Progettazione del processo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Progettazione del processo"

Transcript

1 Progettazione del processo produttivo

2 Il miglioramento della qualità e della produttività ha maggiore efficacia quando è parte integrante del processo di realizzazione del prodotto. In particolare l uso del cosiddetto DOE (design of experiments) in uno stadio antecedente allo sviluppo di tutto il cicloin fase di progettazione di un nuovo prodotto, o del miglioramento di un processo esistente, è talvolta la chiave del successo su tutta la produzione successiva. La progettazione di un esperimento consiste nell eseguire una serie di test in cui vengono fatte modifiche sostanziali a quelle variabili (dette di controllo) che si pensa influenzino il processo, con l obbiettivo di individuare e identificare le corrispondenti risposte che queste variazioni comportano sul processo. determinare quali variabili influenzano maggiormente la risposta; determinare quali variabili influenzano maggiormente la risposta media; determinare quali variabili influenzano maggiormente la variabilità della risposta; determinare come fare a ridurre l effetto dei fattori Incontrollabili.

3 IL CONTROLLO STATISTICO DIQUALITA (on line) è un metodo statistico passivo. Il DOE è un metodo statistico attivo. Esempio: un ingegnere ha applicato il CSQ al processo che prevede la saldatura di componenti elettronici su dei circuiti stampati. Attraverso una u-carta ha stabilito che il flusso del processo di saldatura è in controllo statistico, con un numero medio di errori per circuito pari all 1%. Ritiene però che questa percentuale sia troppo alta (poiché un circuito stampato necessita in media di 2000 saldature). Il processo ha varie variabili che possono essere controllate come: la temperatura della saldatrice, la temperatura del preriscaldamento, la velocità del nastro trasportatore, il tipo di flusso, il coefficiente di gravità specifico, etc. Il processo ha anche una serie di variabili che non sono facilmente controllabili: lo spessore del circuito stampato, il tipo di componente usato sul circuito, l operatore. In tal caso un piano degli esperimenti dovrebbe evidenziare la grandezzae la direzione degli effetti di questi fattori.

4 Nuovo approccio Strategia del Taguchi

5 Esperimenti fattoriali 2^k Sono speciali tipi di esperimenti fattoriali in cui vengono presi in considerazione k fattori a soli 2 livelli. b a

6 15% 20% 1 pound 2 pounds 28,25,27 18,19,23 (1) b 36, 32, 32 31, 30, 29 a ab Valutiamo l effetto dei fattori: effa ( ) + ( ) ( ) + ( ) = = effb a + ab b + (1) effa = 2n 2n ( ) + ( ) ( ) + ( ) = = b + ab a + (1) effb = 2n 2n

7 15% 20% 1 pound 2 pounds 28,25,27 18,19,23 (1) b 36, 32, 32 31, 30, 29 a ab Valutiamo l effetto delle interazioni: ( ) + ( ) ( ) + ( ) effab = = (1) + ab a + b effab = 6 6 Grafico delle interazioni 35 1pound 2pounds Si può dire se c è interazionead un livello di significatività prefissato?

8 Esercizio: completare l analisi con la costruzione dei box-plotse l analisi dei residui.

9

10 c bc ac abc b ab (1) a - + a + ab + ac + abc effa = (1) + b + c + bc = 3 A B C I prova II prova (1) a b c ab ac bc abc 6 5

11 c bc ac abc b ab + (1) a - b + ab + bc + abc effb = (1) + a + c + ac = 2.25 A B C I prova II prova (1) a b c ab ac bc abc 6 5

12 c bc ac b abc ab (1) a c + ac + bc + abc effc = (1) + a + b + ab = 1.75 A B C I prova II prova (1) a b c ab ac bc abc 6 5

13 c bc ac b abc ab (1) a (1) + c + ab + abc effab = a + b + bc + ac = 0.75 ab + (1) a + b effab( Clow) = 2n 2n abc + c ac + bc effab( Chigh) = 2n 2n effab( Clow) + effab( Chigh) effab = 2

14 c bc ac abc b ab (1) a (1) + ac a + c (1) + b + ac + abc effac( Blow) = 2n 2n effac = abc + b ab + bc effac( Bhigh) = a + c + bc + ab 2n 2n = 0.25 effac( Blow) + effac( Bhigh) effac = 2

15 c bc ac abc b ab (1) a (1) + a + bc + abc effbc = b + c + ac + ab = 0.5 (1) + bc c + b effbc( Alow) = 2n 2n abc + a ac + ab effbc( Ahigh) = 2n 2n effbc( Alow) + effbc( Ahigh) effbc = 2

16 c bc ac abc b ab (1) a a + b + c + abc effabc = (1) + ac + bc + ab = 0.5 ab + (1) a + b effab( Clow) = 2n 2n abc + c ac + bc effab( Chigh) = 2n 2n effab( Chigh) effab( Clow) effab = 2

17 Grafico delle interazioni AB A B C I prova II prova Somma (1) a b c ab ac bc abc ,-1,-1,0-1,0,1,1 12 0,1,2,1 2,3,6,5 4 3 Grafico delle interazioni AB 25% 30% Costruire gli altri grafici per le interazioni per esercizio

18 Grafico delle interazioni ABC >> x=[-1,1]; >> y=[-1,1]; >> z=[-2, -0.5; 0.5, 2.5]; >> mesh(x,y,z) >> holdon >> z1=[-0.5, 1; 1.5, 5.5]; >> mesh(x,y,z1) Per dare significato statistico ANOVA3!! Per implementare l ANOVAN in MATLAB l unica difficoltà è costruire correttamente le associazioni tra le prove e le combinazioni dei fattori.

19 Costruiamo la matrice dei dati. >> x=[-3,-1,0,1,-1,0,-1,0,2,3,2,1,1,1,6,5]; Costruiamo il vettore con le combinazioni dei livelli. >> A=[ ]; >> B=[ ]; >> C=[ ]; >> group={a; B; C} group= [1x16 double] [1x16 double] [1x16 double] >> [p, tab, stats]=anovan(x,group,'full')

20 C A B ,-1-1; ;1 1; ;3 6; ,0 1;1 Se si è appurata la mancanza di interazioni, è possibile proseguire (o ripetere) la sperimentazione usando i piani ortogonali. Y ijk = µ + α i + β j + γ k + ε ijk

21 quindi si vuole ripetere la sperimentazione ma con un numero inferiore di combinazioni! Dal punto di vista geometrico. Attenzione, perché si perdono tutte le Informazioni sulle interazioni!!!

22 Si può anche fare l operazione inversa. Ossia supponiamo di aver costruito il piano sperimentale per i fattori A e B, e di aver appurato la mancanza di interazione A B Per aggiungere un terzo fattore C, possiamo procedere con la regola del prodotto: A B C * * * *1 Piano sperimentale 2^3 ridotto a metà. Ovviamente per completare il piano basta aggiungere la colonna che manca.

23

24 ROBUST DESIGN (PROGETTAZIONE ROBUSTA) PROGETTAZIONE ROBUSTA ZERO DIFETTI All interno dei limiti di specifica

25 Quando una caratteristica di qualità devia dal valore obiettivo, provoca una perdita; in altre parole è l antitesi di qualità. Qualità vuol dire semp licemente nessuna variabilità o variazioni molto piccole dal valore obiettivo. La perdita è possibile rappresentarla in termini di una relazione matematica mediante l utilizzo dello sviluppo in serie di Taylor con punto iniziale x0:

26 L equazione così ottenuta è l equazione di una parabola

27 Si può pensare alla prestazione effettiva x come ad una v.a. X = µ + Z Z N σ 2, dove (0, ) monitorato con il CSQ Monitorato con la progettazione robusta L approccio del Taguchiparte con l individuazione dei fattori di controllo che hanno più influenza sulla varianza e dopo con quelli che influenzano la media della risposta. Tale individuazione viene effettuata usando una funzione che è legata alla funzione perdita.

28 Dopo la fase di ottimizzazione dei parametri di progetto, nella progettazione robusta si prevede un successivo affinamento e un miglioramento della qualità del prodotto, sempre in fase progettuale, con l ottimizzazione delle tolleranze, riducendo la variabilità sulle grandezze del prodotto e del processo che hanno maggiore influenza sulle caratteristiche qualitative del prodotto e lasciando più libertà a quelle grandezze che, invece, hanno poco peso sull uscita desiderata.

29 Per la misura del rumore sono stati proposti molti indici, fra i quali Taguchi preferisce quelli denominati Signal to noise ratios ovvero rapporti segnali/rumore. Normal is better

30 Lower is better

31 Usando la funzione rapporto segnale/rumore, si individuano quei fattori che agiscono sulla media della prestazione. Questi fattori prendono il nome di LEVELING FACTORS Usando la funzione rapporto segnale/rumore, si individuano quei fattori che agiscono sulla variabilità della prestazione. Questi fattori prendono il nome di SCALING FACTORS

32 Nella scelta dei parametri, è molto importante identificare e dividere i fattori di controllo da quelli di disturbo(o incontrollabili), perché vanno trattati in modo diverso anche se tale divisione è spesso soggettiva e legata alla conoscenza del fenomeno In particolare Taguchisi concentra sulla riduzione di variabilità generata dai fattori non controllabili che chiama fattori di rumore. Il rumore, o disturbo, può essere esterno o interno. Le sorgenti esterne di disturbo (outernoise) sono le deviazioni delle condizioni ambientali, quelli interne (innernoise) sono le deviazioni delle caratteristiche dei loro valori nominali dovute alle imperfezioni di lavorazione o al loro deterioramento.

33

34 L altro contributo dato dal Taguchi è nell ambito della sperimentazione fattoriale. USO DI PIANI ORTOGONALI RIDOTTI L approccio classico prevede l uso di due piani fattoriali. Uno per i fattori controllabili e l altro per i fattori non controllabili. Se ipotizziamo due livelli per i fattori, si tratta di due piani 2^2. Bisognerebbe studiarli separatamente. Il Taguchipropone di considerare i fattori assieme. Bisognerebbe costruire un piano 2^4.

35 A B C D Se dovessimo operare un taglio a metà la scelta dovrebbe seguire la regola del prodotto E invece viene operata una scelta soggettiva?

36 Esempio Si vuole sviluppare il progetto di un giocattolo, un aereo di carta, la cui prestazione è la lunghezza di volo in metri misurando la distanza tra il punto in cui si lancia e il punto in cui si ferma al suolo dalla sua punta anteriore. Vengono utilizzati 4 lanciatori che operano in maniera standard (l altra mano tiene il gomito fermo ed aderente al busto). Gli esperimenti si svolgono in un locale ampio, senza correnti d aria e con pavimentazione liscia ed uniforme.

37

38 Se si volesse utilizzare l ANOVA, avremmo avuto la necessità di realizzare un piano sperimentale 3^4 = 81 aerei con un complessivo di 81*4=244 prove.

39

40

41

42

43 ESERCIZI

44 Descrivere il piano fattoriale completo, adottato per le prove delle batterie, seguendo il seguente ordine: fissato il li- vello +1 per A e il livello +1 per B, far variare i livelli di C (da +1 a -1); fissato il livello +1 per A e il livello -1 per B, far variare i livelli di C; ripetere i due passi precedenti fissando il livello -1 per A.

45 Le batterie ad alto costo confermano la loro durata superiore. Per queste il migliore trattamento è T4. Per quelle a basso costo il migliore trattamento è il T7.

46 (c) Effettuare una analisi delle interazioni (sia grafica che numerica). A B C Conv Somma abc ab ac a bc bc c (1) a + ab + ac + abc (1) + b + c + bc effa = n 4 n = b + ab + bc + abc (1) + a + c + ac effb = = c + ac + bc + abc (1) + a + b + ab effc = = (1) + c + ab + abc a + b + bc + ac effab = = (1) + b + ac + abc a + c + bc + ab effac = = (1) + a + bc + abc b + c + ac + ab effbc = = a + b + c + abc effabc = (1) + ac + bc + ab = 36.55

47 INTERAZIONE A DUE FATTORI A B , , , , Interazione AB +1-1 A C , , , , Interazione BC Interazione AC B C , , , ,

48 INTERAZIONE TRE FATTORI Effettuando l Anova a 3 fattori dovremmo trovare che le interazioni sono significative

Progettazione del processo produttivo

Progettazione del processo produttivo Progettazione del processo produttivo Il miglioramento della qualità e della produttività ha maggiore efficacia quando è parte integrante del processo di realizzazione del prodotto. In particolare l uso

Dettagli

Prova scritta di Complementi di Probabilità e Statistica. 31 Ottobre 2012

Prova scritta di Complementi di Probabilità e Statistica. 31 Ottobre 2012 Prova scritta di Complementi di Probabilità e Statistica 31 Ottobre 2012 1. In un processo per accrescere uno strato sottile di biossido di silicio sopra fette di silicio utilizzate per la fabbricazione

Dettagli

Progettazione robusta

Progettazione robusta Università degli studi della Basilicata Facoltà di Ingegneria Corso di Laurea Specialistica in Ingegneria Meccanica A.A. 3-4 Progettazione robusta STUDENTE Lucio Letterio DOCENTE Dott.ssa. E. Di Nardo

Dettagli

Progettazione Robusta

Progettazione Robusta Progettazione Robusta Perdita Consumatore qualità = f 1 (perdita Perdite di reputazione e quote di mercato Costi di garanzia per il produttore La qualità di un prodotto è la (minima perdita impartita alla

Dettagli

4. Confronto tra medie di tre o più campioni indipendenti

4. Confronto tra medie di tre o più campioni indipendenti BIOSTATISTICA 4. Confronto tra medie di tre o più campioni indipendenti Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Metodologia di impiego delle tecniche di Taguchi nel Design Of Experiments nel campo della saldatura laser ad alta potenza

Metodologia di impiego delle tecniche di Taguchi nel Design Of Experiments nel campo della saldatura laser ad alta potenza Metodologia di impiego delle tecniche di Taguchi nel Design Of Experiments nel campo della saldatura laser ad alta potenza INDICE 1 Introduzione...3 2 L applicazione del Metodo Taguchi...3 2.1 Formulazione

Dettagli

La progettazione degli esperimenti (DOE) mediante l uso delle matrici ortogonali

La progettazione degli esperimenti (DOE) mediante l uso delle matrici ortogonali La progettazione degli esperimenti (DOE) mediante l uso delle matrici ortogonali Anno Accademico 2005-2006 1 Introduzione... 3 2 Glossario... 3 3 La sperimentazione campione: la saldatura laser ad alta

Dettagli

DoE - Design of Experiment

DoE - Design of Experiment 3 Tecniche di DoE DoE - Design of Experiment Sequenza di Prove Sperimentali da Effettuare per Studiare e Ottimizzare un Processo Un esperimento programmato è una prova o una serie di prove in cui vengono

Dettagli

Indice. pag. 15. Prefazione. Introduzione» 17

Indice. pag. 15. Prefazione. Introduzione» 17 Indice Prefazione 15 Introduzione 17 1. Pianificazione della qualità 1.1. Il concetto di 6 sigma 1.1.1. Le aree e le fasi del sei sigma 1.2. I processi produttivi e la variabilità 1.2.1. Cause comuni 1.2.2.

Dettagli

Design of Experiments

Design of Experiments Design of Experiments Luigi Amedeo Bianchi 1 Introduzione Cominciamo spiegando cosa intendiamo con esperimento, ossia l investigare un processo cambiando i dati in ingresso, osservando i cambiamenti che

Dettagli

Soluzione degli esercizi di riepilogo sul controllo statistico di qualità e sull ANOVA.

Soluzione degli esercizi di riepilogo sul controllo statistico di qualità e sull ANOVA. Soluzione degli esercizi di riepilogo sul controllo statistico di qualità e sull ANOVA.. Si tratta di un ANOVA a due fattori senza repliche. Gli effetti sono fissi sia sulle righe che sulle colonne. Effettuiamo

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Lezioni del Corso di Fondamenti di Metrologia Meccanica

Lezioni del Corso di Fondamenti di Metrologia Meccanica Facoltà di Ingegneria Lezioni del Corso di Fondamenti di Metrologia Meccanica A.A. 2005-2006 Prof. Paolo Vigo Indice 1. Errori ed Incertezze 2. Errori Sistematici ed Accidentali 3. Proprietà degli Strumenti

Dettagli

Capitolo 5 RESTAURO E RICOSTRUZIONE DI IMMAGINI

Capitolo 5 RESTAURO E RICOSTRUZIONE DI IMMAGINI Capitolo 5 RESTAURO E RICOSTRUZIONE DI IMMAGINI La differenza tra il restauro e il miglioramento (enhancement) delle immagini è che il miglioramento è un processo soggettivo, mentre il restauro è un processo

Dettagli

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1)

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) 151 Introduzione Un esperimento è una prova o una serie di prove. Gli esperimenti sono largamente utilizzati nel campo dell ingegneria. Tra le varie applicazioni;

Dettagli

Cap. 5. Il progetto sperimentale

Cap. 5. Il progetto sperimentale Cap. 5 Il progetto sperimentale Introduzione La sperimentazione è l orizzonte entro cui genera e sviluppa ogni processo progettazione. Per questo motivo in questo capitolo introduce un metodo progettazione

Dettagli

Elaborazione dati in Analisi Sensoriale

Elaborazione dati in Analisi Sensoriale Elaborazione dati in Analisi Sensoriale Si è parlato di interpretazione corretta dei risultati ottenuti; a questo concorrono due fattori: affidabilità e validità. Se i test fossero stati ripetuti con lo

Dettagli

Note sull esperienza Misura di g versione 1, Francesco, 7/05/2010

Note sull esperienza Misura di g versione 1, Francesco, 7/05/2010 Note sull esperienza Misura di g versione 1, Francesco, 7/05/010 L esperienza, basata sullo studio di una molla a spirale in condizioni di equilibrio e di oscillazione, ha diversi scopi e finalità, tra

Dettagli

errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento

errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento Analisi della varianza a una via a misure ripetute (Anova con 1 fattore within) modello strutturale dell'analisi della varianza a misure ripetute con 1 fattore: y = μ ik 0 +π i +α k + ik ε ik interazione

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

VERSO LA SMART SPECIALIZATION TRE LEVE MOLTO IMPORTANTI PER UNA NUOVA COMPETITIVITÀ

VERSO LA SMART SPECIALIZATION TRE LEVE MOLTO IMPORTANTI PER UNA NUOVA COMPETITIVITÀ COMPETITIVITA 2.0? VERSO LA SMART SPECIALIZATION TRE LEVE MOLTO IMPORTANTI PER UNA NUOVA COMPETITIVITÀ F.Boccia/B.IT sas 1 SOMMARIO PROGETTAZIONE ASSISTITA DA CAE/SIMULAZIONE/SUPERCALCOLO LOGISTICA INTELLIGENTE

Dettagli

Formazione Aziendale per la Qualità

Formazione Aziendale per la Qualità 4 Corsi e Formazione per la Qualità Formazione Aziendale per la Qualità Il nostro obiettivo L organizzazione, l analisi e l interpretazione dei dati aziendali all interno del proprio business, può rappresentare

Dettagli

2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1

2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1 1 PORTAFOGLIO Portafoglio Markowitz (2 titoli) (rischiosi) due titoli rendimento/varianza ( μ 1, σ 1 ), ( μ 2, σ 2 ) Si suppone μ 1 > μ 2, σ 1 > σ 2 portafoglio con pesi w 1, w 2 w 1 = w, w 2 = 1- w 1

Dettagli

4. Funzioni elementari algebriche

4. Funzioni elementari algebriche ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari algebriche A. A. 2013-2014 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

I Modelli della Ricerca Operativa

I Modelli della Ricerca Operativa Capitolo 1 I Modelli della Ricerca Operativa 1.1 L approccio modellistico Il termine modello è di solito usato per indicare una costruzione artificiale realizzata per evidenziare proprietà specifiche di

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

la raccolta di dati scientifici il metodo ingegneristico-scientifico e l'approccio statistico la progettazione di indagini sperimentali

la raccolta di dati scientifici il metodo ingegneristico-scientifico e l'approccio statistico la progettazione di indagini sperimentali 1/29 la raccolta di dati scientifici il metodo ingegneristico-scientifico e l'approccio statistico la progettazione di indagini sperimentali modelli teorici e modelli empirici l'osservazione dei processi

Dettagli

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE STATISTICA DESCRITTIVA SCHEDA N. : REGRESSIONE LINEARE Nella Scheda precedente abbiamo visto che il coefficiente di correlazione fra due variabili quantitative X e Y fornisce informazioni sull esistenza

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secondaria di secondo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio à t i n U 1 Sistemi di primo grado

Dettagli

Esercitazioni per il corso di Microonde 2005/2006: CENNI DI TEORIA DELL ERRORE. Ing. Ricci Andrea Simone

Esercitazioni per il corso di Microonde 2005/2006: CENNI DI TEORIA DELL ERRORE. Ing. Ricci Andrea Simone Esercitazioni per il corso di Microonde 2005/2006: CENNI DI TEORIA DELL ERRORE Ing. Ricci Andrea Simone INCERTEZZA DI MISURA - Introduzione X SISTEMA Y Misura > complesso di attività volte alla valutazione

Dettagli

LE ASSUNZIONI DELL'ANOVA

LE ASSUNZIONI DELL'ANOVA LE ASSUNZIONI DELL'ANOVA Sono le assunzioni del test t, ma estese a tutti i gruppi: o La variabile deve avere una distribuzione normale in tutte le popolazioni corrispondenti ai gruppi campionati o Le

Dettagli

Relazioni statistiche: regressione e correlazione

Relazioni statistiche: regressione e correlazione Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica

Dettagli

9. La distribuzione 2 e i test per dati su scala nominale

9. La distribuzione 2 e i test per dati su scala nominale 9. La distribuzione e i test per dati su scala nominale 9.1. La distribuzione 9. 1. 1. La statistica e la sua distribuzione In una popolazione distribuita normalmente con parametri e estraiamo un campione

Dettagli

Gli OLS come statistica descrittiva

Gli OLS come statistica descrittiva Gli OLS come statistica descrittiva Cos è una statistica descrittiva? È una funzione dei dati che fornisce una sintesi su un particolare aspetto dei dati che a noi interessa; naturalmente, è auspicabile

Dettagli

3) ANALISI DEI RESIDUI

3) ANALISI DEI RESIDUI 3) ANALISI DEI RESIDUI Dopo l analisi di regressione si eseguono alcuni test sui residui per avere una ulteriore conferma della validità del modello e delle assunzioni (distribuzione normale degli errori,

Dettagli

Statistica. L. Freddi. L. Freddi Statistica

Statistica. L. Freddi. L. Freddi Statistica Statistica L. Freddi Statistica La statistica è un insieme di metodi e tecniche per: raccogliere informazioni su un fenomeno sintetizzare l informazione (elaborare i dati) generalizzare i risultati ottenuti

Dettagli

PARTE TERZA. STATISTICA DESCRITTIVA MULTIDIMENSIONALE (Analisi delle Relazioni)

PARTE TERZA. STATISTICA DESCRITTIVA MULTIDIMENSIONALE (Analisi delle Relazioni) PARTE TERZA STATISTICA DESCRITTIVA MULTIDIMESIOALE (Analisi delle Relazioni) La notazione matriciale 3 III.. LA OTAZIOE MATRICIALE III... L analisi statistica dei fenomeni multivariati L intrinseca complessità

Dettagli

Algebra Lineare e Geometria

Algebra Lineare e Geometria Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da

Dettagli

GUIDA PER LA VALUTAZIONE E LA ESPRESSIONE DELL INCERTEZZA NELLE MISURAZIONI

GUIDA PER LA VALUTAZIONE E LA ESPRESSIONE DELL INCERTEZZA NELLE MISURAZIONI SISTEMA NAZIONALE PER L'ACCREDITAMENTO DI LABORATORI DT-000 GUIDA PER LA VALUTAZIONE E LA ESPRESSIONE DELL INCERTEZZA NELLE MISURAZIONI INDICE parte sezione pagina 1. INTRODUZIONE. FONDAMENTI.1. Misurando,

Dettagli

MIGLIORAMENTO DI UN PROCESSO DI SMALTATURA MEDIANTE L APPLICAZIONE DI TECNICHE DOE

MIGLIORAMENTO DI UN PROCESSO DI SMALTATURA MEDIANTE L APPLICAZIONE DI TECNICHE DOE PRESENTATO AL CONVEGNO AIAS ASSOCIAZIONE ITALIANA PER L ANALISI DELLE SOLLECITAZIONI XXXVII CONVEGNO NAZIONALE, 10-13 SETTEMBRE 2008, UNIVERSITÀ DI ROMA LA SAPIENZA MIGLIORAMENTO DI UN PROCESSO DI SMALTATURA

Dettagli

Le macchine termiche e il secondo principio della termodinamica

Le macchine termiche e il secondo principio della termodinamica Le macchine termiche e il secondo principio della termodinamica ) Definizione di macchina termica È sperimentalmente verificato che nel rispetto del primo principio della termodinamica (ovvero della conservazione

Dettagli

LA STATISTICA SIMPATICA

LA STATISTICA SIMPATICA LEADERSHIP& LM MANAGEMENT LA STATISTICA SIMPATICA ED IL FRULLATORE DOE (DESIGN OF EXPERIMENT) LA STATISTICA SIMPATICA ED IL DOE Mi rendo conto che il titolo contiene una contraddizione di termini che sembra

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d Esercizio 1 Un automobile viaggia a velocità v 0 su una strada inclinata di un angolo θ rispetto alla superficie terrestre, e deve superare un burrone largo d (si veda la figura, in cui è indicato anche

Dettagli

Indice. 1 La statistica, i dati e altri concetti fondamentali ---------------------------------------------------- 3

Indice. 1 La statistica, i dati e altri concetti fondamentali ---------------------------------------------------- 3 LEZIONE ELEMENTI DI STATISTICA DESCRITTIVA PROF. CRISTIAN SIMONI Indice 1 La statistica, i dati e altri concetti fondamentali ---------------------------------------------------- 3 1.1. Popolazione --------------------------------------------------------------------------------------------

Dettagli

L analisi dei dati. Capitolo 4. 4.1 Il foglio elettronico

L analisi dei dati. Capitolo 4. 4.1 Il foglio elettronico Capitolo 4 4.1 Il foglio elettronico Le più importanti operazioni richieste dall analisi matematica dei dati sperimentali possono essere agevolmente portate a termine da un comune foglio elettronico. Prenderemo

Dettagli

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1 Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 Capitolo 3. L'analisi della varianza. Il problema dei confronti multipli. La soluzione drastica di Bonferroni ed il test

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

1 Introduzione 1. Ottica Geometrica

1 Introduzione 1. Ottica Geometrica 1 Introduzione 1 1 Introduzione Ottica Geometrica 1.1 Estratto Lo scopo di questa esperienza è quello di apprendere come la luce interagisce con elementi ottici quali le lenti, e come, in sequito alla

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

4. Matrici e Minimi Quadrati

4. Matrici e Minimi Quadrati & C. Di Natale: Matrici e sistemi di equazioni di lineari Formulazione matriciale del metodo dei minimi quadrati Regressione polinomiale Regressione non lineare Cross-validazione e overfitting Regressione

Dettagli

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114

Dettagli

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE FLAVIO ANGELINI Sommario Queste note hanno lo scopo di indicare a studenti di Economia interessati alla finanza quantitativa i concetti essenziali

Dettagli

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica.

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica. Esempio Risultati sperimentali Approssimazione con il criterio dei minimi quadrati Esempio Interpolazione con spline cubica. Esempio 1 Come procedere? La natura del fenomeno suggerisce che una buona approssimazione

Dettagli

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti Corso di Analisi Numerica - AN1 Parte 2: metodi diretti per sistemi lineari Roberto Ferretti Richiami sulle norme e sui sistemi lineari Il Metodo di Eliminazione di Gauss Il Metodo di Eliminazione con

Dettagli

La corrente e le leggi di Ohm

La corrente e le leggi di Ohm La corrente e le leggi di Ohm Elettroni di conduzione La conduzione elettrica, che definiremo successivamente, consiste nel passaggio di cariche elettriche da un punto ad un altro di un corpo conduttore.

Dettagli

FMEA (Failure Mode & Effects Analysis) Manuale per l uso

FMEA (Failure Mode & Effects Analysis) Manuale per l uso FMEA (Failure Mode & Effects Analysis) Manuale per l uso Introduzione Lo scopo di questo manuale e introdurre all uso della FMEA e fornire strumenti di guida all applicazione di questa tecnica. Una FMEA

Dettagli

Fondamenti di Trasporti Cenni di teoria del deflusso

Fondamenti di Trasporti Cenni di teoria del deflusso Corso di: Lezione: Fondamenti di Trasporti Cenni di teoria del deflusso Corso di Laurea Ingegneria Civile AA 0910 Giuseppe Inturri Università di Catania Dipartimento di Ingegneria Civile e Ambientale IL

Dettagli

Quadrati latini e di ordine superiore per la attenuazione dei disturbi nelle attività sperimentali

Quadrati latini e di ordine superiore per la attenuazione dei disturbi nelle attività sperimentali Quadrati latini e di ordine superiore per la attenuazione dei disturbi nelle attività sperimentali Stefano Pirani Dipartimento di Ingegneria dell'informazione Università Politecnica delle Marche Ancona

Dettagli

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili:

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili: Incertezze di misura Argomenti: classificazione delle incertezze; definizione di incertezza tipo e schemi di calcolo; schemi per il calcolo dell incertezza di grandezze combinate; confronto di misure affette

Dettagli

VII. Veri esperimenti - disegni a un solo fattore -

VII. Veri esperimenti - disegni a un solo fattore - VII. Veri esperimenti - disegni a un solo fattore - Veri e quasi-esperimenti Fattori, livelli, condizioni e trattamenti Disegni sperimentali da evitare Elementi fondamentali di un disegno sperimentale

Dettagli

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

CONI, CILINDRI, SUPERFICI DI ROTAZIONE CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).

Dettagli

Verità ed esperienza: come la natura genera le osservazioni sperimentali

Verità ed esperienza: come la natura genera le osservazioni sperimentali Verità ed esperienza: come la natura genera le osservazioni sperimentali Andrea Onofri Dipartimento di Scienze Agrarie ed Ambientali Universitá degli Studi di Perugia 10 gennaio 2012 Indice 1 Presupposti

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie Forze, leggi della dinamica, diagramma del corpo libero 1 FORZE Grandezza fisica definibile come l' agente in grado di modificare lo stato di quiete o di moto di un corpo. Ci troviamo di fronte ad una

Dettagli

Risposta sismica dei terreni e spettro di risposta normativo

Risposta sismica dei terreni e spettro di risposta normativo Dipartimento di Ingegneria Strutturale, Aerospaziale e Geotecnica Risposta sismica dei terreni e spettro di risposta normativo Prof. Ing. L.Cavaleri L amplificazione locale: gli aspetti matematici u=spostamentoin

Dettagli

STATISTICA IX lezione

STATISTICA IX lezione Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

Vincenzo Ciancio Armando Ciancio. Metodi matematici per le applicazioni finanaziarie

Vincenzo Ciancio Armando Ciancio. Metodi matematici per le applicazioni finanaziarie A01 73 Vincenzo Ciancio Armando Ciancio Metodi matematici per le applicazioni finanaziarie Copyright MMV ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133

Dettagli

Statistica Medica. Verranno presi in esame:

Statistica Medica. Verranno presi in esame: Statistica Medica Premessa: il seguente testo cerca di riassumere e rendere in forma comprensibile ai non esperti in matematica e statistica le nozioni e le procedure necessarie a svolgere gli esercizi

Dettagli

La logica statistica della verifica (test) delle ipotesi

La logica statistica della verifica (test) delle ipotesi La logica statistica della verifica (test) delle ipotesi Come posso confrontare diverse ipotesi? Nella statistica inferenziale classica vengono sempre confrontate due ipotesi: l ipotesi nulla e l ipotesi

Dettagli

Università del Piemonte Orientale. Corsi di Specialità. Corso di Statistica Medica. Analisi dei dati quantitativi : Analisi della varianza

Università del Piemonte Orientale. Corsi di Specialità. Corso di Statistica Medica. Analisi dei dati quantitativi : Analisi della varianza Università del Piemonte Orientale Corsi di Specialità Corso di Statistica Medica Analisi dei dati quantitativi : Analisi della varianza Università del Piemonte Orientale Corso di laurea in biotecnologie

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

Lezioni del Corso di Fondamenti di Metrologia Meccanica

Lezioni del Corso di Fondamenti di Metrologia Meccanica Facoltà di Ingegneria ezioni del Corso di Fondamenti di Metrologia Meccanica 13. a taratura nel settore massa Introduzione alle misure di massa a spinta aerostatica a spinta è pari alla forza-peso del

Dettagli

servono per andare a studiare l'argomento che prendiamo in considerazione in questo momento cioè la scelta politica. Quindi si presuppone,

servono per andare a studiare l'argomento che prendiamo in considerazione in questo momento cioè la scelta politica. Quindi si presuppone, ANALISI FATTORIALE I calcoli che vengono fatti con l'analisi fattoriale servono soprattutto per validare dei questionari quindi è così troviamo una struttura esterna per andare a vedere gli item, cioè

Dettagli

USO DI EXCEL CLASSE PRIMAI

USO DI EXCEL CLASSE PRIMAI USO DI EXCEL CLASSE PRIMAI In queste lezioni impareremo ad usare i fogli di calcolo EXCEL per l elaborazione statistica dei dati, per esempio, di un esperienza di laboratorio. Verrà nel seguito spiegato:

Dettagli

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio DUE PROPOSTE DI ANALISI MATEMATICA Lorenzo Orio Introduzione Il lavoro propone argomenti di analisi matematica trattati in maniera tale da privilegiare l intuizione e con accorgimenti nuovi. Il tratta

Dettagli

Cap. 3 - L'analisi dei dati

Cap. 3 - L'analisi dei dati Capitolo 3 L analisi dei dati 3.1. Relazioni tra grandezze fisiche Uno degli aspetti più importanti della fisica sperimentale è la ricerca di una relazione matematica in grado di interpretare il tipo di

Dettagli

Matlab per applicazioni statistiche

Matlab per applicazioni statistiche Matlab per applicazioni statistiche Marco J. Lombardi 19 aprile 2005 1 Introduzione Il sistema Matlab è ormai uno standard per quanto riguarda le applicazioni ingegneristiche e scientifiche, ma non ha

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Introduzione alla scienza della comunicazione (E. T. Jaynes)

Introduzione alla scienza della comunicazione (E. T. Jaynes) Introduzione alla scienza della comunicazione (E T Jaynes) S Bonaccorsi Department of Mathematics University of Trento Corso di Mathematical model for the Physical, Natural and Social Sciences Outline

Dettagli

VERSO LA SMART SPECIALIZATION TRE LEVE MOLTO IMPORTANTI PER UNA NUOVA COMPETITIVITÀ

VERSO LA SMART SPECIALIZATION TRE LEVE MOLTO IMPORTANTI PER UNA NUOVA COMPETITIVITÀ COMPETITIVITA 2.0? VERSO LA SMART SPECIALIZATION TRE LEVE MOLTO IMPORTANTI PER UNA NUOVA COMPETITIVITÀ F.Boccia/B.IT sas 1 SOMMARIO PROGETTAZIONE ASSISTITA DA CAE/SIMULAZIONE/SUPERCALCOLO LOGISTICA INTELLIGENTE

Dettagli

General Linear Model. Esercizio

General Linear Model. Esercizio Esercizio General Linear Model Una delle molteplici applicazioni del General Linear Model è la Trend Surface Analysis. Questa tecnica cerca di individuare, in un modello di superficie, quale tendenza segue

Dettagli

Tesina di Identificazione dei Modelli e Analisi dei Dati

Tesina di Identificazione dei Modelli e Analisi dei Dati Tesina di Identificazione dei Modelli e Analisi dei Dati Ceccarelli Egidio e Papi Alessio 19 Luglio 2000 1 Indice 1 Introduzione 3 2 Valutazioni relative all identificazione 3 3 Prove 4 4 Conclusioni 5

Dettagli

Corso di Fisica Sperimentale 1. (Laurea in Biologia, a.a. 2014-15)

Corso di Fisica Sperimentale 1. (Laurea in Biologia, a.a. 2014-15) Corso di Fisica Sperimentale 1 (Laurea in Biologia, a.a. 2014-15) La Fisica: una scienza semplice La combinazione delle varie esperienze quotidiane forma nell uomo l intuito, possiamo quindi dire che la

Dettagli

Corso di Robotica Autonoma Esperienza 1

Corso di Robotica Autonoma Esperienza 1 Università degli studi di Padova Corso di laurea magistrale in Ingegneria Informatica Corso di Robotica Autonoma Esperienza 1 Nicola Chessa 1014413 Nicola Dalla Benetta 1020097 Davide Zanin 1035601 A.A.

Dettagli

CAPITOLO 10. Controllo di qualità. Strumenti per il controllo della qualità e la sua gestione

CAPITOLO 10. Controllo di qualità. Strumenti per il controllo della qualità e la sua gestione CAPITOLO 10 Controllo di qualità Strumenti per il controllo della qualità e la sua gestione STRUMENTI PER IL CONTROLLO E LA GESTIONE DELLA QUALITÀ - DIAGRAMMI CAUSA/EFFETTO - DIAGRAMMI A BARRE - ISTOGRAMMI

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

SISTEMI INNOVATIVI TRATTAMENTO ARIA AMBIENTE. Catalogo di selezione Canali perforati dld per la diffusione dell aria ad alta induzione

SISTEMI INNOVATIVI TRATTAMENTO ARIA AMBIENTE. Catalogo di selezione Canali perforati dld per la diffusione dell aria ad alta induzione SISTEMI INNOVATIVI TRATTAMENTO ARIA AMBIENTE Catalogo di selezione Canali perforati dld per la diffusione dell aria ad alta induzione PARAmeTRI DI SceLTA Di seguito sono dettagliate le informazioni da

Dettagli

Combinazione dei carichi

Combinazione dei carichi Combinazione dei carichi Un passo fondamentale del progetto di un opera civile è sicuramente l analisi delle forze agenti su essa che sono necessarie per l individuazione delle corrette sollecitazioni

Dettagli

Lezione2 Ricerca di zeri. http://idefix.mi.infn.it/~palombo/didattica/lab-tnds/corsolab/lezionifrontali. Fernando Palombo

Lezione2 Ricerca di zeri. http://idefix.mi.infn.it/~palombo/didattica/lab-tnds/corsolab/lezionifrontali. Fernando Palombo Lezione2 Ricerca di zeri http://idefix.mi.infn.it/~palombo/didattica/lab-tnds/corsolab/lezionifrontali Fernando Palombo Aritmetica Finita nel Computer Nel computer l aritmetica è a precisione finita cioè

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

Descrizione e stima dell errore

Descrizione e stima dell errore Descrizione e stima dell errore Raccomandazioni per l analisi di accuratezza di una simulazione CFD: 1 Descrizione e stima dell errore Raccomandazioni per l analisi di accuratezza di una simulazione CFD:

Dettagli

ESERCIZI CINEMATICA IN UNA DIMENSIONE

ESERCIZI CINEMATICA IN UNA DIMENSIONE ESERCIZI CINEMATICA IN UNA DIMENSIONE ES. 1 - Due treni partono da due stazioni distanti 20 km dirigendosi uno verso l altro rispettivamente alla velocità costante di v! = 50,00 km/h e v 2 = 100,00 km

Dettagli

I quesiti sono distribuiti negli ambiti secondo la tabella seguente

I quesiti sono distribuiti negli ambiti secondo la tabella seguente Servizio Nazionale di Valutazione a.s. 2010/11 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado (a cura di Giorgio Bolondi, Rossella Garuti, Aurelia Orlandoni, Domingo

Dettagli

Laboratorio di fisica per PAS Proposito di questo modulo: Fornire ai docenti gli strumenti teorici e pratici per affrontare esperimenti di laboratorio dal punto di vista quantitativo. Effettuare alcune

Dettagli

Lezione 9: Cambio di base

Lezione 9: Cambio di base Lezione 9: Cambio di base In questa lezione vogliamo affrontare uno degli argomenti piu ostici per lo studente e cioè il cambio di base all interno di uno spazio vettoriale, inoltre cercheremo di capire

Dettagli

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Versione ottobre novembre 2008 Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Contenuto 1. Applicazioni lineari 2. L insieme delle

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Statistica II, Laurea magistrale in Ing. Gestionale, a.a. 20010/11 Esempi di domande e dissertazioni

Statistica II, Laurea magistrale in Ing. Gestionale, a.a. 20010/11 Esempi di domande e dissertazioni Statistica II, Laurea magistrale in Ing. Gestionale, a.a. 20010/11 Esempi di domande e dissertazioni Note. Si pensi di poter rispondere alle seguenti domande avendo l ausilio di: 1) un foglio con l elenco

Dettagli