Il modello binomiale ad un periodo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il modello binomiale ad un periodo"

Transcript

1 Opzioni Un opzione dà al suo possessore il diritto (ma non l obbligo) di fare qualcosa. Un opzione call (put) europea su un azione che non paga dividendi dà al possessore il diritto di comprare (vendere) l azione sottostante alla scadenza ad un prezzo prefissato K (strike price). Se l opzione è di tipo americano, può essere esercitata in qualsiasi momento. Pay-off a scadenza opzione call europea: max{s T K, 0}. Pay-off a scadenza opzione put europea: max{k S T, 0}.

2 Il modello binomiale ad un periodo Esistono solo due strumenti: un azione e un opzione call il cui sottostante è l azione; inoltre è disponibile un conto corrente il cui rendimento logaritmico (rendimento logaritmico risk-free) è indicato con r rf. Operiamo in tempo discreto, con due soli tempi, 0 e 1. Il sottostante al tempo T = 1 può assumere due soli prezzi, e la sua distribuzione di probabilità è bernoulliana: { us 0 con prob. π S 1 = gs 0 con prob. 1 π. Ipotesi: 0 < g < u, g e r rf u.

3 Il modello binomiale ad un periodo In T = 1 anche l opzione può assumere solo due valori: { C u = max{us 0 K, 0} con prob. π C 1 = C g = max{gs 0 K, 0} con prob. 1 π. Costruiamo, al tempo 0, un portafoglio ottenuto prendendo a prestito β 0 $ in contanti e comprando α 0 azioni del sottostante. Il valore iniziale del portafoglio è dato da V 0 = β 0 + α 0 S 0.

4 Il modello binomiale ad un periodo E ora possibile ricavare il prezzo dell opzione al tempo 0. I due possibili valori del portafoglio al tempo 1 sono: { V u = us 0 α 0 + e r rf β 0 con prob. π V 1 = V g = gs 0 α 0 + e r rf β 0 con prob. 1 π. Scegliamo α 0 e β 0 in modo che le due equazioni seguenti siano simultaneamente soddisfatte: { us 0 α 0 + e r rf β 0 = C u gs 0 α 0 + e r (3) rf β 0 = C g. cioè V u = C u e V g = C g.

5 Il modello binomiale ad un periodo Si ricava facilmente α0 = C u C g def =, β0 (u g)s = uc g gc u 0 (u g)e r rf. (4) Dunque il portafoglio costituito, in t = 0, da quote dell azione e β0 $ ha, con certezza, lo stesso payoff dell opzione; ne segue che l opzione e il portafoglio devono avere lo stesso prezzo al tempo 0: V 0 = C 0. Se così non fosse, sarebbe infatti possibile costruire un arbitraggio, cioè una strategia di trading che fornisce un profitto privo di rischio.

6 Il principio di non-arbitraggio Infatti, si ipotizzi che sia V 0 > C 0 : in questo caso un investitore potrebbe acquistare l opzione e vendere il portafoglio al tempo 0, con un introito pari a V 0 C 0 ; al tempo 1 il riacquisto del portafoglio al prezzo V 1 sarebbe esattamente compensato dalla vendita dell opzione. Principio di non arbitraggio: nel mercato non esistono strategie di trading che forniscono un profitto positivo senza rischio (vale a dire con probabilità 1); nel momento in cui una tale strategia esistesse, le decisioni degli investitori annullerebbero istantaneamente il profitto che ne deriva.

7 Il modello binomiale ad un periodo Svolgendo i calcoli si trova il prezzo al tempo 0: [( ) ( ) ] C 0 = S 0 + β0 = e r rf e r rf g u e r rf C u + C g u g u g = e r rf [π C u + (1 π )C g ] = e r rf E π (C 1 ), (5) dove π = (e r rf g)/(u g). La strategia di copertura al tempo 0: vendo l opzione +C 0 prendo a prestito contanti +β0 acquisto azioni α0 S 0. La strategia di copertura al tempo 1: rimborso l opzione C 1 rimborso il prestito vendo le azioni α0 S 1. β 0 er rf

8 Osservazioni La (5): non dipende dall avversione al rischio degli investitori; non dipende dalla probabilità π; è il valore atteso scontato del payoff dell opzione, dove il valore atteso è calcolato rispetto alla pseudo probabilità π, denominata probabilità risk-neutral. Rispetto a questa misura di probabilità il rendimento del portafoglio di replica è uguale al rendimento risk-free in quanto ha rendimento certo (non dipende dal valore del sottostante al tempo 1).

9 Osservazioni La distribuzione di probabilità determinata da π = (e r rf g)/(u g) nel modello binomiale ad un periodo è definita risk-neutral nel senso seguente. Si verifica che: E π (V 1 V 0 ) = e r rf β 0 + π α 0 us 0 + (1 π )α 0 gs 0 = = e r rf β 0 + er rf α 0 S 0 = r rf V 0. Condizione necessaria affinché π identifichi una misura di probabilità è che g e r rf u. Si può prezzare un derivato scontando il suo payoff rispetto alla probabilità neutrale rispetto al rischio ogni volta che si può costruire un portafoglio di replica che ne riproduca esattamente il payoff e quindi permetta di coprirsi perfettamente rispetto al rischio.

10 La formula di Black & Scholes (B&S) Ricordiamo che il prezzo di un opzione call alla scadenza è dato da C T = max{0, S T K }, dove K è lo strike price. Al tempo t < T, sulla base dei criteri del pricing risk-neutral, il prezzo è dato da C t = e r rf (T t) E π [max{0, S T K }]. (6) Analogamente, il prezzo di una put alla scadenza è C T = max(0, K S T ); al tempo t < T si ottiene: C t = e r rf (T t) E π [max{0, K S T }].

11 La formula di Black & Scholes (B&S) Si dimostra che la (6) si può scrivere nella forma C t = S t Φ(d 1 ) Ke r rf (T t) Φ(d 2 ), dove d 1 e d 2 sono definiti come segue: d 1 = ln(s t/k ) + (r rf + σ 2 /2)(T t) σ T t d 2 = ln(s t/k ) + (r rf σ 2 /2)(T t) σ = d 1 σ T t. T t Si noti che il prezzo C t di un opzione è funzione di S t, r rf, σ: C t = f (S t, r rf, σ). Inoltre dipende, ma in modo deterministico, dal tempo a scadenza T t e da K.

12 La formula di Black & Scholes (B&S) La formula di B&S vale sotto le seguenti ipotesi: (i) il processo che governa l evoluzione del sottostante è un moto browniano geometrico; (ii) il tasso di interesse risk-free e la varianza σ 2 sono costanti; (iii) il mercato è perfetto (cioè le vendite allo scoperto sono ammesse, il mercato è sempre aperto, i costi di transazione sono nulli). La formula non vale per le opzioni americane ed esotiche (eccezione: per un opzione call americana su un azione che non paga dividendi l esercizio anticipato rispetto alla scadenza non è mai conveniente; quindi il suo prezzo è identico a quello della corrispondente opzione europea e può essere ottenuto tramite la formula di B&S).

13 Le Greche Le Greche sono le derivate parziali della funzione C t = f (S t, r rf, σ, T t, K ) rispetto ai suoi argomenti. Il parametro è la derivata parziale rispetto a S della funzione che lega il prezzo di un opzione ai suoi argomenti: = C S. Da un punto di vista computazionale, il parametro ha un grande vantaggio: il di un portafoglio è additivo. Se infatti abbiamo un portafoglio contenente N tipi di opzioni e x i, i = 1,..., N è il numero di opzioni del tipo i-esimo, il del portafoglio è dato da ptf = N x i i. i=1

14 Le Greche Oltre a, i parametri rilevanti sono Gamma, Vega, Rho e Theta, definiti come segue Γ = 2 C S 2 ; ρ = C r rf ; Λ = C σ ; Θ = C t. Il calcolo delle greche è semplice quando sia disponibile una formula che fornisce il prezzo in forma chiusa (è il caso delle opzioni europee, per cui vale la formula di B&S): il per opzioni call e put europee è dato da call = C call S = Φ(d 1), put = C put S = Φ(d 1) 1. Quanto a Γ, è identico per opzioni call e put: Γ call = Γ put = 2 C S 2 = Φ(d 1) Sσ T t.

15 Le Greche Infine, anche il parametro Vega è identico per opzioni call e put: Λ call = Λ put = C σ = SΦ(d 1) T t. Quando il prezzo debba essere determinato numericamente, anche le greche devono essere calcolate tramite metodi numerici. Una posizione corta in un opzione call è estremamente pericolosa, in quanto la perdita è potenzialmente illimitata. E quindi importante coprire (hedge) la posizione.

Elementi di Risk Management Quantitativo

Elementi di Risk Management Quantitativo Elementi di Risk Management Quantitativo (marco.bee@economia.unitn.it) Marzo 2007 Indice 1 Introduzione 2 1.1 Argomenti e testi di riferimento................. 2 2 Nozioni preliminari 3 2.1 Un po di storia..........................

Dettagli

23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1

23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1 23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari In uno schema uniperiodale e in un contesto di analisi media-varianza, si consideri un mercato

Dettagli

ESERCITAZIONE MATEMATICA FINANZIARIA OPZIONI. Matematica finanziaria Dott. Andrea Erdas Anno Accademico 2011/2012

ESERCITAZIONE MATEMATICA FINANZIARIA OPZIONI. Matematica finanziaria Dott. Andrea Erdas Anno Accademico 2011/2012 ESERCITAZIONE MATEMATICA FINANZIARIA 1 OPZIONI 2 LE OPZIONI Le opzioni sono contratti che forniscono al detentore il diritto di acquistare o vendere una certa quantità del bene sottostante a una certa

Dettagli

Valore equo di un derivato. Contingent claim

Valore equo di un derivato. Contingent claim Contingent claim Ci occuperemo ora di determinare il prezzo equo di un prodotto derivato, come le opzioni, e di come coprire il rischio associato a questi contratti. Assumeremo come dinamica dei prezzi

Dettagli

Volatilità implicita. P(t) = S(t)Φ(d 1 ) e r(t t) K Φ(d 2 ) con. d 1 = d 2 + σ T t. d 2 =

Volatilità implicita. P(t) = S(t)Φ(d 1 ) e r(t t) K Φ(d 2 ) con. d 1 = d 2 + σ T t. d 2 = Volatilità implicita Abbiamo visto come sia possibile calcolare la volatilità di un titolo attraverso la serie dei log-return. In teoria però la volatilità di un sottostante può essere determinata dal

Dettagli

Metodi Stocastici per la Finanza

Metodi Stocastici per la Finanza Metodi Stocastici per la Finanza Tiziano Vargiolu vargiolu@math.unipd.it 1 1 Università degli Studi di Padova Anno Accademico 2012-2013 Indice 1 Mercati finanziari 2 Arbitraggio 3 Conseguenze del non-arbitraggio

Dettagli

Introduzione alberi binomiali

Introduzione alberi binomiali Introduzione alberi binomiali introduzione L albero binomiale rappresenta i possibili sentieri seguiti dal prezzo dell azione durante la vita dell opzione Il percorso partirà dal modello a uno stadio per

Dettagli

studi e analisi finanziarie LA PUT-CALL PARITY

studi e analisi finanziarie LA PUT-CALL PARITY LA PUT-CALL PARITY Questa relazione chiarisce se sia possibile effettuare degli arbitraggi e, quindi, guadagnare senza rischi. La put call parity è una relazione che lega tra loro: il prezzo del call,

Dettagli

GLI STRUMENTI FINANZIARI DERIVATI

GLI STRUMENTI FINANZIARI DERIVATI GLI STRUMENTI FINANZIARI DERIVATI ABSTRACT PRINCIPI SULLE OPZIONI!A cura di Mauro Liguori!Seminario del 7 giugno 2003!V. delle Botteghe Oscure, 54 -Roma DEFINIZIONE DI OPZIONE OPZIONE DIRITTO DI ACQUISTARE

Dettagli

Modelli Binomiali per la valutazione di opzioni

Modelli Binomiali per la valutazione di opzioni Modelli Binomiali per la valutazione di opzioni Rosa Maria Mininni a.a. 2014-2015 1 Introduzione ai modelli binomiali La valutazione degli strumenti finanziari derivati e, in particolare, la valutazione

Dettagli

Greche. Fondamenti dei Mercati di Futures e Opzioni, 5 a Edizione, Copyright John C. Hull 2004 15.1

Greche. Fondamenti dei Mercati di Futures e Opzioni, 5 a Edizione, Copyright John C. Hull 2004 15.1 Greche Problema per i trader è di gestire il rischio di posizioni su mercati over the counter e in borsa Ogni greca corrisponde a una misura di rischio Quindi i traders dovranno gestire le greche per gestire

Dettagli

Black-Scholes: le Greche

Black-Scholes: le Greche Black-Scholes: le Greche R. Marfé Indice 1 Delta 2 2 Gamma 4 3 Theta 6 4 Vega 7 5 Rho 8 6 Applicazione in VBA 9 1 1 Delta Il delta di un opzione (o di un portafoglio di opzioni) indica la sensibilità del

Dettagli

Elementi di Risk Management Quantitativo

Elementi di Risk Management Quantitativo Elementi di Risk Management Quantitativo Marco Bee (marco.bee@economia.unitn.it) Marzo 2006 Indice 1 Introduzione 2 2 Nozioni preliminari 2 2.1 Prezzi e rendimenti........................ 2 2.2 Capitalizzazione.........................

Dettagli

Opzioni americane. Opzioni americane

Opzioni americane. Opzioni americane Opzioni americane Le opzioni di tipo americano sono simili a quelle europee con la differenza che possono essere esercitate durante tutto l intervallo [0, T ]. Supponiamo di avere un opzione call americana

Dettagli

Mercati e strumenti derivati (2): Swap e Opzioni

Mercati e strumenti derivati (2): Swap e Opzioni Mercati e strumenti derivati (2): Swap e Opzioni A.A. 2008-2009 20 maggio 2009 Agenda I contratti Swap Definizione Gli Interest Rate Swap Il mercato degli Swap Convenienza economica e finalità Le opzioni

Dettagli

OPZIONI, DURATION E INTEREST RATE SWAP (IRS)

OPZIONI, DURATION E INTEREST RATE SWAP (IRS) ESERCITAZIONE MATEMATICA FINANZIARIA 1 OPZIONI, DURATION E INTEREST RATE SWAP (IRS) Valutazione delle opzioni Esercizio 1 2 ESERCIZIO 1 Il portafoglio di un investitore è composto di 520 azioni della società

Dettagli

FINANZA AZIENDALE Corso di Laurea Specialistica in Ingegneria Gestionale

FINANZA AZIENDALE Corso di Laurea Specialistica in Ingegneria Gestionale FINANZA AZIENDALE Corso di Laurea Specialistica in Ingegneria Gestionale 6 parte Prof. Giovanna Lo Nigro # 1 I titoli derivati # 2 Copyright 2003 - The McGraw-Hill Companies, srl Argomenti trattati Tipologie

Dettagli

2) Calcolare il prezzo ad oggi di una Put europea con un albero a 3 periodi.

2) Calcolare il prezzo ad oggi di una Put europea con un albero a 3 periodi. 1) Calcolare il prezzo ad oggi di una Call europea con un albero a 2 periodi. tasso risk free: r =3,00%; Scadenza: 2 anni Step: n=2 Prezzo spot del sottostante: S 0 =100 Strike Price: K=98 u = 1,1 e d

Dettagli

Modelli probabilistici per la finanza

Modelli probabilistici per la finanza Capitolo 5 Modelli probabilistici per la finanza 51 Introduzione In questo capitolo introdurremo un modello probabilistico utile per lo studio di alcuni problemi di finanza matematica, a cui abbiamo già

Dettagli

MODELLO DI BLACK SCHOLES

MODELLO DI BLACK SCHOLES MODELLO DI BLACK SCHOLES 1 Greche della Put Dalla put-call parity: C P = S Ke P = SN(d 1 ) Ke N(d ) S + Ke P = Ke (1 N(d )) S(1 N(d 1 )) quindi la FORMULA DI BLACK SCHOLES PER LA PUT è P = Ke N( d ) SN(

Dettagli

Fronteggiamento dei rischi della gestione

Fronteggiamento dei rischi della gestione Fronteggiamento dei rischi della gestione Prevenzione (rischi specifici) Impedire che un determinato evento si manifesti o limitare le conseguenze negative Assicurazione (rischi specifici) Trasferimento

Dettagli

Introduzione alle opzioni

Introduzione alle opzioni PROGRAMMA 1) Nozioni di base di finanza aziendale 2) Opzioni 3) Valutazione delle aziende 4) Finanziamento tramite debiti 5) Risk management Introduzione alle opzioni 6) Temi speciali di finanza aziendale

Dettagli

Matematica finanziaria: svolgimento della prova di esame del 4 settembre 2007 1

Matematica finanziaria: svolgimento della prova di esame del 4 settembre 2007 1 Matematica finanziaria: svolgimento della prova di esame del 4 settembre. Calcolare il montante che si ottiene dopo anni con un investimento di e in regime nominale al tasso annuale del % pagabile due

Dettagli

Modelli matematici per la valutazione dei derivati: dalla formula CRR alla formula di Black-Scholes

Modelli matematici per la valutazione dei derivati: dalla formula CRR alla formula di Black-Scholes Capitolo 4 Modelli matematici per la valutazione dei derivati: dalla formula CRR alla formula di Black-Scholes Quanto è ragionevole pagare per entrare in un contratto d opzione? Per affrontare questo problema

Dettagli

Finanza Aziendale. Teoria delle opzioni, metodologie di valutazione e implicazioni per la finanza aziendale. BMAS Capitolo 20

Finanza Aziendale. Teoria delle opzioni, metodologie di valutazione e implicazioni per la finanza aziendale. BMAS Capitolo 20 Finanza Aziendale Teoria delle opzioni, metodologie di valutazione e implicazioni per la finanza aziendale BMAS Capitolo 20 1 Le opzioni nei mercati reali e finanziari Si dicono opzioni i contratti finanziari

Dettagli

Introduzione all Option Pricing

Introduzione all Option Pricing Introduzione all Option Pricing Arturo Leccadito Corso di Matematica Finanziaria 3 Anno Accademico 2008 2009 1 Il Modello Binomiale Si supponga che oggi (epoca 0) sia disponibile un titolo azionario il

Dettagli

Finanza matematica - Lezione 01

Finanza matematica - Lezione 01 Finanza matematica - Lezione 01 Contratto d opzione Un opzione è un contratto finanziario stipulato al tempo, che permette di eseguire una certa transazione, d acquisto call o di vendita put, ad un tempo

Dettagli

Slide con esempi di prezzi di Futures e opzioni quotate su Borsa Italiana sulle azioni di Unicredit.

Slide con esempi di prezzi di Futures e opzioni quotate su Borsa Italiana sulle azioni di Unicredit. Slide con esempi di prezzi di Futures e opzioni quotate su Borsa Italiana sulle azioni di Unicredit. http://www.borsaitaliana.it/borsa/azioni/scheda.html?isin=it0004781412&lang=en http://www.borsaitaliana.it/borsa/derivati/idem-stock-futures/lista.html?underlyingid=ucg&lang=en

Dettagli

Corso di Economia degli Intermediari Finanziari

Corso di Economia degli Intermediari Finanziari Corso di Economia degli Intermediari Finanziari Alcuni strumenti finanziari particolari Alcuni strumenti proposti nel panorama internazionale Gli strumenti ai quali faremo riferimento sono: i financial

Dettagli

Note integrative di Moneta e Finanza Internazionale. c Carmine Trecroci 2004

Note integrative di Moneta e Finanza Internazionale. c Carmine Trecroci 2004 Note integrative di Moneta e Finanza Internazionale c Carmine Trecroci 2004 1 Tassi di cambio a pronti e a termine transazioni con consegna o regolamento immediati tasso di cambio a pronti (SR, spot exchange

Dettagli

19-2 Argomenti trattati

19-2 Argomenti trattati Principi di finanza aziendale Capitolo 19-20 IV Edizione Richard A. Brealey Stewart C. Myers Sandro Sandri Introduzione alle opzioni e cenni al problema della valutazione 19-2 Argomenti trattati Call,

Dettagli

Manuale dei Covered Warrant UNRELENTING THINKING LA FORZA DELLE IDEE

Manuale dei Covered Warrant UNRELENTING THINKING LA FORZA DELLE IDEE Manuale dei Covered Warrant UNRELENTING THINKING LA FORZA DELLE IDEE Manuale dei Covered Warrant UNRELENTING THINKING LA FORZA DELLE IDEE Sommario I Goldman Sachs 4 II Introduzione 6 Che cosa sono i covered

Dettagli

Derivati: principali vantaggi e utilizzi

Derivati: principali vantaggi e utilizzi Derivati: principali vantaggi e utilizzi Ugo Pomante, Università Commerciale Luigi Bocconi Trading Online Expo Milano 28, Marzo 2003 CONTENUTI In un mondo senza derivati I futures Le opzioni Strategie

Dettagli

VI Esercitazione di Matematica Finanziaria

VI Esercitazione di Matematica Finanziaria VI Esercitazione di Matematica Finanziaria 2 Dicembre 200 Esercizio. Verificare la proprietà di scindibilità delle leggi del prezzo { v(t, s) = exp } 2 (s2 t 2 ) e v(t, s) = e t(s t) Soluzione. Possiamo

Dettagli

Introduzione alle opzioni

Introduzione alle opzioni Introduzione alle opzioni Tipi di Opzioni La call è un opzione di acquisto La put è un opzione di vendita Le opzioni europee possono essere esercitate solo alla scadenza Le opzioni americane possono essere

Dettagli

Il calore nella Finanza

Il calore nella Finanza Il calore nella Finanza Franco Moriconi Università di Perugia Facoltà di Economia Perugia, 12 Novembre 2008 Quotazioni FIAT Serie giornaliera dal 6/11/2007 al 6/11/2008 F. Moriconi, Il calore nella Finanza

Dettagli

Corso di FINANZA AZIENDALE AVANZATA

Corso di FINANZA AZIENDALE AVANZATA Corso di FINANZA AZIENDALE AVANZATA Teoria delle opzioni e struttura finanziaria Valutazione opzioni Non posso usare le formule di attualizzazione in quanto non riesco a trovare un accettabile tasso a

Dettagli

Strumenti derivati. Strumenti finanziari il cui valore dipende dall andamento del prezzo di un attività sottostante Attività sottostanti:

Strumenti derivati. Strumenti finanziari il cui valore dipende dall andamento del prezzo di un attività sottostante Attività sottostanti: Strumenti derivati Strumenti finanziari il cui valore dipende dall andamento del prezzo di un attività sottostante Attività sottostanti: attività finanziarie (tassi d interesse, indici azionari, valute,

Dettagli

Gli strumenti derivati. Prof. Mauro Aliano mauro.aliano@unica.it

Gli strumenti derivati. Prof. Mauro Aliano mauro.aliano@unica.it Gli strumenti derivati Prof. Mauro Aliano mauro.aliano@unica.it 1 I FRA (Forward Rate Agreement) Sono contratti con i quali due parti si mettono d accordo sul tasso di interesse da applicare ad un certo

Dettagli

Il materiale didattico di seguito riportato, disponibile online, sostituisce il paragrafo 23.5.2

Il materiale didattico di seguito riportato, disponibile online, sostituisce il paragrafo 23.5.2 Il materiale didattico di seguito riportato, disponibile online, sostituisce il paragrafo 23.5.2 Vaalore della call/azione al 15 marzo 2014 Ipotizziamo di aver acquistato 1 azione FIAT al prezzo di 5,5.

Dettagli

1.Compro Azioni. 2.Vendo Azioni

1.Compro Azioni. 2.Vendo Azioni 1.Compro Azioni Question #1: Cos' è una Azione (un titolo azionario)? A) E' un Titolo rappresentativo della quota di una società B) E' una ricevuta per investire C) E' una assicurazione Question #2: Perchè

Dettagli

FINANZA AZIENDALE AVANZATO. Le opzioni e l option theory. Lezioni 14 e 15

FINANZA AZIENDALE AVANZATO. Le opzioni e l option theory. Lezioni 14 e 15 FINANZA AZIENDALE AVANZATO Le opzioni e l option theory Lezioni 14 e 15 I derivati asimmetrici ono contratti/prodotti che fissano le condizioni a cui POTRA aver luogo la compravendita futura dell attività

Dettagli

Strategie Operative mediante Opzioni

Strategie Operative mediante Opzioni Strategie Operative mediante Opzioni Una posizione su: l opzione e il sottostante è detta hedge 2 o più opzioni dello stesso tipo è detta spread una miscela di calls e puts è detta combinazione Posizioni

Dettagli

Il piano d ammortamento (francese) prevede un totale di 20 rate semestrali pari a: D 300.000 a 14, 2888 Il debito residuo dopo 10 semestri sarà:

Il piano d ammortamento (francese) prevede un totale di 20 rate semestrali pari a: D 300.000 a 14, 2888 Il debito residuo dopo 10 semestri sarà: Gli esercizi sono suddivisi per argomenti. A) Piani d ammortamento. ) I esonero 003. Un individuo si accorda per restituire un importo di 300 mila euro mediante il versamento di rate costanti semestrali

Dettagli

Corso di Risk Management S

Corso di Risk Management S Corso di Risk Management S Marco Bee marco.bee@economia.unitn.it Dipartimento di Economia Università di Trento Anno Accademico 2007-2008 Struttura del corso Il corso può essere suddiviso come segue: 1.

Dettagli

Matematica finanziaria: svolgimento prova di esonero del 15 maggio 2007

Matematica finanziaria: svolgimento prova di esonero del 15 maggio 2007 Matematica finanziaria: svolgimento prova di esonero del 5 maggio 2 a. Assumendo che il colore dei capelli negli esseri umani sia determinato da una coppia di alleli, diciamo (B, S), presi a caso con probabilità

Dettagli

DERIVATI REGOLAMENTATI OPZIONI E FUTURES ORARIO DI NEGOZIAZIONE : 9,00 17,40

DERIVATI REGOLAMENTATI OPZIONI E FUTURES ORARIO DI NEGOZIAZIONE : 9,00 17,40 DERIVATI REGOLAMENTATI OPZIONI E FUTURES ORARIO DI NEGOZIAZIONE : 9,00 17,40 LE OPZIONI - Definizione Le opzioni sono contratti finanziari che danno al compratore il diritto, ma non il dovere, di comprare,

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Corso di Risk Management

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Corso di Risk Management UNIVERSITÀ DEGLI STUDI DI BERGAMO Corso di Prof. Filippo Stefanini A.A. Corso 60012 Corso di Laurea Specialistica in Ingegneria Edile Opzioni Le opzioni offrono agli investitori la possibilità di creare

Dettagli

Opzioni su titoli che pagano dividendi: proprietà e tecniche di valutazione

Opzioni su titoli che pagano dividendi: proprietà e tecniche di valutazione Opzioni su titoli che pagano dividendi: proprietà e tecniche di valutazione Martina Nardon Paolo Pianca ipartimento di Matematica Applicata Università Ca Foscari Venezia

Dettagli

Funzioni. Funzioni /2

Funzioni. Funzioni /2 Funzioni Una funzione f è una corrispondenza tra due insiemi A e B che a ciascun elemento di A associa un unico elemento di B. Si scrive: f : A B l'insieme A si chiama il dominio della funzione f, l'insieme

Dettagli

Ambiente di riferimento

Ambiente di riferimento Ambiente di riferimento Cosideriamo un mercato finanziario di una sola azione (investimento a rischio), un titolo obbligazionario (investimento senza rischio) e un contingent claim. La dinamica dei prezzi

Dettagli

Volatilità Implicita, Covered Warrant e Scelta degli Investitori

Volatilità Implicita, Covered Warrant e Scelta degli Investitori Marcello Minenna Volatilità Implicita, Covered Warrant e Scelta degli Investitori Orienta Finanza 22 febbraio 2002 Rimini Covered Warrant Volumi Scambiati 62.000 56.000 Controvalori Scambiati (milioni

Dettagli

Definizione 3 Il rischio di credito è il rischio derivante dal cambiamento di valore associato a cambiamenti inattesi della qualità del credito.

Definizione 3 Il rischio di credito è il rischio derivante dal cambiamento di valore associato a cambiamenti inattesi della qualità del credito. 4 Rischio di credito Definizione 3 Il rischio di credito è il rischio derivante dal cambiamento di valore associato a cambiamenti inattesi della qualità del credito. Obiettivo del credit risk management:

Dettagli

OPZIONI SU TITOLI CON DIVIDENDI

OPZIONI SU TITOLI CON DIVIDENDI OPZIONI SU IOLI CON DIVIDENDI 1 Proprietà fondamentali Si consideri un opzione call europea c, emessa su un titolo azionario S,con prezzo d esercizio X e con scadenza all epoca ; sia, inoltre, r il tasso

Dettagli

T I P S T R A P S. La prezzatura di Opzioni Call e Put Europea con il metodo Montecarlo

T I P S T R A P S. La prezzatura di Opzioni Call e Put Europea con il metodo Montecarlo La prezzatura di Opzioni Call e Put Europea con il metodo Montecarlo In un mercato finanziario le opzioni a comprare (Call) o a vendere (Put) un titolo costituiscono il diritto, in un determinato periodo

Dettagli

Facoltà di Economia Sapienza

Facoltà di Economia Sapienza Lezione: Mercato della valuta, Tassi di cambio, UIP e CIP Stefano Papa Università di Roma Sapienza stefano.papa@uniroma1.it Facoltà di Economia Sapienza Mercato della valuta Il mercato della valuta dipende

Dettagli

Corso di Analisi dei Sistemi Finanziari 2 Prof. Nathan Levialdi. Derivati. Derivati. sciangula@ing.uniroma2.it

Corso di Analisi dei Sistemi Finanziari 2 Prof. Nathan Levialdi. Derivati. Derivati. sciangula@ing.uniroma2.it Dipaimento di Ingegneria dell Impresa Corso di Analisi dei Sistemi Finanziari 2 Prof. Nathan Levialdi A cura di: Ing. Fiorella Sciangula sciangula@ing.uniroma2.it 1 Opzioni: variabili Prezzo Spot, o valore

Dettagli

Introduzione. Capitolo 1. Opzioni, Futures e Altri Derivati, 6 a Edizione, Copyright John C. Hull 2005 1

Introduzione. Capitolo 1. Opzioni, Futures e Altri Derivati, 6 a Edizione, Copyright John C. Hull 2005 1 Introduzione Capitolo 1 1 La Natura dei Derivati I derivati sono strumenti il cui valore dipende dal valore di altre più fondamentali variabili sottostanti 2 Esempi di Derivati Forwards Futures Swaps Opzioni

Dettagli

ALCUNI ESEMPI DI PROVE SCRITTE

ALCUNI ESEMPI DI PROVE SCRITTE ALCUNI ESEMPI DI PROVE SCRITTE Nota: questo file raccoglie alcuni esempi di prove scritte assegnate negli ultimi anni per gli esami di Matematica Finanziaria IIB e. I testi vanno presi come indicativi,

Dettagli

i tassi di interesse per i prestiti sono gli stessi che per i depositi;

i tassi di interesse per i prestiti sono gli stessi che per i depositi; Capitolo 3 Prodotti derivati: forward, futures ed opzioni Per poter affrontare lo studio dei prodotti derivati occorre fare delle ipotesi sul mercato finanziario che permettono di semplificare dal punto

Dettagli

I DERIVATI: QUALCHE NOTA CORSO PAS. Federica Miglietta Bari, luglio 2014

I DERIVATI: QUALCHE NOTA CORSO PAS. Federica Miglietta Bari, luglio 2014 I DERIVATI: QUALCHE NOTA CORSO PAS Federica Miglietta Bari, luglio 2014 GLI STRUMENTI DERIVATI Gli strumenti derivati sono così denominati perché il loro valore deriva dal prezzo di una attività sottostante,

Dettagli

Le opzioni. (1 parte) A cura di Stefano Zanchetta

Le opzioni. (1 parte) A cura di Stefano Zanchetta Le opzioni (1 parte) A cura di Stefano Zanchetta 1 Disclaimer La pubblicazione del presente documento non costituisce attività di sollecitazione del pubblico risparmio da parte di Borsa Italiana S.p.A.

Dettagli

Danilo Mascia, PhD Student Università degli Studi di Cagliari Anno Accademico 2012-2013 Economia e tecnica del mercato mobiliare

Danilo Mascia, PhD Student Università degli Studi di Cagliari Anno Accademico 2012-2013 Economia e tecnica del mercato mobiliare Danilo Mascia, PhD Student Università degli Studi di Cagliari Anno Accademico 2012-2013 Economia e tecnica del mercato mobiliare danilo.mascia@gmail.com 1 Gli strumenti finanziari derivati 2 Gli strumenti

Dettagli

Esercizi svolti di Matematica Finanziaria

Esercizi svolti di Matematica Finanziaria Esercizi svolti di Matematica Finanziaria Esercizio I. Si consideri un obbligazione al 6%, con cedole trimestrali, vita a scadenza di anno, rendimento del 3, 7%. Calcolare il prezzo di tale obbligazione,

Dettagli

20160414v01. Manuale Derivati 1

20160414v01. Manuale Derivati 1 Manuale Derivati 1 Manuale Derivati 2 Indice 1. Introduzione... 3 2. Attivazione servizio... 3 3. Borse... 3 4. Rischi dell operatività in opzioni e futures... 3 4.1 Conoscere è importante...3 4.2 Rischi

Dettagli

studi e analisi finanziarie Put ladder

studi e analisi finanziarie Put ladder Put ladder ( guadagniamo con i forti ribassi di mercato ) In questo articolo ci accingiamo ad esporre l analisi di un Put ladder, affronteremo prima la parte teorica poi, in successivo articolo, esporremo

Dettagli

Prefazione. Capitolo 1 Introduzione ai contratti derivati 1 1.1 I derivati 1

Prefazione. Capitolo 1 Introduzione ai contratti derivati 1 1.1 I derivati 1 Prefazione XV Capitolo 1 Introduzione ai contratti derivati 1 1.1 I derivati 1 Capitolo 2 Il mercato delle opzioni azionarie 11 2.1 Le opzioni sui singoli titoli azionari 11 2.2 Il mercato telematico delle

Dettagli

Conoscere gli strumenti derivati

Conoscere gli strumenti derivati Conoscere gli strumenti derivati Una breve guida alle principali caratteristiche e all utilizzo degli strumenti finanziari derivati di Borsa Italiana Alcuni articoli contenuti in questa pubblicazione -

Dettagli

Determinazione dei Prezzi Forward e dei Prezzi Futures

Determinazione dei Prezzi Forward e dei Prezzi Futures Determinazione dei Prezzi Forward e dei Prezzi Futures Lezione 6 5.1 Beni d Investimento e Beni di Consumo I beni d investimento (ad es., oro, argento) sono beni che vengono posseduti solo per fini d investimento

Dettagli

10 ESEMPIO DI VALUTAZIONE IN BILANCIO DI UN OPZIONE

10 ESEMPIO DI VALUTAZIONE IN BILANCIO DI UN OPZIONE SOMMARIO 1 INTRODUZIONE ALLE OPZIONI 1.1 Teoria delle opzioni 1.2 Specifiche contrattuali delle opzioni su azioni 2 FORMALIZZAZIONI 3 PROPRIETA FONDAMENTALI DELLE OPZIONI SU AZIONI 3.1 Put-Call Parity

Dettagli

ESERCITAZIONE 1. 15 novembre 2012

ESERCITAZIONE 1. 15 novembre 2012 ESERCITAZIONE 1 Economia dell Informazione e dei Mercati Finanziari C.d.L. in Economia degli Intermediari e dei Mercati Finanziari (8 C.F.U.) C.d.L. in Statistica per le decisioni finanziarie ed attuariali

Dettagli

I modelli della fisica e la finanza, ovvero perchè i fisici lavorano nelle banche

I modelli della fisica e la finanza, ovvero perchè i fisici lavorano nelle banche I modelli della fisica e la finanza, ovvero perchè i fisici lavorano nelle banche Mediobanca (Milano, 11 luglio 2003) Indice 1. Perché i fisici in finanza? 2. Il problema 3. I modelli della fisica in finanza

Dettagli

LEZIONE 4. Il Capital Asset Pricing Model. Professor Tullio Fumagalli Corso di Finanza Aziendale Università degli Studi di Bergamo.

LEZIONE 4. Il Capital Asset Pricing Model. Professor Tullio Fumagalli Corso di Finanza Aziendale Università degli Studi di Bergamo. LEZIONE 4 Il Capital Asset Pricing Model 1 Generalità 1 Generalità (1) Il Capital Asset Pricing Model è un modello di equilibrio dei mercati che consente di individuare una precisa relazione tra rendimento

Dettagli

Lezione 1: Richiami ai concetti di base: Valore Attuale, VAN, Rendite. Analisi degli Investimenti 2015/16 Lorenzo Salieri

Lezione 1: Richiami ai concetti di base: Valore Attuale, VAN, Rendite. Analisi degli Investimenti 2015/16 Lorenzo Salieri Lezione 1: Richiami ai concetti di base: Valore Attuale, VAN, Rendite Analisi degli Investimenti 2015/16 Lorenzo Salieri Il valore dell impresa come una torta Debito Capitale Azionario 2 Struttura Finanziaria

Dettagli

MinIFIB IDEM MERCATO ITALIANO DEI DERIVATI

MinIFIB IDEM MERCATO ITALIANO DEI DERIVATI IDEM MERCATO ITALIANO DEI DERIVATI SOMMARIO i vantaggi offerti 4 l indice mib30 6 come funziona 7 quanto vale 8 la durata del contratto 9 cosa accade alla scadenza 10 il prezzo al quale si può negoziare

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

GLI STRUMENTI DERIVATI. Giuseppe G. Santorsola EIF 1

GLI STRUMENTI DERIVATI. Giuseppe G. Santorsola EIF 1 GLI STRUMENTI DERIVATI Giuseppe G. Santorsola EIF 1 Gli strumenti derivati Sono strumenti finanziari la cui esistenza e valutazione dipendono dal valore di un'altra attività chiamata sottostante che può

Dettagli

WHS opzioni FX. La guida per iniziare con le opzioni FX. Predire il trend dei mercati valutari e coprire le posizioni con le opzioni FX.

WHS opzioni FX. La guida per iniziare con le opzioni FX. Predire il trend dei mercati valutari e coprire le posizioni con le opzioni FX. La guida per iniziare con le opzioni FX WHS opzioni FX Predire il trend dei mercati valutari e coprire le posizioni con le opzioni FX. Affina il tuo stile di trading e la visione dei mercati. Impara ad

Dettagli

APPROFONDIMENTO IL TWIN WIN DA IL MEGLIO SUL BIGLIETTO VERDE

APPROFONDIMENTO IL TWIN WIN DA IL MEGLIO SUL BIGLIETTO VERDE APPROFONDIMENTO IL TWIN WIN DA IL MEGLIO SUL BIGLIETTO VERDE Per puntare sul recupero del dollaro, o per difendere investimenti in valuta da un ulteriore allungo dell euro, i risparmiatori italiani possono

Dettagli

Opzioni americane. Capitolo 5. 5.1 Il modello

Opzioni americane. Capitolo 5. 5.1 Il modello Capitolo 5 Opzioni americane 5. Il modello Consideriamo un modello di mercato finanziario così come descritto nel Paragrafo 4.2. Il mercato è quindi formato da d+ titoli di prezzi S 0 n, S n,..., S d n,

Dettagli

Elementi di teoria delle opzioni e dei contratti derivati

Elementi di teoria delle opzioni e dei contratti derivati Elementi di teoria delle opzioni e dei contratti derivati Claudio Pacati Università degli Studi di Siena Dipartimento di Economia Politica Dispensa del corso di Matematica Finanziaria, a.a. 2000 01 Le

Dettagli

Gli strumenti derivati

Gli strumenti derivati Gli strumenti derivati EMM A - Lezione 6 Prof. C. Schena Università dell Insubria 1 Gli strumenti derivati Derivati perché il loro valore deriva da quello di altre attività dette beni/attività sottostanti

Dettagli

FORWARD RATE AGREEMENT

FORWARD RATE AGREEMENT FORWARD RATE AGREEMENT FLAVIO ANGELINI. Definizioni In generale, un contratto a termine o forward permette una compravendita di una certa quantità di un bene differita a una data futura a un prezzo fissato

Dettagli

Corso di FINANZA AZIENDALE AVANZATA

Corso di FINANZA AZIENDALE AVANZATA Corso di FINANZA AZIENDALE AVANZATA anno accademico 2007/2008 modulo n. 1 Lezioni 6 Corso di FINANZA AZIENDALE AVANZATA Teoria delle opzioni e struttura finanziaria LE OPTION Contratto a termine mediante

Dettagli

Opzioni. Futures, forwards e opzioni

Opzioni. Futures, forwards e opzioni Opzioni Le calls sono opzioni Le puts sono opzioni per acquistare per vendere una certa attività a* una certa attività a* (o entro**) una certa data (o entro**) una certa data ad un certo prezzo ad un

Dettagli

Gli strumenti derivati: opzioni

Gli strumenti derivati: opzioni Gli strumenti derivati: opzioni Definizione (1) L opzione è un contratto che conferisce al suo sottoscrittore un diritto e non un obbligo, ad acquistare (per una call) o a vendere (per una put) al venditore

Dettagli

Introduzione alle opzioni

Introduzione alle opzioni QUIZ CAPITOLO 19 Introduzione alle opzioni 1. La Figura 19.13a rappresenta un venditore dell opzione call; la Figura 19.13b un acquirente dell opzione call. 2. a. Il prezzo di esercizio dell opzione put

Dettagli

Esercizi Svolti di Matematica Finanziaria

Esercizi Svolti di Matematica Finanziaria Esercizi Svolti di Matematica Finanziaria Esercizio. Nel mercato obbligazionario italiano del 0 Novembre 009 si osservano i seguenti prezzi: - prezzo 96, per un titolo il cui valore a scadenza in T è 0,

Dettagli

Metodi Quantitativi per la Finanza

Metodi Quantitativi per la Finanza Metodi Quantitativi per la Finanza Metodi Quantitativi per la Finanza http://www.economia.unimi.it/finance S.M. Iacus Ricevimento: Gio 9:00-12:00, III Piano DEAS stefano.iacus@unimi.it Programma del corso

Dettagli

Covered Warrant di UniCredit, soluzioni per mercati in movimento.

Covered Warrant di UniCredit, soluzioni per mercati in movimento. Covered Warrant di UniCredit, soluzioni per mercati in movimento. I Certificate descritti in questa pubblicazione sono strumenti finanziari strutturati complessi a capitale non protetto. Non è garantito

Dettagli

Le opzioni come strumento di copertura del portafoglio

Le opzioni come strumento di copertura del portafoglio Le opzioni come strumento di copertura del portafoglio BORSA ITALIANA S.p.A. Derivatives Markets Private Investors Business Development Relatore: Gabriele Villa Disclaimer La pubblicazione del presente

Dettagli

24.000 OPZIONI. Marcello Minenna. Covered. 24.000 premio. 8.000 Diritto di OPzione. Marcello Minenna. Investitori. Marcello Minenna.

24.000 OPZIONI. Marcello Minenna. Covered. 24.000 premio. 8.000 Diritto di OPzione. Marcello Minenna. Investitori. Marcello Minenna. Volumi Scambiati Le Digressione Diritti di opzione 32.000 Controvalori Scambiati (milioni di euro) 28.000 Volatilità Implicita, e Scelta degli 24.000 OPZIONI 20.000 16.000 8.000 Premi 12.000 Idem 4.000

Dettagli

Anna Maria Arcari, Programmazione e controllo, McGraw-Hill, 2010, ISBN 6169-3

Anna Maria Arcari, Programmazione e controllo, McGraw-Hill, 2010, ISBN 6169-3 9.7. w La valutazione delle opzioni reali Come abbiamo visto i metodi e le regole tradizionali di capital budgeting non riescono a cogliere e misurare la discrezionalità del management e la flessibilità

Dettagli

- il grafico di payout alla scadenza e alla data odierna per acquisto/vendita di opzioni call e put;

- il grafico di payout alla scadenza e alla data odierna per acquisto/vendita di opzioni call e put; GUIDA OPTION PRICER SOMMARIO Che cos è 3 Dati e orari di disponibilità 3 Modalità di accesso al tool 4 Sezione Pricer 5 Cronologia utilizzo sezione Pricer 8 Sezione Strategia 9 Cronologia utilizzo sezione

Dettagli

La struttura dell intervento

La struttura dell intervento Gli strumenti derivati: aspetti economicio c Pierpaolo Ferrari Brescia, 10 ottobre 2008 1 La struttura dell intervento 1) La definizione di strumenti derivati 2) Le tipologie di strumenti derivati 3) Le

Dettagli

Nuove strategie di trading con le opzioni del mercato IDEM

Nuove strategie di trading con le opzioni del mercato IDEM Nuove strategie di trading con le opzioni del mercato IDEM Gabriele VILLA Responsabile Business Development Investitori Privati Stefania FAIELLA Derivatives Markets Products and Indices Borsa Italiana

Dettagli

Tecniche di copertura

Tecniche di copertura Tecniche di copertura A tale scopo, il primo parametro da considerare è. Si supponga di possedere un portafoglio Π composto dall opzione e da una quantità pari a del sottostante (dunque, ho venduto l opzione

Dettagli

Strumenti derivati: corso base

Strumenti derivati: corso base Strumenti derivati: corso base Prof. Fabio Bellini fabio.bellini@unimib.it Università di Milano Bicocca Dipartimento di Metodi Quantitativi www.dimequant.unimib.it/fabiobellini Outline Contratti forward,

Dettagli

1b. [2] Stessa richiesta del punto 1a., con gli stessi dati salvo che la valutazione deve essere fatta rispetto alla legge lineare.

1b. [2] Stessa richiesta del punto 1a., con gli stessi dati salvo che la valutazione deve essere fatta rispetto alla legge lineare. MATEMATICA FINANZIARIA - 6 cfu Prova del 14 aprile 2015 - Riservata a studenti fuori corso Cognome Nome e matr.................................................................................. Anno di

Dettagli

Quesiti livello Application

Quesiti livello Application 1 2 3 4 Se la correlazione tra due attività A e B è pari a 0 e le deviazioni standard pari rispettivamente al 4% e all 8%, per quali dei seguenti valori dei loro pesi il portafoglio costruito con tali

Dettagli