INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1)"

Transcript

1 INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) 151 Introduzione Un esperimento è una prova o una serie di prove. Gli esperimenti sono largamente utilizzati nel campo dell ingegneria. Tra le varie applicazioni; Progettazione e sviluppo del prodotto; Caratterizzazione e ottimizzazione dei processi; Valutazione delle proprietà dei materiali. Tutti gli esperimenti richiedono una pianificazione. Alcuni sono progettati, alcuni in modo preciso, altri invece sono pianificati poco e male. Esiste un modo per ottimizzare gli esperimenti? Progettazione e Sviluppo Prodotto 152 1

2 Gli esperimenti nell ingegneria Gli esperimenti sono utilizzati per per studiare le prestazioni di processi e di sistemi (es.: prodotti). Fattori controllabili x 1 x 2 x 3 x n Input Processo / sistema Output y z 1 z 2 z 3 z n Fattori non controllabili Progettazione e Sviluppo Prodotto 153 Quali sono gli obiettivi degli esperimenti? Gli obiettivi degli esperimenti possono essere, tra i vari possibili, i seguenti: Determinare le variabili che hanno maggiore influenza sulla risposta y; Determinare quali valori assegnare alle variabili controllabili x in modo che la risposta y sia sempre prossima al valore desiderato; Determinare quali valori assegnare alle variabili controllabili x in modo che la variabilità della risposta y sia minima; Progettazione e Sviluppo Prodotto 154 2

3 Principi base del Design of Experiments Casualizzazione (o randomizzazione): Eseguire le prove di un esperimento in maniera tale da distribuire aleatoriamente i fattori di disturbo (es.: eseguire le prove di un esperimento in ordine casuale) Replicazione: Consiste nel ripetere le misure, idealmente in condizioni diverse Controllo locale: Insieme delle operazioni intraprese dallo sperimentatore per ridurre l errore sperimentale (es.: utilizzo di unità sperimentali omogenee, utilizzo dei blocchi) Progettazione e Sviluppo Prodotto 155 Alcune definizioni Variabile di risposta: la risposta del sistema oggetto dell esperimento Fattore: variabile controllabile (variabile indipendente). Può essere: quantitativo (espresso da un reale o un intero); qualitativo (espresso attraverso un attributo categorico); Livello di un fattore: valore assunto dal rispettivo fattore; Esperimento monofattoriale: esperimento in cui c è solo un fattore in gioco; Esperimento multifattoriale: esperimento in cui c è più di un fattore in gioco; Trattamento: insieme dei livelli imposti ad un unità sperimentale Progettazione e Sviluppo Prodotto 156 3

4 Strategie di sperimentazione Esempio: che esperimenti posso svolgere per trovare la combinazione delle variabili che massimizza le prestazioni del prodotto? Approccio a tentativi (best guess) Molto utilizzato Ha più successo di quanto si pensi, ma anche svantaggi (es.: scarsa comprensione del sistema) Variazione di un fattore alla volta (OFAT One Factor At-a Time) Abbastanza usato in campo ingegneristico Poco efficiente Utilizzo di piani fattoriali Analisi sistematica della superficie di risposta del sistema Progettazione e Sviluppo Prodotto 157 Piani fattoriali In un esperimento fattoriale vengono testate tutte (piano fattoriale completo) o parte (piano fattoriale frazionario) delle combinazioni derivanti dai possibili livelli dei fattori. Esempio: esperimento del golf. Possibili fattori: Tipo di mazza Tipo di pallina Tipo di bibita Camminare / vetturetta Condizioni atm. Mattina / pomeriggio Esempio di piano completo a 2 fattori Progettazione e Sviluppo Prodotto 158 4

5 Esempio: piano fattoriale con 2 fattori Nell esperimento del golf consideriamo solo gli effetti del tipo di mazza e del tipo di palla. L esperimento può essere rappresentato in uno spazio bidimensionale: Effetto del tipo di mazza Effetto del tipo di Interazione palla mazza/palla Progettazione e Sviluppo Prodotto 159 Esempio: piano fattoriale con 3 fattori Decidiamo di studiare, oltre agli effetti del tipo di mazza e del tipo di palla, l effetto della bibita utilizzata dal golfista. L esperimento può essere rappresentato in uno spazio tridimensionale: Progettazione e Sviluppo Prodotto 160 5

6 Esempio: piano fattoriale con 4 fattori Oltre ai fattori già visti aggiungiamo lo studio dell effetto del mezzo di spostamento utilizzato. L esperimento può essere rappresentato in uno spazio a quattro dimensioni: Progettazione e Sviluppo Prodotto 161 Piani completi e piani frazionari In un esperimento fattoriale completo si considerano tutte le possibili combinazioni combinazioni fattori / livelli. In un esperimento fattoriale frazionario si considera una parte di tutte le possibili combinazioni fattori / livelli. Esempio di piano fattoriale frazionario Progettazione e Sviluppo Prodotto 162 6

7 Procedura generale per la pianificazione degli esperimenti 1. Identificazione e formulazione del problema; 2. Scelta dei fattori, del numero dei livelli e dell ampiezza degli intervalli; 3. Scelta della variabile di risposta; 4. Individuazione del corretto piano sperimentale; 5. Esecuzione dell esperimento; 6. Analisi statistica dei risultati; 7. Conclusioni Progettazione e Sviluppo Prodotto 163 Esperimenti con un solo fattore. Consideriamo il seguente esempio: una ditta produttrice di calcestruzzo vuole verificare se l aggiunta di un componente al calcestruzzo (emulsione di polimero) ne modifica la resistenza. Osserviamo che: Vi è un solo fattore in gioco (composizione del calcestruzzo); Il fattore è di tipo qualitativo; Il fattore ha due livelli (polimero assente / polimero presente) Progettazione e Sviluppo Prodotto 164 7

8 Raccolta dei dati. Supponiamo che lo sperimentatore abbia avuto a disposizione 10 provini di calcestruzzo normale e 10 di calcestruzzo modificato; Le prove sperimentali hanno fornito i seguenti risultati: Progettazione e Sviluppo Prodotto 165 Visualizzazione dei dati: diagramma a punti Visualizziamo i dati dell esperimento in un diagramma a punti. Ciascun punto rappresenta un dato sperimentale. Il trattino rosso orizzontale rappresenta la media campionaria. Progettazione e Sviluppo Prodotto 166 8

9 Visualizzazione dei dati: box plot Il digramma a scatola riporta il minimo, il massimo ed i percentili 25 %, 50 % (mediana) e 75 %. Progettazione e Sviluppo Prodotto 167 Interpretazione dei dati A questo punto ci poniamo la seguente domanda: l aggiunta del polimero modifica la resistenza del calcestruzzo? Ovvero: la presenza del polimero è un fattore significativo? Intuitivamente possiamo dire che l affidabilità dell esperimento e delle conclusioni dipenderanno dai seguenti fattori: Numerosità del campione; Distribuzione dei dati sperimentali I risultati dell esperimento sembrano indicare che l aggiunta del polimero influisce sulla resistenza del calcestruzzo. Tuttavia siamo sicuri che le conclusioni dell esperimento non siano dovute a fattori casuali? Progettazione e Sviluppo Prodotto 168 9

10 Verifica di ipotesi statistiche Formuliamo il problema in maniera matematica. L interpretazione dei dati sperimentali dà origine a due ipotesi statistiche (o meglio ad una ipotesi ed alla negazione della stessa): Ipotesi nulla (H 0 ): la resistenza media del calcestruzzo modificato è uguale a quella del calcestruzzo non modificato: µ 1 = µ 2. Ipotesi alternativa (H 1 ): la resistenza media del calcestruzzo modificato è diversa da quella del calcestruzzo non modificato: µ 1 µ 2. Nota: nelle ipotesi di cui sopra si fa riferimento alla media della popolazione (non alla media del campione). Problema: verificare o rigettare l ipotesi nulla a partire dai dati campionari Progettazione e Sviluppo Prodotto 169 Il test t di Student Esistono numerosi test per la verifica di ipotesi statistiche (test di significatività). Uno dei più utilizzati è il test t di Student. Vale sotto l ipotesi di popolazioni distribuite normalmente; uguali varianze dei due gruppi, ancorchè ignote t = µ µ n + n 1 2 σ n n 1 2 g1σ 1 + g 2σ 2 σ = g + g Dove: µ, µ 1 2 rappresentano le medie campionarie dei due gruppi; σ,σ Le varianze campionarie dei due gruppi; 1 2 n,n 1 2 le numerosità dei due gruppi; g,g 1 2 i gradi di libertà dei due gruppi Progettazione e Sviluppo Prodotto

11 Significato del parametro t È un parametro di significatività: Valori di t che sono prossimi allo zero sono conformi all ipotesi nulla; Valori di t lontani dallo zero sono conformi all ipotesi alternativa; È una misura di quanto sono lontane le medie in unità di deviazione standard; Può essere interpretato come rapporto segnale/rumore. Osserviamo che: La significatività aumenta all aumentare della numerosità del campione; La significatività aumenta all aumentare della differenza tra le medie campionarie; La significatività diminuisce all aumentare della varianza campionaria (maggiore dispersione dei dati) Progettazione e Sviluppo Prodotto 171 Scelta del parametro t (1/2) Come fissare un valore di t che serva da criterio di accettazione / rifiuto dell ipotesi nulla? Consideriamo la funzione densità di probabilità t di Student (a 18 g.d.l.): 0.4 Distribuzione t di Student a 18 gradi di libertà p(t) t Progettazione e Sviluppo Prodotto

12 Scelta del parametro t (2/2) L uguaglianza delle medie della popolazione è tanto più improbabile quanto t si allontana dallo zero. Si, ma quanto? Fissiamo, per esempio, due valori di t che intercettano due zone del grafico: la zona interna costituita dal 95 % di probabilità complessiva, e le due code (a dx e sx) di probabilità complessiva 5 %. 0.4 Distribuzione t di Student a 18 gradi di libertà p(t) t Progettazione e Sviluppo Prodotto 173 Test di significatività Questi punti corrispondono a valori di t = e Se dunque il nostro valore di t è esterno a quest intervallo accettiamo l ipotesi alternativa (è anche possibile che le medie siano uguali, ma la probabilità è inferiore al 5 %) Si dice anche che l ipotesi alternativa è accettata con un livello di significatività del 95 %. Il livello del 95 % è molto usato in pratica. Tuttavia potremmo voler essere ancora più restrittivi. Imponendo un valore del 99 % otteniamo per t i valori e Se il valore di t è interno all intervallo concludiamo che non vi è evidenza statistica di differenza tra le medie delle due popolazioni. Come interpretiamo questo risultato? 1) non vi è, in effetti, differenza tra le medie 2) la numerosità del campione non è sufficiente Progettazione e Sviluppo Prodotto

13 Riferimenti bibliografici 1. D.C. Montgomery; Progettazione ed analisi degli esperimenti, McGraw-Hill, 2005; 2. W. G. Cochran, G. M. Cox; Experimental Designs, John Wiley & Sons, 1957; 3. G. Landenna, D. Marasini, A. Ferrari; La verifica di ipotesi statistiche, Il Mulino, 1998 Progettazione e Sviluppo Prodotto

3. Confronto tra medie di due campioni indipendenti o appaiati

3. Confronto tra medie di due campioni indipendenti o appaiati BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

4. Confronto tra medie di tre o più campioni indipendenti

4. Confronto tra medie di tre o più campioni indipendenti BIOSTATISTICA 4. Confronto tra medie di tre o più campioni indipendenti Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1 Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 Capitolo 3. L'analisi della varianza. Il problema dei confronti multipli. La soluzione drastica di Bonferroni ed il test

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento

errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento Analisi della varianza a una via a misure ripetute (Anova con 1 fattore within) modello strutturale dell'analisi della varianza a misure ripetute con 1 fattore: y = μ ik 0 +π i +α k + ik ε ik interazione

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi Idea di base Supponiamo di avere un idea del valore (incognito) di una media di un campione, magari attraverso

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA)

4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA) 4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA) L analisi della varianza è un metodo sviluppato da Fisher, che è fondamentale per l interpretazione statistica di molti dati biologici ed è alla

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

ANALISI DELLE FREQUENZE: IL TEST CHI 2

ANALISI DELLE FREQUENZE: IL TEST CHI 2 ANALISI DELLE FREQUENZE: IL TEST CHI 2 Quando si hanno scale nominali o ordinali, non è possibile calcolare il t, poiché non abbiamo medie, ma solo frequenze. In questi casi, per verificare se un evento

Dettagli

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1 Potenza dello studio e dimensione campionaria Laurea in Medicina e Chirurgia - Statistica medica 1 Introduzione Nella pianificazione di uno studio clinico randomizzato è fondamentale determinare in modo

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA)

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA) Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 4: Analisi della varianza (ANOVA) Analisi della varianza Analisi della varianza (ANOVA) ANOVA ad

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

1 Valore atteso o media

1 Valore atteso o media 1 Valore atteso o media Definizione 1.1. Sia X una v.a., si chiama valore atteso (o media o speranza matematica) il numero, che indicheremo con E[X] o con µ X, definito come E[X] = i x i f(x i ) se X è

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA Pag 1 di 92 Francesco Sardo ELEMENTI DI STATISTICA PER VALUTATORI DI SISTEMI QUALITA AMBIENTE - SICUREZZA REV. 11 16/08/2009 Pag 2 di 92 Pag 3 di 92 0 Introduzione PARTE I 1 Statistica descrittiva 1.1

Dettagli

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Alessandro Rezzani Abstract L articolo descrive una delle tecniche di riduzione della dimensionalità del data set: il metodo dell analisi delle componenti principali (Principal

Dettagli

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)

Dettagli

LA CORRELAZIONE LINEARE

LA CORRELAZIONE LINEARE LA CORRELAZIONE LINEARE La correlazione indica la tendenza che hanno due variabili (X e Y) a variare insieme, ovvero, a covariare. Ad esempio, si può supporre che vi sia una relazione tra l insoddisfazione

Dettagli

Applicazioni dell'analisi in più variabili a problemi di economia

Applicazioni dell'analisi in più variabili a problemi di economia Applicazioni dell'analisi in più variabili a problemi di economia La diversità tra gli agenti economici è alla base della nascita dell attività economica e, in generale, lo scambio di beni e servizi ha

Dettagli

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE ED IL TERRITORIO CORSO DI STATISTICA E CALCOLO DELLE PROBABILITA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N ARGOMENTO: CALCOLO DELLE PROBABILITA

Dettagli

Progettazione Robusta

Progettazione Robusta Progettazione Robusta Perdita Consumatore qualità = f 1 (perdita Perdite di reputazione e quote di mercato Costi di garanzia per il produttore La qualità di un prodotto è la (minima perdita impartita alla

Dettagli

INCERTEZZA DI MISURA

INCERTEZZA DI MISURA L ERRORE DI MISURA Errore di misura = risultato valore vero Definizione inesatta o incompleta Errori casuali Errori sistematici L ERRORE DI MISURA Errori casuali on ne si conosce l origine poiche, appunto,

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE variabile casuale (rv): regola che associa un numero ad ogni evento di uno spazio E. variabile casuale di Bernoulli: rv che può assumere solo due valori (e.g.,

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011

VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011 VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011 1 RAPPRESENTARE I DATI: TABELLE E GRAFICI Un insieme di misure è detto serie statistica o serie dei dati 1) Una sua prima elementare elaborazione può

Dettagli

Se si insiste non si vince

Se si insiste non si vince Se si insiste non si vince Livello scolare: 2 biennio Abilità interessate Valutare la probabilità in diversi contesti problematici. Distinguere tra eventi indipendenti e non. Valutare criticamente le informazioni

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

Business Intelligence. Il data mining in

Business Intelligence. Il data mining in Business Intelligence Il data mining in L'analisi matematica per dedurre schemi e tendenze dai dati storici esistenti. Revenue Management. Previsioni di occupazione. Marketing. Mail diretto a clienti specifici.

Dettagli

Statistical Process Control

Statistical Process Control Statistical Process Control 1 Introduzione SPC si occupa del miglioramento della qualità. I metodi per il miglioramento della qualità possono essere applicati a qualsiasi area in una fabbrica o organizzazione

Dettagli

Le formule possono essere scritte utilizzando un insieme di funzioni predefinite che Excel mette a disposizione, raggruppate per argomento.

Le formule possono essere scritte utilizzando un insieme di funzioni predefinite che Excel mette a disposizione, raggruppate per argomento. Excel: le funzioni Le formule possono essere scritte utilizzando un insieme di funzioni predefinite che Excel mette a disposizione, raggruppate per argomento. DEFINIZIONE: Le funzioni sono dei procedimenti

Dettagli

ANALISI DELLA VARIANZA A PIU CRITERI DI CLASSIFICAZIONE

ANALISI DELLA VARIANZA A PIU CRITERI DI CLASSIFICAZIONE ANALISI DELLA VARIANZA A PIU CRITERI DI CLASSIFICAZIONE CON REPLICHE INTRODUZIONE Lo studio di un fenomeno non si deve limitareit alla valutazione dei singoli fattori in studio ma molto spesso è importante

Dettagli

STATISTICA 1 ESERCITAZIONE 1 CLASSIFICAZIONE DELLE VARIABILI CASUALI

STATISTICA 1 ESERCITAZIONE 1 CLASSIFICAZIONE DELLE VARIABILI CASUALI STATISTICA 1 ESERCITAZIONE 1 Dott. Giuseppe Pandolfo 30 Settembre 2013 Popolazione statistica: insieme degli elementi oggetto dell indagine statistica. Unità statistica: ogni elemento della popolazione

Dettagli

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della RELAZIONE TRA VARIABILI QUANTITATIVE Lezione 7 a Accade spesso nella ricerca in campo biomedico, così come in altri campi della scienza, di voler studiare come il variare di una o più variabili (variabili

Dettagli

1 Medie. la loro media aritmetica è il numero x dato dalla formula: x = x 1 + x 2 +... + x n

1 Medie. la loro media aritmetica è il numero x dato dalla formula: x = x 1 + x 2 +... + x n 1 Medie La statistica consta di un insieme di metodi atti a elaborare e a sintetizzare i dati relativi alle caratteristiche di una fissata popolazione, rilevati mediante osservazioni o esperimenti. Col

Dettagli

LOGISTICA APPUNTI DI STATISTICA

LOGISTICA APPUNTI DI STATISTICA Cos'é la Statistica LOGISTICA APPUNTI DI STATISTICA La statistica è la disciplina che applica metodi scientifici alla raccolta di dati e informazioni per una loro classificazione, elaborazione e rappresentazione

Dettagli

Rapporto CESI. Cliente: Oggetto: Ordine: Contratto CESI n. 71/00056. Note: N. pagine: 13 N. pagine fuori testo: Data: 30.05.2000.

Rapporto CESI. Cliente: Oggetto: Ordine: Contratto CESI n. 71/00056. Note: N. pagine: 13 N. pagine fuori testo: Data: 30.05.2000. A0/010226 Pag.1/13 Cliente: Ricerca di Sistema Oggetto: Determinazione della tenacità di acciai eserciti - Correlazioni per stime di FATT da prove Small Punch Ordine: Contratto CESI n. 71/00056 Note: DEGRADO/GEN04/003

Dettagli

ANALISI DEI DATI CON SPSS

ANALISI DEI DATI CON SPSS STRUMENTI E METODI PER LE SCIENZE SOCIALI Claudio Barbaranelli ANALISI DEI DATI CON SPSS II. LE ANALISI MULTIVARIATE ISBN 978-88-7916-315-9 Copyright 2006 Via Cervignano 4-20137 Milano Catalogo: www.lededizioni.com

Dettagli

Lezioni di STATISTICA MATEMATICA A

Lezioni di STATISTICA MATEMATICA A Università di Modena e Reggio Emilia Facoltà di Ingegneria Lezioni di STATISTICA MATEMATICA A Corso di Laurea in Ingegneria Meccanica Corso di Laurea in Ingegneria dei Materiali - Anno Accademico 010/11

Dettagli

Confronto tra gruppi (campioni indipendenti)

Confronto tra gruppi (campioni indipendenti) Confronto tra gruppi (campioni indipendenti) Campioni provenienti da una popolazione Normale con medie che possono essere diverse ma varianze uguali campioni: Test z or t sulla differenza tra medie 3,

Dettagli

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile.

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. ORDINALI E NOMINALI LA PROBABILITÀ Statistica5 23/10/13 Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. Se si afferma che un vitello di razza chianina pesa 780 kg a 18

Dettagli

Rischio e Volatilità

Rischio e Volatilità 2 Meeting annuale SellaAdvice Trading Rho,, 20 novembre 2004 Rischio e Volatilità Relatore: Maurizio Milano Da dove deve partire un analisi tecnica operativa a supporto di un attività di trading? L elemento

Dettagli

2.1 DATI NAZIONALI E TERRITORIALI (AREE E Regioni)

2.1 DATI NAZIONALI E TERRITORIALI (AREE E Regioni) ANALISI TERRITORIALE DEL VALORE DEL PATRIMONIO ABITATIVO Gli immobili in Italia - 2015 ANALISI TERRITORIALE DEL VALORE DEL PATRIMONIO ABITATIVO Nel presente capitolo è analizzata la distribuzione territoriale

Dettagli

23 CAPITOLO 2: RELAZIONI TRA LE DIVERSE FASI DI UN CAMPIONE DI TERRENO

23 CAPITOLO 2: RELAZIONI TRA LE DIVERSE FASI DI UN CAMPIONE DI TERRENO v 23 CAPITOLO 2: RELAZIONI TRA LE DIERSE FASI DI UN CAMPIONE DI TERRENO CAPITOLO 2: RELAZIONI TRA LE DIERSE FASI DI UN CAMPIONE DI TERRENO Un campione di terreno viene considerato come un sistema multifase,

Dettagli

LA POVERTÀ IN ITALIA. Anno 2013. 14 luglio 2014

LA POVERTÀ IN ITALIA. Anno 2013. 14 luglio 2014 14 luglio 2014 Anno 2013 LA POVERTÀ IN ITALIA Nel 2013, il 12,6% delle famiglie è in condizione di povertà relativa (per un totale di 3 milioni 230 mila) e il 7,9% lo è in termini assoluti (2 milioni 28

Dettagli

la rilevazione degli apprendimenti INVALSI

la rilevazione degli apprendimenti INVALSI I quadri di riferimento: Matematica Il Quadro di Riferimento (QdR) per le prove di valutazione dell'invalsi di matematica presenta le idee chiave che guidano la progettazione delle prove, per quanto riguarda:

Dettagli

STUDIO DI SETTORE SM43U

STUDIO DI SETTORE SM43U ALLEGATO 3 NOTA TECNICA E METODOLOGICA STUDIO DI SETTORE SM43U NOTA TECNICA E METODOLOGICA CRITERI PER LA COSTRUZIONE DELLO STUDIO DI SETTORE Di seguito vengono esposti i criteri seguiti per la costruzione

Dettagli

STATA. e la BIOSTATISTICA di Norman - Streiner. Prof. Pierpaolo Vittorini pierpaolo.vittorini@univaq.it

STATA. e la BIOSTATISTICA di Norman - Streiner. Prof. Pierpaolo Vittorini pierpaolo.vittorini@univaq.it e la BIOSTATISTICA di Norman - Streiner pierpaolo.vittorini@univaq.it Università degli Studi dell Aquila Facoltà di Medicina e Chirurgia 14 febbraio 2013 Contenuti e obiettivi Breve riassunto applicativo

Dettagli

dell affidabilità strutturale

dell affidabilità strutturale Metodiprobabilisticiper per lavalutazione dell affidabilità strutturale Obiettivo dell esercitazione: acquisire le conoscenze necessarie per applicare i metodi probabilistici (livello III, II e semi probabilistico)

Dettagli

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE TELECOMUNICAZIONI (TLC) Tele (lontano) Comunicare (inviare informazioni) Comunicare a distanza Generico sistema di telecomunicazione (TLC) Segnale non elettrico Segnale elettrico TRASMESSO s x (t) Sorgente

Dettagli

1x1 qs-stat. Pacchetto Software per la Soluzione di Problemi Statistici nel Controllo Qualità. Versione: 1 / Marzo 2010 Doc. n.

1x1 qs-stat. Pacchetto Software per la Soluzione di Problemi Statistici nel Controllo Qualità. Versione: 1 / Marzo 2010 Doc. n. 1x1 qs-stat Pacchetto Software per la Soluzione di Problemi Statistici nel Controllo Qualità Versione: 1 / Marzo 2010 Doc. n.: PD-0012 Copyright 2010 Q-DAS GmbH & Co. KG Eisleber Str. 2 D - 69469 Weinheim

Dettagli

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE La presentazione dei dati per molte ricerche mediche fa comunemente riferimento a frequenze, assolute o percentuali. Osservazioni cliniche conducono sovente

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

Svolgimento della prova

Svolgimento della prova Svolgimento della prova D1. Il seguente grafico rappresenta la distribuzione dei lavoratori precari in Italia suddivisi per età nell anno 2012. a. Quanti sono in totale i precari? A. Circa due milioni

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Microeconomia venerdì 29 febbraio 2008 La struttura della lezione

Dettagli

VALORE DELLE MERCI SEQUESTRATE

VALORE DELLE MERCI SEQUESTRATE La contraffazione in cifre: NUOVA METODOLOGIA PER LA STIMA DEL VALORE DELLE MERCI SEQUESTRATE Roma, Giugno 2013 Giugno 2013-1 Il valore economico dei sequestri In questo Focus si approfondiscono alcune

Dettagli

Capitolo 8 - Introduzione alla probabilità

Capitolo 8 - Introduzione alla probabilità Appunti di Teoria dei Segnali Capitolo 8 - Introduzione alla probabilità Concetti preliminari di probabilità... Introduzione alla probabilità... Deinizione di spazio degli eventi... Deinizione di evento...

Dettagli

CAMPIONAMENTO SPAZIALE A DUE PASSI PER INDAGINI VOLTE ALL IDENTIFICAZIONE DI AREE A MAGGIOR PRESENZA DI RADON INDOOR IN LOMBARDIA

CAMPIONAMENTO SPAZIALE A DUE PASSI PER INDAGINI VOLTE ALL IDENTIFICAZIONE DI AREE A MAGGIOR PRESENZA DI RADON INDOOR IN LOMBARDIA CAMPIONAMENTO SPAZIALE A DUE PASSI PER INDAGINI OLTE ALL IDENTIFICAZIONE DI AREE A MAGGIOR PRESENZA DI RADON INDOOR IN LOMBARDIA Riccardo Borgoni, Piero Quatto, Daniela de Bartolo 2, Angela Alberici 2

Dettagli

La ricerca non sperimentale

La ricerca non sperimentale La ricerca non sperimentale Definizione Ricerca osservazionale: : 1. naturalistica Ricerca osservazionale: : 2. osservatori partecipanti Ricerca d archiviod Casi singoli Sviluppo di teorie e verifica empirica

Dettagli

Rischio impresa. Rischio di revisione

Rischio impresa. Rischio di revisione Guida alla revisione legale PIANIFICAZIONE del LAVORO di REVISIONE LEGALE dei CONTI Formalizzazione delle attività da svolgere nelle carte di lavoro: determinazione del rischio di revisione, calcolo della

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

IL CONTROLLO STATISTICO DI QUALITA

IL CONTROLLO STATISTICO DI QUALITA IL CONTROLLO STATISTICO DI QUALITA 1. Introduzione Realizzare un prodotto di qualità significa produrre rispettando certe specifiche e livelli di tolleranza prestabiliti, sulla base delle aspettative e

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

Permutazione degli elementi di una lista

Permutazione degli elementi di una lista Permutazione degli elementi di una lista Luca Padovani padovani@sti.uniurb.it Sommario Prendiamo spunto da un esercizio non banale per fare alcune riflessioni su un approccio strutturato alla risoluzione

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

Dinamica e Misura delle Vibrazioni

Dinamica e Misura delle Vibrazioni Dinamica e Misura delle Vibrazioni Prof. Giovanni Moschioni Politecnico di Milano, Dipartimento di Meccanica Sezione di Misure e Tecniche Sperimentali giovanni.moschioni@polimi.it VibrazionI 2 Il termine

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

1. Scopo dell esperienza.

1. Scopo dell esperienza. 1. Scopo dell esperienza. Lo scopo di questa esperienza è ricavare la misura di tre resistenze il 4 cui ordine di grandezza varia tra i 10 e 10 Ohm utilizzando il metodo olt- Amperometrico. Tale misura

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

Può la descrizione quantomeccanica della realtà fisica considerarsi completa?

Può la descrizione quantomeccanica della realtà fisica considerarsi completa? Può la descrizione quantomeccanica della realtà fisica considerarsi completa? A. Einstein, B. Podolsky, N. Rosen 25/03/1935 Abstract In una teoria completa c è un elemento corrispondente ad ogni elemento

Dettagli

Appendice III. Criteri per l utilizzo dei metodi di valutazione diversi dalle misurazioni in siti fissi

Appendice III. Criteri per l utilizzo dei metodi di valutazione diversi dalle misurazioni in siti fissi Appendice III (articolo 5, comma 1 e art. 22 commi 5 e 7) Criteri per l utilizzo dei metodi di valutazione diversi dalle misurazioni in siti fissi 1. Tecniche di modellizzazione 1.1 Introduzione. In generale,

Dettagli

v in v out x c1 (t) Molt. di N.L. H(f) n

v in v out x c1 (t) Molt. di N.L. H(f) n Comunicazioni elettriche A - Prof. Giulio Colavolpe Compito n. 3 3.1 Lo schema di Fig. 1 è un modulatore FM (a banda larga). L oscillatore che genera la portante per il modulatore FM e per la conversione

Dettagli

LINEE GUIDA PER LA DETERMINAZIONE DEI VALORI DEL FONDO NATURALE NELL AMBITO DELLA BONIFICA DEI SITI CONTAMINATI

LINEE GUIDA PER LA DETERMINAZIONE DEI VALORI DEL FONDO NATURALE NELL AMBITO DELLA BONIFICA DEI SITI CONTAMINATI Università degli Studi di Milano Dipartimento di Scienze della Terra A. Desio LINEE GUIDA PER LA DETERMINAZIONE DEI VALORI DEL FONDO NATURALE NELL AMBITO DELLA BONIFICA DEI SITI CONTAMINATI Direzione centrale

Dettagli

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado I quesiti sono distribuiti negli ambiti secondo la tabella seguente Ambito

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca Trascrizione del testo e redazione delle soluzioni di Paolo Cavallo. La prova Il candidato svolga una relazione

Dettagli

UTILIZZO DELLA PSICOCINETICA NELLA SCUOLA PRIMARIA E IN AMBITO SPORTIVO

UTILIZZO DELLA PSICOCINETICA NELLA SCUOLA PRIMARIA E IN AMBITO SPORTIVO UTILIZZO DELLA PSICOCINETICA NELLA SCUOLA PRIMARIA E IN AMBITO SPORTIVO Le capacità cognitive richieste per far fronte alle infinite modalità di risoluzione dei problemi motori e di azioni di gioco soprattutto

Dettagli

Classificazioni dei sistemi di produzione

Classificazioni dei sistemi di produzione Classificazioni dei sistemi di produzione Sistemi di produzione 1 Premessa Sono possibili diverse modalità di classificazione dei sistemi di produzione. Esse dipendono dallo scopo per cui tale classificazione

Dettagli

Dispense di Informatica Anno Scolastico 2008/2009 Classe 3APS. Dal Problema all'algoritmo

Dispense di Informatica Anno Scolastico 2008/2009 Classe 3APS. Dal Problema all'algoritmo stituto Tecnico Statale Commerciale Dante Alighieri Cerignola (FG) Dispense di nformatica Anno Scolastico 2008/2009 Classe 3APS Dal Problema all'algoritmo Pr.: 001 Ver.:1.0 Autore: prof. Michele Salvemini

Dettagli

Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia?

Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia? Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia? Danilo Pelusi 1 Gianpiero Centorame 2 Sunto: Il seguente articolo illustra le possibili analogie e differenze tra il calcolo delle

Dettagli

PRINCIPIO DI REVISIONE (SA Italia) 250B LE VERIFICHE DELLA REGOLARE TENUTA DELLA CONTABILITÀ SOCIALE

PRINCIPIO DI REVISIONE (SA Italia) 250B LE VERIFICHE DELLA REGOLARE TENUTA DELLA CONTABILITÀ SOCIALE PRINCIPIO DI REVISIONE (SA Italia) 250B LE VERIFICHE DELLA REGOLARE TENUTA DELLA CONTABILITÀ SOCIALE (In vigore per le verifiche della regolare tenuta della contabilità sociale svolte dal 1 gennaio 2015)

Dettagli

Morris ha identificato tre diversi registri secondo i quali la comunicazione umana può essere analizzata:

Morris ha identificato tre diversi registri secondo i quali la comunicazione umana può essere analizzata: Teorie comunicative Morris ha identificato tre diversi registri secondo i quali la comunicazione umana può essere analizzata: Sintattico Livello della trasmissione del messaggio Semantico Livello della

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO 1 Modi di formare gruppi di k oggetti presi da n dati 11 disposizioni semplici, permutazioni Dati n oggetti distinti a 1,, a n si chiamano disposizioni semplici di questi oggetti,

Dettagli