LEZIONI N 24 E 25 UNIONI SALDATE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LEZIONI N 24 E 25 UNIONI SALDATE"

Transcript

1 LEZIONI N 24 E 25 UNIONI SALDATE Le saldature si realizzano prevalentemente con il metodo dell arco elettrico, utilizzando elettrodi rivestiti, che forniscono il materiale di apporto. Il collegamento è realizzato fondendo insieme, per l alta temperatura generata dall arco elettrico (circa 3000 C), sia il metallo di base che il materiale di apporto. Le saldature si distinguono in due tipi: - a testa a testa o a T a completa penetrazione; - a cordone d angolo. Nella saldatura testa a testa gli assi dei pezzi da saldare sono allineati, mentre in quella a T sono ad angolo retto. Saldatura testa a testa Saldatura a T In entrambe i casi è necessaria una preparazione dei lembi della saldatura, per creare lo spazio per accogliere il materiale d apporto. La completa penetrazione significa che la fusione del metallo di base è avvenuta per tutto lo spessore dei pezzi da saldare. Nella saldatura a completa penetrazione la sezione resistente del pezzo in corrispondenza della saldatura è praticamente uguale a quella di un elemento monolitico di uguale forma. Per di più questo tipo di saldatura non perturba sensibilmente il flusso delle tensioni indotte dalle azioni esterne. Perciò le tensioni si calcolano come se la saldatura non ci fosse, sulla base delle sollecitazioni agenti sulla sezione. Il criterio di snervamento che si utilizza è quello di Von Mises: σ = σ + σ σσ+ 3τ id 109

2 Tuttavia il calcolo è approssimato, poiché trascura le tensioni indotte dalla contrazione dei cordoni di saldatura durante la loro solidificazione. Nelle saldature a cordone d angolo i pezzi da saldare sono sovrapposti oppure accostati. Il procedimento è più economico perché non è richiesta la preparazione dei lembi, ma esso non ripristina la continuità della sezione resistente: il flusso delle tensioni è perturbato e si verificano concentrazioni di tensione. Per questa ragione le saldature di questo tipo sono sconsigliate in presenza di carichi ripetuti (pericolo di fatica), se c è rischio di rottura fragile, ove è richiesta la massima resistenza del pezzo. Il calcolo è convenzionale: dovrebbe essere eseguito in corrispondenza della sezione di gola BD con le tensioni σ, τ, τ, da determinare in funzione delle tensioni agenti sulle facce AB e BC. Invece si opera sulla sezione di gola ribaltata su uno dei cateti del triangolo inscritto nel cordone di saldatura (segmento BC ). Al posto delle tensioni σ, τ, τ si utilizzano quindi le tensioni n, t, t. 110

3 Le norme italiane considerano, per le saldature a cordone d angolo, due procedimenti di verifica. Il primo opera sulla sezione di gola (con le tensioni ivi agenti) ed è espresso dal criterio di resistenza: in cui: f tk = resistenza a rottura del più debole materiale degli elementi collegati β = 0,80 per acciaio S235, 0,85 per acciaio S275, 0,90 per acciaio S355, 1,00 per acciaio S420 e S460. Si può notare che il criterio di resistenza è espresso dall equazione di un ellissoide di rotazione. Il secondo metodo di verifica opera invece sulla sezione di gola ribaltata (con le tensioni corrispondenti) ed è espresso dalle relazioni: in cui: f yk = tensione di snervamento caratteristica I coefficienti β 1 e β 2 sono funzione del tipo di acciaio, come riportato nella tabella seguente. 111

4 CHIARIMENTI SULLE FORMULE PER LA VERIFICA DELLE SALDATURE A CORDONE D ANGOLO Le formule sono basate su prove sperimentali condotte essenzialmente negli anni 50 e 60, che hanno consentito di determinare il dominio di resistenza delle saldature nello spazio delle tensioni σ, τ, τ (riferite alla sezione di gola). E risultato un ellissoide di rotazione, vagamente a forma di pera, avente simmetria polare intorno all asse σ. Questo solido fu approssimato mediante un ellissoide di rotazione (asse di rotazione l asse σ ). Esperienze più recenti hanno mostrato che l ellissoide non è un solido di rotazione, ma ha: - semiasse minore τ = 0,58 σ - semiasse medio τ = 0,70 σ Per tener conto di ciò alcuni autori tedeschi hanno proposto di determinare la tensione ideale sulla sezione di gola mediante la espressione: 112

5 σid = σ + 3τ + 2τ 1 essendo: 3 2,97 2 0,58 = 1 2 2,04 2 0,70 = La verifica di sicurezza consiste nel controllare che sia: σ id fu, w, i cui f uw, è la resistenza a rottura della saldatura. Tuttavia è molto più comodo operare sulla sezione di gola ribaltata, in quanto normalmente le tensioni sono note lì e bisogna manipolarle per riportarle sulla sezione di gola. Converrebbe piuttosto proiettare il criterio di resistenza sulla sezione di gola ribaltata, ma ciò conduce a formule complicate e di difficile impiego nella pratica professionale. Se si utilizzasse, anziché un ellissoide, un dominio di resistenza sferico sarebbe tutto più facile, in quanto la sua equazione non varia a seguito di un ribaltamento di 45. In questo spirito diversi domini sferici sono stati adottati da varie norme tecniche: - norme inglesi: sfera di raggio 0.58 f uw, (semiasse minore dell ellissoide) - norme americane: sfera di raggio 0.61 f uw, - norme tedesche: sfera di raggio 0.70 f uw, (semiasse intermedio dell ellissoide) In sostanza un criterio sferico è del tipo: 113

6 1 σid = σ + τ + τ f χ u, w con χ = 0,58 nel caso della norma inglese e pari a 0,70 nel caso della norma tedesca. NORME ITALIANE Le Norme Italiane hanno seguito la filosofia del criterio di resistenza sferico, utilizzando come base la sfera tedesca, ma cercando di renderla più sicura nei confronti di τ. E stato così sviluppato il criterio di resistenza detto della sfera mozza, espresso dalle equazioni che abbiamo visto in precedenza. Si tratta di una sfera di raggio pari alla sfera tedesca ( R= 0.70 f uw, ), definita nello spazio delle tensioni di gola. La sfera è intersecata da un prisma a base quadrata di lato f uw, e quindi tangente alla sfera inglese. L asse del prisma è l asse τ. Vediamo ora di giustificare le formule delle Norme Italiane operando con le tensioni agenti sulla superficie di gola ribaltata. 114

7 Consideriamo la sezione piana del solido riportata in figura. Poiché nel cambiamento di coordinate si è operata una rotazione di 45 intorno all asse τ, allora t t. La risultante r delle tensioni agenti sulla sezione di gola è contenuta nella sfera di raggio R= se: 0.70 f uw, r = σ + t + t = n + t + t f 0,70 uw, Al fine di valutare se la risultante r giace all interno del prisma quadrato, si considerano le sue componenti nel piano t, n r ed r : ' ' t n. Si osserva, a questo scopo, che il segmento AB è uguale a r ' t, in quanto AB e r ' t sono due cateti di un triangolo rettangolo isoscele. Allora r deve soddisfare la: r = r + r = n + t 0,58 2 f, ' ' ' n t uw, in cui 0,58 2 f uw, è la semi-diagonale della sezione del prisma. Naturalmente questa condizione deve essere verificata simultaneamente a quella di appartenenza alla sfera. Occorre ora stabilire il valore di f u,w. Si pone f β f u,w w yk I valori di β w sono: S235 : β w = 1,20 S 275, S355: β w = 1,00 S 420, S 460: β w = 0,90 n t t β f 1 yk n t β f 2 yk Resta infine da confrontare le espressioni trovate in precedenza con quelle indicate dalle Norme Italiane. Trattazione precedente Norme Italiane n + t + t f 0,70 uw, n + t + t β1 fyk n t f + 0,58 2 uw, n + t β2 fyk I valori di β 1 e β 2, differenziati per tipo di acciaio, sono quelli della tabella precedente, che qui si riporta per comodità di lettura. 115

8 Sostituendo i valori di β w ed f yk nella relazione si ottengono le espressioni regolamentari: Giustificazione dei valori dei coefficienti numerici per cui è moltiplicata la tensione caratteristica di snervamento dell acciaio ( f yk ) nelle eq. (a), (b), (c), (d),(e), (f). (a) 0,85 0,70 x 1,20 = 0,84 (f u,w = 1,20 x f yk ) (b) 0,70 = 0,70 x 1,00 = 0,70 (f u,w = 1,00 x f yk ) (Raggio della sfera mozza) (c) 0,62 0,70 x 0,90 = 0,63 (f u,w = 0,90 x f yk ) (d) 1,00 0,58 x x 1,20 = 1,02 (f u,w = 1,20 x f yk ) (e) 0,85 0,58 x = 0,82 (f u,w = 1,00 x f yk ) (f) 0,75 0,58 x x 0,90 = 0,74 (f u,w = 0,90 x f yk ) 116

LEZIONE 6. PROGETTO DI COSTRUZIONI IN ACCIAIO Progetto di giunzioni saldate. Corso di TECNICA DELLE COSTRUZIONI Chiara CALDERINI A.A.

LEZIONE 6. PROGETTO DI COSTRUZIONI IN ACCIAIO Progetto di giunzioni saldate. Corso di TECNICA DELLE COSTRUZIONI Chiara CALDERINI A.A. Corso di TECNICA DELLE COSTRUZIONI Chiara CALDERINI A.A. 2007-2008 Facoltà di Architettura Università degli Studi di Genova LEZIONE 6 PROGETTO DI COSTRUZIONI IN ACCIAIO Progetto di giunzioni saldate ASPETTI

Dettagli

Lezione. Tecnica delle Costruzioni

Lezione. Tecnica delle Costruzioni Lezione Tecnica delle Costruzioni Collegamenti saldati Procedimenti di saldatura Sorgente termica che produce alta temperatura in modo localizzato Fusione del materiale base più il materiale di apporto

Dettagli

Prof. Ing. Felice Carlo Ponzo. PDF Lezioni sul sito: www2.unibas.it/ponzo

Prof. Ing. Felice Carlo Ponzo. PDF Lezioni sul sito: www2.unibas.it/ponzo PDF Lezioni sul sito: www.unibas.it/ponzo PROCEDIMENTI DI SALDATURA Preparazione dei pezzi Taglio ossiacetilenico Taglio con gas ionizzati Tipi di saldatura - Ossiacetilenica Acetilene+ossigeno, gas riducenti

Dettagli

Strutture in acciaio. Unioni

Strutture in acciaio. Unioni Strutture in acciaio Unioni Tipologie di unioni Chiodi o bulloni Sono puntuali Indeboliscono le sezioni Ripristinano solo parzialmente la continuità Si eseguono in opera con relativa facilità Saldatura

Dettagli

Le unioni. modulo D L acciaio. Unioni con chiodi

Le unioni. modulo D L acciaio. Unioni con chiodi 1 Le unioni Le unioni hanno la funzione di collegare i vari elementi strutturali per formare la struttura, oppure, se questa è di grandi dimensioni, di realizzare in officina i componenti principali che

Dettagli

(7) Nel calcolo della resistenza di un collegamento ad attrito il coefficiente di attrito µ dipende: (punti 3)

(7) Nel calcolo della resistenza di un collegamento ad attrito il coefficiente di attrito µ dipende: (punti 3) Domande su: taglio, flessione composta e collegamenti. Indica se ciascuna delle seguenti affermazioni è vera o falsa (per ciascuna domanda punti 2) (1) L adozione di un gioco foro-bullone elevato semplifica

Dettagli

5. Unioni saldate. (filo continuo)

5. Unioni saldate. (filo continuo) 5. Unioni saldate 5.1.1 Taglio alla fiamma Cannello ossiacetilenico o ossipropilenico getto di ossigeno reazione isotermica Taglio al plasma (gas ionizzati) 5.1. Procedimenti di saldatura Si differenziano

Dettagli

Politecnico di Torino Dipartimento di Meccanica SALDATURE

Politecnico di Torino Dipartimento di Meccanica SALDATURE Saldatura (per fusione) Il giunto saldato: tipi di giunti La normativa SALDATURE Difetti nel cordone di saldatura Resistenza statica secondo CR-UI 00 Carici ce sollecitano il cordone Resistenza a fatica

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Istituto Tecnico per Geometri Corso di Costruzioni Edili

Istituto Tecnico per Geometri Corso di Costruzioni Edili Istituto Tecnico per Geometri Corso di Costruzioni Edili Prof. Giacomo Sacco LEZIONI SUL CEMENTO ARMATO Sforzo normale, Flessione e taglio CONCETTI FONDAMENTALI Il calcestruzzo ha una bassa resistenza

Dettagli

Unioni saldate. (filo continuo)

Unioni saldate. (filo continuo) Unioni saldate aglio alla fiamma Cannello ossiacetilenico o ossipropilenico getto di ossigeno reazione isotermica aglio al plasma (gas ionizzati) Procedimenti di saldatura Si differenziano per sorgente

Dettagli

Esercitazione n 4. Morganti Nicola Matr. 642686. Saldature

Esercitazione n 4. Morganti Nicola Matr. 642686. Saldature Saldature Esercitazione n 4 23 Nelle figure sottostanti sono rappresentate le sette diverse tipologie di strutture saldate; noti i carichi applicati ed alcune dimensioni dei collegamenti, completare il

Dettagli

SOMMARIO 1. CALCESTRUZZO... 2 2. ACCIAIO DA C.A. (DEL TIPO B450C)... 3 3. ACCIAIO PER CARPENTERIA METALLICA... 4 MANDANTE:

SOMMARIO 1. CALCESTRUZZO... 2 2. ACCIAIO DA C.A. (DEL TIPO B450C)... 3 3. ACCIAIO PER CARPENTERIA METALLICA... 4 MANDANTE: SOMMARIO 1. CALCESTRUZZO... 2 2. ACCIAIO DA C.A. (DEL TIPO B450C)... 3 3. ACCIAIO PER CARPENTERIA METALLICA... 4 1 1. Calcestruzzo Classe di esposizione: XC1 (elevazione) XC2 (fondazione) Classe di consistenza:

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

Verifiche di sicurezza di una costruzione 1/2

Verifiche di sicurezza di una costruzione 1/2 Verifiche di sicurezza di una costruzione 1/2 Le costruzioni devono soddisfare opportuni requisiti di sicurezza nei confronti della loro capacità portante Capacità portante Attitudine di una struttura

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva, matematicamente.it PROBLEMA Data una semicirconferenza di diametro AB =, si prenda su di essa un punto P e sia M la proiezione di P

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Sessione straordinaria - a.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Tema di: MATEMATICA a.s. 9- Svolgimento a cura di Nicola De Rosa Il candidato risolva uno

Dettagli

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

CONI, CILINDRI, SUPERFICI DI ROTAZIONE CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).

Dettagli

Teresa Berruti 2006-2007

Teresa Berruti 2006-2007 Teresa Berruti 006-007 SADATURE Saldatura (per fusione) Il iunto saldato: tipi di iunti a normativa di riferimento Difetti nel cordone di saldatura Resistenza statica (UNI EN 1993 1-8) Sollecitazioni nel

Dettagli

Generalità e note di teoria

Generalità e note di teoria Capitolo 1 Generalità e note di teoria In questo capitolo sono riportate alcune note delle teorie utilizzate, riguardanti: Verifiche di resistenza. Dati del problema e convenzioni. Ipotesi fondamentali.

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008 PRVA SPERIMENTALE P.N.I. 8 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 8 Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Nel piano riferito

Dettagli

Liceo G.B. Vico Corsico

Liceo G.B. Vico Corsico Liceo G.B. Vico Corsico Classe: 3A Materia: MATEMATICA Insegnante: Nicola Moriello Testo utilizzato: Bergamini Trifone Barozzi: Manuale blu.0 di Matematica Moduli S, L, O, Q, Beta ed. Zanichelli 1) Programma

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 1 Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PRBLEM 1 Si consideri la funzione reale

Dettagli

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ;

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; 1. Un triangolo ha area 3 e due lati che misurano 2 e 3. Qual è la misura del terzo lato? : L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; nel nostro

Dettagli

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione 0.0. 3.2 Diagrammi di Bode Possibili rappresentazioni grafiche della funzione di risposta armonica F (ω) = G(jω) sono: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I Diagrammi

Dettagli

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x).

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x). Esame liceo Scientifico : ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMI Problema. Sia ABCD un quadrato di lato, P un punto di AB e γ la circonferenza

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Se il polinomio

Dettagli

Lezione. Tecnica delle Costruzioni

Lezione. Tecnica delle Costruzioni Lezione Tecnica delle Costruzioni Classificazione dei collegamenti Tipi di collegamenti 1. Collegamento a parziale ripristino di resistenza In grado di trasmettere le caratteristiche di sollecitazione

Dettagli

UNIONE MATEMATICA ITALIANA. C. I. I. M. Commissione Italiana per l'insegnamento della Matematica

UNIONE MATEMATICA ITALIANA. C. I. I. M. Commissione Italiana per l'insegnamento della Matematica UNIONE MATEMATICA ITALIANA C. I. I. M. Commissione Italiana per l'insegnamento della Matematica ESEMPI DI TERZE PROVE per il NUOVO ESAME DI STATO LA COMPONENTE MATEMATICA ISTITUTO MAGISTRALE Tipologia

Dettagli

30/05/2012 COS E LA SALDATURA

30/05/2012 COS E LA SALDATURA 30/05/0 COS E LA SALDATURA La saldatura è un procedimento che permette il collegamento di parti solide tra loro e che realizza la continuità del materiale ove essa venga applicata. La caratteristica principale

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

ESERCIZI CINEMATICA IN UNA DIMENSIONE

ESERCIZI CINEMATICA IN UNA DIMENSIONE ESERCIZI CINEMATICA IN UNA DIMENSIONE ES. 1 - Due treni partono da due stazioni distanti 20 km dirigendosi uno verso l altro rispettivamente alla velocità costante di v! = 50,00 km/h e v 2 = 100,00 km

Dettagli

SALDATURA AD ARCO SOMMERSO

SALDATURA AD ARCO SOMMERSO SALDATURA SALDATURA AD ARCO SOMMERSO La saldatura ad arco sommerso (SAW - Submerged Arc Welding nella terminologia AWS) è un saldatura ad arco a filo continuo sotto protezione di scoria. Il fatto che l

Dettagli

Inserimento di distanze e di angoli nella carta di Gauss

Inserimento di distanze e di angoli nella carta di Gauss Inserimento di distanze e di angoli nella carta di Gauss Corso di laurea in Ingegneria per l Ambiente e il Territorio a.a. 2006-2007 Inserimento della distanza reale misurata nella carta di Gauss (passaggio

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

ORIGAMI E GEOMETRIA. Breve storia degli origami. Tetraedro. Modello1. Modello2. Conclusioni geometriche. analitica

ORIGAMI E GEOMETRIA. Breve storia degli origami. Tetraedro. Modello1. Modello2. Conclusioni geometriche. analitica ORIGAMI E GEOMETRIA Breve storia degli origami Tetraedro Modello1 1) Istruzioni origami 2) Analisi geometrica 3) Interpretazione analitica Modello2 Conclusioni geometriche 1) Istruzioni origami 2) Analisi

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1.

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1. ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 11 Il candidato risolva uno dei due problemi e 5 dei 1 quesiti scelti nel questionario 1. PROBLEMA 1 Si considerino le funzioni f e g definite, per

Dettagli

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 6/7 SIMULAZIONE DI II PROVA - A Tempo a disposizione: cinque ore E consentito l uso della calcolatrice non programmabile. Non è consentito uscire dall aula

Dettagli

Scheda I. 3 La non possibilità di duplicare il cubo con riga e compasso.

Scheda I. 3 La non possibilità di duplicare il cubo con riga e compasso. Scheda I. La non possibilità di duplicare il cubo con riga e compasso. Dopo Menecmo, Archita, Eratostene molti altri, sfidando gli dei hanno trovato interessante dedicare il loro tempo per trovare una

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Le unioni. 5 L acciaio 5.3 Strutture in acciaio. Unioni con chiodi. Unioni con perni. Unioni con bulloni

Le unioni. 5 L acciaio 5.3 Strutture in acciaio. Unioni con chiodi. Unioni con perni. Unioni con bulloni 1 Le unioni Unioni con chiodi È il sistema di collegamento più antico, ma è in disuso in quanto sostituito dalle unioni bullonate o saldate, per cui si può ritrovare solo su vecchie strutture in acciaio.

Dettagli

¼¼DIGISTAR PULSE ¼¼DIGITECH VISION PULSE

¼¼DIGISTAR PULSE ¼¼DIGITECH VISION PULSE UN PASSO NEL FUTURO Con i generatori inverter CONVEX, DIGISTAR e DIGITECH vision PULSE si entra nel futuro della saldatura MIG/MAG: inneschi perfetti e bagno di saldatura sempre sotto controllo grazie

Dettagli

Agrigento, 18 giugno 2014. Geom. Raffaello Dellamotta Tel. 0541-322.234 r.dellamotta@giordano.it

Agrigento, 18 giugno 2014. Geom. Raffaello Dellamotta Tel. 0541-322.234 r.dellamotta@giordano.it . Come identificarlo, certificarlo e controllarlo attraverso le NTC ed il nuovo CPR 305/2011 Specificazione e qualificazione delle procedure di saldatura per materiali metallici come richiesto dalla EN

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

Gli oggetti 3D di base

Gli oggetti 3D di base Gli oggetti 3D di base 04 Attraverso gli oggetti 3D di base, AutoCAD dispiega la sua capacità di modellazione per volumi e per superfici per quei modelli che si possono pensare come composizioni di oggetti

Dettagli

MATERIALI SINTERIZZATI

MATERIALI SINTERIZZATI MATERIALI SINTERIZZATI Sono ottenuti con la cosiddetta Metallurgia delle polveri, che consiste nella compattazione e trasformazione di materiali ridotti in polvere in un composto indivisibile. Sono utilizzati

Dettagli

I quesiti dal 2008 al 2012 a cura di Daniela Valenti

I quesiti dal 2008 al 2012 a cura di Daniela Valenti I quesiti dal 2008 al 2012 a cura di Daniela Valenti Geometria del piano e dello spazio, trigonometria [2008, ORD] Si consideri la seguente proposizione: Se due solidi hanno uguale volume, allora, tagliati

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

MATERIALI. Introduzione

MATERIALI. Introduzione MATERIALI 398 Introduzione Gli acciai sono leghe metalliche costituite da ferro e carbonio, con tenore di carbonio (in massa) non superiore al 2%. Attenzione: la normazione sugli acciai è in fase di armonizzazione

Dettagli

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2. FUNZIONI DI DUE VARIABILI 1 DOMINIO E LIMITI Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia (insiemi aperti, chiusi, limitati, convessi, connessi per archi; punti di

Dettagli

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014 SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 01 1. Determiniamo l espressione analitica di g() dividendo il suo dominio in intervalli. La circonferenza di diametro AO ha equazione (+) + = + + = 0

Dettagli

Strutture in Acciaio: Giunti

Strutture in Acciaio: Giunti Strutture in Acciaio: Giunti Un collegamento può essere classificato: in base allarigidezza: id in base alla resistenza: In base alla rigidezza: -È considerato collegamento a cerniera quello che trasmette

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

LEZIONI N 9, 10, 11 E 12 COSTRUZIONI DI ACCIAIO: IPOTESI DI BASE E METODI DI VERIFICA

LEZIONI N 9, 10, 11 E 12 COSTRUZIONI DI ACCIAIO: IPOTESI DI BASE E METODI DI VERIFICA LEZIONI N 9, 10, 11 E 12 COSTRUZIONI DI ACCIAIO: IPOTESI DI BASE E METODI DI VERIFICA L acciaio da carpenteria è una lega Fe-C a basso tenore di carbonio, dall 1 al 3 per mille circa. Gli acciai da costruzione

Dettagli

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π PROBLEMA Il triangolo rettangolo ABC ha l ipotenusa AB = a e l angolo CAB =. a) Si descriva, internamente al triangolo, con centro in B e raggio, l arco di circonferenza di estremi P e Q rispettivamente

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo differenziale in IR N. Dott. Franco Obersnel

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo differenziale in IR N. Dott. Franco Obersnel Università di Trieste Facoltà d Ingegneria Esercizi sul calcolo differenziale in IR N Dott Franco Obersnel Esercizio 1 Si calcoli la derivata direzionale nell origine lungo la direzione y del versore v

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

FUNZIONE REALE DI UNA VARIABILE

FUNZIONE REALE DI UNA VARIABILE FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Si considerino le funzioni f e g definite, per tutti

Dettagli

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA Simulazione 01/15 ANNO SCOLASTICO 01/15 PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Il candidato risolva uno dei due problemi Problema 1 Nella

Dettagli

Osservazioni sulla prima prova intermedia

Osservazioni sulla prima prova intermedia Avviso Istituzioni di matematiche 2 Diego Noja (diego.noja@unimib.it) 28 aprile 2009 La seconda prova intermedia si svolgerà martedì 26 maggio 2008, dalle 16.30 alle 18.30 Cognomi dalla A alla L: aula

Dettagli

Misura di e/m. Marilena Teri, Valerio Toso & Ettore Zaffaroni (gruppo Lu4)

Misura di e/m. Marilena Teri, Valerio Toso & Ettore Zaffaroni (gruppo Lu4) Misura di e/m Marilena Teri, Valerio Toso & Ettore Zaffaroni (gruppo Lu4) 1 Introduzione 1.1 Introduzione ai fenomeni in esame Un elettrone all interno di un campo elettrico risente della forza elettrica

Dettagli

Parte Seconda. Geometria

Parte Seconda. Geometria Parte Seconda Geometria Geometria piana 99 CAPITOLO I GEOMETRIA PIANA Geometria: scienza che studia le proprietà delle figure geometriche piane e solide, cioè la forma, l estensione e la posizione dei

Dettagli

L Unità didattica in breve

L Unità didattica in breve L Unità didattica in breve Trasmissione del moto mediante ruote dentate Si definisce ingranaggio l accoppiamento di due ruote dentate ingrananti fra loro, montate su assi la cui posizione relativa resta

Dettagli

Dimensionamento delle strutture

Dimensionamento delle strutture Dimensionamento delle strutture Prof. Fabio Fossati Department of Mechanics Politecnico di Milano Lo stato di tensione o di sforzo Allo scopo di caratterizzare in maniera puntuale la distribuzione delle

Dettagli

b) Il luogo degli estremanti in forma cartesiana è:

b) Il luogo degli estremanti in forma cartesiana è: Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere

Dettagli

I TRIANGOLI I TRIANGOLI 1. IL TRIANGOLO. Il triangolo è un poligono avente tre lati. a) Proprietà di un triangolo

I TRIANGOLI I TRIANGOLI 1. IL TRIANGOLO. Il triangolo è un poligono avente tre lati. a) Proprietà di un triangolo I TRIANGOLI 1. IL TRIANGOLO Il triangolo è un poligono avente tre lati. a) Proprietà di un triangolo In un triangolo: I lati e i vertici sono consecutivi fra loro. La somma degli angoli interni è sempre

Dettagli

PROBLEMI DI MASSIMO E MINIMO ESEMPI INTRODUTTIVI ELEMENTARI. PROBLEMA 1: Tra i rettangoli di perimetro 20 cm, determina quello di area massima.

PROBLEMI DI MASSIMO E MINIMO ESEMPI INTRODUTTIVI ELEMENTARI. PROBLEMA 1: Tra i rettangoli di perimetro 20 cm, determina quello di area massima. PROBLEMI DI MASSIMO E MINIMO ESEMPI INTRODUTTIVI ELEMENTARI Introduzione Vengono qui presentati alcuni semplici problemi di massimo e minimo. Leggi con attenzione e completa i passaggi mancanti. Prova

Dettagli

Kangourou Italia Gara del 21 marzo 2013 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado

Kangourou Italia Gara del 21 marzo 2013 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado Kangourou Italia Gara del 21 marzo 2013 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Il numero 200013 2013

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

una saldatura ad arco

una saldatura ad arco UTENSILERIA Realizzare una saldatura ad arco 0 1 Il tipo di saldatura Saldatrice ad arco La saldatura ad arco si realizza con un altissima temperatura (almeno 3000 c) e permette la saldatura con metallo

Dettagli

Integrali doppi - Esercizi svolti

Integrali doppi - Esercizi svolti Integrali doppi - Esercizi svolti Integrali doppi senza cambiamento di variabili Si disegni il dominio e quindi si calcolino gli integrali multipli seguenti:... xy dx dy, con (x, y R x, y x x }; x + y

Dettagli

Proprietà elastiche dei corpi

Proprietà elastiche dei corpi Proprietà elastiche dei corpi I corpi solidi di norma hanno una forma ed un volume non facilmente modificabili, da qui deriva la nozioni di corpo rigido come corpo ideale non deformabile. In realtà tutti

Dettagli

Materiali, analisi strutturale e stati limite delle costruzioni in acciaio

Materiali, analisi strutturale e stati limite delle costruzioni in acciaio La Progettazione delle Strutture tt di Acciaio i e composte in Acciaio-Calcestruzzo secondo il D.M. 14.01.08 Siena, 19-21 Maggio 2010 Materiali, analisi strutturale e stati limite delle costruzioni in

Dettagli

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.

Dettagli

MISURAZIONE DELLE PROPRIETA TECNOLOGICHE I.T.S.T J.F. KENNEDY - PN

MISURAZIONE DELLE PROPRIETA TECNOLOGICHE I.T.S.T J.F. KENNEDY - PN MISURAZIONE DELLE PROPRIETA TECNOLOGICHE I.T.S.T J.F. KENNEDY - PN Le proprietà tecnologiche dei materiali indagano la loro risposta alla lavorabilità ovvero forniscono indicazioni sulla risposta dei materiali

Dettagli

Appunti sulle funi. Le Funi Carmine Napoli

Appunti sulle funi. Le Funi Carmine Napoli Appunti sulle funi DEFINIZIONE Fune: è un organo flessibile formato da un insieme di fili di acciaio, di forma e dimensioni appropriate, avvolti elicoidalmente in uno o più gruppi concentrici attorno ad

Dettagli

Eurocodici Strutturali

Eurocodici Strutturali Eurocodici Strutturali 5 Capitolo Strutture in acciaio Rappresentazione saldature Unificazione viti/bulloni Indicazioni pratiche collegamenti bullonati Rappresentazione bullonature Caratteristiche dimensionali

Dettagli

4. Funzioni elementari algebriche

4. Funzioni elementari algebriche ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari algebriche A. A. 2013-2014 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

Documento #: Doc_a8_(9_b).doc

Documento #: Doc_a8_(9_b).doc 10.10.8 Esempi di progetti e verifiche di generiche sezioni inflesse o presso-tensoinflesse in conglomerato armato (rettangolari piene, circolari piene e circolari cave) Si riportano, di seguito, alcuni

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione

Dettagli

IGiochidiArchimede--Soluzionibiennio

IGiochidiArchimede--Soluzionibiennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionibiennio 17 novembre 2010 Griglia delle risposte

Dettagli

1 I solidi a superficie curva

1 I solidi a superficie curva 1 I solidi a superficie curva PROPRIETÀ. Un punto che ruota attorno ad un asse determina una circonferenza. PROPRIETÀ. Una linea, un segmento o una retta che ruotano attorno ad un asse determinano una

Dettagli

1. Particolari terne numeriche e teorema di PITAGORA. 2. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora.

1. Particolari terne numeriche e teorema di PITAGORA. 2. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora. TEOREMA DI PITAGORA Contenuti 1. Particolari terne numeriche e teorema di PITAGORA. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora Competenze 1. Sapere il significato di terna pitagorica

Dettagli

la restituzione prospettica da singolo fotogramma

la restituzione prospettica da singolo fotogramma la restituzione prospettica da singolo fotogramma arch. francesco guerini francesco.guerini@gmail.com politecnico di Milano, Facoltà di Architettura e Società Laboratorio di Rappresentazione 1 Prof. Andrea

Dettagli

Motorino elettrico fatto in casa

Motorino elettrico fatto in casa Realiz zato da Giovanni Gerardi VA P.N.I. a.s. 2010-11 Motorino elettrico fatto in casa Premesse. In una lezione di fisica verso metà marzo la professoressa di matematica e fisica Maria Gruarin ha introdotto

Dettagli

MATEMATICA 5 PERIODI

MATEMATICA 5 PERIODI BAC EUROPEO 2008 MATEMATICA 5 PERIODI DATA 5 giugno 2008 DURATA DELL ESAME : 4 ore (240 minuti) MATERIALE AUTORIZZATO Formulario delle scuole europee Calcolatrice non grafica e non programmabile AVVERTENZE

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t) CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare

Dettagli

Nel cemento armato si valorizzano le qualità dei due materiali: calcestruzzo e acciaio, che presentano le seguenti caratteristiche

Nel cemento armato si valorizzano le qualità dei due materiali: calcestruzzo e acciaio, che presentano le seguenti caratteristiche CEMENTO ARMATO METODO AGLI STATI LIMITE Il calcestruzzo cementizio, o cemento armato come normalmente viene definito in modo improprio, è un materiale artificiale eterogeneo costituito da conglomerato

Dettagli

ᵩ LA SEZIONE AUREA Misura dell'armonia matematica

ᵩ LA SEZIONE AUREA Misura dell'armonia matematica ᵩ LA SEZIONE AUREA Misura dell'armonia matematica Il bello della matematica... LA SINTESI: ambiti completamente diversi della matematica convergono nello stesso argomento o concetto i e =0 IL DIVERTIMENTO:

Dettagli

Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta.

Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta. CLASSE III C RECUPERO GEOMETRIA AREA PERIMETRO POLIGONI Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta. ES: se ho fatto questo disegno e so che 1 quadretto vale

Dettagli

ESERCIZIO 1. (a) Quanta carica attraversa un punto del filo in 5,0 min?

ESERCIZIO 1. (a) Quanta carica attraversa un punto del filo in 5,0 min? ESECIZIO Un filo è percorso dalla corrente di 3,0 A. (a) Quanta carica attraversa un punto del filo in 5,0 min? (b) Se la corrente è dovuta a un flusso di elettroni, quanti elettroni passano per un punto

Dettagli

Calcolo integrale in più variabili

Calcolo integrale in più variabili ppunti di nalisi II Calcolo integrale in più variabili Integrali doppi Nel caso di una funzione di una variabile f : a, b] R, supponendo f continua e fx) a, b], la quantità b a fx)dx indica l area fra

Dettagli

--- durezza --- trazione -- resilienza

--- durezza --- trazione -- resilienza Proprietà meccaniche Necessità di conoscere il comportamento meccanico di un certo componente di una certa forma in una certa applicazione prove di laboratorio analisi del comportamento del componente

Dettagli

Tipologie di profilati commerciali IPE

Tipologie di profilati commerciali IPE HE A-B-M Acciai da costruzione o da carpenteria Tipologie di profilati commerciali IPE UPN L lati uguali IPE Sagomario o profilario Passaggi di lavorazione per un profilo a doppio T lavorato a caldo Nascita

Dettagli