],[ElLL TLL]) :- % Costruisco un template dell'atomo ElLa functor(ella,funtore,arita), functor(template,funtore,arita), % Trovo la lista delle clausole che unificano col template findall(template,clause(template,_),elll), % Chiamata ricorsiva meta1(tla,tll). appiattisci([],[]). appiattisci([h T],LL1) :- app(h,t,ha), appiattisci(t,ta), append(ha,ta,ll1). app([],_,[]). % Se l'elemento appartiene ad una delle liste che sono in LL % allora non lo riporto nella lista appiattita app([h T],LL,LL1) :- member(lista,ll), member_no_unif(h,lista),!, app(t,ll,ll1). app([h T],LL,[H TLL1]) :- app(t,ll,tll1). % member_no_unif(x,l) % Verifica che l elemento X appartenga alla lista L % ma non effettua l unificazione member_no_unif(x,[x1 _]) :- unifiable(x=x1). member_no_unif(x,[_ T]) :- member_no_unif(x,t). unifiable(x,_) :- var(x),!. unifiable(_,y) :- var(y),!. unifiable([],[]) :-!. unifiable([hx Tx],[Hy Ty]) :-!, unifiable(hx,hy), unifiable(tx,ty). unifiable(x,y) :- X =.. [F Ax], Y=.. [F Ay], unifiable(ax,ay).

4 Esercizio 2 La grammatica è di tipo 2 (libera dal contesto). Eliminiamo la ricorsione a sinistra: S::= Aa bb bc A::= 1B 0 B::= 0A 1 C ::= dc' C'::= cc' C'::= ε Un riconoscitore è quindi: s(lin,lout) :- a(lin,[a Lout]). s([b Lin],Lout) :- b(lin,lout). s([b Lin],Lout) :- c(lin,lout). a([1 Lin],Lout) :- b(lin,lout). a([0 L],L). b([0 Lin],Lout) :- a(lin,lout). b([1 L],L). c([d Lin],Lout) :- c1(lin,lout). c1([c Lin],Lout) :- c1(lin,lout). c1(l,l). Esercizio 3 1. Definizione delle variabili e dei domini: X::[1..15], Y::[4..23], Z::[7..15], K::[11..19] 2. X > Y vengono tolti dai domini di X ed Y gli elementi inconsistenti col vincolo X::[5..15], Y::[4..14] 3. Y=Z Intersezione dei domini di Y e Z: Y::[7..14] Z::[7..14] Sono stati eliminati elementi dal dominio di Y, quindi viene risvegliato il vincolo X>Y X::[8..15], Y::[7..14] 3. Z K Il vincolo non può eliminare valori e viene sospeso

5 4. Y > K Y::[12..14] K::[11..13] Si attivano i vincoli su Y X>Y: X::[13..15], Y::[12..14] Y=Z: Y::[12..14], Z::[12..14] 5. labeling: X=13 si attivano i vincoli su X X>Y: X=13 Y=12 Il vincolo è soddisfatto ed esce dal constraint store si attivano i vincoli su Y: Y=Z: Z=12 Il vincolo è soddisfatto ed esce dal constraint store Y>K: K=11 Il vincolo è soddisfatto ed esce dal constraint store Esercizio 4 s(y), not(p(y)),! Y/0 Y/s(X) not(p(0)),! s(x), not(p(s(x))),! X/0 p(0) not(p(s(0))),! true p(s(0)) fail fail true

6 Esercizio 5 (punti 3) :- p([x],[x T], T). No. (Infatti [X] unifica solo con liste di un solo elemento) :- p(x,[x T],T). No. (Infatti X dovrebbe unificare contemporaneamente con [a,b,c] e con a) :- p(a,[x T],T). Yes, A/[a,b,c], X/a, T/[b,c]

(anno accademico 2008-09)

(anno accademico 2008-09) Calcolo relazionale Prof Alberto Belussi Prof. Alberto Belussi (anno accademico 2008-09) Calcolo relazionale E un linguaggio di interrogazione o e dichiarativo: at specifica le proprietà del risultato

Dettagli

FONDAMENTI DI INTELLIGENZA ARTIFICIALE 1 parte (6 CFU) 12 Luglio 2012 Tempo a disposizione: 2 h Risultato: 32/32 punti

FONDAMENTI DI INTELLIGENZA ARTIFICIALE 1 parte (6 CFU) 12 Luglio 2012 Tempo a disposizione: 2 h Risultato: 32/32 punti FONDAMENTI DI INTELLIGENZA ARTIFICIALE 1 parte (6 CFU) 12 Luglio 2012 Tempo a disposizione: 2 h Risultato: 32/32 punti Esercizio 1 (7 punti) Si formalizzi in logica dei predicati del primo ordine la seguente

Dettagli

la funzione assume valore per qualsiasi valore di x, quindi il suo dominio è R.

la funzione assume valore per qualsiasi valore di x, quindi il suo dominio è R. Data la funzione f (x)=a x 3 +b, trova per quali valori di a e di b il grafico di f (x) passa per i punti (; 1) e ( ; 4). Rappresenta f (x), indicandone il dominio e il codominio. Troca i punti di intersezione

Dettagli

NORMALIZZAZIONE DI SCHEMI RELAZIONALI. Prof.ssa Rosalba Giugno

NORMALIZZAZIONE DI SCHEMI RELAZIONALI. Prof.ssa Rosalba Giugno NORMALIZZAZIONE DI SCHEMI RELAZIONALI Prof.ssa Rosalba Giugno PROBLEMA GENERALE La progettazione concettuale e logica produce uno schema relazionale che rappresenta la realta dei dati nella nostra applicazione.

Dettagli

Fondamenti di informatica per la sicurezza anno accademico 2004 2005 docente: Stefano Ferrari

Fondamenti di informatica per la sicurezza anno accademico 2004 2005 docente: Stefano Ferrari Corso di Laurea in icurezza dei sistemi e delle reti informatiche Fondamenti di informatica per la sicurezza anno accademico 2004 2005 docente: tefano Ferrari 25.01.2005 del secondo compitino vers. D valutazioni

Dettagli

Fondamenti di informatica per la sicurezza anno accademico 2004 2005 docente: Stefano Ferrari

Fondamenti di informatica per la sicurezza anno accademico 2004 2005 docente: Stefano Ferrari Corso di Laurea in icurezza dei sistemi e delle reti informatiche Fondamenti di informatica per la sicurezza anno accademico 2004 2005 docente: tefano Ferrari 23.02.2005 della seconda parte vers. A valutazioni

Dettagli

Sommario. Linguaggi formali: motivazioni, definizione ed esempi operazioni su parole e linguaggi

Sommario. Linguaggi formali: motivazioni, definizione ed esempi operazioni su parole e linguaggi Sommario Linguaggi formali: motivazioni, definizione ed esempi operazioni su parole e linguaggi 1 Tipi di problemi Nelle teorie della calcolabilità e della complessità si considerano problemi di decisione,

Dettagli

La programmazione con vincoli in breve. La programmazione con vincoli in breve

La programmazione con vincoli in breve. La programmazione con vincoli in breve Obbiettivi Introdurre la nozione di equivalenza di CSP. Dare una introduzione intuitiva dei metodi generali per la programmazione con vincoli. Introdurre il framework di base per la programmazione con

Dettagli

RISOLUTORE AUTOMATICO PER SUDOKU

RISOLUTORE AUTOMATICO PER SUDOKU RISOLUTORE AUTOMATICO PER SUDOKU Progetto Prolog - Pierluigi Tresoldi 609618 INDICE 1.STORIA DEL SUDOKU 2.REGOLE DEL GIOCO 3.PROGRAMMAZIONE CON VINCOLI 4.COMANDI DEL PROGRAMMA 5.ESEMPI 1. STORIA DEL SUDOKU

Dettagli

Funzione esponenziale Equazioni esponenziali RIPASSO SULLE POTENZE

Funzione esponenziale Equazioni esponenziali RIPASSO SULLE POTENZE RIPASSO SULLE POTENZE Proprietà delle potenze La formula a n indica l operazione chiamata potenza, ( a è la base ed n l esponente) che consiste nel moltiplicare la base a per se stessa n volte. Per le

Dettagli

Basi di dati. Una visione d insieme. Classificazione. Linguaggi di interrogazione. Algebra relazionale. selezione σ

Basi di dati. Una visione d insieme. Classificazione. Linguaggi di interrogazione. Algebra relazionale. selezione σ a linguaggi formali Classificazione Basi di dati Linguaggi di interrogazione Docente: tefano Paraboschi parabosc@elet.polimi.it Algebra relazionale Calcolo relazionale Programmazione logica b linguaggi

Dettagli

GRUPPI SANGUIGNI. Supponendo che la popolazione italiana sia H-W, calcola la probabilità di ogni singolo allele e di ogni genotipo

GRUPPI SANGUIGNI. Supponendo che la popolazione italiana sia H-W, calcola la probabilità di ogni singolo allele e di ogni genotipo GRUPPI SANGUIGNI La distribuzione dei gruppi sanguigni nella popolazione italiana è: gruppo A 36%, gruppo B 17%, gruppo AB 7%, gruppo 0 40%. Il gruppo sanguigno è determinato da un locus genetico con tre

Dettagli

STRINGHE di un ALFABETO. Consideriamo un alfabeto di simboli V V è un insieme finito e non vuoto. Alfabeto della lingua inglese I={a,b,c,..

STRINGHE di un ALFABETO. Consideriamo un alfabeto di simboli V V è un insieme finito e non vuoto. Alfabeto della lingua inglese I={a,b,c,.. STRINGHE di un ALFABETO Consideriamo un alfabeto di simboli V V è un insieme finito e non vuoto Alfabeto binario A={0,1} Alfabeto della lingua inglese I={a,b,c,..z} Stringhe o parole Gli elementi di V

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

Ottimizzazione in ECLiPSe

Ottimizzazione in ECLiPSe OTTIMIZZAZIONE In molte applicazioni non siamo interessati a soluzioni ammissibili, ili, ma alla soluzione ottima rispetto a un certo criterio. ENUMERAZIONE trova tutte le soluzioni ammissibili scegli

Dettagli

Programmazione logica con vincoli

Programmazione logica con vincoli CAPITOLO 14 Programmazione logica con vincoli In questo capitolo studieremo una forma di programmazione dichiarativa affine al Prolog, la programmazione logica con vincoli (constraint logic programming,

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Progettazione di una base di dati Ufficio della Motorizzazione

Progettazione di una base di dati Ufficio della Motorizzazione Corso di Gestione dell Informazione Studenti NON frequentanti A.A. 2008/2009 1 Scopo del progetto Progettazione di una base di dati Ufficio della Motorizzazione Si vuole realizzare un applicazione base

Dettagli

Calcolo Relazionale Basi di dati e sistemi informativi 1. Calcolo Relazionale. Angelo Montanari

Calcolo Relazionale Basi di dati e sistemi informativi 1. Calcolo Relazionale. Angelo Montanari Calcolo Relazionale Basi di dati e sistemi informativi 1 Calcolo Relazionale Angelo Montanari Dipartimento di Matematica e Informatica Università di Udine Calcolo Relazionale Basi di dati e sistemi informativi

Dettagli

Ripasso di teoria ed esercizi in preparazione al secondo compito.??? Dicembre 2004

Ripasso di teoria ed esercizi in preparazione al secondo compito.??? Dicembre 2004 Ripasso di teoria ed esercizi in preparazione al secondo compito??? Dicembre 2004 Teoria: domande tipiche da compitino 1. Manipolazione delle strutture sintattiche: quali sono i predicati per la manipolazione

Dettagli

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà :

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà : RELAZIONI INARIE Dati due insiemi non vuoti, A detto dominio e detto codominio, eventualmente coincidenti, si chiama relazione binaria (o corrispondenza) di A in, e si indica con f : A, (oppure R ) una

Dettagli

Algebra e Logica Matematica. Calcolo delle proposizioni Logica del primo ordine

Algebra e Logica Matematica. Calcolo delle proposizioni Logica del primo ordine Università di Bergamo Anno accademico 2006 2007 Ingegneria Informatica Foglio Algebra e Logica Matematica Calcolo delle proposizioni Logica del primo ordine Esercizio.. Costruire le tavole di verità per

Dettagli

Brevissima introduzione al Lisp

Brevissima introduzione al Lisp Brevissima introduzione al Lisp Versione preliminare Giorgio Ausiello, Luigi Laura May 16, 2001 Queste pagine costituiscono un riferimento per gli studenti del corso di Informatica Teorica e non hanno

Dettagli

CORSO DI LAUREA IN INGEGNERIA.

CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 4 GEOMETRIA E ALGEBRA LINEARE 2010/11 Esercizio 4.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

Algebra Booleana ed Espressioni Booleane

Algebra Booleana ed Espressioni Booleane Algebra Booleana ed Espressioni Booleane Che cosa è un Algebra? Dato un insieme E di elementi (qualsiasi, non necessariamente numerico) ed una o più operazioni definite sugli elementi appartenenti a tale

Dettagli

Prodotto elemento per elemento, NON righe per colonne Unione: M R S

Prodotto elemento per elemento, NON righe per colonne Unione: M R S Relazioni binarie Una relazione binaria può essere rappresentata con un grafo o con una matrice di incidenza. Date due relazioni R, S A 1 A 2, la matrice di incidenza a seguito di varie operazioni si può

Dettagli

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alberto Pinto Corso di Matematica - NUCT 1 Insiemi 1.1 Generalità Diamo la definizione di insieme secondo Georg Cantor, matematico

Dettagli

ALGEBRA RELAZIONALE RIEPILOGO

ALGEBRA RELAZIONALE RIEPILOGO ALGEBRA RELAZIONALE RIEPILOGO PROIEZIONE: (notazione ) Operatore unario per estrarre colonne da una relazione: lista_attributi (R) Lo schema del risultato contiene i soli attributi contenuti in lista_attributi.

Dettagli

b) Costruire direttamente le relazioni e poi correggere quelle che presentano anomalie

b) Costruire direttamente le relazioni e poi correggere quelle che presentano anomalie TEORIA RELAZIONALE: INTRODUZIONE 1 Tre metodi per produrre uno schema relazionale: a) Partire da un buon schema a oggetti e tradurlo b) Costruire direttamente le relazioni e poi correggere quelle che presentano

Dettagli

LOGICA DEI PREDICATI. Introduzione. Predicati e termini individuali. Termini individuali semplici e composti

LOGICA DEI PREDICATI. Introduzione. Predicati e termini individuali. Termini individuali semplici e composti Introduzione LOGICA DEI PREDICATI Corso di Intelligenza Artificiale A.A. 2009/2010 Prof. Ing. Fabio Roli La logica dei predicati, o logica del primo ordine (LPO) considera schemi proposizionali composti

Dettagli

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,...

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... Entropia Motivazione Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... ) s,s 2,s 3,... ognuno dei quali appartiene ad un alfabeto A di M elementi.? Quant è l informazione portata

Dettagli

Definizione DEFINIZIONE

Definizione DEFINIZIONE Definizione Funzione reale di due variabili reali Indichiamo con R 2 l insieme di tutti i vettori bidimensionali. Dato un sottoinsiemed R 2, una funzione f: D R è una legge che assegna a ogni punto (x,

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

FONDAMENTI DI INTELLIGENZA ARTIFICIALE M 15 Luglio 2010 Tempo a disposizione 2h 45min Risultato 32/32 punti

FONDAMENTI DI INTELLIGENZA ARTIFICIALE M 15 Luglio 2010 Tempo a disposizione 2h 45min Risultato 32/32 punti FONDAMENTI DI INTELLIGENZA ARTIFICIALE M Luglio 2010 Tempo a disposizione 2h 45min Risultato 32/32 punti Esercizio 1 (punti 4) Si formalizzino il logica dei predicati del I ordine le seguenti frasi: Ogni

Dettagli

Prolog: aritmetica e ricorsione

Prolog: aritmetica e ricorsione Capitolo 13 Prolog: aritmetica e ricorsione Slide: Aritmetica e ricorsione 13.1 Operatori aritmetici In logica non vi è alcun meccanismo per la valutazione di funzioni, che è fondamentale in un linguaggio

Dettagli

Quiz sui linguaggi CF

Quiz sui linguaggi CF Fondamenti dell Informatica 1 semestre Quiz sui linguaggi CF Prof. Giorgio Gambosi a.a. 2014-2015 Problema 1: Si consideri la seguente grammatica context free G, dove S, NP, V P, P P, A sono i simboli

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

4. Operazioni binarie, gruppi e campi.

4. Operazioni binarie, gruppi e campi. 1 4. Operazioni binarie, gruppi e campi. 4.1 Definizione. Diremo - operazione binaria ovunque definita in A B a valori in C ogni funzione f : A B C - operazione binaria ovunque definita in A a valori in

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secondaria di secondo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio à t i n U 1 Sistemi di primo grado

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

Esercizio su MT. Svolgimento

Esercizio su MT. Svolgimento Esercizio su MT Definire una macchina di Turing deterministica M a nastro singolo e i concetti di configurazione e di transizione. Sintetizzare una macchina di Turing trasduttore che trasformi un numero

Dettagli

Esercitazioni (a cura di R. Basili)

Esercitazioni (a cura di R. Basili) Esercitazioni (a cura di R. Basili) E1. Elementi di Algebra Insiemi Nozione intuitiva di insieme L'insieme vuoto Operazioni tra insiemi Domini Prodotto Cartesiano Proprieta' delle operazioni tra insiemi

Dettagli

Corrispondenze e relazioni - Complementi

Corrispondenze e relazioni - Complementi PRODOTTO CARTESIANO Nell elencare gli elementi di un insieme, l ordine non ha alcuna importanza; ma ci sono situazioni in cui l ordine con cui si indicano gli elementi è fondamentale. La partita Milan

Dettagli

Fondamenti di informatica per la sicurezza

Fondamenti di informatica per la sicurezza Corso di Laurea in icurezza dei sistemi e delle reti informatiche Fondamenti di informatica per la sicurezza anno accademico 2007 2008 docente: tefano Ferrari 19.01.2008 oluzione del econdo compitino versione

Dettagli

Programmazione lineare

Programmazione lineare Programmazione lineare Un modello matematico per un problema di programmazione lineare Problema 1. Un reparto di un azienda di elettrodomestici può produrre giornalmente non più di 6 lavatrici, delle quali

Dettagli

Sintesi di reti combinatorie. Sommario. Motivazioni. Sommario. Funzioni Espressioni. M. Favalli

Sintesi di reti combinatorie. Sommario. Motivazioni. Sommario. Funzioni Espressioni. M. Favalli Sommario Sintesi di reti combinatorie Funzioni Espressioni 1 Teorema di espansione di Shannon (Boole) M. Favalli Engineering Department in Ferrara 2 Forme canoniche 3 Metriche per il costo di una rete

Dettagli

Gli algoritmi: definizioni e proprietà

Gli algoritmi: definizioni e proprietà Dipartimento di Elettronica ed Informazione Politecnico di Milano Informatica e CAD (c.i.) - ICA Prof. Pierluigi Plebani A.A. 2008/2009 Gli algoritmi: definizioni e proprietà La presente dispensa e da

Dettagli

I tipi di dato astratti

I tipi di dato astratti I tipi di dato astratti.0 I tipi di dato astratti c Diego Calvanese Fondamenti di Informatica Corso di Laurea in Ingegneria Elettronica A.A. 001/00.0 0 I tipi di dato astratti La nozione di tipo di dato

Dettagli

Esame di Geometria - 9 CFU (Appello del 28 gennaio 2013 - A)

Esame di Geometria - 9 CFU (Appello del 28 gennaio 2013 - A) Esame di Geometria - 9 CFU (Appello del 28 gennaio 23 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Nello spazio R 3, siano dati il piano e i punti P = (, 2, ), Q = (2,, ). π : x + 2y 3

Dettagli

Classe 1A Corsi di recupero, giugno 2013

Classe 1A Corsi di recupero, giugno 2013 Classe 1A Corsi di recupero, giugno 2013 Classe 1B Corsi di recupero, giugno 2013 Classe 1C Corsi di recupero, giugno 2013 Classe 1D Corsi di recupero, giugno 2013 Classe 1E Corsi di recupero, giugno 2013

Dettagli

Definizione di domini

Definizione di domini Definizione di domini Come nei linguaggi ad alto livello (es. C) è possibile definire nuovi domini (tipi di dati) a partire da quelli predefiniti, anche se il costruttore è più limitato. create domain

Dettagli

(! )##%% *'!!+%(*!,, '- -..,,.,.. o - / 01- '-- 4'5 *%*'!! '6 *%! '-,3. '-,3 ' 7%8. o '3 o 6. '- 3-9--, 3-3

(! )##%% *'!!+%(*!,, '- -..,,.,.. o - / 01- '-- 4'5 *%*'!! '6 *%! '-,3. '-,3 ' 7%8. o '3 o 6. '- 3-9--, 3-3 !"#$ %&"%' (! )##%% *'!!+%(*!, o,, o, '..,,.,.. o / 01 ' o / 01 2 o # 3. 3 3 3 4'5 *%*'!! '6 *%! ' ' ',3. ',3 ' 7%8 '6 3 ''36. o '3 o 6. ' 39, ''. o.. ' o.. 3 3 ' 3 ' : o 3 o (3(3, ' $ o ', ',; ' + '6!'%!

Dettagli

ESERCIZI DI PROBLEM SOLVING E COMPOSIZIONE DEI DIAGRAMMI DI FLUSSO per le classi terza

ESERCIZI DI PROBLEM SOLVING E COMPOSIZIONE DEI DIAGRAMMI DI FLUSSO per le classi terza ESERCIZI DI PROBLEM SOLVING E COMPOSIZIONE DEI DIAGRAMMI DI FLUSSO per le classi terza vers.3 in lavorazione Docente SAFFI FABIO Contenuti 01.Esercizi generici sul diagramma di flusso - flow chart... 2

Dettagli

Normalizzazione. Relazionali

Normalizzazione. Relazionali Normalizzazione di Schemi Relazionali Normalizzazione Forme Normali Una forma normale è una proprietà di uno schema relazionale che ne garantisce la qualità, cioè l assenza di determinati difetti Una relazione

Dettagli

Le macchine di Turing

Le macchine di Turing Le macchine di Turing Alan Turing (1912-1954) 1954) Il problema della decisione i L Entscheidungsproblem [il problema della decisione] è risolto se si conosce una procedura che permette di decidere la

Dettagli

Sintesi di reti logiche multilivello. Sommario. Motivazioni. Sommario. M. Favalli

Sintesi di reti logiche multilivello. Sommario. Motivazioni. Sommario. M. Favalli Sommario Sintesi di reti logiche multilivello M. Favalli Engineering Department in Ferrara 1 2 3 Aspetti tecnologici Sommario Analisi e sintesi dei circuiti digitali 1 / Motivazioni Analisi e sintesi dei

Dettagli

Il modello relazionale

Il modello relazionale Il modello relazionale Il modello relazionale è stato introdotto nel 1970 da E.F. Codd. Soltanto a metà degli anni ottanta ha trovato una buona diffusione sul mercato, in quanto all epoca della sua introduzione

Dettagli

Universita' degli Studi di Udine UNA PROPOSTA PER L'INTRODUZIONE DI CAPACITA' DI META-RAPPRESENTAZIONE IN UN LINGUAGGIO DI PROGRAMMAZIONE LOGICA

Universita' degli Studi di Udine UNA PROPOSTA PER L'INTRODUZIONE DI CAPACITA' DI META-RAPPRESENTAZIONE IN UN LINGUAGGIO DI PROGRAMMAZIONE LOGICA Universita' degli Studi di Udine FACOLTA' DI SCIENZE MATEMATICHE FISICHE E NATURALI UNA PROPOSTA PER L'INTRODUZIONE DI CAPACITA' DI META-RAPPRESENTAZIONE IN UN LINGUAGGIO DI PROGRAMMAZIONE LOGICA Relatore:

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Capitolo 13. Interrogare una base di dati

Capitolo 13. Interrogare una base di dati Capitolo 13 Interrogare una base di dati Il database fisico La ridondanza è una cosa molto, molto, molto brutta Non si devono mai replicare informazioni scrivendole in più posti diversi nel database Per

Dettagli

Studio e realizzazione in Java di domini e regole per la risoluzione di vincoli su interi e insiemi di interi

Studio e realizzazione in Java di domini e regole per la risoluzione di vincoli su interi e insiemi di interi UNIVERSITÀ DEGLI STUDI DI PARMA FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE e NATURALI Corso di Laurea Specialistica in Informatica Tesi di Laurea Specialistica Studio e realizzazione in Java di domini e regole

Dettagli

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( )

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( ) Algebra di Boole Circuiti logici: componenti hardware preposti all'elaborazione delle informazioni binarie. PORTE LOGICHE (logical gate): circuiti di base. Allo scopo di descrivere i comportamenti dei

Dettagli

Il DISEGNO TECNICO è un linguaggio convenzionale che ha la funzione di trasferire e diffondere informazioni

Il DISEGNO TECNICO è un linguaggio convenzionale che ha la funzione di trasferire e diffondere informazioni Il DISEGNO TECNICO è un linguaggio convenzionale che ha la funzione di trasferire e diffondere informazioni Il DISEGNO TECNICO è un linguaggio convenzionale che ha la funzione di trasferire e diffondere

Dettagli

La trigonometria prima della trigonometria. Maurizio Berni

La trigonometria prima della trigonometria. Maurizio Berni La trigonometria prima della trigonometria Maurizio Berni 9 maggio 2010 Negli istituti tecnici agrari la trigonometria viene affrontata: nella seconda classe in Disegno e Topografia (risoluzione di triangoli

Dettagli

Risoluzione. Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005

Risoluzione. Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005 Risoluzione Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005 1 Risoluzione Introdurremo ora un metodo per capire se un insieme di formule è soddisfacibile o meno. Lo vedremo prima per insiemi

Dettagli

Esercitazioni di Reti Logiche. Lezione 2 Algebra Booleana e Porte Logiche. Zeynep KIZILTAN zkiziltan@deis.unibo.it

Esercitazioni di Reti Logiche. Lezione 2 Algebra Booleana e Porte Logiche. Zeynep KIZILTAN zkiziltan@deis.unibo.it Esercitazioni di Reti Logiche Lezione 2 Algebra Booleana e Porte Logiche Zeynep KIZILTAN zkiziltan@deis.unibo.it Argomenti Algebra booleana Funzioni booleane e loro semplificazioni Forme canoniche Porte

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

TERMINI, OPERATORI e METALIVELLO

TERMINI, OPERATORI e METALIVELLO TERMINI, OPERATORI e METALIVELLO In Prolog tutto è un termine: variabile, costante (numerica o atomica), struttura (lista come caso particolare con funtore. ) Ciascun termine struttura ha un funtore e

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO 1. Load Balancing Un istanza del problema del load balancing consiste di una sequenza p 1,..., p n di interi positivi (pesi dei job) e un

Dettagli

FONDAMENTI DI INTELLIGENZA ARTIFICIALE (8 CFU)

FONDAMENTI DI INTELLIGENZA ARTIFICIALE (8 CFU) FONDAMENTI DI INTELLIGENZA ARTIFICIALE (8 CFU) 13 Febbraio 2015 Tempo a disposizione: 2 h Risultato: 32/32 punti Esercizio 1 (punti 6) Si esprimano in logica dei predicati del I ordine le seguenti frasi:

Dettagli

B3. Scomposizione di polinomi - Esercizi

B3. Scomposizione di polinomi - Esercizi B. Scomposizione di polinomi - Esercizi RACCOGLIMENTO TOTALE 1) 15a 0 ) ax 6x ) x + 6a 4) 1a + 60a 5) 16a + 6) 18 x 7) 4a4 6a 8) ab ab 9) ab4x ab 10) ab + ab 11) abc abc4 1) xy xy + xyz 1) 5a 0b 14) xy

Dettagli

DOMINI A FATTORIZZAZIONE UNICA

DOMINI A FATTORIZZAZIONE UNICA DOMINI A FATTORIZZAZIONE UNICA CORSO DI ALGEBRA, A.A. 2012-2013 Nel seguito D indicherà sempre un dominio d integrità cioè un anello commutativo con unità privo di divisori dello zero. Indicheremo con

Dettagli

SCHEMI DI MATEMATICA

SCHEMI DI MATEMATICA SCHEMI DI MATEMATICA SCHEMA 1: somme algebriche tra numeri ( ci sono sia somme che sottrazioni) Obiettivo dello schema1: saper risolvere espressioni come : -3-6 Metodo: se il segno dei due numeri è uguale

Dettagli

RELAZIONI E FUNZIONI. Per ricordare. Figura 1. Figura 2. Figura 3. Figura 4

RELAZIONI E FUNZIONI. Per ricordare. Figura 1. Figura 2. Figura 3. Figura 4 RELAZIONI E FUNZIONI 3 Per ricordare H Dati due insiemi A e B e una proposizione aperta px,y, con x 2 A e y 2 B, si dice che x eá in relazione con y, e si scrive x R y, sepx,y eá vera; si parla allora

Dettagli

Matematica e Statistica I Anno Accademico 2009-2010 Foglio di esercizi settimana 2

Matematica e Statistica I Anno Accademico 2009-2010 Foglio di esercizi settimana 2 Matematica e Statistica I Anno Accademico 9- Foglio di esercizi settimana Funzioni di variabile reale: modelli, grafici, composizione, invertibilità; relazioni lineari. ESERCIZIO. In una città sono stati

Dettagli

Logica del primo ordine

Logica del primo ordine Logica del primo ordine Sistema formale sviluppato in ambito matematico formalizzazione delle leggi del pensiero strette relazioni con studi filosofici In ambito Intelligenza Artificiale logica come linguaggio

Dettagli

Semantica operazionale dei linguaggi di Programmazione

Semantica operazionale dei linguaggi di Programmazione Semantica operazionale dei linguaggi di Programmazione Oggetti sintattici e oggetti semantici Rosario Culmone, Luca Tesei Lucidi tratti dalla dispensa Elementi di Semantica Operazionale R. Barbuti, P.

Dettagli

Esercitazioni in Maple

Esercitazioni in Maple Esercitazioni in Maple 6 giugno 2007 Capitolo 1 Prima esercitazione 1.1 Anelli di polinomi Per cominciare bisogna dichiarare un anello di polinomi. Possiamo lavorare con un qualsiasi anello di tipo dove

Dettagli

Programmazione Dichiarativa in Prolog, CLP e ASP

Programmazione Dichiarativa in Prolog, CLP e ASP Programmazione Dichiarativa in Prolog, CLP e ASP Agostino Dovier Dipartimento di Matematica e Informatica Università di Udine Via delle Scienze 206 I-33100 Udine (UD) Italy http://www.dimi.uniud.it/dovier

Dettagli

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica

Dettagli

Cos è un Calcolatore?

Cos è un Calcolatore? Cos è un Calcolatore? Definizione A computer is a machine that manipulates data according to a (well-ordered) collection of instructions. 24/105 Riassumendo... Un problema è una qualsiasi situazione per

Dettagli

Programmazione Funzionale

Programmazione Funzionale Programmazione Funzionale LP imperativi: apparenza simile modello di progettazione = macchina fisica Famiglia dei LP imperativi = progressivo miglioramento del FORTRAN Obiezione: pesante aderenza dei LP

Dettagli

PROBABILITA CONDIZIONALE

PROBABILITA CONDIZIONALE Riferendoci al lancio di un dado, indichiamo con A l evento esce un punteggio inferiore a 4 A ={1, 2, 3} B l evento esce un punteggio dispari B = {1, 3, 5} Non avendo motivo per ritenere il dado truccato,

Dettagli

I metodi formali dell Analisi Lessicale: Le Espressioni Regolar

I metodi formali dell Analisi Lessicale: Le Espressioni Regolar I metodi formali dell Analisi Lessicale: Le Espressioni Regolari (ER) N.Fanizzi - V.Carofiglio 6 aprile 2016 1 Introduzione 2 3 4 5 Espressioni Regolari Dato un alfabeto finito X, una espressione regolare

Dettagli

I sistemi lineari. 1. I sistemi di due equazioni in due incognite CAPITOLO

I sistemi lineari. 1. I sistemi di due equazioni in due incognite CAPITOLO I sistemi lineari CAPITOLO 0 TEORIA Internet Più della metà delle famiglie in Italia dispone di una connessione ADSL e il numero è in continua crescita. L offerta di tariffe e tecnologie dei gestori telefonici

Dettagli

EVOLUZIONE DEI LINGUAGGI DI ALTO LIVELLO

EVOLUZIONE DEI LINGUAGGI DI ALTO LIVELLO EVOLUZIONE DEI LINGUAGGI DI ALTO LIVELLO Linguaggi di programmazione classificati in base alle loro caratteristiche fondamentali. Linguaggio macchina, binario e fortemente legato all architettura. Linguaggi

Dettagli

Alla pagina successiva trovate la tabella

Alla pagina successiva trovate la tabella Tabella di riepilogo per le scomposizioni Come si usa la tabella di riepilogo per le scomposizioni Premetto che, secondo me, questa tabella e' una delle pochissime cose che in matematica bisognerebbe "studiare

Dettagli

Varianti Macchine di Turing

Varianti Macchine di Turing Varianti Macchine di Turing Esistono definizioni alternative di macchina di Turing. Chiamate Varianti. Tra queste vedremo: MdT a più nastri e MdT non deterministiche. Mostriamo: tutte le varianti ragionevoli

Dettagli

TEORIA DEI NUMERI SUCCESSIONI

TEORIA DEI NUMERI SUCCESSIONI Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO TEORIA DEI NUMERI SUCCESSIONI NUMERI INTERI QUESITO Un quesito (facile) sulle cifre:

Dettagli

Evoluzioni di Ontologie in Frame Logic

Evoluzioni di Ontologie in Frame Logic Evoluzioni di Ontologie in Frame Logic Francesco Mele 1, Antonio Sorgente 1, Giuseppe Vettigli 1 1 C.N.R. Istituto di Cibernetica E. Caianiello, Via Campi Flegrei, 34 Pozzuoli, Naples, Italy. {f.mele,

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI 119 4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI Indice degli Argomenti: TEMA N. 1 : INSIEMI NUMERICI E CALCOLO

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

Compito Basi di Dati. Tempo concesso: 90 minuti 18 Gennaio 2007 Nome: Cognome: Matricola:

Compito Basi di Dati. Tempo concesso: 90 minuti 18 Gennaio 2007 Nome: Cognome: Matricola: 18 Gennaio 2007 Nome: Cognome: Matricola: Esercizio 1 Si considerino le seguenti specifiche relative alla realizzazione di un sistema informativo per la gestione delle lezioni di una scuola guida e si

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Esercizi di Analisi Matematica CAPITOLO 1 LE FUNZIONI Exercise 1.0.1. Risolvere le seguenti disuguaglianze: (1) x 1 < 3 () x + 1 > (3) x + 1 < 1 (4) x 1 < x + 1 x 1 < 3 x + 1 < 3 x < 4 Caso: (a): x 1

Dettagli

PROBLEMI DI MASSIMO E MINIMO ESEMPI INTRODUTTIVI ELEMENTARI. PROBLEMA 1: Tra i rettangoli di perimetro 20 cm, determina quello di area massima.

PROBLEMI DI MASSIMO E MINIMO ESEMPI INTRODUTTIVI ELEMENTARI. PROBLEMA 1: Tra i rettangoli di perimetro 20 cm, determina quello di area massima. PROBLEMI DI MASSIMO E MINIMO ESEMPI INTRODUTTIVI ELEMENTARI Introduzione Vengono qui presentati alcuni semplici problemi di massimo e minimo. Leggi con attenzione e completa i passaggi mancanti. Prova

Dettagli

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Esercizi II parte Esercizio 1 Discutere la correttezza di ciascuna delle seguenti affermazioni. Dimostrare formalmente la validità

Dettagli

Guida all uso del foglio elettronico Excel Lezioni ed esercizi

Guida all uso del foglio elettronico Excel Lezioni ed esercizi Lezioni di EXCEL Guida all uso del foglio elettronico Excel Lezioni ed esercizi 1 Il foglio elettronico Excel Excel è un foglio elettronico che consente di effettuare svariate operazioni nel campo matematico,

Dettagli