Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno Edizioni Cupido. lim. 1 t 1 T

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno Edizioni Cupido. lim. 1 t 1 T"

Transcript

1 rao dal Corso di elecomunicazioni Vol. I ore Panella Giuseppe Spalierno dizioni Cupido 4. nergia e Poenza Dao un segnale di ampiezza s() si definisce energia oale il valore del seguene inegrale: + / / lim s() d (7) Si definisce poenza oale il valore del seguene inegrale: P lim + / / s() d (8) Le precedeni relazioni ci dicono che l energia e la poenza di un segnale dipendono dal quadrao del segnale sesso. Per un segnale periodico di periodo, poso N con N inero si ha: P lim N N + N / N / s() d lim N N N + / / s() d + / / s() d Le precedeni uguaglianze si giusificano enendo cono che il segnale periodico, come è noo, ripee gli sessi valori ad inervalli di empo N. Perano, la poenza di un segnale periodico coincide con quella calcolaa in un periodo. Per meglio comprendere il significao fisico si consideri un generico segnale periodico di periodo di ensione v() applicao ad una resisenza R. Su di essa si sviluppa una poenza isananea p() pari a: p() v () R Nel caso di un segnale di correne si ha: p() R i () Supponendo la resisenza uniaria si ricava immediaamene che la poenza isananea coincide numericamene con il quadrao del valore isananeo del segnale. L energia fornia dal segnale in un inervallo di empo infiniesimo vale: d p()d Per i segnali periodici l inervallo di inegrazione si riferisce al periodo, per cui: La poenza risula: / + / v () d

2 P + / / Ad esempio, per il segnale v() V M cosω si ricava: v () d P + / / V M cos ω d VM + / / cos ω d Risolvendo l inegrale si oiene: P V M Nel caso di segnali periodici spesso si uilizza il valore efficace della ensione V eff o della correne I eff. Nel caso della ensione si valua con la seguene formula: + / V eff v() d (9) / Nel caso di segnale sinusoidale si oiene: VM Veff e I eff I M La poenza sviluppaa su una generica resisenza R vale: P V R eff ssa rappresena la noa formula dell eleroecnica per il calcolo della poenza. sempio n. 7 Calcolare l energia e la poenza oale per il segnale gradino di fig.. s() Risoluzione Fig. Segnale a gradino. Applicando le definizioni (7) e (8) per il caso in esame si ha: lim + / d lim

3 3 P lim + / d lim Il segnale a gradino appariene alla caegoria dei segnali a poenza finia denominai segnali di poenza. Un segnale a poenza finia presena sempre energia infinia. sempio n. 8 Calcolare l energia oale del segnale impulsivo isolao di fig.. s() Fig. Segnale impulsivo. Risoluzione Il segnale impulsivo isolao è un segnale limiao nell ampiezza e nella duraa. L energia oale si deermina applicando la (7) che in queso caso divena: d Il segnale impulsivo appariene alla caegoria dei segnali a energia finia denominai segnali di energia. Per ale segnale la poenza oale è nulla. Per quesa caegoria di segnali aperiodici è possibile solo definire una poenza isananea e non una poenza media oale. Nel caso di segnali periodici complessi per valuare la poenza o l energia si deve sosiuire al segnale s() il relaivo sviluppo in serie di Fourier e sviluppare i calcoli per le singole componeni armoniche. Si può dimosrare che, per un segnale periodico di cui è noo lo sviluppo di Fourier, enendo cono delle formule () e (3) relaive alla forma complessa dello sviluppo di Fourier, si ricava che l energia oale vale: / s () d F () + / La precedene relazione cosiuisce una delle forme del eorema di Parseval. Operando in ermini di rasformaa di Fourier, indicando con S(jω) la rasformaa del segnale s() si può enunciare il eorema di Parseval nella seguene forma: n n S(jω) π dω ffeuando un cambio di variabili e enendo cono che ω πf, si ricava:

4 4 S(jf ) df Al ermine S(jf) si aribuisce il significao di energia per unià di banda passane menre il ermine S(jω) rappresena la densià sperale di energia o semplicemene spero di energia del segnale s(). 5. Inegrale di convoluzione Assegnae due funzioni x() e h() si definisce inegrale di convoluzione la funzione y(): Si pone: y() x( τ) h( - τ)dτ y() x()*h() () Il simbolo aserisco * indica il prodoo di convoluzione ra le funzioni x() e h() menre la variabile indica l isane in cui viene calcolaa la convoluzione. L inegrale di convoluzione è un operaore lineare e gode delle segueni proprieà: Commuaiva Disribuiva Associaiva z() x ()*x () x ()*x () z() [x () + x ()]*y() x ()*y() + x ()*y() z() [x () * x ()]*y() x ()*[x ()*y()] Applicando la rasformaa di Fourier alla precedene relazione e moliplicando e dividendo per e jωτ si può scrivere: I jω jωτ jω( τ) [ y() ] y()e d x( τ)e dτ h( τ)e d I[ x() ] I[ h() ] Cioè: Y(jω) X(jω) H(jω) () Perano si può affermare che la rasformaa di Fourier della convoluzione di due funzioni coincide con il prodoo delle rasformae di Fourier delle funzioni. L inegrale di convoluzione risula paricolarmene uile nel calcolo della risposa di un sisema lineare ad un generica solleciazione noa la risposa al segnale impulsivo uniario (dela di Dirac). Dalla eoria dei sisemi è noo che si definisce funzione di rasferimeno di un sisema lineare e si indica con H(s), il rapporo ra il segnale di uscia Y(s) e quello di enraa X(s) nel dominio di Laplace. Nel caso in cui si opera in regime armonico (segnali sinusoidali) la variabile di Laplace divena s jω. In al caso la funzione di rasferimeno assume la forma: Y(jω) H(jω ) X(jω) La funzione di rasferimeno H(jω) è una espressione complessa caraerizzaa da un modulo e da una fase. Supponiamo che il segnale di enraa sia la funzione impulsiva a dela di Dirac : x() δ(). Ricordando che la rasformaa di Fourier della funzione δ() vale si ricava che: Y(jω) H(jω)

5 5 In alre parole si può affermare che la risposa alla funzione impulsiva di un sisema lineare coincide la funzione di rasferimeno del sisema sesso. L anirasformaa della funzione H(jω) si indica con h() e prende il nome di risposa impulsiva del sisema. ale risposa descrive compleamene il sisema poiché dipende solo dalla sua funzione di rasferimeno. La risposa impulsiva può essere calcolaa per via analiica o via sperimenale. Noa la risposa impulsiva h() è possibile deerminare l uscia y() per una qualunque enraa x() applicando l inegrale di convoluzione: y() x()*h() In definiiva si può affermare che se si opera nel dominio del empo l uscia del sisema lineare y() si oiene come prodoo di convoluzione ra l ingresso x() e la risposa impulsiva h(). Se si opera nel dominio delle frequenze per valuare y() si deve uilizzare la rasformaa di Fourier. Si calcola la funzione: Y(jω) X(jω) H(jω) Noa la Y(jω) la risposa nel dominio del empo si oiene anirasformando la Y(jω): y() F - ([Y(jω)] In fig.3 si mosra lo schema a blocchi di un generico sisema. x() *h() y() a) dominio del empo X(jω) H(jω) Y(jω) b) dominio delle frequenze Fig. 3 Schema a blocchi di un generico sisema. nrambi i meodi sono uilizzai ed esisono diversi sofware per la simulazione e lo sudio dei sisemi sia nel dominio del empo che della frequenza. Per concludere si vuole ricordare che lo sudio dei sisemi eleronici può essere condoo anche uilizzando la rasformaa di Laplace che consene, ra l alro, l analisi del ransiorio. sempio n. 9 Deerminare la risposa ad un gradino di ampiezza del filro passa-basso di fig. 4 uilizzando il meodo dell inegrale di convoluzione. Fig. 4 Circuio.

6 6 Risoluzione Per risolvere il problema si deve calcolare la risposa impulsiva del circuio e successivamene valuare l inegrale di convoluzione: y() x()*h(). Si può procedere in due modi: Dominio delle frequenze. Ricordiamo che nel dominio delle frequenze la capacià C è sosiua dalla reaanza X C /jωc menre una induanza L dalla reaanza X L jωl. I segnali x() e y() dalle rasformae X(jω) e Y(jω). Applicando la legge del pariore di ensione si ricava: H(jω ) Y(jω) X(jω) / jωc / jωc + R + jω jω + Dalla abella delle rasformae di Fourier si riconosce che la precedene relazione corrisponde all esponenziale decrescene. Perano. La risposa impulsiva vale: h() / Dominio del empo. Il circuio è regolao dalla seguene equazione: R i() + y() x() La correne che scorre nel circuio è la sessa che araversa il condensaore. È noo che: Sosiuendo si ha: dvc () i ( ) C d dy() C d dy() + y() x() (3) d La precedene è una equazione differenziale del primo ordine a coefficieni cosani (sisema invariane nel empo). La risposa all impulso di Dirac si oiene ponendo x() (risposa libera) poiché ale impulso è nullo per >. La soluzione della precedene equazione differenziale per x() fornisce la risposa impulsiva (equazione differenziale omogenea associaa). Risolvendo si ha: h() come per lo sudio nel dominio delle frequenze. / Si deermina la risposa al gradino applicando la (). Si ha:

7 7 y() Si deve ener cono che la funzione gradino x() per < menre vale per >. Inolre, la funzione esponenziale è definia solo per valori posiivi del empo per cui deve essere: τ ovvero: τ. Le precedeni osservazioni consenono di definire il limie inferiore di inegrazione pari a e quello superiore pari a. Il precedene inegrale divena: y() In definiiva si ha: τ / dτ y() / e τ τ / dτ dτ / / [ ] / y() ( e -/ ) τ / [ ] La precedene espressione rappresena la noa formula della carica di un condensaore con ingresso a gradino. ale risulao si poeva oenere risolvendo l equazione differenziale (9), ponendo x(), oppure applicando il meodo della rasformaa di Laplace che risula più semplice e poene nella sua applicazione praica. In queso esercizio si è voluo però uilizzare il meodo della convoluzione per meglio comprendere il significao di ale operaore in applicazioni eleroniche. sempio n. Calcolare la convoluzione ra i due segnali impulsivi mosrai in fig.5. Si supponga >. x () x () A A Fig. 5 Funzioni reangolari. Risoluzione Per calcolare la convoluzione in un isane generico si può procedere uilizzando la definizione fornia dalla (). Per i segnali in esame: y() x( τ) x ( - τ)dτ

8 8 La funzione x (-τ) si oiene come funzione simmerica x (-τ) rispeo all asse delle ordinae della funzione x (τ) con raslazione di un empo. Il valore della convoluzione nell isane si oiene come inegrale del prodoo delle due funzioni così oenue. L inegrale rappresena l area della curva prodoo come schemaizzao in fig. 6. x ( - τ) A A - τ Fig. 6 Rappresenazione grafica del calcolo della convoluzione I limii di inegrazione sono e per cui si ha : y() x ( τ) x ( - τ)dτ A A La procedura descria deve essere ripeua variando. È facile convincersi che per : y() < < y() A A y() A A + y() A A ( + ) + y() In fig. 7 si ripora l andameno dell inegrale di convoluzione. y() A A + Fig. 7 Andameno dell inegrale di convoluzione per i segnali di fig Inegrale di correlazione Assegnae due funzioni s () e s () reali o complesse, si definisce inegrale di correlazione o semplicemene correlazione la funzione:

9 9 * R ( τ) s () s ( + τ)d (4) Dove () s * è il complesso coniugao del segnale s() menre τ rappresena il valore di ricerca s * () s(). In queso caso la precedene relazione divena: o di raslazione. Per funzioni reali R ( τ) s() s ( + τ)d Si dimosra che in ui i casi la rasformaa di Fourier della correlazione di due segnali vale: R ω (5) * (jω) S (jω) S (j ) (6) dove S * (jω) è il complesso coniugao di S(jω) che si oiene sosiuendo j con j nella S (jω) che rappresena la rasformaa di Fourier del segnale s (). La precedene relazione risula uile nel calcolo poiché consene di valuare l inegrale di correlazione come anirasformaa di Fourier della (6), operazione semplice se si dispone delle abelle della rasformaa di Fourier. La correlazione è uile in quelle applicazioni in cui è necessario valuare quano due segnali sono simili ra loro. È queso il caso in cui si deve esrarre un segnale da un insieme di segnali noi affei da rumore come per esempio nella ricezione di un segnale di eco di un radar. La correlazione confrona i segnali uilizzando l inegrale del loro prodoo. Se i segnali sono molo diversi ra loro si oiene un valore molo basso. Per segnali molo simili si oengono elevai valori di correlazione. La correlazione applicaa a due segnali diversi, come nelle precedeni formule, è noa come correlazione incrociaa o cross correlaion. Nel caso in cui si opera su di una sola funzione si parla di auocorrelazione. La (5) divena: * R s ( τ) s () s( + τ)d (7) Ad esempio, l auocorrelazione del segnale impulsivo a dela di Dirac δ() si valua: R ( τ) s δ() δ( + τ)d per τ Ciò è una direa conseguenza della definizione di dela di Dirac. La rasformaa di Fourier per l auocorrelazione vale: R s (jω) S(jω) (8) Si è oenuo il noevole risulao che sabilisce che lo spero dell auocorrelazione è pari alla densià sperale di energia definia nel precedene paragrafo 5. L analisi svola evidenza la srea analogia maemaica esisene ra convoluzione e correlazione. Da un puno di visa grafico per valuare la correlazione R (τ) si deve moliplicare la prima funzione per la seconda raslaa senza necessià di ribalarla rispeo all asse delle ordinae come si deve fare per il calcolo della convoluzione.

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) =

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) = Esercizio [puni 4] Prova scria di SEGNALI E SISTEMI 5 seembre 2003 Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 2002-2003) Teso e Soluzione (redaa da L. Finesso) Si racci il grafico dei segnali a. x

Dettagli

ESERCIZI di TEORIA dei SEGNALI. La Correlazione

ESERCIZI di TEORIA dei SEGNALI. La Correlazione ESERCIZI di TEORI dei SEGNLI La Correlazione Correlazione Si definisce correlazione (o correlazione incrociaa o cross-correlazione) ra i due segnali di energia, in generale complessi, x() e y() la quanià:

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale x(, deo ingresso, generando

Dettagli

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino Sisemi Lineari e Tempo-Invariani (SLI) Risposa impulsiva e al gradino by hp://www.oasiech.i Con sisema SLI si inende un sisema lineare e empo invariane, rispeo alla seguene figura: Lineare: si ha quando

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k.

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k. Sudio delle vibrazioni raa ogni oscillazione di una grandezza inorno ad una posizione di equilibrio. La forma piu semplice di oscillazione e il moo armonico che puo i essere descrio da un veore roane Ae

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione SISTEMI LINEARI TEMPO INVARIANTI Fondameni Segnali e Trasmissione Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale (), deo ingresso, generando il segnale y(),

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria

Laboratorio di Fisica I: laurea in Ottica e Optometria Laboraorio di Fisica I: laurea in Oica e Opomeria Misura del empo caraerisico di carica e scarica di un condensaore araverso una resisenza Descrizione Si vuole cosruire un circuio in serie collegando generaore

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale x(), deo ingresso, generando il segnale

Dettagli

Verifica di Matematica Classe V

Verifica di Matematica Classe V Liceo Scienifico Pariario R. Bruni Padova, loc. Pone di Brena, 6/3/17 Verifica di Maemaica Classe V Soluzione Problemi. Risolvi uno dei due problemi: 1. Facciamo il pieno. Il serbaoio del carburane di

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Fondameni di Segnali e Trasmissione Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale, deo ingresso, generando il segnale,

Dettagli

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1 Sisemi lineari: deinizioni e concei di base Teoria dei segnali Unià 2 Sisemi lineari Sisemi lineari Deinizioni e concei di base Concei avanzai 2 25 Poliecnico di Torino Sisemi lineari: deinizioni e concei

Dettagli

Filtri. RIASSUNTO: Sviluppo in serie di Fourier Esempi:

Filtri. RIASSUNTO: Sviluppo in serie di Fourier Esempi: Filri RIASSUNTO: Sviluppo in serie di Fourier Esempi: Onda quadra Onda riangolare Segnali non peridiodici Trasformaa di Fourier Filri lineari sazionari: funzione di rasferimeno T() Definizione: il decibel

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

Corso di Laurea in Ingegneria Informatica (Laurea on Line) Prima prova Intermedia

Corso di Laurea in Ingegneria Informatica (Laurea on Line) Prima prova Intermedia Milano, 0/0/00 Corso di Laurea in Ingegneria Inormaica (Laurea on Line) Corso di Fondameni di elecomunicazioni Prima prova Inermedia Carissimi sudeni, scopo di quesa prima prova inermedia è quello di veriicare

Dettagli

APPUNTI INTEGRATIVI Provvisori circa: Risposta in Frequenza: Introduzione ai Filtri Passivi e Attivi. Filtri del I ordine

APPUNTI INTEGRATIVI Provvisori circa: Risposta in Frequenza: Introduzione ai Filtri Passivi e Attivi. Filtri del I ordine APPUNTI INTEGATIVI Provvisori circa: isposa in Frequenza: Inroduzione ai Filri Passivi e Aivi Filri del I ordine. Passa-Basso Consideriamo la funzione di ree: Trasferimeno in ensione ai capi di un condensaore

Dettagli

Elettronica delle Telecomunicazioni Esercizi cap. 3: Anelli ad aggancio di fase

Elettronica delle Telecomunicazioni Esercizi cap. 3: Anelli ad aggancio di fase 3. Effeo della variazioni di parameri del PLL - A Un PLL uilizza come demodulaore di fase un moliplicaore analogico, e il livello dei segnali sinusoidale di ingresso (Vi) e locale (Vo) è ale da manenere

Dettagli

0.0.1 Esercizio Q1, tema d esame del 10 settembre 2009, prof. Dario d Amore Testo R 3

0.0.1 Esercizio Q1, tema d esame del 10 settembre 2009, prof. Dario d Amore Testo R 3 1 0.0.1 Esercizio Q1, ema d esame del 10 seembre 2009, prof. Dario d more 0.0.1.1 Teso E1 Il circuio di figura opera in regime sazionario. Sapendo che R 1 = 2 kω, = 4 kω, = 2 kω, = 2 kω E=12 V, =3 m Deerminare,

Dettagli

Struttura di un alimentatore da parete

Struttura di un alimentatore da parete Alimenaori 1 Sruura di un alimenaore da paree Alimenaori con regolaore lineare ensione sul condensaore di filro Poenza aiva e apparene Disorsione Alimenaori con regolaore swiching Condensaore di filro

Dettagli

1. Domanda La funzione di costo totale di breve periodo (con il costo espresso in euro) di un impresa è la seguente:

1. Domanda La funzione di costo totale di breve periodo (con il costo espresso in euro) di un impresa è la seguente: 1. omanda La funzione di coso oale di breve periodo (con il coso espresso in euro) di un impresa è la seguene: eerminare il coso oale, il coso oale medio, il coso marginale, i cosi oali fissi e i cosi

Dettagli

Esempi di progetto di alimentatori

Esempi di progetto di alimentatori Alimenaori 1 Esempi di progeo di alimenaori Progeo di alimenaore senza circuio di correzione del faore di poenza (PFC) Valore del condensaore Correne di picco Scela diodi Correne RMS Progeo di alimenaore

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti Esercizi di Maemaica Finanziaria - Corso Par Time scheda - soluzioni - Leggi finanziarie, rendie ed ammorameni. Le soluzioni sono: (a) M 3 = 00 ( + 3) = 5, M 8 = 5 ( + 5) = 43.75. (b) Va risola l equazione

Dettagli

RISPOSTA NEL DOMINIO DEL TEMPO

RISPOSTA NEL DOMINIO DEL TEMPO RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia

Dettagli

PIL NOMINALE, PIL REALE E DEFLATORE

PIL NOMINALE, PIL REALE E DEFLATORE PIL NOMINALE, PIL REALE E DEFLATORE Il PIL nominale (o a prezzi correni) Come sappiamo il PIL è il valore di ui i beni e servizi finali prodoi in un cero periodo all inerno del paese. Se per calcolare

Dettagli

9.4.4 Filtro adattato 9.4. FILTRAGGIO DI SEGNALI E PROCESSI 235

9.4.4 Filtro adattato 9.4. FILTRAGGIO DI SEGNALI E PROCESSI 235 9.4. FILRAGGIO DI SEGNALI E PROCESSI 35 Rispose ) Calcoliamo la media emporale: P x = ; / / x () d = /4 /4 () d = 4 = ) Sappiamo che P y = Py (f) df, in cui Py (f) = Y (f), ed a sua vola Y (f) = X (f)

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

Il circuito RC Misure e Simulazione

Il circuito RC Misure e Simulazione Il circuio R Misure e Simulazione Laboraorio di Fisica - Liceo Scienifico G.D. assini Sanremo 8 oobre 8 E.Smerieri & L.Faè Progeo Lauree Scienifiche 6-9 Oobre - Sanremo he cosa verrà fao in quesa esperienza

Dettagli

sedimentazione Approfondimenti matematici

sedimentazione Approfondimenti matematici sedimenazione Approfondimeni maemaici considerazioni sulla velocià L espressione p A F = R (1) che fornisce la relazione sulle forze ageni nel processo della sedimenazine, indica che all inizio il moo

Dettagli

Il modello di crescita deriva dalla logica del tasso di interesse semplice

Il modello di crescita deriva dalla logica del tasso di interesse semplice Eserciazione 7: Approfondimeni sui modelli di crescia. Crescia arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Viviana Amai 03/06/2009 Modelli di crescia Nella prima

Dettagli

, proporzionale alla RH%, si fa riferimento allo schema di figura 3 composto dai seguenti blocchi:

, proporzionale alla RH%, si fa riferimento allo schema di figura 3 composto dai seguenti blocchi: Esame di Sao di Isiuo Tecnico Indusriale A.S. 007/008 Indirizzo: ELETTRONICA E TELECOMUNICAZIONI Tema di: ELETTRONICA Si deve rilevare l umidià relaiva RH% presene in un ambiene, nell inervallo 0 90%,

Dettagli

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE.

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE. UNITA. LE DISEQUAZIONI GONIOMETRICHE.. Generalià sulle disequazioni goniomeriche.. Disequazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Disequazioni riconducibili a disequazioni goniomeriche

Dettagli

CM89sett.tex COMPLEMENTI DI MATEMATICA a.a Laurea magistrale in Ingegneria Elettrotecnica

CM89sett.tex COMPLEMENTI DI MATEMATICA a.a Laurea magistrale in Ingegneria Elettrotecnica 1 CM89se.ex COMPLEMENTI DI MATEMATICA a.a. 28-29 Laurea magisrale in Ingegneria Eleroecnica Nona seimana 24.11.28 - lunedì (2 ore) Commeno della prova parziale (vd. file CM8IcoA-B-C-D.pdf). Definizione

Dettagli

Capitolo 1 - Introduzione ai segnali

Capitolo 1 - Introduzione ai segnali Appuni di eoria dei egnali Capiolo - Inroduzione ai segnali egnali coninui... Definizioni inroduive... Esempio: segnale esponenziale...3 Esempio: coseno...3 Osservazione: poenza di un segnale periodico...5

Dettagli

Lezione C1 - DDC

Lezione C1 - DDC Eleronica per l'informaica 3/9/25 Cosa c è nell unià C Unià C: Conversione A/D e D/A Eleronica per l informaica C. Caena di conversione A/D C.2 Converiori D/A C.3 Converiori A/D C.4 Condizionameno del

Dettagli

Corso di ELETTRONICA INDUSTRIALE

Corso di ELETTRONICA INDUSTRIALE Corso di EETTRONCA NDUSTRAE Converiore BuckBoos Boos Converiore innalzaore/abbassaore (Buck / Boos) Converiore innalzaore/abbassaore (Buck / Boos) S D C U i i o U o U i Converiore innalzaore/abbassaore

Dettagli

Università degli Studi di Cassino - FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA GESTIONALE

Università degli Studi di Cassino - FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA GESTIONALE Universià degli Sudi di assino - FOTÀ DI GGNI OSO DI U GGNI GSTION TTOTNI - prova scria del // SIZIO I - on riferimeno al seguene circuio, operane in regime sinusoidale, calcolare:. il circuio equivalene

Dettagli

Approccio Classico: Metodi di Scomposizione

Approccio Classico: Metodi di Scomposizione Approccio Classico: Meodi di Scomposizione Il Modello di Scomposizione Il modello maemaico ipoizzao nel meodo classico di scomposizione è: y =f(s, T, E ) dove y è il dao riferio al periodo S è la componene

Dettagli

ESEMPI DI ESERCIZI SU IRPEF ED IRES

ESEMPI DI ESERCIZI SU IRPEF ED IRES ESEMPI DI ESERCIZI SU IRPEF ED IRES 1. Irpef 1) Dopo avere definio il conceo di progressivià delle impose, si indichino le modalià per la realizzazione di un sisema di impose progressivo. ) Il signor A,

Dettagli

PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 25 Settembre 2006 Cognome Nome Matricola. y=x 2 =i L

PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 25 Settembre 2006 Cognome Nome Matricola. y=x 2 =i L .9.8.7.6.5.4.3.. - 3 4 5 6 7 8 9 PROVA SCRITTA DI AUTOMATICA I (Prof. Biani, BIO A-K) 5 Seembre 6 Cognome Nome Maricola............ Verificare che il fascicolo sia cosiuio da 9 pagine. La chiarezza e precisione

Dettagli

Capitolo 8 Il regime periodico e il regime alternativo sinusoidale

Capitolo 8 Il regime periodico e il regime alternativo sinusoidale Capiolo 8 Il regime periodico e il regime alernaivo sinusoidale Capiolo 8 Il regime periodico e il regime alernaivo sinusoidale 8.1 Definizioni 8.1.1 Periodo, frequenza, pulsazione Una grandezza si dice

Dettagli

Note applicative sul timer 555

Note applicative sul timer 555 Noe applicaive sul imer 555. Premessa Il imer 555 è un circuio inegrao che coniene al suo inerno elemeni analogici (come BJT e comparaori) ed elemeni digiali in logica sequenziale (flip flop SR) allo scopo

Dettagli

Minimi Quadrati Ricorsivi

Minimi Quadrati Ricorsivi Minimi Quadrai Ricorsivi Minimi Quadrai Ricorsivi Fino ad ora abbiamo sudiao due diversi meodi per l idenificazione dei modelli: - Minimi quadrai, uilizzao per l idenificazione dei modelli ARX, in cui

Dettagli

Lavorazioni per asportazione di truciolo: usura utensile. Tecnologia Meccanica 1

Lavorazioni per asportazione di truciolo: usura utensile. Tecnologia Meccanica 1 Lavorazioni per asporazione di ruciolo: usura uensile Esercizio 1 In una lavorazione si desidera che la duraa T dell uensile sia di 15 minui. Assumendo per le cosani di Taylor i valori C = 250 e n = 0.122

Dettagli

GENERALITA SULLE MACCHINE ELETTRICHE

GENERALITA SULLE MACCHINE ELETTRICHE GENERALITA SULLE MACCHINE ELETTRICHE Una macchina è un organo che assorbe energia di un deerminao ipo e la rasforma in energia di un alro ipo. Energia in Energia in MACCHINA ingresso uscia Energia dispersa

Dettagli

PRINCIPALI TIPI DI SEGNALI ELETTRICI

PRINCIPALI TIPI DI SEGNALI ELETTRICI PRINCIPALI IPI DI SEGNALI ELERICI PROF. MASSIMO SCALIA E CON Ing. Fabrizio Guidi Do. Massimo Sperini Ing. Giampaolo Giraldo SOCIEÀ EDIRICE ANDROMEDA Sommario. Il conceo di segnale..... Classificazione

Dettagli

Calcolo di integrali - svolgimento degli esercizi

Calcolo di integrali - svolgimento degli esercizi Calcolo di inegrali - svolgimeno degli esercizi Calcoliamo una primiiva di cos(e 5. Inegriamo due vole per pari, scegliendo e 5 d come faore differenziale e cos( come faore finio. Si ha cos(e 5 d e5 5

Dettagli

Matematica Finanziaria. Lezione 3

Matematica Finanziaria. Lezione 3 1 Maemaica Finanziaria Lezione 3 Regime finanziario di capializzazione a ineressi anicipai Ponendo: C = Capiale iniziale M = Capiale disponibile in (capiale finale I= Ineresse d = asso di scono della legge

Dettagli

Modelli ARMA, regressione spuria e cointegrazione Amedeo Argentiero

Modelli ARMA, regressione spuria e cointegrazione Amedeo Argentiero Modelli ARMA, regressione spuria e coinegrazione Amedeo Argeniero amedeo.argeniero@unipg.i Definizione modello ARMA Un modello ARMA(p, q) (AuoRegressive Moving Average of order p and q) ha la seguene sruura:

Dettagli

CONVERTITORI CC / CC

CONVERTITORI CC / CC CONETITOI CC / CC I converiori CC/CC sono dei circuii che, ricevendo in ingresso una ensione coninua, presenano in uscia una ensione ancora coninua ( in realà un valore medio ) ma di valore diverso rispeo

Dettagli

Lezione n.7. Variabili di stato

Lezione n.7. Variabili di stato Lezione n.7 Variabili di sao 1. Variabili di sao 2. Funzione impulsiva di Dirac 3. Generaori impulsivi per variabili di sao disconinue 3.1 ondizioni iniziali e generaori impulsivi In quesa lezione inrodurremo

Dettagli

ALIMENTATORI SWITCHING

ALIMENTATORI SWITCHING ALIMENAORI SWIHING osiuiscono l alra caegoria dei converiori / impiegai per le applicazioni di piccola po_ enza ( 10 100 Wa ) e, più in paricolare, per l alimenazione di carichi passivi prevalenemene resisivi,

Dettagli

Lezione XXXV - 15/05/2003 ora 14:30 16:30 - Propagazione e misure acustiche nelle sale - Originale di Di Veneziano Lucio

Lezione XXXV - 15/05/2003 ora 14:30 16:30 - Propagazione e misure acustiche nelle sale - Originale di Di Veneziano Lucio Lezione XXXV - 15/5/3 ora 14:3 16:3 - Propagazione e misure acusiche nelle sale - Originale di Di Veneziano Lucio Misure nelle sale Si supponga di posizionare una sorgene e un rilevaore in una sala con

Dettagli

SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO ECONOMIA INDUSTRIALE Universià degli Sudi di Milano-Bicocca Chrisian Garavaglia Soluzione 4 a) Indicando con θˆ la sima di θ, il profio aeso dell impresa

Dettagli

Trasformata di Fourier (1/7)

Trasformata di Fourier (1/7) 1 rasormaa di Fourier (1/7 + De: Un segnale x( è impulsivo se x ( d < + F : + j X( x( e π d F{ x( }, < < + F -1 + jπ 1 : x( X( e d F { X( }, < < + X( è una rappresenazione di x( nel dominio della requenza

Dettagli

Fisica Generale Modulo di Fisica II A.A. 2014-15 Esercitazione 7 CIRCUITI IN REGIME SINUSOIDALE

Fisica Generale Modulo di Fisica II A.A. 2014-15 Esercitazione 7 CIRCUITI IN REGIME SINUSOIDALE Fisica Generale Modulo di Fisica II A.A. 4-5 Eserciazione 7 CICUII IN EGIME SINUSOIDALE Fa. Un generaore di correne alernaa con volaggio massimo di 4 e frequenza di 5 Hz è collegao a una resisenza 65 Ω.

Dettagli

A K CARICHE MOBILI POSITIVE

A K CARICHE MOBILI POSITIVE L DODO SEMCONDUTTOE Polarizzando una giunzione P-N si oiene un paricolare componene doao di una sraordinaria capacià: quella di condurre correne se polarizzao direamene e di non condurla se polarizzao

Dettagli

TIPI DI REGOLATORI. Esistono diversi tipi di regolatori che ora analizzeremo.

TIPI DI REGOLATORI. Esistono diversi tipi di regolatori che ora analizzeremo. TIPI DI REGOLATORI Esisono diversi ipi di regolaori che ora analizzeremo 1REGOLATORI ON-OFF Abbiamo deo che i regolaori sono quei sisemi che cercano di manenere l uscia cosane On-Off sa per indicare che

Dettagli

MACCHINE ELETTRICHE. - Campo rotante - Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a.

MACCHINE ELETTRICHE. - Campo rotante - Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a. MACCINE ELETTRICE - Campo roane - Sefano Pasore Diparimeno di Ingegneria e Archieura Corso di Eleroecnica (IN 043) a.a. 01-13 Inroduzione campo magneico con inensià cosane che ruoa aorno ad un asse con

Dettagli

INTRODUZIONE AI SEGNALI. Fondamenti Segnali e Trasmissione

INTRODUZIONE AI SEGNALI. Fondamenti Segnali e Trasmissione INTRODUZIONE AI SEGNALI Classiicazione dei segnali ( I segnali rappresenano il comporameno di grandezze isiche (ad es. ensioni, emperaure, pressioni,... in unzione di una o piu variabili indipendeni (ad

Dettagli

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo) V A = AMPIEZZA = lunghezza di V A ALTERNATA Proiezione di V X ISTANTE = velocià angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un inervallo di empo) DEVE ESSERE COSTANTE Angolo

Dettagli

Scienze e Tecnologie Applicate L. Agarossi - ITIS P. Hensemberger - Monza

Scienze e Tecnologie Applicate L. Agarossi - ITIS P. Hensemberger - Monza elemeni di segnali elemeni di segnali SEGNALE il segnale segnale e informazione segnale analogico e digiale il segnale digiale il segnale il segnale si può genericamene definire come una grandezza che

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Universià di Napoli Parenope Facolà di Ingegneria Corso di Comunicazioni Elerice docene: Prof. Vio Pascazio a Lezione: 7/04/003 Sommario Caraerizzazione energeica di processi aleaori Processi aleaori nel

Dettagli

L impedenza. RIASSUNTO Richiamo: algebra dei numeri complessi I FASORI Derivate e integrali Esempio: circuito RC. Il concetto di impedenza :

L impedenza. RIASSUNTO Richiamo: algebra dei numeri complessi I FASORI Derivate e integrali Esempio: circuito RC. Il concetto di impedenza : L impedena RASSUNTO Richiamo: algebra dei numeri complessi FASOR Derivae e inegrali Esempio: circuio RC Transiene Soluione saionaria l conceo di impedena : Resisena: Z R R nduana: Z L ω L Capacia : Z C

Dettagli

P8 CIRCUITI SEQUENZIALI ELEMENTARI

P8 CIRCUITI SEQUENZIALI ELEMENTARI P8 CICUITI EUENZIALI ELEMENTAI P8. - Tracciare lo schema a blocchi di un sisema sequenziale secondo il modello di Moore. Nel modello di Moore di un sisema sequenziale, si suppone che lo sao successivo

Dettagli

TRASFORMATA DI LAPLACE

TRASFORMATA DI LAPLACE C A P I T O L O 6 TRASFORMATA DI LAPLACE 6. INTRODUZIONE L analisi dei circuii nel dominio delle frequenze è saa finora limiaa a circuii aveni ingressi sinusoidali. In alre parole, in ui i circuii con

Dettagli

22 Reti in regime variabile aperiodico

22 Reti in regime variabile aperiodico Analisi in evoluzione coninua leroecnica ei in regime variabile aperiodico Nei regimi variabili aperiodici ensioni e correni non assumono andameni di ipo presabilio (come nei regimi sazionario e periodico)!

Dettagli

Alcuni strumenti per misure di portata e velocità

Alcuni strumenti per misure di portata e velocità Capiolo 8 lcuni srumeni per misure di poraa e velocià 8. Meodi sperimenali per misure di velocià lcune delle principali ecniche che si uilizzano in fluidodinamica per misure di velocià (o poraa) sono riassune

Dettagli

( ) I METODI DI INTEGRAZIONE. f x da integrare nella somma di più. x,..., f n x che si sappiano già integrare. Ne segue che:

( ) I METODI DI INTEGRAZIONE. f x da integrare nella somma di più. x,..., f n x che si sappiano già integrare. Ne segue che: I METODI DI INTEGRAZIONE In queso paragrafo verranno illusrai i vari meodi di inegrazione che, pur non cosiuendo un procedimeno generale per effeuare l'inegrazione indefinia, permeono senz'alro di calcolare

Dettagli

Esercizi svolti. Geometria analitica: curve e superfici

Esercizi svolti. Geometria analitica: curve e superfici Esercizi svoli. Curve nel piano. Si rovi l equazione della circonferenza di cenro (,) e raggio. Applicando la definizione di circonferenza come luogo di puni equidisani dal cenro si ha ( ) ( y ) 4.. Si

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1 www.maefilia.i Indirizzi: LI2, EA2 SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 2 AMERICHE 21 PROBLEMA 1 Sai seguendo un corso, nell'amio dell'orienameno universiario,

Dettagli

P suolo in P; 2. la distanza d, dall uscita dello

P suolo in P; 2. la distanza d, dall uscita dello acolà di Ingegneria Prova Generale di isica I 1.07.004 Compio A Esercizio n.1 Uno sciaore di massa m = 60 Kg pare da fermo da un alezza h = 8 m rispeo al suolo lungo uno scivolo inclinao di un angolo α

Dettagli

Esercitazione di Laboratorio

Esercitazione di Laboratorio UNIVERSITA' DEGLI STUDI DI BERGAMO Scuola Ineruniversiaria Lombarda di Specializzazione per l Insegnameno Secondario Sezione di Bergamo e Brescia Eserciazione di Laboraorio Laboraorio di Srumenazione Digiale

Dettagli

LA CINEMATICA IN BREVE. Schede di sintesi a cura di Nicola SANTORO.

LA CINEMATICA IN BREVE. Schede di sintesi a cura di Nicola SANTORO. LA CINEMAICA IN BREVE Schede di sinesi a cura di Nicola SANORO Lo scopo di quese schede è quello di riassumere i concei principali e le formule fondamenali della cinemaica, per venire inconro alle esigenze

Dettagli

2. Grafi e proprietà topologiche

2. Grafi e proprietà topologiche . Grafi e proprieà opologiche Grafo. Marice di incidenza complea. Soografo. Ordine di un nodo. Percorso, maglia, veore opologico di maglia. Taglio, veore opologico di aglio. Orogonalià ra agli e maglie.

Dettagli

L AUTORITÀ PER L ENERGIA ELETTRICA E IL GAS

L AUTORITÀ PER L ENERGIA ELETTRICA E IL GAS Deliberazione 15 dicembre 2011 - ARG/gas 180/11 Modifiche ai crieri generali di applicazione dei corrispeivi di cui all aricolo 12 del TIVG in maeria di deerminazione e applicazione del ermine P e modifiche

Dettagli

POLITECNICO DI MILANO

POLITECNICO DI MILANO POLITECNICO DI MILANO CENTRO PER LO SVILUPPO DEL POLO DI CREMONA Corso di Laurea Ingegneria INFORMATICA LABORATORIO DI FONDAMENTI DI ELETTRONICA Anno --- Semesre Eserciazione n Si consideri il conaore

Dettagli

Corso di ELETTRONICA INDUSTRIALE

Corso di ELETTRONICA INDUSTRIALE Corso di ELETTRONICA INDUSTRIALE Conrollo di correne del converiore Buck Argomeni raai Argomeni raai Conrollo di ensione con limiazione di correne Argomeni raai Conrollo di ensione con limiazione di correne

Dettagli

del segnale elettrico trifase

del segnale elettrico trifase Rappresenazione del segnale elerico rifase Gli analizzaori di poenza e di energia Qualisar+ consenono di visualizzare isananeamene le caraerisiche di una ree elerica rifase. Rappresenazione emporale I

Dettagli

Regime lentamente. variabile. Corso di. Teoria dei Circuiti. Corso di. Università degli Studi di Pavia. Facoltà di Ingegneria

Regime lentamente. variabile. Corso di. Teoria dei Circuiti. Corso di. Università degli Studi di Pavia. Facoltà di Ingegneria Universià degli Sudi di Pavia Facolà di Ingegneria Corso di Corso di Teoria dei Circuii Regime lenamene variabile Diparimeno di Ingegneria Elerica www.unipv.i/elecric/cad Regime lenamene variabile v(),

Dettagli

Elettrotecnica. Regime lentamente variabile. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia. Dipartimento di Ingegneria Elettrica

Elettrotecnica. Regime lentamente variabile. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia. Dipartimento di Ingegneria Elettrica Universià degli Sudi di Pavia Facolà di Ingegneria Corso di Eleroecnica Teoria dei Circuii Regime lenamene variabile v(), i(), p() funzioni del empo Esempio: a() a Relazioni: non algebriche, ma inegro-differenziali

Dettagli

Osservabilità (1 parte)

Osservabilità (1 parte) eoria dei sisemi - Capiolo 9 sservabilià ( pare) Inroduzione al problema della osservabilià: osservazione e ricosruzione. Sai indisinguibili e sai non osservabili...3 Soospazi di osservabilià e non osservabilià

Dettagli

PROBLEMA 1. Soluzione. ε = = =

PROBLEMA 1. Soluzione. ε = = = MOULO PROBLEMA 1 Una barra d acciaio di lunghezza l = m e sezione rasversale di area A = 50, è sooposa a una solleciazione di razione F = 900 da. Sapendo che l allungameno assoluo della barra è l = 1,5,

Dettagli

Raggiungibilità e controllabilità (2 )

Raggiungibilità e controllabilità (2 ) eoria dei sisemi - Capiolo 8 Raggiungibilià e conrollabilià ( ) Sisemi empo-coninui lineari empo-invariani... Inroduzione... Deerminazione del soospazio di raggiungibilià e crierio di Kalman... La conrollabilià...6

Dettagli

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio.

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio. . Cono e cilindro.. Definiione. Diremo superficie il luogo geomerico dei puni dello spaio le cui coordinae soddisfano un equaione del ipo F che viene dea equaione caresiana della superficie. Se F è un

Dettagli

1 Catene di Markov a stati continui

1 Catene di Markov a stati continui Caene di Markov a sai coninui In queso caso abbiamo ancora una successione di variabili casuali X 0, X, X,... ma lo spazio degli sai è un insieme più che numerabile. Nel seguio supporremo che lo spazio

Dettagli

Voltmetri AC analogici

Voltmetri AC analogici oleri AC analogici Risposa dei voleri per AC oleri a valore edio raddrizzao (voleri con raddrizzaore) oleri a valore efficace (voleri rs) oleri a valore di picco (voleri di cresa) 1 oleri AC analogici

Dettagli

I.P.S.I.A. DI BOCCHIGLIERO Multivibratori monostabili ---- Materia: Elettronica. alunni: Ammannato Luigi Valente Francesco Spataro Leonardo.

I.P.S.I.A. DI BOCCHIGLIERO Multivibratori monostabili ---- Materia: Elettronica. alunni: Ammannato Luigi Valente Francesco Spataro Leonardo. I.P.S.I.A. DI BOCCHIGLIERO a.s. 2010/2011 classe III Maeria: Eleronica Mulivibraori monosabili alunni: Ammannao Luigi Valene Francesco Spaaro Leonardo. prof. Ing. Zumpano Luigi Il mulivibraore monosabile

Dettagli

Utilizzo della programmazione lineare

Utilizzo della programmazione lineare Universià degli Sudi di Triese a.a. 2009-2010 Gesione della produzione Uilizzo della programmazione lineare La programmazione lineare può essere applicaa per la deerminazione di un piano oimo. Si ipoizza

Dettagli

Capitolo 2 Sistemi lineari tempo-invarianti: analisi nel dominio del tempo

Capitolo 2 Sistemi lineari tempo-invarianti: analisi nel dominio del tempo Capiolo 2 Sisemi lineari empo-invariani: analisi nel dominio del empo 1. Inroduzione In queso capiolo ci occuperemo dell analisi nel dominio del empo dei sisemi dinamici lineari empo-invariani. Vale a

Dettagli

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica:

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica: Sessione sraordinaria LS_ORD 7 Soluzione Si consideri la figura soosane, ce rappresena la quesione geomerica: Il riangolo APB, essendo inscrio in una semicirconferenza è reangolo, per cui AP r sin, PB

Dettagli

Processi stocastici. Corso Segnale e Rumore Giorgio Brida Giugno/luglio 2007 Pagina 1 di 33

Processi stocastici. Corso Segnale e Rumore Giorgio Brida Giugno/luglio 2007 Pagina 1 di 33 Processi socasici Inroduzione isemi lineari e sazionari; luuazioni casuali, derive e disurbi; processi socasici sazionari in senso lao, unzione di auocorrelazione e spero di poenza; risposa di un sisema

Dettagli

L andamento del livello e della posizione d inventario indicativamente è il seguente. L = 0,5 L = 0,5

L andamento del livello e della posizione d inventario indicativamente è il seguente. L = 0,5 L = 0,5 Esercizio 1 Ricapioliamo i dai a nosra disposizione (o ricavabili da quesi): - asso di domanda aeso: đ = 194 unià/mese - deviazione sandard asso di domanda: σ d = 73 - coso fisso emissione ordine (approvvigionameno):

Dettagli

CAPITOLO 2 IL MODELLO DI CRESCITA DI SOLOW

CAPITOLO 2 IL MODELLO DI CRESCITA DI SOLOW CAPITOLO 2 IL MODELLO DI CRESCITA DI SOLOW Nella prima pare del capiolo esponiamo il modello di crescia di Solow 1. Successivamene sudieremo le proprieà di convergenza del reddio pro capie implicie nell

Dettagli

COMPORTAMENTO SISMICO DELLE STRUTTURE

COMPORTAMENTO SISMICO DELLE STRUTTURE COMPORTAMENTO SISMICO DELLE STRUTTURE Durane un erreoo, le oscillazioni del erreno di fondazione provocano nelle sovrasani sruure delle oscillazioni forzae. Quando il erreoo si arresa, i ovieni della sruura

Dettagli

Circuiti in regime sinusoidale

Circuiti in regime sinusoidale ircuii in regime sinusoidale www.die.ing.unibo.i/pers/masri/didaica.hm versione del 6-4- Funzioni sinusoidali a cos ampiezza fase iniziale radiani, rad pulsazione rad/s f frequenza herz, Hz T periodo secondi,

Dettagli

Q V CAPACITÀ ELETTRICA. coulomb volt. Quando ad un conduttore isolato viene conferita una carica elettrica Q, esso assume un potenziale V.

Q V CAPACITÀ ELETTRICA. coulomb volt. Quando ad un conduttore isolato viene conferita una carica elettrica Q, esso assume un potenziale V. APAITÀ ELETTRIA uando ad un conduore isolao viene conferia una carica elerica, esso assume un poenziale V. Si definisce capacià elerica Unià di misura della capacià elerica nel S.I. = V farad = F= Dipende

Dettagli

AA. 2012/13 50011-CLMG Esercitazione - IRPEF TESTO E SOLUZIONI

AA. 2012/13 50011-CLMG Esercitazione - IRPEF TESTO E SOLUZIONI AA. 2012/13 50011-CLMG Eserciazione - IRPEF TESTO E SOLUZIONI Esercizio 1 - IRPEF Il signor X, che vive solo e non ha figli, ha percepio, nel corso dell anno correne, i segueni reddii: - Reddii da lavoro

Dettagli

ESEMPIO 1 Per portare un bicchiere d acqua (forza F=2,5 N) dal tavolo alla bocca (spostamento

ESEMPIO 1 Per portare un bicchiere d acqua (forza F=2,5 N) dal tavolo alla bocca (spostamento 8. L ENERGIA La parola energia è una parola familiare: gli elerodomesici, i macchinari hanno bisogno di energia per funzionare. Noi sessi, per manenere aive le funzioni viali e per compiere le azioni di

Dettagli