INDICE. Unità 0 LINGUAGGI MATEMATICI, 1. Unità 1 IL SISTEMA DI NUMERAZIONE DECIMALE, 49

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "INDICE. Unità 0 LINGUAGGI MATEMATICI, 1. Unità 1 IL SISTEMA DI NUMERAZIONE DECIMALE, 49"

Transcript

1 INDICE Unità 0 LINGUAGGI MATEMATICI, 1 Il libro prosegue nel CD Il linguaggio degli insiemi, 2 1 GLI INSIEMI E LA LORO RAPPRESENTAZIONE, 2 Gli insiemi, 2 Insieme vuoto, finito e infinito, 3 La rappresentazione degli insiemi, 4 2 I SOTTOINSIEMI, 6 Sottoinsiemi propri, 6 Sottoinsiemi impropri, 6 3 INSIEMI UGUALI E DISGIUNTI, 7 Insiemi uguali, 7 Insiemi disgiunti, 7 4 L INSIEME UNIONE, 8 ESERCIZI da p. 20 ESERCIZI da p. 22 ESERCIZI da p. 24 ESERCIZI da p L INSIEME INTERSEZIONE, 9 ESERCIZI da p. 26 Il linguaggio dei grafici, 10 6 TABELLE, 10 7 I GRAICI, 11 Ideogrammi, 11 Ortogrammi, 11 Istogrammi, 12 Areogrammi, 13 LABORATORIO matematico: I numeri della classe, 14 8 IL PIANO CARTESIANO, 15 Come costruire il piano cartesiano, 15 Come individuare i punti del piano, 15 Diagrammi cartesiani, 16 SINTESI, 18 AllenaMENTE, 47 ESERCIZI da p. 27 ESERCIZI da p. 31 ESERCIZI da p. 35 per la ERIICA orale, 17 AUTOERIICA, 38 ESERCIZI per il recupero, 40 ESERCIZI per il potenziamento, 45 Unità 1 IL SISTEMA DI NUMERAZIONE DECIMALE, 49 Il libro prosegue nel CD 1.1 I NUMERI NATURALI, 50 Sistema posizionale e numeri naturali, 50 Numeri cardinali e numeri ordinali, 51 Scrittura polinomiale di un numero naturale, 51 L ordinamento dei numeri naturali, 52 Rappresentazione grafica dei numeri naturali, 53 LABORATORIO matematico: Costruzione di un abaco, I NUMERI DECIMALI, 55 Scrittura polinomiale di un numero decimale, 56 Rappresentazione grafica dei numeri decimali, 57 Confronto dei numeri decimali, 57 Il cammino della matematica: L invenzione dei numeri, 59 SINTESI, 60 AllenaMENTE, 84 MATEMATICA CON IL PC: Creazione di tabelle con il foglio elettronico, 85 ESERCIZI da p. 61 ESERCIZI da p. 73 per la ERIICA orale, 58 per PREPARARSI all esame, 58 AUTOERIICA, 79 ESERCIZI per il recupero, 81 ESERCIZI per il potenziamento, 83

2 I Indice Unità 2 LE QUATTRO OPERAZIONI, L ADDIZIONE E LE SUE PROPRIETÀ, 90 Le proprietà dell addizione, 90 Addizione di numeri decimali, 91 Rappresentazione grafica dell addizione, LA SOTTRAZIONE E LE SUE PROPRIETÀ, 93 Le proprietà della sottrazione, 93 Sottrazione di numeri decimali, 94 Rappresentazione grafica della sottrazione, 94 LABORATORIO matematico: Costruzione di un regolo, LA MOLTIPLICAZIONE E LE SUE PROPRIETÀ, 97 Le proprietà della moltiplicazione, 98 Moltiplicazione di numeri decimali, LA DIISIONE E LE SUE PROPRIETÀ, 101 Le proprietà della divisione, 102 Come si esegue la divisione, ESPRESSIONI ARITMETICHE, 105 Espressioni senza parentesi, 105 Espressioni con parentesi, APPROSSIMAZIONE E ARROTONDAMENTO, 107 Che cos è l approssimazione, 107 Che cos è il grado di approssimazione, 107 Come si effettua l approssimazione, 108 Quozienti approssimati, 109 Il cammino della matematica: Il sistema di numerazione romano, 111 LABORATORIO matematico: La prima calcolatrice: l abaco romano, 112 SINTESI, 114 AllenaMENTE, 167 MATEMATICA CON IL PC: Calcoli ed espressioni, 168 ESERCIZI da p. 116 ESERCIZI da p. 122 ESERCIZI da p. 127 ESERCIZI da p. 131 ESERCIZI da p. 139 ESERCIZI da p. 148 Il libro prosegue nel CD per la ERIICA orale, 110 per PREPARARSI all esame, 110 CALCOLO MENTALE, 150 AUTOERIICA, 160 ESERCIZI per il recupero, 161 ESERCIZI per il potenziamento, 165 Unità 3 RISOLUZIONE DEI PROBLEMI, CHE COSA SONO I PROBLEMI?, 172 Problemi irrisolvibili e risolvibili, 174 Problemi impossibili, determinati e indeterminati, COME SI RISOLONO I PROBLEMI, 176 Metodo top-down/bottom-up, 176 Metodo grafico, 178 Metodo aritmetico per risolvere problemi con somme e differenze di due numeri, 180 Metodo dei diagrammi di flusso, 181 Problemi ed espressioni aritmetiche, 183 LABORATORIO matematico: Risoluzione di problemi, 184 SINTESI, 186 AllenaMENTE, 208 Unità 4 LE POTENZE, 209 ESERCIZI da p. 187 ESERCIZI da p. 189 Il libro prosegue nel CD per la ERIICA orale, 184 per PREPARARSI all esame, 185 AUTOERIICA, 203 ESERCIZI per il recupero, 204 ESERCIZI per il potenziamento, 207 Il libro prosegue nel CD 4.1 L ELEAMENTO A POTENZA, 210 ESERCIZI da p LE PROPRIETÀ DELLE POTENZE, 212 Prodotto di potenze con la stessa base, 212 Quoziente di potenze con la stessa base, 212 Potenza di una potenza, 213 Prodotto di potenze con lo stesso esponente, 213 Quoziente di potenze con lo stesso esponente, 214 ESERCIZI da p. 233

3 Indice 4.3 POTENZE PARTICOLARI, 216 Potenze con esponente 1, 216 Potenze con esponente 0, 216 Potenze con base 1, 216 Potenze con base 0, 217 La potenza 0 0, ESPRESSIONI CON LE POTENZE, 218 NOTAZIONE ESPONENZIALE E NOTAZIONE SCIENTIICA, 219 Potenze con base 10, 219 Notazione esponenziale, 219 Notazione scientifica, ORDINE DI GRANDEZZA, 221 SISTEMA DI NUMERAZIONE BINARIO, 222 Trasformazione di un numero da binario a decimale, 222 Trasformazione di un numero da decimale a binario, 223 Il cammino della matematica: I sette gatti del papiro di Rhind, 225 SINTESI, 226 AllenaMENTE, 252 MATEMATICA CON IL PC: Le potenze, 253 ESERCIZI da p. 236 ESERCIZI da p. 237 ESERCIZI da p. 241 ESERCIZI da p. 243 ESERCIZI da p. 244 per la ERIICA orale, 224 per PREPARARSI all esame, 224 CALCOLO MENTALE, 245 AUTOERIICA, 246 ESERCIZI per il recupero, 247 ESERCIZI per il potenziamento, 250 Unità 5 NUMERI PRIMI, MCD E mcm, MULTIPLI E DIISORI, 256 Multipli, 256 Divisori, CRITERI DI DIISIBILITÀ, 258 Criterio di divisibilità per 2, 258 Criterio di divisibilità per 3, 258 Criterio di divisibilità per 4, 259 Criterio di divisibilità per 5, 259 Criterio di divisibilità per 9, 259 Criterio di divisibilità per potenze di 10, 259 Criterio di divisibilità per 11, 260 Criterio di divisibilità per 25, I NUMERI PRIMI, 261 SCOMPOSIZIONE IN ATTORI PRIMI, 264 attori primi, 262 Scomposizione in fattori primi, CRITERIO GENERALE DI DIISIBILITÀ, 264 Come riconoscere se due numeri sono tra loro divisibili, 264 Divisione rapida tra due numeri divisibili tra loro, MASSIMO COMUNE DIISORE (MCD), 266 Come si calcola il Massimo Comune Divisore, MINIMO COMUNE MULTIPLO (mcm), 268 Come si calcola il minimo comune multiplo, PROBLEMI CON IL MCD E IL mcm, 270 Problemi con il MCD, 270 Problemi con il mcm, 271 Il cammino della matematica: Il crivello di Eratostene, 274 Moltiplicazione per ripiego, 274 SINTESI, 275 AllenaMENTE, 309 MATEMATICA CON IL PC: Multipli e divisori, 310 ESERCIZI da p. 276 ESERCIZI da p. 279 ESERCIZI da p. 284 ESERCIZI da p. 286 ESERCIZI da p. 289 ESERCIZI da p. 291 ESERCIZI da p. 293 ESERCIZI da p. 296 Il libro prosegue nel CD per la ERIICA orale, 273 per PREPARARSI all esame, 273 CALCOLO MENTALE, 300 AUTOERIICA, 302 ESERCIZI per il recupero, 303 ESERCIZI per il potenziamento, 306

4 I Indice Unità 6 LE RAZIONI, 313 Il libro prosegue nel CD 6.1 L UNITÀ RAZIONARIA, 314 ESERCIZI da p LA RAZIONE COME OPERATORE, 316 LABORATORIO matematico: Costruzione dell intero partendo da una sua frazione, 317 Costruzione e confronto di frazioni, LA RAZIONE COME DIISIONE, RAZIONI PROPRIE, IMPROPRIE E APPARENTI, 319 razioni proprie, 319 razioni improprie, 319 razioni apparenti RAZIONI EQUIALENTI, 321 Come si riconoscono, 321 Come si ottengono frazioni equivalenti, RIDUZIONE DI UNA RAZIONE AI MINIMI TERMINI, 323 Riduzione mediante semplificazioni successive, 323 Riduzione mediante MCD, TRASORMAZIONE DI UNA RAZIONE IN UNA EQUIALENTE CON DENOMINATORE DATO, 324 RIDUZIONE AL MINIMO COMUNE DENOMINATORE (mcd), 325 CONRONTO DI RAZIONI, 326 LABORATORIO matematico: Confronto di frazioni, 328 Il cammino della matematica: Gli Egizi e le frazioni, 329 SINTESI, 330 AllenaMENTE, 369 MATEMATICA CON IL PC: Le frazioni, 371 ESERCIZI da p. 335 ESERCIZI da p. 341 ESERCIZI da p. 344 ESERCIZI da p. 345 ESERCIZI da p. 348 ESERCIZI da p. 351 ESERCIZI da p. 352 ESERCIZI da p. 354 per la ERIICA orale, 328 per PREPARARSI all esame, 328 CALCOLO MENTALE, 358 AUTOERIICA, 360 ESERCIZI per il recupero, 362 ESERCIZI per il potenziamento, 368 Unità 7 OPERAZIONI CON LE RAZIONI, 373 Il libro prosegue nel CD 7.1 ADDIZIONE, 374 razioni con lo stesso denominatore, 374 razioni con denominatori diversi, 374 Numeri misti, SOTTRAZIONE, 376 razioni con lo stesso denominatore, 376 razioni con denominatori diversi, 376 razioni complementari, MOLTIPLICAZIONE, 378 razioni inverse o reciproche, DIISIONE, 380 razioni a termini frazionari, 380 ESERCIZI da p. 407 LABORATORIO matematico: Costruzione di un regolo per addizionare e sottrarre frazioni, ELEAMENTO A POTENZA, 383 Proprietà delle potenze, ESPRESSIONI CON LE RAZIONI, 384 ESERCIZI da p. 393 ESERCIZI da p. 398 ESERCIZI da p. 403 ESERCIZI da p. 409 ESERCIZI da p PROBLEMI CON LE RAZIONI, 385 Il cammino della matematica: Gli Egizi e le frazioni, 390 SINTESI, 391 AllenaMENTE, 444 MATEMATICA CON IL PC: Operazioni con le frazioni, 445 Soluzioni, 446 Tavole numeriche, 448 ESERCIZI da p. 423 per la ERIICA orale, 389 per PREPARARSI all esame, 389 CALCOLO MENTALE, 429 AUTOERIICA, 431 ESERCIZI per il recupero, 432 ESERCIZI per il potenziamento, 439

5 IL NUMERO Unità 4 LE POTENZE 4.1 L elevamento a potenza Le proprietà delle potenze Potenze particolari Espressioni con le potenze Notazione esponenziale e notazione scientifica Ordine di grandezza 4.7 Sistema di numerazione binario SAPERE avrai acquisito il concetto di potenza conoscerai le proprietà delle potenze conoscerai come rappresentare i numeri con la notazione esponenziale e la notazione scientifica avrai acquisito il concetto di ordine di grandezza SAPER ARE saprai elevare a potenza i numeri naturali e decimali saprai risolvere espressioni contenenti potenze saprai scrivere i numeri usando la notazione esponenziale e la notazione scientifica saprai determinare l ordine di grandezza di un numero

6 210 Unità 4 Le potenze L ELEAMENTO A POTENZA Si chiama potenza il prodotto di fattori tutti uguali tra loro. Il fattore che si ripete è chiamato base, il numero di volte che si ripete è detto esponente (o grado) della potenza. Una potenza indica una sequenza di moltiplicazioni con fattori tutti uguali: Esercizi a p. 227 rappresenta una potenza e si legge sei elevato alla quarta potenza o semplicemente sei alla quarta. 6 4 = = 1296 base esponente potenza 6 4 = 1296 Le potenze si leggono usando il numero cardinale per la base e il numero ordinale per l esponente. Esistono due eccezioni: 1. se l esponente è il numero 2, si può leggere al quadrato (23 2 ventitré al quadrato ); 2. se l esponente è il numero 3, si può leggere al cubo (8 3 otto al cubo ). Si chiama elevamento a potenza l operazione con la quale si calcola il valore della potenza di un numero. L elevamento a potenza si effettua in due fasi: 1. si sviluppa la potenza, cioè la si trasforma in una sequenza di moltiplicazioni; 2. si calcola il prodotto. Esempio 2 4 = sviluppo della potenza = 16 calcolo del prodotto Esempio mio Osserva che La definizione data di potenza vale anche per i numeri decimali. 2,3 4 = 2,3 2,3 2,3 2,3 = 27,9841 2,3 4 si legge due virgola tre alla quarta potenza o due virgola tre alla quarta. Nel calcolo mentale di una potenza occorre fare attenzione a due errori molto frequenti: 1. non si deve moltiplicare la base per l esponente: l esponente indica il numero dei fattori, non il numero delle moltiplicazioni, perciò il numero di moltiplicazioni che si devono eseguire è uguale all esponente diminuito di 1. sì no = = 20 Quando le calcolatrici non esistevano o erano poco diffuse, per calcolare le potenze si usavano le tavole, cioè elenchi di numeri e delle rispettive potenze già calcolate. In fondo a questo volume sono riportate le tavole dei quadrati e dei cubi dei primi 1000 numeri naturali. Per imparare a usare le tavole vedi p. 230.

7 IL NUMERO 4.1 L elevamento a potenza 211 Anteprima POTENZE E GEOMETRIA Perché le potenze con esponente 2 si leggono al quadrato? Perché rappresentano l area di un quadrato: area = lato lato = lato 2 Esempio In un quadrato formato da 5 file e 5 colonne di piastrelle ci sono 25 piastrelle. Infatti: 5 2 = 5 5 = 25 Dunque, 5 2 si legge cinque al quadrato perché corrisponde all area del quadrato che ha lato 5. Perché le potenze con esponente 3 si leggono al cubo? Perché rappresentano il volume di un cubo: volume = spigolo spigolo spigolo = spigolo 3 Esempio Consideriamo uno scatolone cubico (cioè con tutti gli spigoli uguali), pieno di scatolette anch esse cubiche. 5 strato 4 strato 3 strato 2 strato 1 strato 5 scatolette 5 scatolette Nello strato di base dello scatolone, come in ciascuno degli altri strati, sono contenute 5 5 scatolette; siccome ci sono 5 strati, il numero complessivo di scatolette è 125, infatti: 5 3 = = 125 Dunque, 5 3 si legge cinque al cubo perché rappresenta il volume di un cubo il cui spigolo è lungo 5. Applica 1 Considera la potenza: 2,1 4 Qual è la base?... Qual è l esponente?... Scrivi lo sviluppo della potenza ed esegui il calcolo... 2 Scrivi come si leggono le potenze , , ,4 3 3 Calcola mentalmente le potenze, poi indica quanti fattori hai moltiplicato e quante moltiplicazioni hai eseguito. Esempio = 81 4 fattori e 3 moltiplicazioni ,2 5 4 Scrivi le operazioni in forma compatta, cioè sotto forma di prodotto o di potenza ,3 + 2,3 + 2,3 + 2,3 + 2,3 + 2, n + n + n + n 0,4 0,4 0,4 0,4 0,4 n n n n

8 212 Unità 4 Le potenze 4.2 LE PROPRIETÀ DELLE POTENZE Esercizi a p. 233 Le potenze possiedono proprietà molto utili per semplificare i calcoli che le riguardano e facilitare il calcolo mentale. Prodotto di potenze con la stessa base Consideriamo la moltiplicazione: si può scrivere ( ) (5 5) = 4 fattori 2 fattori = = 5 6 Dunque: 6 fattori = = 5 6 e in formula a m a n a p = a m + n + p Esempio = 2 12 Esempio mio In generale vale la seguente proprietà. Il prodotto di due o più potenze con la stessa base è uguale alla potenza che ha per base la stessa base e per esponente la somma degli esponenti. Quoziente di potenze con la stessa base Consideriamo la divisione: 4 5 : 4 3 si può scrivere ( ) : (4 4 4) Applichiamo la proprietà invariantiva e dividiamo per 4 sia il dividendo sia il divisore: ( ) : (4 4 4) : 4 : 4 dividiamo per 4 In questo caso dividere il dividendo e il divisore per 4 equivale a eliminare un fattore 4 dall uno e dall altro: ( ) : (4 4) : 4 : 4 dividiamo per 4 (4 4 4) : 4 : 4 : 4 (4 4) : 1 dividiamo per 4 non è più possibile dividere il divisore per 4 4 2

9 IL NUMERO 4.2 Le proprietà delle potenze 213 Dunque: 4 5 : 4 3 = = 4 2 e in formula a m : a n = a m - n Esempio 2 8 : 2 5 = 2 3 Esempio mio In generale vale la seguente proprietà. Il quoziente di due potenze con la stessa base è uguale alla potenza che ha per base la stessa base e per esponente la differenza degli esponenti. Potenza di una potenza La scrittura (5 7 ) 4 si chiama potenza di potenza e si legge 5 alla settima elevato alla quarta. Significa che la potenza 5 7 è a sua volta elevata alla quarta potenza. Applicando la proprietà relativa al prodotto di potenze con la stessa base: Dunque: (5 7 ) 4 si può scrivere = = = 5 28 (5 7 ) 4 = = 5 28 e in formula (a m ) n = a m n Esempio (2 8 ) 5 = 2 40 Esempio mio In generale vale la seguente proprietà. La potenza di una potenza è uguale alla potenza che ha per base la stessa base e per esponente il prodotto degli esponenti. Prodotto di potenze con lo stesso esponente Consideriamo la moltiplicazione: si può scrivere (7 7) (3 3) = = = = = = (7 3) (7 3) = = = = 21 2 Dunque: applichiamo la proprietà commutativa della moltiplicazione applichiamo la proprietà associativa della moltiplicazione = (7 3) 2 = 21 2 e in formula a m b m c m = (a b c) m Esempio = (2 3 5) 8 = 30 8 In generale vale la seguente proprietà. Esempio mio Il prodotto di due o più potenze con lo stesso esponente è uguale alla potenza che ha per esponente lo stesso esponente e per base il prodotto delle basi.

10 214 Unità 4 Le potenze Osserva che La precedente proprietà si può esprimere anche alla rovescia, cioè: la potenza di un prodotto è uguale al prodotto delle potenze dei fattori. In formula: (a b c) m = a m b m c m Esempio (2 5) 3 = Esempio mio Spesso questa proprietà risulta utile nel calcolo rapido mentale: si trasforma la base della potenza da calcolare in un prodotto e poi si applica la proprietà. Esempio 20 4 = (2 10) 4 = = = Quoziente di potenze con lo stesso esponente Consideriamo la divisione: 10 3 : 2 3 si può scrivere (5 2) 3 : 2 3 = = : 2 3 = = 5 3 (2 3 : 2 3 ) = = = = 5 3 Dunque: 10 3 : 2 3 = (10 : 2) 3 = 5 3 e in formula a m : b m = (a : b) m Esempio 12 8 : 3 8 = (12 : 3) 8 = 4 8 Esempio mio In generale vale la seguente proprietà. Il quoziente di due potenze con lo stesso esponente è uguale alla potenza che ha per esponente lo stesso esponente e per base il quoziente delle due basi. Osserva che Anche la precedente proprietà si può esprimere alla rovescia, cioè: la potenza di un quoziente è uguale al quoziente delle potenze del dividendo e del divisore. In formula: (a : b ) m = a m : b m Esempio (2 : 5) 3 = 2 3 : 5 3 Esempio mio Tutte le proprietà delle potenze valgono anche quando le basi sono numeri decimali. Esempi 2,5 3 2,5 4 = 2, : 2 5 = 3,5 5 Esempio mio

11 IL NUMERO 4.2 Le proprietà delle potenze 215 Anteprima OPERAZIONI INERSE L elevamento a potenza è un operazione e quindi è logico chiedersi: Esiste l operazione inversa (come succede per l addizione o la moltiplicazione)? La risposta è: non una, bensì due sono le operazioni inverse dell elevamento a potenza. Una delle due operazioni inverse (che studierai più avanti) si chiama estrazione di radice e serve per calcolare la base della potenza. Esempi = 8 operazione inversa: estrazione di radice 8 = 2 Esempio mio 5 2 = 25 operazione inversa: estrazione di radice 2 25 = 5 L altra operazione inversa (che studierai più avanti nelle scuole secondarie di secondo grado) si chiama logaritmo e serve per calcolare l esponente della potenza. Esempi 2 3 = 8 operazione inversa: logaritmo log 2 8 = 3 Esempio mio 5 2 = 25 operazione inversa: logaritmo log 5 25 = 2 Applica Esegui le operazioni, lasciando i risultati sotto forma di potenze (15 5 ) : : : ,5 5 1,5 2 (2,5 5 ) 3 3,5 5 : 0,5 5 0,5 2 0,5 3 0,5 5 0,2 5 : 0,2 3 1, , ,2 5 2,4 5 2,4 4 : 2,4 3 Sviluppa l intuito CALCOLO LETTERALE orse hai sempre pensato che i calcoli si eseguano solo con i numeri. Invece non è sempre così. Infatti si possono eseguire calcoli usando lettere al posto dei numeri. Questo tipo di calcolo si chiama calcolo letterale ed è caratteristico del ramo della matematica chiamato algebra. Il concetto è questo: al posto dei numeri mettiamo le lettere, senza cambiare le regole di calcolo. Esempio n 3 n 5 = n 8 1 Esegui i calcoli letterali. n 7 n 4 n 2 n 6 n 3 n 3 n 2 n 5 n 3 n 2 n 5 n 9 n 4 n 5 n 8 : n 5 n 7 : n 6 n 8 : n 7 n 4 : n 2 n 3 : n 2 n 8 : n 8

12 216 Unità 4 Le potenze 4.3 POTENZE PARTICOLARI Esercizi a p. 236 Potenze con esponente 1 La potenza con esponente 1 di un qualsiasi numero è uguale alla base. In formula: n 1 = n Esempio 8 1 = 8 Esempio mio Infatti, per la definizione di potenza, l esponente indica il numero di fattori che si devono moltiplicare. L esponente 1 indica che c è un solo fattore, cioè la base. Di conseguenza, tutti i numeri si possono considerare potenze del numero stesso con esponente 1. Potenze con esponente 0 La potenza con esponente 0 di un qualsiasi numero diverso da 0 è uguale a 1. In formula: n 0 = 1 con n π 0 Esempio 8 0 = 1 Esempio mio erifichiamo questa strana proprietà con un esempio numerico. Consideriamo una potenza qualsiasi, per esempio 3 4, e dividiamola per se stessa seguendo due procedimenti diversi: 3 4 : 3 4 = 81 : 81 = = 3 0 Dunque, poiché i due procedimenti sono entrambi corretti, anche i risultati lo sono e perciò possiamo concludere che: 3 0 = 1 Potenze con base 1 Qualsiasi potenza di 1 è uguale a 1. In formula: 1 n = 1 Esempio 1 5 = 1 Esempio mio La spiegazione risulta evidente dal calcolo delle prime potenze di 1: 1 0 = = = 1 1 = = = = = 1

13 IL NUMERO 4.3 Potenze particolari 217 Potenze con base 0 Le potenze con base 0 ed esponente diverso da 0 sono uguali a 0. In formula: 0 n = 0 con n π 0 Esempio 0 4 = 0 Esempio mio Anche in questo caso la spiegazione risulta evidente dal calcolo delle prime potenze di 0: 0 1 = = 0 0 = = = = = 0 La potenza 0 0 La potenza 0 0 non ha significato. Abbiamo visto che le potenze con esponente 0 sono sempre uguali a 1, perciò dovrebbe essere 0 0 = 1. Ma abbiamo anche imparato che le potenze con base 0 sono sempre uguali a 0, quindi dovrebbe essere 0 0 = 0. La potenza 0 0 risulterebbe allora avere due valori diversi. Poiché non è possibile che una potenza abbia valori diversi, se ne deduce che 0 0 non ha un valore determinato e che è una scrittura senza significato. Applica 1 Calcola le potenze particolari. Esempio 1 7 = (12 0 ) 4 (15 7 ) 0 (11 1 ) 0 n 1 n 0 Sviluppa l intuito CALCOLO LETTERALE Nel calcolo letterale le lettere si possono considerare potenze con esponente 1. Esempio n = n 1 1 In base a questa considerazione, applica le proprietà delle potenze per scrivere ciascun prodotto e quoziente con una sola potenza. n 5 n n n 7 a 3 a a 2 a a 4 n 6 : n 2 Esegui il calcolo letterale, scrivendo il risultato sotto forma di potenza. n 5 : n 5 Il risultato della precedente divisione si può scrivere, oltre che come potenza, anche come numero. Quale?

14 218 Unità 4 Le potenze 4.4 ESPRESSIONI CON LE POTENZE Esercizi a p. 237 Per risolvere le espressioni contenenti potenze: 1. si procede come al solito, prima operando nelle parentesi tonde, poi nelle quadre, nelle graffe e infine eseguendo le operazioni rimaste; 2. quando è possibile, si applicano le proprietà delle potenze e poi si calcolano le potenze; 3. come già visto, le moltiplicazioni e le divisioni si eseguono prima delle addizioni e delle sottrazioni. Esempio 5 12 : [5 9 ( )] = = 5 12 : [5 9 (4 + 1)] = = 5 12 : [5 9 5] = = 5 12 : 5 10 = = 5 2 = = 25 sono state calcolate le potenze contenute nelle parentesi tonde sono state applicate le proprietà delle potenze sono state applicate le proprietà delle potenze Esempio guidato : {7 12 [( ) 2 2 ]} = = : {7 12 [(......) 2 2 ]} = = : {7 12 [......]} = = : { } = = :... = = = = = =... Applica Risolvi le espressioni (prima calcola le potenze) : : 3 7 (prima applica le proprietà delle potenze, poi calcola le potenze) 2 4 [ : ( )] {[( ) ( )] : 4} 5 : 2

15 4.5 Notazione esponenziale e notazione scientifica IL NUMERO NOTAZIONE ESPONENZIALE E NOTAZIONE SCIENTIICA Esercizi a p. 241 Potenze con base 10 Consideriamo le seguenti potenze di 10: 3 zeri 6 zeri 10 0 = = = = = = = = = Osservando i risultati, possiamo verificare facilmente la seguente proprietà. Per calcolare rapidamente le potenze di 10 basta scrivere il numero 1 e farlo seguire da tanti zeri quante sono le unità dell esponente. Notazione esponenziale Considera il numero 6000: può essere sostituito dal prodotto che a sua volta può essere sostituito da La scrittura viene chiamata notazione esponenziale in base 10 del nu mero La notazione esponenziale può contenere anche numeri decimali, per esempio il prodotto 4, è uguale a 4,8 1000, ovvero a In generale: la notazione esponenziale in base 10 è costituita dal prodotto di due fattori: un numero (naturale o decimale), chiamato mantissa, e una potenza di 10. Il grado della potenza è chiamato caratteristica. mantissa a 10 n caratteristica Notazione scientifica In campo scientifico e tecnico le misure si rappresentano usando la notazione scientifica (detta anche notazione standard), che è una forma particolare di notazione esponenziale. Nella notazione scientifica il numero è scritto come prodotto di una potenza di 10 per un numero decimale (la mantissa) in cui la parte intera è costituita da una sola cifra diversa da zero.

16 220 Unità 4 Le potenze Le cifre della mantissa di un numero scritto in notazione scientifica si chiamano cifre significative. Esempio Nel numero 5, le cifre significative sono 5, 3, 0 e 7. Questo tipo di scrittura viene usato, per esempio, per rappresentare numeri molto grandi, come quelli della tabella. Usando la scrittura ordinaria, la distanza media Terra-Sole sarebbe stata indicata con km. distanza media Terra-Sole 1,5 x 10 8 km velocità della luce 3 x 10 8 m/s massa della Terra 5,976 x kg volume della Terra 1,083 km 3 Osserva che SCRITTURA POLINOMIALE ESPONENZIALE Un numero può essere considerato come la somma di più prodotti e, nei sistemi di numerazione posizionali, ogni numero può essere rappresentato come somma di prodotti di potenze della base del sistema. Dunque, nel sistema decimale si può rappresentare ogni numero come una somma di prodotti di potenze di 10. Il numero 6812 si può scrivere così: ovvero oppure, utilizzando le potenze di 10: Quest ultimo modo di scrivere il numero 6812 prende il nome di scrittura polinomiale esponenziale in base 10. Applica 1 Scrivi la potenza di 10 di ventesimo grado e calcola il suo valore. 2 Scrivi con notazione esponenziale i numeri che seguono = = = =... 3 Scrivi in forma ordinaria i seguenti numeri scritti in notazione esponenziale = = =... 8, =... 4 Scrivi in forma polinomiale i numeri che seguono = = = =... 5 Scrivi in forma ordinaria i seguenti numeri scritti in forma polinomiale = = = =...

17 IL NUMERO 4.6 Ordine di grandezza ORDINE DI GRANDEZZA Esercizi a p. 243 La lunghezza del Nilo è di 6500 km. Qual è la potenza di 10 che si avvicina di più a 6500, senza superarlo? È Quindi: 10 3 < 6500 Qual è la potenza di 10 che si avvicina di più a 6500, ma è maggiore? È Quindi: 6500 < 10 4 Di conseguenza si può scrivere: 10 3 < 6500 < 10 4 Quale tra le due potenze di 10 considerate si avvicina di più a 6500? Calcoliamo: = = 3500 differenza tra 6500 e 10 3 differenza tra 10 4 e 6500 Dunque, poiché 3500 < 5500, la potenza di 10 che più si avvicina a 6500 è Questa potenza viene chiamata ordine di grandezza di Si dice ordine di grandezza di un numero la potenza di 10 il cui valore si avvicina di più al numero stesso. Esempio guidato L ordine di grandezza di 400 è... Infatti:... < 400 < =... (differenza tra 400 e 10 2 ) =... (differenza tra 10 3 e 400) Poiché... <... ne consegue che... è l ordine di grandezza di 400. Può succedere che un numero sia equidistante da due potenze di 10 consecutive: 10 2 < 550 < 10 3 ed è equidistante da 100 e Infatti: = 450 e = 450 In questi casi l ordine di grandezza è stabilito dalla seguente regola. Se un numero è equidistante da due potenze di 10, allora per convenzione si assume come suo ordine di grandezza la potenza maggiore. Quindi, l ordine di grandezza di 550 è Applica 1 Indica l ordine di grandezza delle misure. distanza tra Polo Nord e Polo Sud: km ordine di grandezza:... distanza media Terra-Sole: km ordine di grandezza:... raggio equatoriale della Terra: 6371 km ordine di grandezza:...

18 222 Unità 4 Le potenze 4.7 SISTEMA DI NUMERAZIONE BINARIO Esercizi a p. 244 Il sistema di numerazione decimale è stato preceduto da molti altri sistemi di numerazione. Il sistema di numerazione binario è uno di questi ed è molto antico. Dopo essere caduto in disuso per secoli, ha riacquistato importanza negli ultimi decenni perché è utilizzato negli elaboratori elettronici. Il sistema di numerazione binario è posizionale e la sua base è costituita da due sole cifre: 0 e 1. Per distinguerli dai numeri scritti con altre basi, i numeri binari si scrivono con un piccolo 2 al piede si legge uno uno zero uno in base 2 Il valore di ciascuna cifra dipende dalla posizione che occupa nel numero, secondo la regola: la 1 a cifra da destra indica il numero delle unità; la 2 a cifra da destra indica il numero delle coppie (che corrispondono al numero 2 del sistema decimale); la 3 a cifra da destra indica il numero delle coppie di coppie, chiamate quaterne (che corrispondono al numero 2 2 = 4 del sistema decimale); la 4 a cifra da destra indica il numero delle coppie di quaterne, chiamate ottetti (che corrispondono al numero = 8 del sistema decimale); e così via. numero di ottetti numero di quaterne numero di coppie numero di unità = = corrispondente numero decimale Trasformazione di un numero da binario a decimale Abbiamo visto che nel sistema decimale ogni numero si può rappresentare come somma di prodotti di potenze di = Lo stesso vale per i numeri binari, che si possono rappresentare come somma di prodotti di potenze di = Questa rappresentazione è molto utile per trasformare la scrittura binaria di un numero in scrittura decimale. Per trasformare un numero binario in numero decimale si scrive il numero in forma polinomiale e poi si calcola il valore dell espressione.

19 IL NUMERO 4.7 Sistema di numerazione binario 223 Esempio = = = Esempio mio Trasformazione di un numero da decimale a binario Si tratta di esprimere il numero di coppie, quaterne, ottetti e altre potenze di 2 contenuti nel numero da trasformare, utilizzando solo le cifre 0 e 1. Per prima cosa si divide il numero decimale ripetutamente per 2: 6 10 : 2 = 3 coppie + 0 unità 3 coppie : 2 = 1 quaterna + 1 coppia Quindi: 6 10 = 1 quaterna + 1 coppia + 0 unità = Si può rendere automatico il calcolo effettuando le divisioni con il seguente schema grafico: dividendi divisori = resti i resti che si ottengono, letti nell ordine inverso, danno il numero del sistema binario Per trasformare un numero decimale in un numero binario si divide successivamente per 2, fino a ottenere quoziente 0. Il numero binario è dato dai resti scritti nell ordine inverso in cui sono stati calcolati. Esempio Trasformazione di = Applica numeri 1 Trasforma i numeri binari in numeri decimali decimali ottetto quaterna coppia unità Trasforma i numeri decimali in numeri binari numeri binari Rappresenta i numeri decimali scrivendo nella tabella le cifre 1 o 0, tenendo presente che 1 nella colonna ottetto vale 8, nella colonna quaterna vale 4 e così via. Poi scrivi i corrispondenti numeri binari

20 224 Unità 4 Le potenze per la ERIICA orale Definisci l operazione di elevamento a potenza e fai alcuni esempi. Esponi le proprietà delle potenze seguendo la traccia: elenca le proprietà; esponi il contenuto; illustra con esempi numerici la loro applicazione; ripeti in modo formale l enunciato di ciascuna proprietà; traduci gli enunciati in formule letterali. Descrivi come risolvere le espressioni che contengono potenze. Spiega l utilità delle potenze di 10. Definisci l ordine di grandezza e fai alcuni esempi. Esercitati nel calcolo mentale (esercizi a p. 245). per PREPARARSI all esame soluzioni a p Qual è l uguaglianza falsa? a = 5 8 b c d 9 5 : 9 5 = : 6 7 = : 10 2 = 10 6 Qual è il risultato della seguente espressione? 9 2 {18 12 : (2 10 : 2 8 ) + 3 [(3 3 6 ) 3 : (7 2 2 )]} a 0 b 1 c 2 d 3 Quale dei seguenti numeri è stato scritto correttamente in notazione scientifica? a 63, b c d 8, ,

ESERCIZI DI PREPARAZIONE E

ESERCIZI DI PREPARAZIONE E ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI si campa anche senza sapere che cos è un equazione, senza sapere suonare uno strumento musicale, senza conoscere il nome del

Dettagli

Aritmetica: operazioni ed espressioni

Aritmetica: operazioni ed espressioni / A SCUOLA DI MATEMATICA Lezioni di matematica a cura di Eugenio Amitrano Argomento n. : operazioni ed espressioni Ricostruzione di un abaco dell epoca romana - Museo RGZ di Magonza (Germania) Libero da

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

CURRICOLO DI MATEMATICA CLASSE PRIMA scuola PRIMARIA CONTENUTI OBIETTIVI COMPETENZE ATTIVITA NUMERI

CURRICOLO DI MATEMATICA CLASSE PRIMA scuola PRIMARIA CONTENUTI OBIETTIVI COMPETENZE ATTIVITA NUMERI CURRICOLO DI MATEMATICA CLASSE PRIMA scuola PRIMARIA CONTENUTI OBIETTIVI COMPETENZE ATTIVITA NUMERI Numeri naturali Ordinalità Cardinalità Ricorsività Confronto Misura Valore posizionale Operazioni Contare

Dettagli

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma.

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma. Addizione: PROPRIETA' COMMUTATIVA Cambiando l'ordine degli addendi la somma non cambia. 1) a + b = b + a PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si

Dettagli

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica A ARITMETICA I numeri naturali e le quattro operazioni Esercizi supplementari di verifica Esercizio Rappresenta sulla retta orientata i seguenti numeri naturali. ; ; ; 0;. 0 Esercizio Metti una crocetta

Dettagli

Istituto Comprensivo Caposele (Av) Curricolo verticale d istituto a.sc. 2013-2014

Istituto Comprensivo Caposele (Av) Curricolo verticale d istituto a.sc. 2013-2014 CURRICOLO DI MATEMATICA SCUOLA PRIMARIA CLASSE PRIMA 1. Contare oggetti o eventi, a voce e mentalmente, in senso progressivo e regressivo e per salti di due, tre, 2. Leggere e scrivere i numeri naturali

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

MATEMATICA - CLASSE TERZA

MATEMATICA - CLASSE TERZA MATEMATICA - CLASSE TERZA I NUMERI NATURALI E LE 4 OPERAZIONI U. A. 1 - IL NUMERO 1. Comprendere la necessità di contare e usare i numeri. 2. Conoscere la struttura dei numeri naturali. 3. Conoscere e

Dettagli

MATEMATICA UNITÀ DI APPRENDIMENTO Classi quarte - Scuola Primaria di Bellano - a.s. 2014/2015

MATEMATICA UNITÀ DI APPRENDIMENTO Classi quarte - Scuola Primaria di Bellano - a.s. 2014/2015 METODOLOGIA ATTIVITÀ - MEZZI PERIODO DI ATTUAZIONE I NUMERI NATURALI Simbolizzare la realtà con il linguaggio della matematica. Storia, Tecnologia, Italiano Lettura e scrittura di numeri naturali oltre

Dettagli

set 19 9.19 numeri la cui somma delle cifre dà un multiplo di tre sono divisibili per tre.

set 19 9.19 numeri la cui somma delle cifre dà un multiplo di tre sono divisibili per tre. MULTIPLO: IL NUMERO CHE CONTIENE UN ALTRO NUMERO UN CERTO NUMERO DI VOLTE ESATTAMENTE. LI ( I MULTIPLI) OTTENGO MOLTIPLICANDO UN NUMERO PER QUALSIASI ALTRO NUMERO: IL PRODOTTO é IL MULTIPLO. IL MULTIPLO

Dettagli

MATEMATICA PRIMO BIENNIO CLASSE PRIMA DELLA SCUOLA PRIMARIA

MATEMATICA PRIMO BIENNIO CLASSE PRIMA DELLA SCUOLA PRIMARIA MATEMATICA PRIMO BIENNIO CLASSE PRIMA DELLA SCUOLA PRIMARIA COMPETENZA 1 UTILIZZARE CON SICUREZZA LE TECNICHE E LE PROCEDURE DI CALCOLO ARITMETICO SCRITTO E MENTALE CON RIFERIMENTO A CONTESTI REALI Stabilire

Dettagli

MATEMATICA OBIETTIVI DI APPRENDIMENTO TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE

MATEMATICA OBIETTIVI DI APPRENDIMENTO TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE TRAGUARDI PER LO SVILUPPO DELLE Il bambino raggruppa e ordina oggetti e materiali secondo criteri diversi. Identifica alcune proprietà dei materiali. Confronta e valuta quantità. Utilizza simboli per registrare

Dettagli

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI I numeri naturali I numeri interi I numeri razionali Teoria degli insiemi (cenni) ALESSANDRO BOCCONI Indice 1 L insieme N dei numeri naturali 4 1.1 Introduzione.........................................

Dettagli

Istituto Comprensivo di Pralboino Curricolo Verticale

Istituto Comprensivo di Pralboino Curricolo Verticale NUMERI -L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali entro le centinaia di migliaia. -L alunno si muove nel calcolo scritto e con i numeri naturali entro le migliaia.

Dettagli

SCUOLA PRIMARIA CURRICOLO MATEMATICA DELIBERATO ANNO SCOL. 2015/2016

SCUOLA PRIMARIA CURRICOLO MATEMATICA DELIBERATO ANNO SCOL. 2015/2016 SCUOLA PRIMARIA CURRICOLO MATEMATICA DELIBERATO ANNO SCOL. 2015/2016 SCUOLA PRIMARIA CLASSE PRIMA MATEMATICA AREA DISCIPLINARE: MATEMATICO- SCIENTIFICO-TECNOLOGICA COMPETENZA DI Mettere in relazione il

Dettagli

DIPARTIMENTO DI MATEMATICA ED INFORMATICA 1

DIPARTIMENTO DI MATEMATICA ED INFORMATICA 1 SEDE LEGALE: Via Roma, 125-04019 - Terracina (LT) - Tel. +39 0773 70 28 77 - +39 0773 87 08 98 - +39 331 18 22 487 SUCCURSALE: Via Roma, 116 - Tel. +39 0773 70 01 75 - +39 331 17 45 691 SUCCURSALE: Via

Dettagli

COMPETENZE SPECIFICHE

COMPETENZE SPECIFICHE COMPETENZE IN MATEMATICA DISCIPLINA DI RIFERIMENTO: MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE FISSATI DALLE INDICAZIONI NAZIONALI PER IL CURRICOLO 2012. MATEMATICA TRAGUARDI ALLA FINE DELLA

Dettagli

g. Ferrari m. cerini d. giallongo Piattaforma matematica Informatica Aritmetica 1 trevisini EDITORE

g. Ferrari m. cerini d. giallongo Piattaforma matematica Informatica Aritmetica 1 trevisini EDITORE g. Ferrari m. cerini d. giallongo Piattaforma matematica Aritmetica 1 trevisini EDITORE 2 Excel: la matematica con i fogli di calcolo Excel è il programma di fogli di calcolo, o fogli elettronici, più

Dettagli

SCUOLE PRIMARIE DI BELLUSCO MEZZAGO CONOSCENZE ABILITÀ CONTENUTI

SCUOLE PRIMARIE DI BELLUSCO MEZZAGO CONOSCENZE ABILITÀ CONTENUTI ISTITUTO COMPRENSIVO DI BELLUSCO MEZZAGO a.s. 2009/ 10 SCUOLE PRIMARIE DI BELLUSCO MEZZAGO PROGRAMMAZIONE DI MATEMATICA CLASSE QUINTA CONOSCENZE ABILITÀ CONTENUTI NUMERI 1 Rappresentare i numeri in base

Dettagli

INFANZIA PRIMARIA SECONDARIA

INFANZIA PRIMARIA SECONDARIA INFANZIA PRIMARIA SECONDARIA MATEMATICA - TRAGUARDI DI SVILUPPO DELLE COMPETENZE Raggruppa e ordina secondo criteri diversi. Confronta e valuta quantità. Utilizza semplici simboli per registrare. Compie

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA 2 LEZIONE

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA 2 LEZIONE METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA 2 LEZIONE LE AZIONI DEL FARE MATEMATICA OSSERVARE OSSERVARE Dalla spontanea formazione dei concetti nella mente del bambino fino alla concezione

Dettagli

Area matematico-scientifico-tecnologica: matematica

Area matematico-scientifico-tecnologica: matematica Campo/ area/ materia Periodo di riferimento Nucleo tematico??? Macroindicato re??? Traguardo di competenza Area matematico-scientifico-tecnologica: matematica Scuola primaria: classe 1^ NUMERI L alunno

Dettagli

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA. 2. Insiemi numerici. A. A. 2014-2015 L.Doretti

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA. 2. Insiemi numerici. A. A. 2014-2015 L.Doretti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 2. Insiemi numerici A. A. 2014-2015 L.Doretti 1 INSIEMI NUMERICI rappresentano la base su cui la matematica si è sviluppata costituiscono le tappe

Dettagli

Obiettivi Specifici di apprendimento MATEMATICA. CURRICOLO VERTICALE DI ISTITUTO (dalla Cl. I Sc.Primaria alla Cl. III Sc.Second. 1 gr.

Obiettivi Specifici di apprendimento MATEMATICA. CURRICOLO VERTICALE DI ISTITUTO (dalla Cl. I Sc.Primaria alla Cl. III Sc.Second. 1 gr. Classe I Sc.Primaria Obiettivi Specifici di apprendimento MATEMATICA CURRICOLO VERTICALE DI ISTITUTO (Cl. I Sc.Primaria Cl. III Sc.Second. 1 gr.) NUMERO - Confrontare e ordinare raggruppamenti di oggetti

Dettagli

MATEMATICA OBIETTIVI DI APPRENDIMENTO TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE

MATEMATICA OBIETTIVI DI APPRENDIMENTO TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE Il bambino raggruppa e ordina oggetti e materiali secondo criteri diversi. Identifica alcune proprietà dei materiali. Confronta e valuta quantità. Utilizza simboli per registrare materiali e quantità.

Dettagli

MATEMATICA. Classe I Classe II Classe III Classe IV Classe V Traguardo 1

MATEMATICA. Classe I Classe II Classe III Classe IV Classe V Traguardo 1 MATEMATICA COMPETENZE Dimostra conoscenze matematiche che gli consentono di analizzare dati e fatti della realtà e di verificare l'attendibilità delle analisi quantitative e statistiche proposte da altri.

Dettagli

ISTITUTO COMPRENSIVO DELLA VALLE DEI LAGHI

ISTITUTO COMPRENSIVO DELLA VALLE DEI LAGHI ISTITUTO COMPRENSIVO DELLA VALLE DEI LAGHI PROGRAMMA DI MATEMATICA PER LE CLASSI SECONDA E TERZA DELLA SCUOLA PRIMARIA SETTEMBRE 2003 COMPETENZE IN NUMERO Obiettivi: - Contare, eseguire semplici operazioni

Dettagli

CURRICOLO MATEMATICA SCUOLA PRIMARIA

CURRICOLO MATEMATICA SCUOLA PRIMARIA CURRICOLO MATEMATICA SCUOLA PRIMARIA CLASSE PRIMA Traguardi per lo sviluppo delle competenze Sviluppare un atteggiamento positivo nei confronti della matematica. Obiettivi di apprendimento NUMERI Acquisire

Dettagli

MATEMATICA Competenza chiave europea: COMPETENZA MATEMATICA E COMPETENZE DI BASE IN SCIENZA E TECNOLOGIA Competenza specifica: MATEMATICA

MATEMATICA Competenza chiave europea: COMPETENZA MATEMATICA E COMPETENZE DI BASE IN SCIENZA E TECNOLOGIA Competenza specifica: MATEMATICA MATEMATICA Competenza chiave europea: COMPETENZA MATEMATICA E COMPETENZE DI BASE IN SCIENZA E TECNOLOGIA Competenza specifica: MATEMATICA Le conoscenze matematiche contribuiscono alla formazione culturale

Dettagli

MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE ALLA FINE DELLA SCUOLA PRIMARIA

MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE ALLA FINE DELLA SCUOLA PRIMARIA MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE ALLA FINE DELLA SCUOLA PRIMARIA L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali e sa valutare l opportunità di

Dettagli

SCUOLA PRIMARIA: MATEMATICA

SCUOLA PRIMARIA: MATEMATICA SCUOLA PRIMARIA: MATEMATICA Traguardi per lo sviluppo delle competenze al termine della scuola primaria L'alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali e sa valutare

Dettagli

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA Istituto Istruzione Superiore A. Venturi Modena Liceo artistico - Istituto Professionale Grafica Via Rainusso, 66-41124 MODENA Sede di riferimento (Via de Servi, 21-41121 MODENA) tel. 059-222156 / 245330

Dettagli

Sistema di numerazione binario, operazioni relative e trasformazione da base due a base dieci e viceversa di Luciano Porta

Sistema di numerazione binario, operazioni relative e trasformazione da base due a base dieci e viceversa di Luciano Porta Sistema di numerazione binario, operazioni relative e trasformazione da base due a base dieci e viceversa di Luciano Porta Anche se spesso si afferma che il sistema binario, o in base 2, fu inventato in

Dettagli

CURRICOLO MATEMATICA ABILITA COMPETENZE

CURRICOLO MATEMATICA ABILITA COMPETENZE CURRICOLO MATEMATICA 1) Operare con i numeri nel calcolo aritmetico e algebrico, scritto e mentale, anche con riferimento a contesti reali. Per riconoscere e risolvere problemi di vario genere, individuando

Dettagli

SISTEMI DI NUMERAZIONE DECIMALE E BINARIO

SISTEMI DI NUMERAZIONE DECIMALE E BINARIO SISTEMI DI NUMERAZIONE DECIMALE E BINARIO Il sistema di numerazione decimale (o base dieci) possiede dieci possibili valori (0, 1, 2, 3, 4, 5, 6, 7, 8 o 9) utili a rappresentare i numeri. Le cifre possiedono

Dettagli

CONTENUTI METODOLOGIA STRUMENTI METODO DI STUDIO VALUTAZIONE ANNO COMPETENZE OBIETTIVI DI APPRENDIMENTO

CONTENUTI METODOLOGIA STRUMENTI METODO DI STUDIO VALUTAZIONE ANNO COMPETENZE OBIETTIVI DI APPRENDIMENTO NNO COMPETENZE OBIETTIVI DI PPRENDIMENTO CONTENUTI METODOLOGI STRUMENTI METODO DI STUDIO VLUTZIONE 4^ M T E M T I C L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali e

Dettagli

Programmazione Annuale di Matematica della Scuola Secondaria di Primo Grado Caccia

Programmazione Annuale di Matematica della Scuola Secondaria di Primo Grado Caccia Programmazione Annuale di Matematica della Scuola Secondaria di Primo Grado Caccia L'educazione matematica ha il compito di avviare l'alunno verso una maggiore consapevolezza e padronanza del pensiero

Dettagli

Raccomandazione del Parlamento europeo 18/12/2006 CLASSE PRIMA COMPETENZE ABILITÀ CONOSCENZE. Operare con i numeri

Raccomandazione del Parlamento europeo 18/12/2006 CLASSE PRIMA COMPETENZE ABILITÀ CONOSCENZE. Operare con i numeri COMPETENZA CHIAVE MATEMATICA Fonte di legittimazione Raccomandazione del Parlamento europeo 18/12/2006 CLASSE PRIMA COMPETENZE ABILITÀ CONOSCENZE L alunno utilizza il calcolo scritto e mentale con i numeri

Dettagli

PROGRAMMAZIONE DIDATTICA DI MATEMATICA

PROGRAMMAZIONE DIDATTICA DI MATEMATICA PROGRAMMAZIONE DIDATTICA DI MATEMATICA CLASSE PRIMA 1. : PADRONEGGIARE ABILITÀ DI CALCOLO ORALE E SCRITTO 1.1 Leggere, scrivere, comporre, scomporre, confrontare, ordinare i numeri fino a 20 1.2 Eseguire

Dettagli

CURRICOLO VERTICALE DI MATEMATICA

CURRICOLO VERTICALE DI MATEMATICA CURRICOLO VERTICALE DI MATEMATICA Traguardo per lo sviluppo delle competenze Sviluppa un atteggiamento positivo rispetto alla matematica, attraverso esperienze significative, che gli hanno fatto intuire

Dettagli

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA SECONDARIA DI PRIMO GRADO. L alunno ha rafforzato un atteggiamento positivo rispetto

Dettagli

PROGRAMMAZIONE INDIVIDUALE DOCENTE ANNO SCOLASTICO 2013-14 PROF. ROBERTA BIAGI. MATERIA: Matematica CLASSE I E

PROGRAMMAZIONE INDIVIDUALE DOCENTE ANNO SCOLASTICO 2013-14 PROF. ROBERTA BIAGI. MATERIA: Matematica CLASSE I E PROGRAMMAZIONE INDIVIDUALE DOCENTE ANNO SCOLASTICO 2013-14 PROF. ROBERTA BIAGI MATERIA: Matematica CLASSE I E DATA DI PRESENTAZIONE: 28 novembre 2013 Finalità della disciplina La finalità della disciplina

Dettagli

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi Evelina De Gregori Alessandra Rotondi al via 1 Percorsi guidati per le vacanze di matematica e scienze per la Scuola secondaria di primo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio Test d'ingresso NUMERI

Dettagli

CURRICOLO di MATEMATICA Scuola Primaria

CURRICOLO di MATEMATICA Scuola Primaria CURRICOLO di MATEMATICA Scuola Primaria MATEMATICA CLASSE I Indicatori Competenze Contenuti e processi NUMERI Contare oggetti o eventi con la voce in senso progressivo e regressivo Riconoscere e utilizzare

Dettagli

CURRICOLO DI MATEMATICA CLASSE PRIMA

CURRICOLO DI MATEMATICA CLASSE PRIMA CURRICOLO DI MATEMATICA CLASSE PRIMA TRAGUARDI DI COMPETENZA NUCLEI FONDANTI OBIETTIVI DI APPRENDIMENTO CONOSCITIVA IL NUMERO CARATTERISTICHE Quantità entro il numero 20 Cardinalità Posizionalità RELAZIONI

Dettagli

Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ;

Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ; Primo anno Secondo anno Terzo anno Primo anno MATEMATICA Scuola dell Infanzia Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ; legge

Dettagli

CORSO BIELLA CONCETTI FONDAMENTALI DI ARITMETICA, ALGEBRA E GEOMETRIA PER LA SCUOLA DELL OBBLIGO MARTEDI 19/02/2013 TEMA

CORSO BIELLA CONCETTI FONDAMENTALI DI ARITMETICA, ALGEBRA E GEOMETRIA PER LA SCUOLA DELL OBBLIGO MARTEDI 19/02/2013 TEMA CORSO BIELLA CONCETTI FONDAMENTALI DI ARITMETICA, ALGEBRA E GEOMETRIA PER LA SCUOLA DELL OBBLIGO MARTEDI 19/02/201 TEMA OPERAZIONI CON I NUMERI E LORO PROPRIETA. NASCONO LE STRUTTURE ALGEBRICHE. 1 TESTO

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secondaria di secondo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio à t i n U 1 Sistemi di primo grado

Dettagli

60 indicazioni nazionali per la scuola dell infanzia e del primo ciclo. matematica

60 indicazioni nazionali per la scuola dell infanzia e del primo ciclo. matematica 60 indicazioni nazionali per la scuola dell infanzia e del primo ciclo matematica Le conoscenze matematiche contribuiscono alla formazione culturale delle persone e delle comunità, sviluppando le capacità

Dettagli

PRIMO ISTITUTO COMPRENSIVO di PALAZZOLO S/O via Zanardelli n.34 Anno scolastico 2014/2015

PRIMO ISTITUTO COMPRENSIVO di PALAZZOLO S/O via Zanardelli n.34 Anno scolastico 2014/2015 PRIMO ISTITUTO COMPRENSIVO di PALAZZOLO S/O via Zanardelli n.34 Anno scolastico 2014/2015 CURRICOLI DISCIPLINARI SCUOLA DELL INFANZIA e PRIMO CICLO di ISTRUZIONE Percorso delle singole discipline sulla

Dettagli

IL NUMERO. PRIMO BIENNIO: 1a - 2a elementare COMPETENZE ABILITA' CONOSCENZE

IL NUMERO. PRIMO BIENNIO: 1a - 2a elementare COMPETENZE ABILITA' CONOSCENZE IL NUMERO PRIMO BIENNIO: 1a - 2a elementare Utilizzare i numeri naturali fino a 100 per contare e per eseguire operazioni aritmetiche di addizione e sottrazione, sia nel calcolo mentale che scritto. Raggruppare

Dettagli

CURRICOLO MATEMATICA OBIETTIVI E COMPETENZE

CURRICOLO MATEMATICA OBIETTIVI E COMPETENZE CURRICOLO MATEMATICA OBIETTIVI E COMPETENZE CLASSE OBIETTIVI COMPETENZE PRIMA Conoscere ed operare con i numeri Contare oggetti o eventi, con la voce e mentalmente, in senso progressivo e regressivo. Leggere

Dettagli

COMPETENZA NUMERICA I SISTEMI DI NUMERAZIONE

COMPETENZA NUMERICA I SISTEMI DI NUMERAZIONE COMPETENZA NUMERICA I SISTEMI DI NUMERAZIONE Macroindicatori di conoscenze/abilità Comprensione: -del significato dei numeri -dei modi per rappresentarli -della notazione posizionale dei traguardi per

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

SCUOLA PRIMARIA MATEMATICA

SCUOLA PRIMARIA MATEMATICA SCUOLA PRIMARIA MATEMATICA IL NUMERO CLASSE PRIMA Operare con il numero e impiegare specifiche abilità disciplinari come strumenti per affrontare esperienze di vita quotidiana. Comprende il significato

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA

I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA Indice Introduzione Il sistema decimale Il sistema binario Conversione di un numero da base 10 a base 2 e viceversa Conversione in altri sistemi di numerazione

Dettagli

Il numero. Indice. esercizi 266-285 267. mi autovaluto 14. mi autovaluto 28. Il sistema di numerazione decimale 5. Le operazioni fondamentali 15

Il numero. Indice. esercizi 266-285 267. mi autovaluto 14. mi autovaluto 28. Il sistema di numerazione decimale 5. Le operazioni fondamentali 15 Indice Il numero Per orientarti 2 unità di apprendimento 1 Il sistema di numerazione decimale 5 Cifre e numeri 6 Valore assoluto e valore relativo, p. 7 La scrittura polinomiale 8 L insieme N 9 Rappresentazione

Dettagli

E costituito da un indice.

E costituito da un indice. Questo semplice quaderno di matematica è pensato sia per bambini e bambine che hanno problemi specifici di apprendimento sia per quei bambini e bambine che hanno solo bisogno di un ripasso prima di un

Dettagli

SCUOLA PRIMARIA I.C. di CRESPELLANO PROGRAMMAZIONE ANNUALE MATEMATICA

SCUOLA PRIMARIA I.C. di CRESPELLANO PROGRAMMAZIONE ANNUALE MATEMATICA SCUOLA PRIMARIA I.C. di CRESPELLANO PROGRAMMAZIONE ANNUALE MATEMATICA ANNO SCOLASTICO 2013/2014 INSEGNANTI Gabellone, Silvagni,Damiano TRAGUARDI DELLE COMPETENZE AL TERMINE della CLASSE QUARTA Sviluppa

Dettagli

Scuola Primaria Statale Falcone e Borsellino

Scuola Primaria Statale Falcone e Borsellino ISTITUTO COMPRENSIVO STATALE DI LOVERE VIA DIONIGI CASTELLI, 2 - LOVERE Scuola Primaria Statale Falcone e Borsellino PROGRAMMAZIONE DIDATTICA ANNUALE Le programmazioni didattiche sono state stese in base

Dettagli

Matematica classe 1^

Matematica classe 1^ NUCLEO TEMATICO 1 Numeri 1 L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali. 7 legge e comprende testi che coinvolgono aspetti logici e matematici. NUCLEO TEMATICO 2

Dettagli

TRAGUARDI FORMATIVI NELLA PRE-DISCIPLINA MATEMATICA

TRAGUARDI FORMATIVI NELLA PRE-DISCIPLINA MATEMATICA Fo.Svi.Co International s.a.s. Formazione Sviluppo Competenze (per la competitività in campo internazionale) SEDE LEGALE Corso Magenta, 83 20 123 Milano SEDE OPERATIVA 00100 ROMA, via Arduino, 46 SEDE

Dettagli

Competenza chiave europea: MATEMATICA. Scuola Primaria. DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte

Competenza chiave europea: MATEMATICA. Scuola Primaria. DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte Competenza chiave europea: MATEMATICA Scuola Primaria DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte TAB. A TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE al termine della Scuola Primaria

Dettagli

PROGRAMMAZIONE DI MATEMATICA CLASSI I A E I B ANNO 2015-16 MAPPA DELLA PROGETTAZIONE ANNUALE

PROGRAMMAZIONE DI MATEMATICA CLASSI I A E I B ANNO 2015-16 MAPPA DELLA PROGETTAZIONE ANNUALE PROGRAMMAZIONE DI MATEMATICA CLASSI I A E I B ANNO 2015-16 MAPPA DELLA PROGETTAZIONE ANNUALE Ottobre/Novembre Unità 1 MISURE E FORME - LA QUANTITA Prerequisiti: Acquisizione dei concetti relativi all orientamento

Dettagli

SCHEDA DI RECUPERO SUI NUMERI RELATIVI

SCHEDA DI RECUPERO SUI NUMERI RELATIVI SCHEDA DI RECUPERO SUI NUMERI RELATIVI I numeri relativi sono l insieme dei numeri negativi (preceduti dal segno -) numeri positivi (il segno + è spesso omesso) lo zero. Valore assoluto di un numero relativo

Dettagli

Abilità Contenuti Metodologie Strumenti Verifiche Possibili raccordi con altre discipline Contare oggetti.

Abilità Contenuti Metodologie Strumenti Verifiche Possibili raccordi con altre discipline Contare oggetti. MATEMATICA NUCLEO TEMATICO: I NUMERI Classe prima Abilità Contenuti Metodologie Strumenti Verifiche Possibili raccordi con altre discipline Contare oggetti. Inglese (concetto di grande e piccolo; Costruire

Dettagli

1 n. Intero frazionato. Frazione

1 n. Intero frazionato. Frazione Consideriamo un intero, prendiamo un rettangolo e dividiamolo in sei parti uguali, ciascuna di queste parti rappresenta un sesto del rettangolo, cioè una sola delle sei parti uguali in cui è stato diviso.

Dettagli

CURRICOLO MATEMATICA

CURRICOLO MATEMATICA 1 CURRICOLO MATEMATICA Competenza 1 al termine della scuola dell Infanzia 2 NUMERI Raggruppare, ordinare, contare, misurare oggetti, grandezze ed eventi direttamente esperibili. Utilizzare calendari settimanali

Dettagli

ISTITUTO COMPRENSIVO MONTEGROTTO TERME SCUOLA PRIMARIA DISCIPLINA: MATEMATICA - CLASSE PRIMA OBIETTIVI DI APPRENDIMENTO

ISTITUTO COMPRENSIVO MONTEGROTTO TERME SCUOLA PRIMARIA DISCIPLINA: MATEMATICA - CLASSE PRIMA OBIETTIVI DI APPRENDIMENTO PRIMA DELLA DISCIPLINA: MATEMATICA - CLASSE PRIMA L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali. Legge e comprende testi che coinvolgono aspetti logici e matematici.

Dettagli

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una NUMERI INTERI E NUMERI DECIMALI Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una cassetta sono contenuti 45 penne e che una lamiera misura 1,35 m. dl lunghezza,

Dettagli

SISTEMI DI NUMERAZIONE IL SISTEMA DECIMALE

SISTEMI DI NUMERAZIONE IL SISTEMA DECIMALE SISTEMI DI NUMERAZIONE IL SISTEMA DECIMALE La base del sistema decimale è 10 I simboli del sistema decimale sono: 0 1 2 3 4 5 6 7 8 9 Il sistema di numerazione decimale è un sistema posizionale. L aggettivo

Dettagli

RE) COMPETENZE IN MATEMATICA

RE) COMPETENZE IN MATEMATICA CURRICOLO SCUOLA PRIMARIA con riferimento alle Competenze chiave europee e alle Indicazioni Nazionali 2012 declinato nelle microabilità di ogni annualità (a cura di Franca DA RE) COMPETENZE IN MATEMATICA

Dettagli

MODULO 1 Le grandezze fisiche

MODULO 1 Le grandezze fisiche MODULO 1 Le grandezze fisiche Quante volte, ogni giorno, utilizziamo il metro, i secondi, i kilogrammi Ma forse non sappiamo quante menti di uomini ingegnosi hanno dato un senso a quei simboli per noi

Dettagli

Seconda media A Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto

Seconda media A Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto Seconda media A Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto Carissimi, eccovi gli argomenti trattati in quest anno scolastico. Ti servono quale ripasso!!!se qualcosa non fosse chiaro batti

Dettagli

PROVA NAZIONALE INVALSI per la classe III della Scuola Sec. Di I grado MATEMATICA- a.s. 2007-08

PROVA NAZIONALE INVALSI per la classe III della Scuola Sec. Di I grado MATEMATICA- a.s. 2007-08 PROVA NAZIONALE INVALSI per la classe III della Scuola Sec. Di I grado MATEMATICA- a.s. 2007-08 4 C1- Le potenze 3 2 2 e 4 3 hanno lo stesso valore? A. No, la prima vale 3 16 e la seconda 9 16. 16 16 B.

Dettagli

A.S. 2012-1013 CLASSE PRIMA SCUOLA PRIMARIA D ISTITUTO COMPETENZA CHIAVE EUROPEA DISCIPLINA

A.S. 2012-1013 CLASSE PRIMA SCUOLA PRIMARIA D ISTITUTO COMPETENZA CHIAVE EUROPEA DISCIPLINA ISTITUTO COMPRENSIVO STATALE di Scuola dell Infanzia, Scuola Primaria e Scuola Secondaria di 1 grado San Giovanni Teatino (CH) CURRICOLO A.S. 2012-1013 CLASSE PRIMA SCUOLA PRIMARIA OBIETTIVI DI Sviluppa

Dettagli

SCUOLA PRIMARIA Anno Scolastico 2014/2015 CURRICOLO DI MATEMATICA OBIETTIVI DI APPRENDIMENTO AL TERMINE DELLA CLASSE TERZA DELLA SCUOLA PRIMARIA

SCUOLA PRIMARIA Anno Scolastico 2014/2015 CURRICOLO DI MATEMATICA OBIETTIVI DI APPRENDIMENTO AL TERMINE DELLA CLASSE TERZA DELLA SCUOLA PRIMARIA Ministero dell Istruzione, dell Università e della Ricerca Istituto Comprensivo Statale di Calolziocorte Via F. Nullo,6 23801 CALOLZIOCORTE (LC) e.mail: lcic823002@istruzione.it - Tel: 0341/642405/630636

Dettagli

MATEMATICA: COMPETENZA 1 TERMINE DEL PRIMO BIENNIO ( classe seconda scuola primaria) COMPETENZE ABILITA CONOSCENZE

MATEMATICA: COMPETENZA 1 TERMINE DEL PRIMO BIENNIO ( classe seconda scuola primaria) COMPETENZE ABILITA CONOSCENZE MATEMATICA: COMPETENZA 1 TERMINE DEL PRIMO BIENNIO ( classe seconda scuola primaria) Utilizzare le tecniche e le procedure del calcolo aritmetico scritto e mentale partendo da contesti reali Rappresentare

Dettagli

INDICATORI OBIETTIVI DI APPRENDIMENTO classe prima

INDICATORI OBIETTIVI DI APPRENDIMENTO classe prima INDICATORI OBIETTIVI DI APPRENDIMENTO classe prima NUMERI Descrivere e simbolizzare la realtà utilizzando il linguaggio e gli strumenti matematici Imparare ad usare il numero naturale per contare, confrontare,

Dettagli

CURRICOLO MATEMATICA SCUOLA PRIMARIA

CURRICOLO MATEMATICA SCUOLA PRIMARIA CURRICOLO MATEMATICA SCUOLA PRIMARIA CLASSE PRIMA Competenze Conoscenze Abilità L alunno riconosce il significato dei numeri ed i modi per rappresentarli i numeri naturali entro il 20 nei loro aspetti

Dettagli

CURRICOLO VERTICALE DI MATEMATICA PER LA SCUOLA DELL'INFANZIA -

CURRICOLO VERTICALE DI MATEMATICA PER LA SCUOLA DELL'INFANZIA - CURRICOLO VERTICALE DI MATEMATICA PER LA SCUOLA DELL'INFANZIA - TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA DELL INFANZIA. 1. Il bambino raggruppa e ordina secondo criteri diversi,

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

MATEMATICA - CLASSE SECONDA

MATEMATICA - CLASSE SECONDA ELABORATO DAI DOCENTI DELLA SCUOLA PRIMARIA DIREZIONE DIDATTICA 5 CIRCOLO anno scolastico 2012-2013 MATEMATICA - CLASSE PRIMA TRAGUARDI DI COMPETENZA DA SVILUPPARE AL TERMINE DELLA CLASSE PRIMA Padroneggia

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

MATEMATICA CLASSE PRIMA

MATEMATICA CLASSE PRIMA CLASSE PRIMA L alunno/a si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali e sa valutare l opportunità di ricorrere a una calcolatrice. Contare oggetti o eventi, a voce e mentalmente,

Dettagli

Generalità sulle funzioni

Generalità sulle funzioni Capitolo Concetto di funzione Generalità sulle funzioni Definizione di funzione Definizione Dato un sottoinsieme non vuoto D di R, si chiama funzione reale di variabile reale, una relazione che ad ogni

Dettagli

Un po di teoria dei numeri

Un po di teoria dei numeri Un po di teoria dei numeri Applicazione alla crittografia RSA Christian Ferrari Liceo di Locarno Matematica Sommario 1 L aritmetica modulare di Z n Le congruenze L anello Z n Le potenze in Z n e algoritmo

Dettagli

IPOTESI di CURRICOLO MATEMATICA SCUOLA PRIMARIA E SECONDARIA DI PRIMO GRADO con riferimento alle Indicazioni Nazionali 2012

IPOTESI di CURRICOLO MATEMATICA SCUOLA PRIMARIA E SECONDARIA DI PRIMO GRADO con riferimento alle Indicazioni Nazionali 2012 IPOTESI di CURRICOLO MATEMATICA SCUOLA PRIMARIA E SECONDARIA DI PRIMO GRADO con riferimento alle Indicazioni Nazionali 2012 6 IC PADOVA COMPETENZE SPECIFICHE Numeri conoscere e padroneggiare i contenuti

Dettagli

LA CONOSCENZA DEL MONDO SCUOLA DELL INFANZIA. OBIETTIVI DI APPRENDIMENTO 3 anni 4 anni 5 anni

LA CONOSCENZA DEL MONDO SCUOLA DELL INFANZIA. OBIETTIVI DI APPRENDIMENTO 3 anni 4 anni 5 anni SCUOLA DELL INFANZIA INDICATORI LA CONOSCENZA DEL MONDO OBIETTIVI DI APPRENDIMENTO 3 anni 4 anni 5 anni Riconoscere la quantità. Ordinare piccole quantità. Riconoscere la quantità. Operare e ordinare piccole

Dettagli

CURRICOLO VERTICALE DI MATEMATICA. Istituto comprensivo di Castell Arquato

CURRICOLO VERTICALE DI MATEMATICA. Istituto comprensivo di Castell Arquato CURRICOLO VERTICALE DI MATEMATICA Istituto comprensivo di Castell Arquato Scuola dell infanzia Campi di esperienza Traguardi per lo sviluppo delle competenze Abilità Conoscenze Immagini, suoni, colori

Dettagli

LA NOTAZIONE SCIENTIFICA

LA NOTAZIONE SCIENTIFICA LA NOTAZIONE SCIENTIFICA Definizioni Ricordiamo, a proposito delle potenze del, che = =.000 =.000.000.000.000 ovvero n è uguale ad seguito da n zeri. Nel caso di potenze con esponente negativo ricordiamo

Dettagli

VALLAURI L ASSE MATEMATICO

VALLAURI L ASSE MATEMATICO Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Via B. Peruzzi, 13 41012 CARPI (MO) VALLAURI www.vallauricarpi.it Tel. 059 691573 Fax 059 642074 vallauri@vallauricarpi.it

Dettagli

Scuola primaria: obiettivi al termine della classe 5

Scuola primaria: obiettivi al termine della classe 5 Competenza: partecipare e interagire con gli altri in diverse situazioni comunicative Scuola Infanzia : 3 anni Obiettivi di *Esprime e comunica agli altri emozioni, sentimenti, pensieri attraverso il linguaggio

Dettagli

1 Sistema additivo e sistema posizionale

1 Sistema additivo e sistema posizionale Ci sono solamente 10 tipi di persone nel mondo: chi comprende il sistema binario e chi no. Anonimo I sistemi di numerazione e la numerazione binaria 1 Sistema additivo e sistema posizionale Contare per

Dettagli

IPOTESI di CURRICOLO SCUOLA PRIMARIA E SECONDARIA DI PRIMO GRADO 6 IC PADOVA con riferimento alle Indicazioni Nazionali 2012

IPOTESI di CURRICOLO SCUOLA PRIMARIA E SECONDARIA DI PRIMO GRADO 6 IC PADOVA con riferimento alle Indicazioni Nazionali 2012 IPOTESI di CURRICOLO SCUOLA PRIMARIA E SECONDARIA DI PRIMO GRADO 6 IC PADOVA con riferimento alle Indicazioni Nazionali 2012 COMPETENZE SPECIFICHE Numeri! Conoscere e utilizzare algoritmi e procedure in

Dettagli

Curricolo verticale MATEMATICA Scuola primaria CLASSE 1^

Curricolo verticale MATEMATICA Scuola primaria CLASSE 1^ Curricolo verticale MATEMATICA Scuola primaria Istituto Comprensivo Novellara CLASSE 1^ NUCLEI TEMATICI ABILITA CONOSCENZE METODOLOGIA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE NUMERI Tecniche e procedure

Dettagli

PROGRAMMAZIONE di MATEMATICA CLASSE PRIMA

PROGRAMMAZIONE di MATEMATICA CLASSE PRIMA PROGRAMMAZIONE di MATEMATICA 1.NUMERI CLASSE PRIMA Comprende il significato Comprendere il significato Insiemi numerici NQZ Utilizzare le tecniche e le procedure del calcolo aritmetico e algebrico rappresentandole

Dettagli

MATEMATICA SCUOLE DELL INFANZIA

MATEMATICA SCUOLE DELL INFANZIA MATEMATICA SCUOLE DELL INFANZIA CAMPO DI ESPERIENZA: LA CONOSCENZA DEL MONDO (ordine, misura, spazio, tempo, natura) È l'ambito relativo all'esplorazione, scoperta e prima sistematizzazione delle conoscenze

Dettagli