Quadrati latini e di ordine superiore per la attenuazione dei disturbi nelle attività sperimentali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Quadrati latini e di ordine superiore per la attenuazione dei disturbi nelle attività sperimentali"

Transcript

1 Quadrati latini e di ordine superiore per la attenuazione dei disturbi nelle attività sperimentali Stefano Pirani Dipartimento di Ingegneria dell'informazione Università Politecnica delle Marche Ancona - AN Abstract Le tecniche di progettazione dell'esperimento sono fondamentali per una corretta attività sperimentale ed i quadrati latini e di ordine superiore sono utili quando si devono contrastare più grandezze di influenza. Nell'articolo viene presentata una tecnica generale per la costruzione di quadrati di ordine maggiore di 3. Keywords Misure, DOE, Grandezze di influenza I. INTRODUZIONE In ogni attività di misura è indispensabile una fase preliminare di studio finalizzata alla analisi delle grandezze che possono interferire con lo svolgimento della fase di misura alterando il valore del parametro misurando. Indicando tali grandezze con il nome di grandezze di influenza è possibile affermare che una corretta progettazione dell'esperimento (o DOE - Design Of the Experiment) deve includere la messa a punto di una strategia che consenta, ove necessario, di attenuare gli effetti delle grandezze di influenza fino a renderli compatibili con gli obiettivi dell'esperimento. Il quadrato latino, conosciuto da tempo da matematici ed enigmisti, è lo strumento che Ronald A. Fisher suggerì di utilizzare per la progettazione degli esperimenti nei casi in cui vi sono due distinte grandezze di influenza che possono alterare lo stato della grandezza sotto esame. Il quadrato grecolatino, una estensione del quadrato latino, è stato invece adottato nei casi in cui si debbano contrastare gli effetti di tre grandezze di influenza. Una ricerca bibliografia non ha messo in luce quadrati idonei ad operare con più di tre grandezze di influenza: in questo articolo si presenta una procedura originale con cui è possibile costruire quadrati di ordine superiore idonei a progettare esperimenti in cui si desidera contrastare l'effetto di un numero arbitrario di grandezze di influenza. II. UN CLASSICO ESEMPIO DI ESPERIMENTO A DUE GRANDEZZE DI INFLUENZA Volendo chiarire cosa sia e come operi un quadrato latino si può ricorrere al più classico esempio che si trova in letteratura e che fa riferimento ad una delle prime reali applicazioni delle tecniche DOE. Supponiamo di voler confrontare la resa di quattro razze diverse di frumento: ovviamente la sperimentazione dovrà essere condotta seminando, coltivando, mietendo ed infine trebbiando le quattro razze per poi stilare una graduatoria in funzione delle quantità trebbiate. L'ipotesi di seminare uno stesso appezzamento di terreno in quattro annate successive evidentemente non può essere accettata per vari motivi: il risultato si avrebbe solo dopo quattro anni di lavoro e le situazioni climatiche dei vari anni sarebbero inevitabilmente diverse apportando non accettabili alterazioni ai risultati sperimentali. Un'altra soluzione potrebbe essere quella di utilizzare quattro diversi appezzamenti di terreno in modo da condurre la sperimentazione in un solo anno: seminando una diversa razza di frumento in ciascun appezzamento si risolverebbe certamente il problema della durata della prova, che si riduce ad un solo ciclo semina-coltivazione-mieti-trebbiatura", e certamente si avrebbe una riduzione delle differenze climatiche, in special modo se i quattro lotti usati per l'esperimento si trovano l'uno in prossimità dell'altro. A rigore, pero, si deve considerare che il terreno agricolo non è un sistema omogeneo e isotropo per cui si possono ancora evidenziare delle differenze fra i quattro lotti tali da alterare i risultati sperimentali. Il terreno in cui organizzare i quattro lotti potrebbe non essere orizzontale e ciò provocherebbe una irrigazione a valle maggiore di quella a monte; anche le condizioni di soleggiamento potrebbero essere non uniformi se la superficie del terreno non fosse planare, cosa frequente nei terrreni collinari. Entrambe le caratteristiche influiscono sulla produttività delle seminagioni alterando il risultato della sperimentazione. Come evitare che queste due grandezze di influenza possano alterare in modo inaccettabile il risultato sperimentale? La soluzione richiede che la suddivisione del terreno seminativo in lotti sia fatta in modo non banale: se il terreno fosse suddiviso in quartieri (fig. 1) si avrebbe una esaltazione delle differenze. Una suddivisione in colonne (fig. 2) consentirebbe di attenuare l'effetto della drenaggio verso valle della pioggia, ma nulla potrebbe contro le differenze del soleggiamento mentre una suddivisione in righe (fig. 3) porterebbe ad una attenuazione delle differenze di soleggiamento, ma lascerebbe invariati gli effetti delle diversa distribuzione della acqua.

2 La suddivisione a scacchiere 4x4 (fig. 4) è invece in grado di attenuare gli effetti di entrambe le grandezze di influenza; per chiarezza indichiamo col termine parcella ciascuna delle 16 posizioni dello scacchiere. Fig. 1. Suddivisione del terreno seminativo in quartieri con esaltazione degli effetti di disturbo dovuti alla non uniformità di irrigazione e soleggiamento Fig. 4. Suddivisione del terreno seminativo a scacchiere 4x4 Organizzando la semina delle quattro diverse razze di frumento in maniera tale da avere una sola parcella seminata con una stessa razza in ciascuna riga e in ciascuna colonna si ottiene una disposizione a quadrato latino. L'aggettivo latino discende dalla usanza di indicare le diverse razze di frumento (ed in generale: le diverse condizioni del misurando) con lettere dell'alfabeto latino. A C D B Fig. 2. Suddivisione del terreno seminativo in colonne con compensazione dei soli effetti di disturbo dovuti alla non uniformità della irrigazione C A B D D B A C B D C A Fig. 5. Semina a quadrato latino 4x4 di quattro razze di frumento (indicate con le lettere A, B, C, D) Con la semina a quadrato latino il confronto fra le quattro razze di frumento viene effettuato attraverso il confronto fra le medie delle produzioni delle 4 parcelle seminate con la stessa razza. Fig. 3. Suddivisione del terreno seminativo in righe con compensazione dei soli effetti di disturbo dovuti alla non uniformità del soleggiamento III. ATTENUAZIONE DI DUE GRANDEZZE DI INFLUENZA: IL QUADRATO LATINO L'esempio precedente ha introdotto in modo implicito un quadrato latino sfruttando la fisicità del problema presentato.

3 Il quadrato latino è una matrice NxN con cui è possibile organizzare un esperimento nel quale verificare il comportamento di N diversi sistemi (o di un solo sistema in corrispondenza di N diversi punti di lavoro) quando si debba contrastare l'effetto di 2 diverse grandezze di influenza variabili in modo deterministico. Nell'esempio si dovevano verificare 4 razze di frumento (indicate con A, B, C e D) per cui il corrispondente quadrato latino è costituito da una matrice 4x4. Il terreno seminativo è stato infatti suddiviso in uno scacchiere 4x4 che, di fatto, corrisponde alla matrice 4x4 del quadrato latino. Ciascuna delle 4 razze di frumento viene seminata in 4 parcelle in modo tale che in ogni riga ed in ogni colonna ci sia una ed una sola parcella seminata con ciascuna razza: nel quadrato latino ciò corrisponde ad avere ciascuna delle lettere A, B, C e D presente una ed una sola volta in ciascuna riga e ciascuna colonna. Le parcelle presenti in una riga dello scacchiere hanno la stessa condizione per quanto riguarda la irrigazione così come le parcelle che si trovano in una stessa colonna hanno la stessa condizione di soleggiamento. Il quadrato latino prevede, similmente, che le 2 grandezze di influenza, con le rispettive variazioni, vengano disposte l'una secondo le righe e l'altra secondo le colonne della matrice. Possiamo ora abbandonare l'esempio bucolico del frumento e passare ad applicazioni industriali: nulla cambia per quanto riguarda la organizzazione del quadrato latino e della sperimentazione da esso proposta: dovendo contrastare l'effetto di due grandezze di influenza in un esperimento in cui vogliamo studiare N condizioni del misurando andremo a costruire un quadrato latino NxN in cui le variazioni di una delle grandezze di influenza sono disposte secondo le righe e quelle dell'altra secondo le colonne della matrice. Fatto ciò dovremo trovare una disposizione degli elementi della matrice (le lettere con cui rappresentiamo le N condizioni del misurando) tale da avere una ed una sola volta ciascuna lettera in ciascuna riga ed in ciascuna colonna. IV. ATTENUAZIONE DI TRE GRANDEZZE DI INFLUENZA: IL QUADRATO GRECO-LATINO Dovendo attenuare gli effetti di tre grandezze di influenza si potrebbe pensare di ricorrere ad una matrice tridimensionale riportando ciascuna grandezza di influenza su di una dimensione della matrice. Il procedimento non è sbagliato, ma richiede un numero di prove che, essendo pari al numero delle condizioni del misurando elevato alla terza potenza, rapidamente raggiunge valori elevati rendendo poco o per nulla praticabile tale soluzione. Molti Autori, seguendo la strada aperta nel XVIII secolo da Eulero, chiamano una evoluzione del quadrato latino con il nome di quadrato greco-latino : esso è lo strumento idoneo per attenuare gli effetti di tre grandezze di influenza senza richiedere una esplosione del numero delle misurazioni da eseguire. La matrice del quadrato greco-latino resta di dimensioni NxN ma gli elementi di tale matrice non sono più le sole lettere latine che simboleggiano le possibili condizioni del misurando, ma sono coppie ordinate di lettere. Le possibili condizioni assunte dalla terza grandezza di influenza vengono simboleggiate da lettere dell'alfabeto greco e ciascuna di esse deve figurare una sola volta in ciascuna riga ed in ciascuna colonna e deve essere associata una sola volta a ciascuna lettera latina. G1 A C D B G2 C A B D G3 D B A C G1 G2 G3 G1 A C D B G1 G4 B D C A G4 G2 C A B D G2 G3 D B A C G3 G4 B D C A G4 Fig. 6. Quadrato latino 4x4 per due grandezze di influenza che assumono rispettivamente i valori G1, G2, G3, G4 (la prima) e g1, g2, g3, g4 (la seconda); A, B, C, D sono le condizioni del misurando da sottoporre alla sperimentazione. Fig. 7. Quadrato greco-latino 4x4 per tre grandezze di influenza che assumono rispettivamente i valori G1, G2, G3, G4 (la prima), g1, g2, g3, g4 (la seconda),,,, (la terza); A, B, C, D sono le condizioni del misurando da sottoporre alla sperimentazione. I due gruppi di lettere greche e latine di un quadrato grecolatino, separate per alfabeto, costituiscono due quadrati latini che vengono definiti ortogonali in quanto i rispettivi elementi omologhi (A ed, B e, ) si sovrappongono in un solo punto. La costruzione di due quadrati latini ortogonali di ordine superiore a 4 non è un problema banale e, per oltre un secolo, i matematici si sono interrogati per cercare risposta ad un problema sviluppato da Eulero e che è conosciuto come il

4 problema dei 36 Ufficiali. Secondo Eulero non sarebbe stato possibile costruire quadrati greco-latini di ordine multiplo di 6 e gli studi di Gaston Tarry, che nel 1901 dimostrò la non esistenza di un quadrato greco-latino di ordine 6, parvero confermare la congettura euleriana. Solo nel 1959, grazie all'uso di un calcolatore elettronico UNIVAC, Parker, Bose e Shrikhande furono in grado di correggere la affermazione di Eulero: oggi infatti sappiamo che esistono quadrati greco-latini di ogni ordine superiore a 3 con la sola eccezione dell'ordine 6. È quindi possibile organizzare il piano sperimentale in modo da attenuare 3 grandezze di influenza con grande libertà per quanto riguarda il numero di valori del misurando che si desidera sottoporre alla sperimentazione. Ma come operare se le grandezze di influenza fossero più di tre? Prima di rispondere a questa domanda è opportuno che si consideri anche un altro aspetto del problema che in questo lavoro è stato fino ad ora trascurato. V. LA ORGANIZZAZIONE DEI TURNI DI PROVA Nell'esempio di quadrato latino che è stato presentato nella introduzione si è operato in un solo turno di prova: tale situazione è resa possibile dalla ipotesi (implicita) che tutti i semi del frumento di una stessa razza siano perfettamente uguali fra loro e si è motivata la scelta di operare con un solo turno con varie considerazioni. Nelle applicazioni industriale è più frequente il caso in cui si debba ricorrere all'uso di prototipi che, per le inevitabili imperfezioni dei processi produttivi, non possono essere considerati identici l'uno all'altro. Per questo motivo, e per non dover essere costretti ad usare un numero elevato di prototipi, si opera in più turni di prova. Supponiamo di dover esaminare il comportamento di tre diversi dispositivi elettronici nominalmente simili, ma diversi per comportamento effettivo a causa, per esempio, del fatto di essere stati prodotti in stabilimenti diversi. Per consentire il funzionamento di ogni dispositivo dovremo montarlo in un circuito e fornirgli la necessaria alimentazione. A causa delle inevitabili imperfezioni e tolleranze costruttive i circuiti in cui montare i dispositivi saranno tutti leggermente diversi l'uno dall'altro e stesso dicasi per i circuiti di alimentazione: sia i circuiti sia gli alimentatori assumono il ruolo di grandezze di influenza sul comportamento dei dispositivi elettronici sottoposti al test. Sappiamo che per attenuare tali grandezze di influenza potremmo ricorrere ad un quadrato latino 3x3 con cui individuare la più opportuna disposizione dei gruppi dispositivo-circuito-alimentatore ma in questo caso dobbiamo anche tener conto del fatto che la sperimentazione avviene in più turni di prova: al termine di ciascun turno ogni dispositivo verrà smontato da un circuito per essere montato su un altro circuito e lo stesso accadrà per le alimentazioni. Facendo in modo che ogni dispositivo sia montato su ogni circuito di prova e sia alimentato da ogni sorgente di alimentazione si realizza una sperimentazione corretta ed è evidente che bisogna anche cercare di minimizzare il numero di turni di prova. Con un poco di attenzione è possibile notare che il quadrato latino 3x3 che è stato sviluppato (fig. 8) permette di organizzare la prova in tre soli turni, ma quando la dimensione della matrice aumenta la organizzazione di turni può diventare laboriosa. c1 A C B c1 c2 B A C c2 c3 C B A c3 Fig. 8. Quadrato latino 3x3 per la sperimentazione di tre diversi dispositivi elettronici (A, B, C) con l'uso di tre circuiti (c1, c2, c3) e di tre alimentatori (a1, a2, a3) Il problema della organizzazione dei turni di prova può essere risolta ricorrendo non ad un quadrato latino, ma ad un quadrato greco-latino in cui le lettere greche indicano non gli stati di una grandezza di influenza, ma i turni di prova. Supponiamo di avere tre dispositivi da sottoporre a sperimentazione, tre circuiti e tre alimentatori. Costruiamo un quadrato 3x3 e disponiamo sulle righe e sulle colonne rispettivamente i circuiti di prova (c1, c2,c3) e gli alimentatori (a1, a2, a3) poi indichiamo con,, e rispettivamente il primo, il secondo ed il terzo turno di prova. I tre dispositivi sotto sperimentazione saranno indicati, classicamente, con A, B e C. Il quadrato greco-latino di questo esperimento (fig. 9) ci mostra che nel primo turno () il dispositivo A sarà montato sul circuito c1 per essere alimentato da a1, il dispositivo B sarà montato su c2 e alimentato da a3, il dispositivo C sarà montato su c3 e alimentato da a2. Nel secondo turno () gli abbinamenti saranno: A-c2-a2; B- c3-a1; C-c1-a3 per terminare, al terzo turno () con: A-c3-a3; B-c1-a2; C-c2-a1. c1 A C B c2 B A C c3 C B A Fig. 9. Quadrato greco-latino 3x3 per la sperimentazione di tre diversi dispositivi elettronici (A, B, C) con l'uso di tre circuiti (c1, c2, c3) e di tre alimentatori (a1, a2, a3) e sperimentazione in tre turni (,, ) c1 c2 c3

5 Come si è visto la progettazione dell'esperimento potrebbe essere condotta tramite un classico quadrato greco-latino 3x3; possiamo però introdurre un diverso modo di operare in modo da rendere più chiara la organizzazione della sperimentazione. Costruiamo ancora una matrice 3x3, ma anziché considerare le grandezze di influenza sulle righe e sulle colonne le andremo a disporre come coppie ordinate negli elementi della matrice. Nel nostro nuovo schema le righe rappresentano i diversi dispositivi e le colonne rappresentano i turni di prova: gli elementi della matrice, come anticipato, saranno delle coppie ordinate che rappresentano circuiti ed alimentazioni: la matrice sotto riportata corrisponde alla sperimentazione dell'esempio precedente. T1 T2 T3 A c1 a1 c2 a2 c3 a3 A B c3 a2 c1 a3 c2 a1 B C c2 a3 c3 a1 c1 a2 C T1 T2 T3 Fig. 10. Matrice 3x3 descrittiva della sperimentazione in tre turni (T1, T2, T3) di tre diversi dispositivi elettronici (A, B, C) con l'uso di tre circuiti (c1, c2, c3) e di tre alimentatori (a1, a2, a3) La maggiore chiarezza di tale soluzione nei confronti del classico quadrato greco-latino è già evidente, ma la utilità di questa nuova disposizione sarà ben più evidente non appena si affronterà il problema della attenuazione di 4 o più grandezze di influenza. VI. QUADRATI NXN DI ORDINE SUPERIORE Dovendo organizzare una prova su più turni con l'obbiettivo di contrastare più di due grandezze di influenza si può fare ricorso ad una regola di uso generale che consente di costruire il quadrato NxN che descrive la conduzione della prova. Il numero N è pari al più piccolo numero primo che soddisfa le due condizioni: { N > G N L in cui G è il numero di grandezze di influenza che si desidera contrastare e L è il numero di condizioni che il misurando deve assumere. Supponiamo di voler condurre un esperimento in più turni in cui si devono esaminare 4 diverse condizioni del misurando con la presenza di 3 grandezze di influenza: dalle condizioni sopra citate si desume che dovremo approntare un quadrato 5x5 e ciò significa che si dovranno organizzare 5 turni di prova. Come risolvere il problema determinato dal fatto che si intendono esaminare solo 4 condizioni per il misurando? Come vedremo nel seguito ci saranno due possibili soluzioni, per ora portiamo la nostra attenzione sulla procedura di costruzione del quadrato 5x5. Per prima cosa disponiamo sulle righe della matrice 5 diverse condizioni del misurando (A, B, C, D, E) e sulle colonne i 5 turni di prova (T1, T2, T3, T4, T5). Dovendo considerare 3 grandezze di influenza gli elementi della matrice sono delle terne ordinate. Conviene utilizzare delle terne numeriche nelle quali ciascuna cifra indica uno degli stati di una grandezza di influenza: la prima cifra di ciascuna terna rappresenta lo stato della prima grandezza di influenza, la seconda cifra di ciascuna terna rappresenta la seconda grandezza di influenza, ecc. La fase più ostica nella preparazione del quadrato è rappresentato dalla individuazione delle terne che rispettino le regole base: ciascuna cifra deve comparire una ed una sola volta in ciascuna riga e ciascuna colonna e non possono esistere due terne in cui si ripete la combinazione di due o più cifre. Il metodo originale per la costruzione delle terne che si propone risolve questo problema. Nella prima riga si introducono le terne base costituite dai gruppi 111, 222, 333, 444 e 555. Per costruire le altre righe si opera col seguente schema: passando da una riga a quella sottostante: le cifre al primo posto (da sinistra) si spostano a destra di una posizione; le cifre al secondo posto (da sinistra) si spostano a destra di due posizioni; le cifre al terzo posto (da sinistra) si spostano a destra di tre posizioni. in tutti i casi si ha un rientro a sinistra per quelle cifre che escono a destra dalla matrice. La applicazione delle regole sopra indicate è schematizzata nella figura 11 che mostra la costruzione di un quadrato 5x5. T1 T2 T3 T4 T5 A B 1 x x x 1 x x x 1 C x x 1 1 x x x 1 x D x 1 x 1 x x x x 1 E x x 1 x 1 x 1 x x Fig. 11. Costruzione del quadrato 5x5 di ordine 3 per la sperimentazione in 5 turni con azioni di contrasto verso tre grandezze di influenza

6 In precedenza si era notato che il processo prevede di esaminare 5 diverse condizioni del misurando mentre l'esperimento che si vorrebbe condurre ne dovrebbe esaminare solamente 4. Le soluzioni a questo problema sono due: per come è stato costruito il quadrato è possibile censurare la sua ultima riga limitando al numero desiderato le condizioni del misurando. La seconda soluzione prevede la ripetizione delle prove relative ad una condizione (ovviamente questa seconda soluzione richiede che si possano considerare equivalenti due distinti elementi in prova): i risultati delle misurazioni condotte sulla ripetizione vanno tenuti separati da quelli ottenuti sull'elemento primo e possono servire per validare tali risultati. La procedura descritta consente con facilità la costruzione della matrice per qualsiasi numero di grandezze di influenza si desideri attenuare: le n-ple ordinate che costituiscono gli elementi della matrice avranno tante cifre quante sono le grandezze di influenza e verranno determinate generalizzando le regole sopra riportate: nella costruzione delle n-ple ordinate, passando da una riga a quella sottostante, la cifra che si trova al i-posto (da sinistra) della n-pla si sposta a destra di i posizioni. APPENDICE 1. IL CASO PARTICOLARE G=3, L=4 La regola di costruzione della matrice NxN è di validità generale, ma non si deve tacere che nel caso particolare di quattro condizioni di prova con tre sole grandezze di influenza è possibile costruire una quadrato 4x4 (e non 5x5 come vorrebbe la regola presentata) per una prova in 4 turni. In vari libri di statistica possono essere trovati quadrati greco-latini in grado di operare questa prova e da essi si possono desumere le matrici organizzate nel modo descritto in questo lavoro. Per completezza si riporta una di tali matrici. T1 T2 T3 T4 A B C D Fig. 12. Quadrato 4x4 di ordine 3 per la sperimentazione in 4 turni con azioni di contrasto verso tre grandezze di influenza VII. CONCLUSIONI Nella letteratura è molto facile trovare esempi di quadrati latini per operare con due grandezze di influenza; più rari gli esempi di quadrati greco-latini. Ad una approfondita indagine bibliografica non si sono trovati esempi di metodi per il contrasto di più di tre grandezze di influenza. Ciò è probabilmente da ascriversi alla difficoltà che si incontra nel costruire una matrice che soddisfi i vincoli del problema e per tale motivo assume particolare interesse la procedura che si è sviluppata per la costruzione della matrice. BIBLIOGRAFIA [1] J.W.Cotton, Latin Squares Design in Encyclopedia of Statistics in Behavioral Science, Vol 2, pp , John Wiley & Sons, Chichester, 2005 [2] D.R. Cox, N. Reid, The Theory of the Design of Experiments, Chapman & Hall/CRC, 2000 [3] D. Raghavarao, Constructions and Combinatorial Problems in Design of Experiments New York: Dover, 1988

TEORIA MODALE IN UNA GUIDA CIRCOLARE

TEORIA MODALE IN UNA GUIDA CIRCOLARE 3 TEORIA MODALE IN UNA GUIDA CIRCOLARE Per studiare la propagazione in fibra ottica dal punto di vista della teoria elettromagnetica bisogna partire dalle equazioni di Maxwell, in questo capitolo si discute

Dettagli

10.1 Corrente, densità di corrente e Legge di Ohm

10.1 Corrente, densità di corrente e Legge di Ohm Capitolo 10 Correnti elettriche 10.1 Corrente, densità di corrente e Legge di Ohm Esercizio 10.1.1 Un centro di calcolo è dotato di un UPS (Uninterruptible Power Supply) costituito da un insieme di 20

Dettagli

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1 Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 Capitolo 3. L'analisi della varianza. Il problema dei confronti multipli. La soluzione drastica di Bonferroni ed il test

Dettagli

9. La distribuzione 2 e i test per dati su scala nominale

9. La distribuzione 2 e i test per dati su scala nominale 9. La distribuzione e i test per dati su scala nominale 9.1. La distribuzione 9. 1. 1. La statistica e la sua distribuzione In una popolazione distribuita normalmente con parametri e estraiamo un campione

Dettagli

DoE - Design of Experiment

DoE - Design of Experiment 3 Tecniche di DoE DoE - Design of Experiment Sequenza di Prove Sperimentali da Effettuare per Studiare e Ottimizzare un Processo Un esperimento programmato è una prova o una serie di prove in cui vengono

Dettagli

Progettazione del processo

Progettazione del processo Progettazione del processo produttivo Il miglioramento della qualità e della produttività ha maggiore efficacia quando è parte integrante del processo di realizzazione del prodotto. In particolare l uso

Dettagli

I Modelli della Ricerca Operativa

I Modelli della Ricerca Operativa Capitolo 1 I Modelli della Ricerca Operativa 1.1 L approccio modellistico Il termine modello è di solito usato per indicare una costruzione artificiale realizzata per evidenziare proprietà specifiche di

Dettagli

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili:

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili: Incertezze di misura Argomenti: classificazione delle incertezze; definizione di incertezza tipo e schemi di calcolo; schemi per il calcolo dell incertezza di grandezze combinate; confronto di misure affette

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Capitolo 11 Test chi-quadro

Capitolo 11 Test chi-quadro Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova

Dettagli

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1)

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) 151 Introduzione Un esperimento è una prova o una serie di prove. Gli esperimenti sono largamente utilizzati nel campo dell ingegneria. Tra le varie applicazioni;

Dettagli

Servizio Nazionale di Valutazione a.s. 2014/15 Guida alla lettura Prova di Matematica Classe seconda Scuola primaria

Servizio Nazionale di Valutazione a.s. 2014/15 Guida alla lettura Prova di Matematica Classe seconda Scuola primaria Servizio Nazionale di Valutazione a.s. 2014/15 Guida alla lettura Prova di Matematica Classe seconda Scuola primaria I quesiti sono distribuiti negli ambiti secondo la tabella seguente Ambito Numero di

Dettagli

D R (S) = ϱ 1 D R (S), e ovviamente per quella passiva

D R (S) = ϱ 1 D R (S), e ovviamente per quella passiva CAPITOLO 1 Introduzione Nella fisica moderna i metodi algebrici e in particolare la teoria dei gruppi hanno acquistato un interesse sconosciuto alla fisica del secolo scorso. Si può vedere la cosa in una

Dettagli

Insegnare relatività. nel XXI secolo

Insegnare relatività. nel XXI secolo Insegnare relatività nel XXI secolo L ' e s p e r i m e n t o d i H a f e l e e K e a t i n g È il primo dei nuovi esperimenti, realizzato nel 1971. Due orologi atomici sono stati montati su due aerei

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Tecniche di DM: Link analysis e Association discovery

Tecniche di DM: Link analysis e Association discovery Tecniche di DM: Link analysis e Association discovery Vincenzo Antonio Manganaro vincenzomang@virgilio.it, www.statistica.too.it Indice 1 Architettura di un generico algoritmo di DM. 2 2 Regole di associazione:

Dettagli

4. Proiezioni del piano e dello spazio

4. Proiezioni del piano e dello spazio 4. Proiezioni del piano e dello spazio La visualizzazione di oggetti tridimensionali richiede di ottenere una vista piana dell'oggetto. Questo avviene mediante una sequenza di operazioni. Innanzitutto,

Dettagli

Prove e sottoprove. Perché il calcolo combinatorio. La moltiplicazione combinatorica. Scelta con e senza ripetizione { } ( )

Prove e sottoprove. Perché il calcolo combinatorio. La moltiplicazione combinatorica. Scelta con e senza ripetizione { } ( ) Perché il calcolo combinatorio Basato sulle idee primitive di distinzione e di classificazione, stabilisce in quanti modi diversi si possono combinare degli oggetti E molto utile nell enumerazione dei

Dettagli

UNIT 2 I modelli matematici ricchi di informazione Corso di Controlli Automatici Prof. Tommaso Leo Corso di Controlli Automatici Prof.

UNIT 2 I modelli matematici ricchi di informazione Corso di Controlli Automatici Prof. Tommaso Leo Corso di Controlli Automatici Prof. UNIT 2 I modelli matematici ricchi di informazione Corso di Controlli Automatici Prof. Tommaso Leo Corso di Controlli Automatici Prof. Tommaso Leo 1 Indice UNIT 2 I modelli matematici ricchi di informazione

Dettagli

Gli errori. Capitolo 2. 2.1. Errori casuali e sistematici

Gli errori. Capitolo 2. 2.1. Errori casuali e sistematici Capitolo Gli errori.1. Errori casuali e sistematici Ogni processo di misura di una grandezza fisica, anche se condotto nel modo più attento possibile e con lo strumento più sofisticato a disposizione,

Dettagli

Influenza dei difetti superficiali sulla risposta in frequenza su pali di fondazione

Influenza dei difetti superficiali sulla risposta in frequenza su pali di fondazione Influenza dei difetti superficiali sulla risposta in frequenza su pali di fondazione E. Lo Giudice 1, G. Navarra 2, R. Suppo 3 1 Direttore del Laboratorio DISMAT s.r.l., C.daAndolina, S.S. 122 km 28 92024

Dettagli

COMPENDIO DI INFORMATICA

COMPENDIO DI INFORMATICA Roberto Visconti COMPENDIO DI INFORMATICA CAPITOLO 4 COMUNICAZIONE UOMO - MACCHINA : LINGUAGGI E PROGRAMMI estratto da: COMPENDIO DI INFORMATICA ediz. CALDERINI Bologna 1988 anno di revisione 2013 06/11

Dettagli

Esperimenti in vaso: disegni a randomizzazione completa

Esperimenti in vaso: disegni a randomizzazione completa Esperimenti in vaso: disegni a randomizzazione completa Andrea Onofri 10 marzo 2015 Indice 1 Disegno sperimentale 2 2 Analisi dei dati 3 2.1 Analisi della varianza (ANOVA).................. 4 2.2 Errore

Dettagli

Calcolo Combinatorio

Calcolo Combinatorio Capitolo S-09 Calcolo Combinatorio Autore: Mirto Moressa Contatto: mirtomo@tiscali.it Sito: www.mirtomoressa.altervista.org Data inizio: 16/10/2010 Data fine: 21/10/2010 Ultima modifica: 21/10/2010 Versione:

Dettagli

La progettazione degli esperimenti (DOE) mediante l uso delle matrici ortogonali

La progettazione degli esperimenti (DOE) mediante l uso delle matrici ortogonali La progettazione degli esperimenti (DOE) mediante l uso delle matrici ortogonali Anno Accademico 2005-2006 1 Introduzione... 3 2 Glossario... 3 3 La sperimentazione campione: la saldatura laser ad alta

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

1 - I segnali analogici e digitali

1 - I segnali analogici e digitali 1 - I segnali analogici e digitali Segnali analogici Un segnale analogico può essere rappresentato mediante una funzione del tempo che gode delle seguenti caratteristiche: 1) la funzione è definita per

Dettagli

IL CONCETTO DI FENOMENO ALEATORIO

IL CONCETTO DI FENOMENO ALEATORIO IL CONCETTO DI FENOMENO ALEATORIO Osservazione di Fenomeni Naturali (fisici, chimici,...) Sociali (economici, finanziari, psicologici,...) sui quali è difficile fare una previsione a causa di meccanismi

Dettagli

Metodi per risolvere i Sudoku

Metodi per risolvere i Sudoku Metodi per risolvere i Sudoku Introduzione In Italia il Sudoku (che può essere tradotto come numeri unici ) è stato senz altro il gioco rivelazione dell estate 2005. Sotto gli ombrelloni era facilissimo

Dettagli

Von Neumann fa anche l ipotesi che i funzionali siano lineari sull algebra:

Von Neumann fa anche l ipotesi che i funzionali siano lineari sull algebra: CAPITOLO 6 Il paradosso di Einstein Podolski Rosen Nel 1935 usciva un articolo degli autori sopra indicati, dal titolo Si può ritenere completa la descrizione quantistica della realtà fisica? L articolo

Dettagli

MMSC3 Sistema di calibrazione per guida robot bidimensionale e tridimensionale basato su visione artificiale

MMSC3 Sistema di calibrazione per guida robot bidimensionale e tridimensionale basato su visione artificiale Atti del V Congresso Metrologia & Qualità (Marzo 2007) MMSC3 Sistema di calibrazione per guida robot bidimensionale e tridimensionale basato su visione artificiale M. GALIMBERTI (1), R.SALA (2), N.CAPELLI

Dettagli

IL CONTROLLO DI QUALITÀ TRAMITE I DISEGNI SPERIMENTALI. Rossella BERNI

IL CONTROLLO DI QUALITÀ TRAMITE I DISEGNI SPERIMENTALI. Rossella BERNI IL CONTROLLO DI QUALITÀ TRAMITE I DISEGNI SPERIMENTALI Rossella BERNI Prefazione Il presente lavoro vuole essere una breve e semplice presentazione del metodo del disegno degli esperimenti applicato al

Dettagli

Lezione 9: Cambio di base

Lezione 9: Cambio di base Lezione 9: Cambio di base In questa lezione vogliamo affrontare uno degli argomenti piu ostici per lo studente e cioè il cambio di base all interno di uno spazio vettoriale, inoltre cercheremo di capire

Dettagli

SISTEMI DI NUMERAZIONE E CODICI

SISTEMI DI NUMERAZIONE E CODICI SISTEMI DI NUMERAZIONE E CODICI Il Sistema di Numerazione Decimale Il sistema decimale o sistema di numerazione a base dieci usa dieci cifre, dette cifre decimali, da O a 9. Il sistema decimale è un sistema

Dettagli

ELEMENTI TRIANGOLARI E TETRAEDRICI A LATI DIRITTI

ELEMENTI TRIANGOLARI E TETRAEDRICI A LATI DIRITTI EEMENTI TRIANGOARI E TETRAEDRICI A ATI DIRITTI Nella ricerca di unificazione delle problematiche in vista di una generalizzazione delle procedure di sviluppo di elementi finiti, gioca un ruolo importante

Dettagli

Metodologia di impiego delle tecniche di Taguchi nel Design Of Experiments nel campo della saldatura laser ad alta potenza

Metodologia di impiego delle tecniche di Taguchi nel Design Of Experiments nel campo della saldatura laser ad alta potenza Metodologia di impiego delle tecniche di Taguchi nel Design Of Experiments nel campo della saldatura laser ad alta potenza INDICE 1 Introduzione...3 2 L applicazione del Metodo Taguchi...3 2.1 Formulazione

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

Corso PAS Anno 2014. ESEMPIO. Per n = 3, Z 3 contiene 3 elementi:

Corso PAS Anno 2014. ESEMPIO. Per n = 3, Z 3 contiene 3 elementi: Corso PAS Anno 2014 Matematica e didattica 3 Correzione esercizi 1. Definizione. Sia n un fissato intero maggiore di 1. Dati due interi a, b si dice che a è congruo a b modulo n, e si scrive a b (mod n),

Dettagli

NUMERI PIENI FIGURE DI 2 A MODALITA' 3

NUMERI PIENI FIGURE DI 2 A MODALITA' 3 NUMERI PIENI FIGURE DI 2 A MODALITA' 3 Se escludiamo i giochi sulle NONARIE, finora abbiamo visto sistemi su figure di 2 o di 3 sempre a modalità 2. Ora è arrivato il momento di ritornare su un gioco a

Dettagli

NUMERI PIENI DUE TERZI NEL SETTORE. (3 su 5)

NUMERI PIENI DUE TERZI NEL SETTORE. (3 su 5) NUMERI PIENI DUE TERZI NEL SETTORE (3 su 5) La Legge del terzo produce una tendenza che ormai tutti gli addetti ai lavori conoscono. In un ciclo logico di 37 colpi di roulette non escono tutti i 37 numeri

Dettagli

Sommario della lezione

Sommario della lezione Sommario della lezione Ulteriori applicazioni del Massimo Flusso 1. Connettività di grafi. Selezione di progetti 3. Trasporto in reti 4. Eliminazione in tornei Università degli Studi di Salerno Corso di

Dettagli

Argomenti avanzati. La creazione di costanti definite dall'utente.

Argomenti avanzati. La creazione di costanti definite dall'utente. Argomenti avanzati In questa guida vedremo due argomenti che rientrano sotto il genere di utili, ma spesso non sono utilizzati. Il primo argomento discute la creazione di costanti definite dall'utente.

Dettagli

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per categoriali. Alessandro Valbonesi

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per categoriali. Alessandro Valbonesi LEZIONI DI STATISTCA APPLICATA Parte 2 Statistica inferenziale Variabili continue per categoriali Alessandro Valbonesi SARRF di Scienze ambientali Anno accademico 2010-11 CAPITOLO 4 - TEST STATISTICI CHE

Dettagli

Optimization and control: CFD as a design tool

Optimization and control: CFD as a design tool Relazione di attività del PhD student Samuele Zampini Supervisore: Prof. Maurizio Quadrio, Dipartimento di Scienze e Tecnologie Aereospaziali Optimization and control: CFD as a design tool Attività di

Dettagli

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi:

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi: Modulo 8 Elettronica Digitale Contenuti: Introduzione Sistemi di numerazione posizionali Sistema binario Porte logiche fondamentali Porte logiche universali Metodo della forma canonica della somma per

Dettagli

LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE

LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE E bene presentarla confrontando tra loro varie tecniche: addizione ripetuta; prodotto combinatorio (schieramenti). Rispetto a quest'ultima tecnica, grande utilità

Dettagli

Tra le varie famiglie di convertitori, i convertitori c.c.-c.a. (comunemente indicati come inverter ) sono quelli che prevedono il più elevato numero

Tra le varie famiglie di convertitori, i convertitori c.c.-c.a. (comunemente indicati come inverter ) sono quelli che prevedono il più elevato numero Tra le varie famiglie di convertitori, i convertitori c.c.-c.a. (comunemente indicati come inverter ) sono quelli che prevedono il più elevato numero di soluzioni circuitali, in dipendenza sia dal livello

Dettagli

Come scrivere una relazione di laboratorio completa sintetica

Come scrivere una relazione di laboratorio completa sintetica Come scrivere una relazione di laboratorio Premesso che durante l esperienza di laboratorio è necessario annotare tutto ciò che è utile per poter redigere la relazione, questa deve contenere: gli strumenti

Dettagli

L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO

L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO L ERRORE A REGIME NELLE CATENE DI REGOLAZIONE E CONTROLLO Per errore a regime si intende quello rilevato dopo un intervallo sufficientemente lungo dal verificarsi di variazioni del riferimento o da eventuali

Dettagli

La distribuzione binomiale

La distribuzione binomiale La distribuzione binomiale 1. Che cos'è un numero casuale Stiamo per lanciare un dado. Fermiamo la situazione un attimo prima che il dado cada e mostri la faccia superiore. Finché è in aria esso costituisce

Dettagli

Introduzione. è uguale a 0, spostamento di dati da una parte della memoria del calcolatore ad un altra.

Introduzione. è uguale a 0, spostamento di dati da una parte della memoria del calcolatore ad un altra. Appunti di Calcolatori Elettronici Modello di macchina multilivello Introduzione... 1 Linguaggi, livelli e macchine virtuali... 3 La struttura a livelli delle macchine odierne... 4 Evoluzione delle macchine

Dettagli

Creare esperimenti di psicologia e neuroscienze con PsychoPy: una brevissima introduzione

Creare esperimenti di psicologia e neuroscienze con PsychoPy: una brevissima introduzione Indice Creare esperimenti di psicologia e neuroscienze con PsychoPy: una brevissima introduzione Davide Massidda davide.massidda@gmail.com L'effetto Simon: disegno della ricerca Python e PsychoPy L'apparato

Dettagli

4. Matrici e Minimi Quadrati

4. Matrici e Minimi Quadrati & C. Di Natale: Matrici e sistemi di equazioni di lineari Formulazione matriciale del metodo dei minimi quadrati Regressione polinomiale Regressione non lineare Cross-validazione e overfitting Regressione

Dettagli

Decisioni in condizioni di rischio. Roberto Cordone

Decisioni in condizioni di rischio. Roberto Cordone Decisioni in condizioni di rischio Roberto Cordone Decisioni in condizioni di rischio Rispetto ai problemi in condizioni di ignoranza, oltre all insieme Ω dei possibili scenari, è nota una funzione di

Dettagli

Le principali evidenze empiriche

Le principali evidenze empiriche SINTESI Questo documento analizza e compara il costo di cittadinanza tra le 14 aree metropolitane individuate nel nostro paese. L obiettivo preliminare della ricerca è stato quello di dare una definizione

Dettagli

SVILUPPO IN SERIE DI FOURIER

SVILUPPO IN SERIE DI FOURIER SVILUPPO IN SERIE DI FOURIER Cenni Storici (Wikipedia) Jean Baptiste Joseph Fourier ( nato a Auxerre il 21 marzo 1768 e morto a Parigi il 16 maggio 1830 ) è stato un matematico e fisico, ma è conosciuto

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Capitolo 1 - Numerazione binaria

Capitolo 1 - Numerazione binaria Appunti di Elettronica Digitale Capitolo - Numerazione binaria Numerazione binaria... Addizione binaria... Sottrazione binaria... Moltiplicazione binaria... Divisione binaria... Complementazione... Numeri

Dettagli

Design of Experiments

Design of Experiments Design of Experiments Luigi Amedeo Bianchi 1 Introduzione Cominciamo spiegando cosa intendiamo con esperimento, ossia l investigare un processo cambiando i dati in ingresso, osservando i cambiamenti che

Dettagli

8.9 CREARE UNA TABELLA PIVOT

8.9 CREARE UNA TABELLA PIVOT 8.9 CREARE UNA TABELLA PIVOT Utilizziamo la tabella del foglio di Excel Consumo di energia elettrica in Italia del progetto Aggiungere subtotali a una tabella di dati, per creare una Tabella pivot: essa

Dettagli

STIMARE valori ed eseguire ANALISI DI REGRESSIONE

STIMARE valori ed eseguire ANALISI DI REGRESSIONE STIMARE valori ed eseguire ANALISI DI REGRESSIONE È possibile impostare una serie di valori che seguono una tendenza lineare semplice oppure una tendenza con crescita esponenziale. I valori stimati vengono

Dettagli

IL MIO PRIMO SITO: NEWS

IL MIO PRIMO SITO: NEWS Pagina 1 IL MIO PRIMO SITO: NEWS Sommario IL MIO PRIMO SITO: NEWS...1 Introduzione...2 I Contenitori...2 Creo un Contenitore...3 I Tracciati...4 Creo le Notizie...6 Inserisco il Testo...6 Inserisco un

Dettagli

Fondamenti di Informatica Ingegneria Clinica Lezione 19/11/2009. Prof. Raffaele Nicolussi

Fondamenti di Informatica Ingegneria Clinica Lezione 19/11/2009. Prof. Raffaele Nicolussi Fondamenti di Informatica Ingegneria Clinica Lezione 19/11/2009 Prof. Raffaele Nicolussi FUB - Fondazione Ugo Bordoni Via B. Castiglione 59-00142 Roma Docente Raffaele Nicolussi rnicolussi@fub.it Lezioni

Dettagli

Organizzazione di dati fenologici in un database relazionale: l'esempio della banca dati del Progetto Finalizzato Phenagri

Organizzazione di dati fenologici in un database relazionale: l'esempio della banca dati del Progetto Finalizzato Phenagri CAPITOLO 6 Organizzazione di dati fenologici in un database relazionale: l'esempio della banca dati del Progetto Finalizzato Phenagri A. Calì, G. Dal Monte 6.1 - Introduzione Le informazioni provenienti

Dettagli

Il principio di induzione e i numeri naturali.

Il principio di induzione e i numeri naturali. Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito

Dettagli

Elaborazione dati in Analisi Sensoriale

Elaborazione dati in Analisi Sensoriale Elaborazione dati in Analisi Sensoriale Si è parlato di interpretazione corretta dei risultati ottenuti; a questo concorrono due fattori: affidabilità e validità. Se i test fossero stati ripetuti con lo

Dettagli

Cenni sul calcolo combinatorio

Cenni sul calcolo combinatorio Cenni sul calcolo combinatorio Disposizioni semplici Le disposizioni semplici di n elementi distinti di classe k con kn sono tutti i gruppi di k elementi scelti fra gli n, che differiscono per almeno un

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Strumenti e metodi per la redazione della carta del pericolo da fenomeni torrentizi

Strumenti e metodi per la redazione della carta del pericolo da fenomeni torrentizi Versione 1.0 Strumenti e metodi per la redazione della carta del pericolo da fenomeni torrentizi Corso anno 2011 B. MANUALE DI UTILIZZO DEL GRIGLIATORE Il pre processore Grigliatore è composto da tre macro

Dettagli

LA NORMALIZZAZIONE. Introduzione

LA NORMALIZZAZIONE. Introduzione LA NORMALIZZAZIONE Introduzione La normalizzazione e' una tecnica di progettazione dei database, mediante la quale si elimina la rindondanza dei dati al fine di evitare anomalie nella loro consistenza

Dettagli

QUADRATI SULLE CHANCES

QUADRATI SULLE CHANCES QUADRATI SULLE CHANCES EFFETTI DELLA LEGGE DEL TERZO Sappiamo che in una permanenza di tanti termini quanti sono i numeri disponibili la Legge del terzo produce una certa tendenza sulle proporzioni dei

Dettagli

Macchine di Turing, problemi ricorsivi e ricorsivamente enumerabili

Macchine di Turing, problemi ricorsivi e ricorsivamente enumerabili Macchine di Turing, problemi ricorsivi e ricorsivamente enumerabili roblemi che i calcolatori non possono risolvere E importante sapere se un programma e corretto, cioe fa quello che ci aspettiamo. E facile

Dettagli

d 2 dx ψ + 2 m E V x ψ = 0 V x = V x + a. ψ(x+a) = Q ψ(x). ψ x = e " i k x u k ψ x + a = e " i k x + a u k x + a = e " i k a e " i k x u k

d 2 dx ψ + 2 m E V x ψ = 0 V x = V x + a. ψ(x+a) = Q ψ(x). ψ x = e  i k x u k ψ x + a = e  i k x + a u k x + a = e  i k a e  i k x u k Teorema di Bloch Introduzione (vedi anche Ascroft, dove c è un approccio alternativo) Cominciamo col considerare un solido unidimensionale. Il modello è quello di una particella (l elettrone) in un potenziale

Dettagli

Pivot è bello. Principali. misure di variabilità. Il contesto è di tipo matematico, in particolare riguarda l uso di dati numerici e delle loro

Pivot è bello. Principali. misure di variabilità. Il contesto è di tipo matematico, in particolare riguarda l uso di dati numerici e delle loro Pivot è bello Livello scolare: 1 biennio Abilità Conoscenze interessate Predisporre la struttura della Distribuzioni delle matrice dei dati grezzi con frequenze a seconda del riguardo a una rilevazione

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

La regressione lineare multipla

La regressione lineare multipla 13 La regressione lineare multipla Introduzione 2 13.1 Il modello di regressione multipla 2 13.2 L analisi dei residui nel modello di regressione multipla 9 13.3 Il test per la verifica della significatività

Dettagli

LE MOVIMENTAZIONI DI MAGAZZINO

LE MOVIMENTAZIONI DI MAGAZZINO LE MOVIMENTAZIONI DI MAGAZZINO 1) PREMESSA Con il software Blustring, il magazzino viene movimentato automaticamente (senza dover effettuare alcuna operazione aggiuntiva) nel momento stesso in cui avviene

Dettagli

Funzioni reali di più variabili reali

Funzioni reali di più variabili reali Funzioni reali di più variabili reali Generalità. Indichiamo con R n il prodotto cartesiano di R per sé stesso, n volte: R n = {(, 2,, n ) ;! R,, n!r}. Quando n = 2 oppure n = 3 indicheremo le coordinate

Dettagli

Ricerca con avversari

Ricerca con avversari Ricerca con avversari Roberto Tagliaferri Dipartimento di Informatica Università di Salerno ( Sa ) 84084 Fisciano rtagliaferri@unisa.it Indice I giochi Decisioni ottime nei giochi L algoritmo minimax Potatura

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

Un introduzione all analisi Monte Carlo in Finanza

Un introduzione all analisi Monte Carlo in Finanza ASSOCIAZIONE ITALIANA FINANCIAL RISK MANAGEMENT Un introduzione all analisi Monte Carlo in Finanza Stefano Fabi Working Paper, 1/01/98 Presidenza: Fernando Metelli - Banca Popolare di Milano, Via Fara

Dettagli

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana Schemi delle Lezioni di Matematica Generale Pierpaolo Montana Al-giabr wa al-mukabalah di Al Khuwarizmi scritto approssimativamente nel 820 D.C. Manuale arabo da cui deriviamo due nomi: Algebra Algoritmo

Dettagli

1. LE GRANDEZZE FISICHE

1. LE GRANDEZZE FISICHE 1. LE GRANDEZZE FISICHE La fisica (dal greco physis, natura ) è una scienza che ha come scopo guardare, descrivere e tentare di comprendere il mondo che ci circonda. La fisica si propone di descrivere

Dettagli

SCENEGGIATURA Moti rettilinei uniformi: sorpassi, incontri e sistemi di due equazioni

SCENEGGIATURA Moti rettilinei uniformi: sorpassi, incontri e sistemi di due equazioni SCENEGGIATURA Moti rettilinei uniformi: sorpassi, incontri e sistemi di due equazioni Si lavora sulla descrizione e sull'analisi di esperienze cinematiche relative a sorpassi e incontri con moti di persone

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

Altri metodi di indicizzazione

Altri metodi di indicizzazione Organizzazione a indici su più livelli Altri metodi di indicizzazione Al crescere della dimensione del file l organizzazione sequenziale a indice diventa inefficiente: in lettura a causa del crescere del

Dettagli

Può la descrizione quantomeccanica della realtà fisica considerarsi completa?

Può la descrizione quantomeccanica della realtà fisica considerarsi completa? Può la descrizione quantomeccanica della realtà fisica considerarsi completa? A. Einstein, B. Podolsky, N. Rosen 25/03/1935 Abstract In una teoria completa c è un elemento corrispondente ad ogni elemento

Dettagli

MAPPE DI KARNAUGH e sintesi ottima

MAPPE DI KARNAUGH e sintesi ottima MAPPE DI KARNAUGH e sintesi ottima (prima stesura da rivedere) Sappiamo che una funzione logica può essere espressa in diverse forme, tra loro equivalenti e noi siamo già in grado di passare da una all

Dettagli

TERZINE 1-2 FIGURE DI 2. Al doppione su due giocatori

TERZINE 1-2 FIGURE DI 2. Al doppione su due giocatori TERZINE 1-2 FIGURE DI 2 Al doppione su due giocatori Verso la fine degli anni '80, ho praticato per una quindicina di giorni un facsimile del gioco che ora sto per descrivere. Era il periodo delle ferie

Dettagli

Random number generators

Random number generators Statistica computazionale Random number generators www.cash-cow.it Distribuito sotto licenza Creative Common, Share Alike Attribution 2 Indice I. Introduzione II. Processi fisici per la creazione di numeri

Dettagli

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici C. Vergara 3. Metodo della fattorizzazione LU per la risoluzione di un sistema lineare Errori di arrotondamento. Prima di affrontare la

Dettagli

Università del Piemonte Orientale. Corsi di Specialità. Corso di Statistica Medica. Analisi dei dati quantitativi : Analisi della varianza

Università del Piemonte Orientale. Corsi di Specialità. Corso di Statistica Medica. Analisi dei dati quantitativi : Analisi della varianza Università del Piemonte Orientale Corsi di Specialità Corso di Statistica Medica Analisi dei dati quantitativi : Analisi della varianza Università del Piemonte Orientale Corso di laurea in biotecnologie

Dettagli

A. Boggio G. Borello. Statistica STATISTICA INDUSTRIALE RICERCA OPERATIVA. Scienze e. Tecnologie PETRINI

A. Boggio G. Borello. Statistica STATISTICA INDUSTRIALE RICERCA OPERATIVA. Scienze e. Tecnologie PETRINI A. Boggio G. Borello Statistica STATISTICA INDUSTRIALE RICERCA OPERATIVA 3 PETRINI Scienze e Tecnologie A. BOGGIO G. BORELLO STATISTICA 3 Argomenti e applicazioni di statistica industriale e di ricerca

Dettagli

e-dva - eni-depth Velocity Analysis

e-dva - eni-depth Velocity Analysis Lo scopo dell Analisi di Velocità di Migrazione (MVA) è quello di ottenere un modello della velocità nel sottosuolo che abbia dei tempi di riflessione compatibili con quelli osservati nei dati. Ciò significa

Dettagli

Le Armoniche INTRODUZIONE RIFASAMENTO DEI TRASFORMATORI - MT / BT

Le Armoniche INTRODUZIONE RIFASAMENTO DEI TRASFORMATORI - MT / BT Le Armoniche INTRODUZIONE Data una grandezza sinusoidale (fondamentale) si definisce armonica una grandezza sinusoidale di frequenza multipla. L ordine dell armonica è il rapporto tra la sua frequenza

Dettagli

137. QUADRATI MAGICI. Stefano Borgogni stfbrg@rocketmail.com. Matematicamente.it

137. QUADRATI MAGICI. Stefano Borgogni stfbrg@rocketmail.com. Matematicamente.it 137. QUADRATI MAGICI Stefano Borgogni stfbrg@rocketmail.com Sunto Questo articolo è dedicato ai quadrati magici. Si tratta di un argomento che è stato trattato in lungo e in largo da generazioni di matematici

Dettagli