Quadrati latini e di ordine superiore per la attenuazione dei disturbi nelle attività sperimentali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Quadrati latini e di ordine superiore per la attenuazione dei disturbi nelle attività sperimentali"

Transcript

1 Quadrati latini e di ordine superiore per la attenuazione dei disturbi nelle attività sperimentali Stefano Pirani Dipartimento di Ingegneria dell'informazione Università Politecnica delle Marche Ancona - AN Abstract Le tecniche di progettazione dell'esperimento sono fondamentali per una corretta attività sperimentale ed i quadrati latini e di ordine superiore sono utili quando si devono contrastare più grandezze di influenza. Nell'articolo viene presentata una tecnica generale per la costruzione di quadrati di ordine maggiore di 3. Keywords Misure, DOE, Grandezze di influenza I. INTRODUZIONE In ogni attività di misura è indispensabile una fase preliminare di studio finalizzata alla analisi delle grandezze che possono interferire con lo svolgimento della fase di misura alterando il valore del parametro misurando. Indicando tali grandezze con il nome di grandezze di influenza è possibile affermare che una corretta progettazione dell'esperimento (o DOE - Design Of the Experiment) deve includere la messa a punto di una strategia che consenta, ove necessario, di attenuare gli effetti delle grandezze di influenza fino a renderli compatibili con gli obiettivi dell'esperimento. Il quadrato latino, conosciuto da tempo da matematici ed enigmisti, è lo strumento che Ronald A. Fisher suggerì di utilizzare per la progettazione degli esperimenti nei casi in cui vi sono due distinte grandezze di influenza che possono alterare lo stato della grandezza sotto esame. Il quadrato grecolatino, una estensione del quadrato latino, è stato invece adottato nei casi in cui si debbano contrastare gli effetti di tre grandezze di influenza. Una ricerca bibliografia non ha messo in luce quadrati idonei ad operare con più di tre grandezze di influenza: in questo articolo si presenta una procedura originale con cui è possibile costruire quadrati di ordine superiore idonei a progettare esperimenti in cui si desidera contrastare l'effetto di un numero arbitrario di grandezze di influenza. II. UN CLASSICO ESEMPIO DI ESPERIMENTO A DUE GRANDEZZE DI INFLUENZA Volendo chiarire cosa sia e come operi un quadrato latino si può ricorrere al più classico esempio che si trova in letteratura e che fa riferimento ad una delle prime reali applicazioni delle tecniche DOE. Supponiamo di voler confrontare la resa di quattro razze diverse di frumento: ovviamente la sperimentazione dovrà essere condotta seminando, coltivando, mietendo ed infine trebbiando le quattro razze per poi stilare una graduatoria in funzione delle quantità trebbiate. L'ipotesi di seminare uno stesso appezzamento di terreno in quattro annate successive evidentemente non può essere accettata per vari motivi: il risultato si avrebbe solo dopo quattro anni di lavoro e le situazioni climatiche dei vari anni sarebbero inevitabilmente diverse apportando non accettabili alterazioni ai risultati sperimentali. Un'altra soluzione potrebbe essere quella di utilizzare quattro diversi appezzamenti di terreno in modo da condurre la sperimentazione in un solo anno: seminando una diversa razza di frumento in ciascun appezzamento si risolverebbe certamente il problema della durata della prova, che si riduce ad un solo ciclo semina-coltivazione-mieti-trebbiatura", e certamente si avrebbe una riduzione delle differenze climatiche, in special modo se i quattro lotti usati per l'esperimento si trovano l'uno in prossimità dell'altro. A rigore, pero, si deve considerare che il terreno agricolo non è un sistema omogeneo e isotropo per cui si possono ancora evidenziare delle differenze fra i quattro lotti tali da alterare i risultati sperimentali. Il terreno in cui organizzare i quattro lotti potrebbe non essere orizzontale e ciò provocherebbe una irrigazione a valle maggiore di quella a monte; anche le condizioni di soleggiamento potrebbero essere non uniformi se la superficie del terreno non fosse planare, cosa frequente nei terrreni collinari. Entrambe le caratteristiche influiscono sulla produttività delle seminagioni alterando il risultato della sperimentazione. Come evitare che queste due grandezze di influenza possano alterare in modo inaccettabile il risultato sperimentale? La soluzione richiede che la suddivisione del terreno seminativo in lotti sia fatta in modo non banale: se il terreno fosse suddiviso in quartieri (fig. 1) si avrebbe una esaltazione delle differenze. Una suddivisione in colonne (fig. 2) consentirebbe di attenuare l'effetto della drenaggio verso valle della pioggia, ma nulla potrebbe contro le differenze del soleggiamento mentre una suddivisione in righe (fig. 3) porterebbe ad una attenuazione delle differenze di soleggiamento, ma lascerebbe invariati gli effetti delle diversa distribuzione della acqua.

2 La suddivisione a scacchiere 4x4 (fig. 4) è invece in grado di attenuare gli effetti di entrambe le grandezze di influenza; per chiarezza indichiamo col termine parcella ciascuna delle 16 posizioni dello scacchiere. Fig. 1. Suddivisione del terreno seminativo in quartieri con esaltazione degli effetti di disturbo dovuti alla non uniformità di irrigazione e soleggiamento Fig. 4. Suddivisione del terreno seminativo a scacchiere 4x4 Organizzando la semina delle quattro diverse razze di frumento in maniera tale da avere una sola parcella seminata con una stessa razza in ciascuna riga e in ciascuna colonna si ottiene una disposizione a quadrato latino. L'aggettivo latino discende dalla usanza di indicare le diverse razze di frumento (ed in generale: le diverse condizioni del misurando) con lettere dell'alfabeto latino. A C D B Fig. 2. Suddivisione del terreno seminativo in colonne con compensazione dei soli effetti di disturbo dovuti alla non uniformità della irrigazione C A B D D B A C B D C A Fig. 5. Semina a quadrato latino 4x4 di quattro razze di frumento (indicate con le lettere A, B, C, D) Con la semina a quadrato latino il confronto fra le quattro razze di frumento viene effettuato attraverso il confronto fra le medie delle produzioni delle 4 parcelle seminate con la stessa razza. Fig. 3. Suddivisione del terreno seminativo in righe con compensazione dei soli effetti di disturbo dovuti alla non uniformità del soleggiamento III. ATTENUAZIONE DI DUE GRANDEZZE DI INFLUENZA: IL QUADRATO LATINO L'esempio precedente ha introdotto in modo implicito un quadrato latino sfruttando la fisicità del problema presentato.

3 Il quadrato latino è una matrice NxN con cui è possibile organizzare un esperimento nel quale verificare il comportamento di N diversi sistemi (o di un solo sistema in corrispondenza di N diversi punti di lavoro) quando si debba contrastare l'effetto di 2 diverse grandezze di influenza variabili in modo deterministico. Nell'esempio si dovevano verificare 4 razze di frumento (indicate con A, B, C e D) per cui il corrispondente quadrato latino è costituito da una matrice 4x4. Il terreno seminativo è stato infatti suddiviso in uno scacchiere 4x4 che, di fatto, corrisponde alla matrice 4x4 del quadrato latino. Ciascuna delle 4 razze di frumento viene seminata in 4 parcelle in modo tale che in ogni riga ed in ogni colonna ci sia una ed una sola parcella seminata con ciascuna razza: nel quadrato latino ciò corrisponde ad avere ciascuna delle lettere A, B, C e D presente una ed una sola volta in ciascuna riga e ciascuna colonna. Le parcelle presenti in una riga dello scacchiere hanno la stessa condizione per quanto riguarda la irrigazione così come le parcelle che si trovano in una stessa colonna hanno la stessa condizione di soleggiamento. Il quadrato latino prevede, similmente, che le 2 grandezze di influenza, con le rispettive variazioni, vengano disposte l'una secondo le righe e l'altra secondo le colonne della matrice. Possiamo ora abbandonare l'esempio bucolico del frumento e passare ad applicazioni industriali: nulla cambia per quanto riguarda la organizzazione del quadrato latino e della sperimentazione da esso proposta: dovendo contrastare l'effetto di due grandezze di influenza in un esperimento in cui vogliamo studiare N condizioni del misurando andremo a costruire un quadrato latino NxN in cui le variazioni di una delle grandezze di influenza sono disposte secondo le righe e quelle dell'altra secondo le colonne della matrice. Fatto ciò dovremo trovare una disposizione degli elementi della matrice (le lettere con cui rappresentiamo le N condizioni del misurando) tale da avere una ed una sola volta ciascuna lettera in ciascuna riga ed in ciascuna colonna. IV. ATTENUAZIONE DI TRE GRANDEZZE DI INFLUENZA: IL QUADRATO GRECO-LATINO Dovendo attenuare gli effetti di tre grandezze di influenza si potrebbe pensare di ricorrere ad una matrice tridimensionale riportando ciascuna grandezza di influenza su di una dimensione della matrice. Il procedimento non è sbagliato, ma richiede un numero di prove che, essendo pari al numero delle condizioni del misurando elevato alla terza potenza, rapidamente raggiunge valori elevati rendendo poco o per nulla praticabile tale soluzione. Molti Autori, seguendo la strada aperta nel XVIII secolo da Eulero, chiamano una evoluzione del quadrato latino con il nome di quadrato greco-latino : esso è lo strumento idoneo per attenuare gli effetti di tre grandezze di influenza senza richiedere una esplosione del numero delle misurazioni da eseguire. La matrice del quadrato greco-latino resta di dimensioni NxN ma gli elementi di tale matrice non sono più le sole lettere latine che simboleggiano le possibili condizioni del misurando, ma sono coppie ordinate di lettere. Le possibili condizioni assunte dalla terza grandezza di influenza vengono simboleggiate da lettere dell'alfabeto greco e ciascuna di esse deve figurare una sola volta in ciascuna riga ed in ciascuna colonna e deve essere associata una sola volta a ciascuna lettera latina. G1 A C D B G2 C A B D G3 D B A C G1 G2 G3 G1 A C D B G1 G4 B D C A G4 G2 C A B D G2 G3 D B A C G3 G4 B D C A G4 Fig. 6. Quadrato latino 4x4 per due grandezze di influenza che assumono rispettivamente i valori G1, G2, G3, G4 (la prima) e g1, g2, g3, g4 (la seconda); A, B, C, D sono le condizioni del misurando da sottoporre alla sperimentazione. Fig. 7. Quadrato greco-latino 4x4 per tre grandezze di influenza che assumono rispettivamente i valori G1, G2, G3, G4 (la prima), g1, g2, g3, g4 (la seconda),,,, (la terza); A, B, C, D sono le condizioni del misurando da sottoporre alla sperimentazione. I due gruppi di lettere greche e latine di un quadrato grecolatino, separate per alfabeto, costituiscono due quadrati latini che vengono definiti ortogonali in quanto i rispettivi elementi omologhi (A ed, B e, ) si sovrappongono in un solo punto. La costruzione di due quadrati latini ortogonali di ordine superiore a 4 non è un problema banale e, per oltre un secolo, i matematici si sono interrogati per cercare risposta ad un problema sviluppato da Eulero e che è conosciuto come il

4 problema dei 36 Ufficiali. Secondo Eulero non sarebbe stato possibile costruire quadrati greco-latini di ordine multiplo di 6 e gli studi di Gaston Tarry, che nel 1901 dimostrò la non esistenza di un quadrato greco-latino di ordine 6, parvero confermare la congettura euleriana. Solo nel 1959, grazie all'uso di un calcolatore elettronico UNIVAC, Parker, Bose e Shrikhande furono in grado di correggere la affermazione di Eulero: oggi infatti sappiamo che esistono quadrati greco-latini di ogni ordine superiore a 3 con la sola eccezione dell'ordine 6. È quindi possibile organizzare il piano sperimentale in modo da attenuare 3 grandezze di influenza con grande libertà per quanto riguarda il numero di valori del misurando che si desidera sottoporre alla sperimentazione. Ma come operare se le grandezze di influenza fossero più di tre? Prima di rispondere a questa domanda è opportuno che si consideri anche un altro aspetto del problema che in questo lavoro è stato fino ad ora trascurato. V. LA ORGANIZZAZIONE DEI TURNI DI PROVA Nell'esempio di quadrato latino che è stato presentato nella introduzione si è operato in un solo turno di prova: tale situazione è resa possibile dalla ipotesi (implicita) che tutti i semi del frumento di una stessa razza siano perfettamente uguali fra loro e si è motivata la scelta di operare con un solo turno con varie considerazioni. Nelle applicazioni industriale è più frequente il caso in cui si debba ricorrere all'uso di prototipi che, per le inevitabili imperfezioni dei processi produttivi, non possono essere considerati identici l'uno all'altro. Per questo motivo, e per non dover essere costretti ad usare un numero elevato di prototipi, si opera in più turni di prova. Supponiamo di dover esaminare il comportamento di tre diversi dispositivi elettronici nominalmente simili, ma diversi per comportamento effettivo a causa, per esempio, del fatto di essere stati prodotti in stabilimenti diversi. Per consentire il funzionamento di ogni dispositivo dovremo montarlo in un circuito e fornirgli la necessaria alimentazione. A causa delle inevitabili imperfezioni e tolleranze costruttive i circuiti in cui montare i dispositivi saranno tutti leggermente diversi l'uno dall'altro e stesso dicasi per i circuiti di alimentazione: sia i circuiti sia gli alimentatori assumono il ruolo di grandezze di influenza sul comportamento dei dispositivi elettronici sottoposti al test. Sappiamo che per attenuare tali grandezze di influenza potremmo ricorrere ad un quadrato latino 3x3 con cui individuare la più opportuna disposizione dei gruppi dispositivo-circuito-alimentatore ma in questo caso dobbiamo anche tener conto del fatto che la sperimentazione avviene in più turni di prova: al termine di ciascun turno ogni dispositivo verrà smontato da un circuito per essere montato su un altro circuito e lo stesso accadrà per le alimentazioni. Facendo in modo che ogni dispositivo sia montato su ogni circuito di prova e sia alimentato da ogni sorgente di alimentazione si realizza una sperimentazione corretta ed è evidente che bisogna anche cercare di minimizzare il numero di turni di prova. Con un poco di attenzione è possibile notare che il quadrato latino 3x3 che è stato sviluppato (fig. 8) permette di organizzare la prova in tre soli turni, ma quando la dimensione della matrice aumenta la organizzazione di turni può diventare laboriosa. c1 A C B c1 c2 B A C c2 c3 C B A c3 Fig. 8. Quadrato latino 3x3 per la sperimentazione di tre diversi dispositivi elettronici (A, B, C) con l'uso di tre circuiti (c1, c2, c3) e di tre alimentatori (a1, a2, a3) Il problema della organizzazione dei turni di prova può essere risolta ricorrendo non ad un quadrato latino, ma ad un quadrato greco-latino in cui le lettere greche indicano non gli stati di una grandezza di influenza, ma i turni di prova. Supponiamo di avere tre dispositivi da sottoporre a sperimentazione, tre circuiti e tre alimentatori. Costruiamo un quadrato 3x3 e disponiamo sulle righe e sulle colonne rispettivamente i circuiti di prova (c1, c2,c3) e gli alimentatori (a1, a2, a3) poi indichiamo con,, e rispettivamente il primo, il secondo ed il terzo turno di prova. I tre dispositivi sotto sperimentazione saranno indicati, classicamente, con A, B e C. Il quadrato greco-latino di questo esperimento (fig. 9) ci mostra che nel primo turno () il dispositivo A sarà montato sul circuito c1 per essere alimentato da a1, il dispositivo B sarà montato su c2 e alimentato da a3, il dispositivo C sarà montato su c3 e alimentato da a2. Nel secondo turno () gli abbinamenti saranno: A-c2-a2; B- c3-a1; C-c1-a3 per terminare, al terzo turno () con: A-c3-a3; B-c1-a2; C-c2-a1. c1 A C B c2 B A C c3 C B A Fig. 9. Quadrato greco-latino 3x3 per la sperimentazione di tre diversi dispositivi elettronici (A, B, C) con l'uso di tre circuiti (c1, c2, c3) e di tre alimentatori (a1, a2, a3) e sperimentazione in tre turni (,, ) c1 c2 c3

5 Come si è visto la progettazione dell'esperimento potrebbe essere condotta tramite un classico quadrato greco-latino 3x3; possiamo però introdurre un diverso modo di operare in modo da rendere più chiara la organizzazione della sperimentazione. Costruiamo ancora una matrice 3x3, ma anziché considerare le grandezze di influenza sulle righe e sulle colonne le andremo a disporre come coppie ordinate negli elementi della matrice. Nel nostro nuovo schema le righe rappresentano i diversi dispositivi e le colonne rappresentano i turni di prova: gli elementi della matrice, come anticipato, saranno delle coppie ordinate che rappresentano circuiti ed alimentazioni: la matrice sotto riportata corrisponde alla sperimentazione dell'esempio precedente. T1 T2 T3 A c1 a1 c2 a2 c3 a3 A B c3 a2 c1 a3 c2 a1 B C c2 a3 c3 a1 c1 a2 C T1 T2 T3 Fig. 10. Matrice 3x3 descrittiva della sperimentazione in tre turni (T1, T2, T3) di tre diversi dispositivi elettronici (A, B, C) con l'uso di tre circuiti (c1, c2, c3) e di tre alimentatori (a1, a2, a3) La maggiore chiarezza di tale soluzione nei confronti del classico quadrato greco-latino è già evidente, ma la utilità di questa nuova disposizione sarà ben più evidente non appena si affronterà il problema della attenuazione di 4 o più grandezze di influenza. VI. QUADRATI NXN DI ORDINE SUPERIORE Dovendo organizzare una prova su più turni con l'obbiettivo di contrastare più di due grandezze di influenza si può fare ricorso ad una regola di uso generale che consente di costruire il quadrato NxN che descrive la conduzione della prova. Il numero N è pari al più piccolo numero primo che soddisfa le due condizioni: { N > G N L in cui G è il numero di grandezze di influenza che si desidera contrastare e L è il numero di condizioni che il misurando deve assumere. Supponiamo di voler condurre un esperimento in più turni in cui si devono esaminare 4 diverse condizioni del misurando con la presenza di 3 grandezze di influenza: dalle condizioni sopra citate si desume che dovremo approntare un quadrato 5x5 e ciò significa che si dovranno organizzare 5 turni di prova. Come risolvere il problema determinato dal fatto che si intendono esaminare solo 4 condizioni per il misurando? Come vedremo nel seguito ci saranno due possibili soluzioni, per ora portiamo la nostra attenzione sulla procedura di costruzione del quadrato 5x5. Per prima cosa disponiamo sulle righe della matrice 5 diverse condizioni del misurando (A, B, C, D, E) e sulle colonne i 5 turni di prova (T1, T2, T3, T4, T5). Dovendo considerare 3 grandezze di influenza gli elementi della matrice sono delle terne ordinate. Conviene utilizzare delle terne numeriche nelle quali ciascuna cifra indica uno degli stati di una grandezza di influenza: la prima cifra di ciascuna terna rappresenta lo stato della prima grandezza di influenza, la seconda cifra di ciascuna terna rappresenta la seconda grandezza di influenza, ecc. La fase più ostica nella preparazione del quadrato è rappresentato dalla individuazione delle terne che rispettino le regole base: ciascuna cifra deve comparire una ed una sola volta in ciascuna riga e ciascuna colonna e non possono esistere due terne in cui si ripete la combinazione di due o più cifre. Il metodo originale per la costruzione delle terne che si propone risolve questo problema. Nella prima riga si introducono le terne base costituite dai gruppi 111, 222, 333, 444 e 555. Per costruire le altre righe si opera col seguente schema: passando da una riga a quella sottostante: le cifre al primo posto (da sinistra) si spostano a destra di una posizione; le cifre al secondo posto (da sinistra) si spostano a destra di due posizioni; le cifre al terzo posto (da sinistra) si spostano a destra di tre posizioni. in tutti i casi si ha un rientro a sinistra per quelle cifre che escono a destra dalla matrice. La applicazione delle regole sopra indicate è schematizzata nella figura 11 che mostra la costruzione di un quadrato 5x5. T1 T2 T3 T4 T5 A B 1 x x x 1 x x x 1 C x x 1 1 x x x 1 x D x 1 x 1 x x x x 1 E x x 1 x 1 x 1 x x Fig. 11. Costruzione del quadrato 5x5 di ordine 3 per la sperimentazione in 5 turni con azioni di contrasto verso tre grandezze di influenza

6 In precedenza si era notato che il processo prevede di esaminare 5 diverse condizioni del misurando mentre l'esperimento che si vorrebbe condurre ne dovrebbe esaminare solamente 4. Le soluzioni a questo problema sono due: per come è stato costruito il quadrato è possibile censurare la sua ultima riga limitando al numero desiderato le condizioni del misurando. La seconda soluzione prevede la ripetizione delle prove relative ad una condizione (ovviamente questa seconda soluzione richiede che si possano considerare equivalenti due distinti elementi in prova): i risultati delle misurazioni condotte sulla ripetizione vanno tenuti separati da quelli ottenuti sull'elemento primo e possono servire per validare tali risultati. La procedura descritta consente con facilità la costruzione della matrice per qualsiasi numero di grandezze di influenza si desideri attenuare: le n-ple ordinate che costituiscono gli elementi della matrice avranno tante cifre quante sono le grandezze di influenza e verranno determinate generalizzando le regole sopra riportate: nella costruzione delle n-ple ordinate, passando da una riga a quella sottostante, la cifra che si trova al i-posto (da sinistra) della n-pla si sposta a destra di i posizioni. APPENDICE 1. IL CASO PARTICOLARE G=3, L=4 La regola di costruzione della matrice NxN è di validità generale, ma non si deve tacere che nel caso particolare di quattro condizioni di prova con tre sole grandezze di influenza è possibile costruire una quadrato 4x4 (e non 5x5 come vorrebbe la regola presentata) per una prova in 4 turni. In vari libri di statistica possono essere trovati quadrati greco-latini in grado di operare questa prova e da essi si possono desumere le matrici organizzate nel modo descritto in questo lavoro. Per completezza si riporta una di tali matrici. T1 T2 T3 T4 A B C D Fig. 12. Quadrato 4x4 di ordine 3 per la sperimentazione in 4 turni con azioni di contrasto verso tre grandezze di influenza VII. CONCLUSIONI Nella letteratura è molto facile trovare esempi di quadrati latini per operare con due grandezze di influenza; più rari gli esempi di quadrati greco-latini. Ad una approfondita indagine bibliografica non si sono trovati esempi di metodi per il contrasto di più di tre grandezze di influenza. Ciò è probabilmente da ascriversi alla difficoltà che si incontra nel costruire una matrice che soddisfi i vincoli del problema e per tale motivo assume particolare interesse la procedura che si è sviluppata per la costruzione della matrice. BIBLIOGRAFIA [1] J.W.Cotton, Latin Squares Design in Encyclopedia of Statistics in Behavioral Science, Vol 2, pp , John Wiley & Sons, Chichester, 2005 [2] D.R. Cox, N. Reid, The Theory of the Design of Experiments, Chapman & Hall/CRC, 2000 [3] D. Raghavarao, Constructions and Combinatorial Problems in Design of Experiments New York: Dover, 1988

Appunti sulla Macchina di Turing. Macchina di Turing

Appunti sulla Macchina di Turing. Macchina di Turing Macchina di Turing Una macchina di Turing è costituita dai seguenti elementi (vedi fig. 1): a) una unità di memoria, detta memoria esterna, consistente in un nastro illimitato in entrambi i sensi e suddiviso

Dettagli

Capitolo 11 Test chi-quadro

Capitolo 11 Test chi-quadro Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova

Dettagli

Esperimenti in vaso: disegni a randomizzazione completa

Esperimenti in vaso: disegni a randomizzazione completa Esperimenti in vaso: disegni a randomizzazione completa Andrea Onofri 10 marzo 2015 Indice 1 Disegno sperimentale 2 2 Analisi dei dati 3 2.1 Analisi della varianza (ANOVA).................. 4 2.2 Errore

Dettagli

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1)

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) 151 Introduzione Un esperimento è una prova o una serie di prove. Gli esperimenti sono largamente utilizzati nel campo dell ingegneria. Tra le varie applicazioni;

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

I Modelli della Ricerca Operativa

I Modelli della Ricerca Operativa Capitolo 1 I Modelli della Ricerca Operativa 1.1 L approccio modellistico Il termine modello è di solito usato per indicare una costruzione artificiale realizzata per evidenziare proprietà specifiche di

Dettagli

8 Elementi di Statistica

8 Elementi di Statistica 8 Elementi di Statistica La conoscenza di alcuni elementi di statistica e di analisi degli errori è importante quando si vogliano realizzare delle osservazioni sperimentali significative, ed anche per

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Progettazione del processo

Progettazione del processo Progettazione del processo produttivo Il miglioramento della qualità e della produttività ha maggiore efficacia quando è parte integrante del processo di realizzazione del prodotto. In particolare l uso

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

ISI MANUALE PER CORSI QUALITÀ CONTROLLO STATISTICO DEL PROCESSO MANUALE DI UTILIZZO ISI PAGINA 1 DI 9

ISI MANUALE PER CORSI QUALITÀ CONTROLLO STATISTICO DEL PROCESSO MANUALE DI UTILIZZO ISI PAGINA 1 DI 9 CONTROLLO STATISTICO DEL PROCESSO MANUALE DI UTILIZZO ISI PAGINA 1 DI 9 INTRODUZIONE 1.0 PREVENZIONE CONTRO INDIVIDUAZIONE. L'approccio tradizionale nella fabbricazione dei prodotti consiste nel controllo

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

USO DI EXCEL CLASSE PRIMAI

USO DI EXCEL CLASSE PRIMAI USO DI EXCEL CLASSE PRIMAI In queste lezioni impareremo ad usare i fogli di calcolo EXCEL per l elaborazione statistica dei dati, per esempio, di un esperienza di laboratorio. Verrà nel seguito spiegato:

Dettagli

RISOLUTORE AUTOMATICO PER SUDOKU

RISOLUTORE AUTOMATICO PER SUDOKU RISOLUTORE AUTOMATICO PER SUDOKU Progetto Prolog - Pierluigi Tresoldi 609618 INDICE 1.STORIA DEL SUDOKU 2.REGOLE DEL GIOCO 3.PROGRAMMAZIONE CON VINCOLI 4.COMANDI DEL PROGRAMMA 5.ESEMPI 1. STORIA DEL SUDOKU

Dettagli

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri.

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. A partire da questa lezione, ci occuperemo di come si riescono a codificare con sequenze binarie, quindi con sequenze di 0 e 1,

Dettagli

1 - I segnali analogici e digitali

1 - I segnali analogici e digitali 1 - I segnali analogici e digitali Segnali analogici Un segnale analogico può essere rappresentato mediante una funzione del tempo che gode delle seguenti caratteristiche: 1) la funzione è definita per

Dettagli

LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1

LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1 LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1 I CODICI 1 IL CODICE BCD 1 Somma in BCD 2 Sottrazione BCD 5 IL CODICE ECCESSO 3 20 La trasmissione delle informazioni Quarta Parte I codici Il codice BCD

Dettagli

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico 1.1 Lo schema di misurazione Le principali grandezze elettriche che caratterizzano un bipolo in corrente continua, quali per esempio

Dettagli

Testo alla base del Pitgame redatto dal prof. Yvan Lengwiler, Università di Basilea

Testo alla base del Pitgame redatto dal prof. Yvan Lengwiler, Università di Basilea Testo alla base del Pitgame redatto dal prof. Yvan Lengwiler, Università di Basilea Funzionamento di un mercato ben organizzato Nel Pitgame i giocatori che hanno poche informazioni private interagiscono

Dettagli

1. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di 40, fra di esse vi sia un solo asso, di qualunque seme.

1. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di 40, fra di esse vi sia un solo asso, di qualunque seme. Esercizi difficili sul calcolo delle probabilità. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di, fra di esse vi sia un solo asso, di qualunque seme. Le parole a caso

Dettagli

DoE - Design of Experiment

DoE - Design of Experiment 3 Tecniche di DoE DoE - Design of Experiment Sequenza di Prove Sperimentali da Effettuare per Studiare e Ottimizzare un Processo Un esperimento programmato è una prova o una serie di prove in cui vengono

Dettagli

SISTEMI DI NUMERAZIONE E CODICI

SISTEMI DI NUMERAZIONE E CODICI SISTEMI DI NUMERAZIONE E CODICI Il Sistema di Numerazione Decimale Il sistema decimale o sistema di numerazione a base dieci usa dieci cifre, dette cifre decimali, da O a 9. Il sistema decimale è un sistema

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli

Dettagli

1. I database. La schermata di avvio di Access

1. I database. La schermata di avvio di Access 7 Microsoft Access 1. I database Con il termine database (o base di dati) si intende una raccolta organizzata di dati, strutturati in maniera tale che, effettuandovi operazioni di vario tipo (inserimento

Dettagli

La logica statistica della verifica (test) delle ipotesi

La logica statistica della verifica (test) delle ipotesi La logica statistica della verifica (test) delle ipotesi Come posso confrontare diverse ipotesi? Nella statistica inferenziale classica vengono sempre confrontate due ipotesi: l ipotesi nulla e l ipotesi

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

Un gioco con tre dadi

Un gioco con tre dadi Un gioco con tre dadi Livello scolare: biennio Abilità interessate Costruire lo spazio degli eventi in casi semplici e determinarne la cardinalità. Valutare la probabilità in diversi contesti problematici.

Dettagli

Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni

Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni Statistica Economica Materiale didattico a cura del docente Analisi dei residui Test Esatto di Fisher Differenza fra proporzioni 1 Analisi dei residui Il test statistico ed il suo p-valore riassumono la

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio DUE PROPOSTE DI ANALISI MATEMATICA Lorenzo Orio Introduzione Il lavoro propone argomenti di analisi matematica trattati in maniera tale da privilegiare l intuizione e con accorgimenti nuovi. Il tratta

Dettagli

Progettazione del processo produttivo

Progettazione del processo produttivo Progettazione del processo produttivo Il miglioramento della qualità e della produttività ha maggiore efficacia quando è parte integrante del processo di realizzazione del prodotto. In particolare l uso

Dettagli

Introduzione. Consideriamo la classica caratteristica corrente-tensione di un diodo pn reale: I D. V γ

Introduzione. Consideriamo la classica caratteristica corrente-tensione di un diodo pn reale: I D. V γ Appunti di Elettronica Capitolo 3 Parte II Circuiti limitatori di tensione a diodi Introduzione... 1 Caratteristica di trasferimento di un circuito limitatore di tensione... 2 Osservazione... 5 Impiego

Dettagli

Manuale d'uso di FPM c. Poderico Luigi

Manuale d'uso di FPM c. Poderico Luigi Manuale d'uso di FPM c Poderico Luigi Introduzione Il presente documento fa parte della documentazione relativa al programma FPM c, nato dalla traduzione in c-ansi di un programma scritto in Fortran presso

Dettagli

Può la descrizione quantomeccanica della realtà fisica considerarsi completa?

Può la descrizione quantomeccanica della realtà fisica considerarsi completa? Può la descrizione quantomeccanica della realtà fisica considerarsi completa? A. Einstein, B. Podolsky, N. Rosen 25/03/1935 Abstract In una teoria completa c è un elemento corrispondente ad ogni elemento

Dettagli

ELETTRONICA DIGITALE PRATICA V

ELETTRONICA DIGITALE PRATICA V Roberto Berardi (Robert8) ELETTRONICA DIGITALE PRATICA V COMPARATOR & 7 SEGMENT DISPLAY 26 July 2012 Introduzione Oggi ci divertiamo con qualche esperimento col comparatore digitale 74LS85. Potrebbe sempre

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO 1 Modi di formare gruppi di k oggetti presi da n dati 11 disposizioni semplici, permutazioni Dati n oggetti distinti a 1,, a n si chiamano disposizioni semplici di questi oggetti,

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

DEFINIZIONE Una grandezza fisica è una classe di equivalenza di proprietà fisiche che possono essere misurate mediante un rapporto.

DEFINIZIONE Una grandezza fisica è una classe di equivalenza di proprietà fisiche che possono essere misurate mediante un rapporto. «Possiamo conoscere qualcosa dell'oggetto di cui stiamo parlando solo se possiamo eseguirvi misurazioni, per descriverlo mediante numeri; altrimenti la nostra conoscenza è scarsa e insoddisfacente.» (Lord

Dettagli

MAPPE DI KARNAUGH e sintesi ottima

MAPPE DI KARNAUGH e sintesi ottima MAPPE DI KARNAUGH e sintesi ottima (prima stesura da rivedere) Sappiamo che una funzione logica può essere espressa in diverse forme, tra loro equivalenti e noi siamo già in grado di passare da una all

Dettagli

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,...

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... Entropia Motivazione Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... ) s,s 2,s 3,... ognuno dei quali appartiene ad un alfabeto A di M elementi.? Quant è l informazione portata

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE Istituto di Istruzione Superiore G. Curcio Ispica I SISTEMI DI NUMERAZIONE Prof. Angelo Carpenzano Dispensa di Informatica per il Liceo Scientifico opzione Scienze Applicate Sommario Sommario... I numeri...

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA

I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA Indice Introduzione Il sistema decimale Il sistema binario Conversione di un numero da base 10 a base 2 e viceversa Conversione in altri sistemi di numerazione

Dettagli

Probabilità e bridge. Michele Impedovo

Probabilità e bridge. Michele Impedovo Probabilità e bridge Michele Impedovo Riassunto Nel gioco del bridge è di fondamentale importanza prevedere come sono distribuite le carte di un certo seme tra i due avversari. Questo articolo propone

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

IL MIO PRIMO SITO: NEWS

IL MIO PRIMO SITO: NEWS Pagina 1 IL MIO PRIMO SITO: NEWS Sommario IL MIO PRIMO SITO: NEWS...1 Introduzione...2 I Contenitori...2 Creo un Contenitore...3 I Tracciati...4 Creo le Notizie...6 Inserisco il Testo...6 Inserisco un

Dettagli

Foglio di calcolo. Il foglio di calcolo: Excel. Selezione delle celle

Foglio di calcolo. Il foglio di calcolo: Excel. Selezione delle celle Foglio di calcolo Il foglio di calcolo: Excel I dati inseriti in Excel sono organizzati in Cartelle di lavoro a loro volta suddivise in Fogli elettronici. I fogli sono formati da celle disposte per righe

Dettagli

Il neutro, un conduttore molto "attivo" (3)

Il neutro, un conduttore molto attivo (3) 1 Il neutro, un conduttore molto "attivo" (3) 3. I sistemi elettrici in relazione al modo di collegamento a terra del neutro e delle masse In funzione della messa a terra del neutro e delle masse, un sistema

Dettagli

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI CAPITOLO III CONFRONTI TRA DISTRIBUZIONI 3.1 CONFRONTI TRA DISTRIBUZIONI OSSERVATE E DISTRIBUZIONI TEORICHE OD ATTESE. Nella teoria statistica e nella pratica sperimentale, è frequente la necessità di

Dettagli

GIOCHI MATEMATICI PER LA SCUOLA PRIMARIA ANNO SCOLASTICO 2008-2009

GIOCHI MATEMATICI PER LA SCUOLA PRIMARIA ANNO SCOLASTICO 2008-2009 GIOCHI MATEMATICI PER LA SCUOLA PRIMARIA ANNO SCOLASTICO 2008-2009 Il Gruppo di ricerca sulla didattica della matematica nella scuola elementare del Dipartimento di Matematica F. Enriques dell'università

Dettagli

CLASSIFICAZIONE DEI CARATTERI

CLASSIFICAZIONE DEI CARATTERI CLASSIFICAZIONE DEI CARATTERI Come abbiamo visto, su ogni unità statistica si rilevano una o più informazioni di interesse (caratteri). Il modo in cui un carattere si manifesta in un unità statistica è

Dettagli

Il controllo delle prestazioni del provider. IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti)

Il controllo delle prestazioni del provider. IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti) del provider IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti) 1 del provider - premessa (1) in merito alla fase di gestione ordinaria dell outsourcing sono state richiamate le prassi di miglioramento

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

Il principio di induzione e i numeri naturali.

Il principio di induzione e i numeri naturali. Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito

Dettagli

Retroazione In lavorazione

Retroazione In lavorazione Retroazione 1 In lavorazione. Retroazione - introduzione La reazione negativa (o retroazione), consiste sostanzialmente nel confrontare il segnale di uscita e quello di ingresso di un dispositivo / circuito,

Dettagli

LA NORMALIZZAZIONE. Introduzione

LA NORMALIZZAZIONE. Introduzione LA NORMALIZZAZIONE Introduzione La normalizzazione e' una tecnica di progettazione dei database, mediante la quale si elimina la rindondanza dei dati al fine di evitare anomalie nella loro consistenza

Dettagli

Appunti Corso di Sistemi Elettrici

Appunti Corso di Sistemi Elettrici UNIVERSITA' DEGLI STUDI DI MESSINA Dipartimento di Ingegneria Contrada Di Dio I, 98166 Villaggio S. Agata Messina Appunti Corso di Sistemi Elettrici Capitolo 13 La separazione elettrica Anno Accademico

Dettagli

LE ASSUNZIONI DELL'ANOVA

LE ASSUNZIONI DELL'ANOVA LE ASSUNZIONI DELL'ANOVA Sono le assunzioni del test t, ma estese a tutti i gruppi: o La variabile deve avere una distribuzione normale in tutte le popolazioni corrispondenti ai gruppi campionati o Le

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano Breve introduzione storica Nel 1854, il prof. Boole pubblica un trattato ormai famosissimo: Le leggi del pensiero. Obiettivo finale del trattato è di far nascere la matematica dell intelletto umano, un

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

Laboratorio di Pedagogia Sperimentale. Indice

Laboratorio di Pedagogia Sperimentale. Indice INSEGNAMENTO DI LABORATORIO DI PEDAGOGIA SPERIMENTALE LEZIONE III INTRODUZIONE ALLA RICERCA SPERIMENTALE (PARTE III) PROF. VINCENZO BONAZZA Indice 1 L ipotesi -----------------------------------------------------------

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

Matematica in laboratorio

Matematica in laboratorio Unità 1 Attività guidate Attività 1 Foglio elettronico Divisibilità tra numeri naturali Costruisci un foglio di lavoro per determinare se a è divisibile per b, essendo a e b due numeri naturali, con a

Dettagli

Sistemi Di Misura Ed Equivalenze

Sistemi Di Misura Ed Equivalenze Sistemi Di Misura Ed Equivalenze (a cura Prof.ssa M.G. Gobbi) Una mamma deve somministrare al figlio convalescente 150 mg di vitamina C ogni giorno. Ha a disposizione compresse da 0,6 g: quante compresse

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

Gli oggetti di plastica. Abilità interessate Conoscenze Nuclei coinvolti Collegamenti esterni Decodificare informazioni di tipo grafico.

Gli oggetti di plastica. Abilità interessate Conoscenze Nuclei coinvolti Collegamenti esterni Decodificare informazioni di tipo grafico. Gli oggetti di plastica Livello scolare: 1 biennio Abilità interessate Conoscenze Nuclei coinvolti Collegamenti esterni Decodificare informazioni di tipo grafico. Funzioni lineari. Pendenza di una retta.

Dettagli

Esercizi proposti di Fondamenti di Automatica - Parte 4

Esercizi proposti di Fondamenti di Automatica - Parte 4 Esercizi proposti di Fondamenti di Automatica - Parte 4 2 Aprile 26 Sia dato il sistema di controllo a controreazione di Fig. 1, in cui il processo ha funzione di trasferimento P (s) = 1 (1 +.1s)(1 +.1s).

Dettagli

PRIMA LEGGE DI OHM OBIETTIVO: NOTE TEORICHE: Differenza di potenziale Generatore di tensione Corrente elettrica

PRIMA LEGGE DI OHM OBIETTIVO: NOTE TEORICHE: Differenza di potenziale Generatore di tensione Corrente elettrica Liceo Scientifico G. TARANTINO ALUNNO: Pellicciari Girolamo VG PRIMA LEGGE DI OHM OBIETTIVO: Verificare la Prima leggi di Ohm in un circuito ohmico (o resistore) cioè verificare che l intensità di corrente

Dettagli

C9. COLLAUDO STATICO C9.1 PRESCRIZIONI GENERALI

C9. COLLAUDO STATICO C9.1 PRESCRIZIONI GENERALI C9. COLLAUDO STATICO C9.1 PRESCRIZIONI GENERALI Il Cap.9 delle NTC detta disposizioni minime per l esecuzione del collaudo statico, atto a verificare il comportamento e le prestazioni delle parti di opera

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Progetto di controllo e reti correttrici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

della funzione obiettivo. Questo punto dovrebbe risultare chiaro se consideriamo una generica funzione:

della funzione obiettivo. Questo punto dovrebbe risultare chiaro se consideriamo una generica funzione: Corso di laurea in Economia e finanza CLEF) Economia pubblica ************************************************************************************ Una nota elementare sulla ottimizzazione in presenza di

Dettagli

CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA

CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA SOMMARIO: 2.1 La domanda. - 2.2 Costi, economie di scala ed economie di varietà. - 2.2.1 I costi. - 2.2.2 Le economie di scala. - 2.2.3 Le economie di varietà.

Dettagli

Altri metodi di indicizzazione

Altri metodi di indicizzazione Organizzazione a indici su più livelli Altri metodi di indicizzazione Al crescere della dimensione del file l organizzazione sequenziale a indice diventa inefficiente: in lettura a causa del crescere del

Dettagli

Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM

Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM 2 OBIETTIVO: Il modello IS-LM Fornire uno schema concettuale per analizzare la determinazione congiunta della produzione e del tasso

Dettagli

Corso introduttivo all utilizzo di TQ Qualifica

Corso introduttivo all utilizzo di TQ Qualifica Corso introduttivo all utilizzo di TQ Qualifica Le pagine che seguono introducono l utente all uso delle principali funzionalità di TQ Qualifica mediante un corso organizzato in quattro lezioni. Ogni lezione

Dettagli

L Ultimo Teorema di Fermat per n = 3 e n = 4

L Ultimo Teorema di Fermat per n = 3 e n = 4 Università degli Studi di Cagliari Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Matematica L Ultimo Teorema di Fermat per n = 3 e n = 4 Relatore Prof. Andrea Loi Tesi di Laurea

Dettagli

Insegnare relatività. nel XXI secolo

Insegnare relatività. nel XXI secolo Insegnare relatività nel XXI secolo L ' e s p e r i m e n t o d i H a f e l e e K e a t i n g È il primo dei nuovi esperimenti, realizzato nel 1971. Due orologi atomici sono stati montati su due aerei

Dettagli

Sistema per il test dell impianto elettrico in linea di montaggio della vettura FERRARI 575 MM.

Sistema per il test dell impianto elettrico in linea di montaggio della vettura FERRARI 575 MM. Sistema per il test dell impianto elettrico in linea di montaggio della vettura FERRARI 575 MM. La sfida Certificare il corretto montaggio dell impianto elettrico, escludendo la presenza di cortocircuiti

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

IL MIO PRIMO SITO NEWS USANDO GLI SCHEDARI

IL MIO PRIMO SITO NEWS USANDO GLI SCHEDARI Pagina 1 UN SISTEMA DI NEWS Sommario UN SISTEMA DI NEWS...1 Introduzione...2 Scelgo l'area su cui operare...3 Un minimo di teoria...3 Creo le Pagine...4 Definizione dello Schedario Novità...6 Compilo la

Dettagli

L analisi dei dati. Capitolo 4. 4.1 Il foglio elettronico

L analisi dei dati. Capitolo 4. 4.1 Il foglio elettronico Capitolo 4 4.1 Il foglio elettronico Le più importanti operazioni richieste dall analisi matematica dei dati sperimentali possono essere agevolmente portate a termine da un comune foglio elettronico. Prenderemo

Dettagli

I Sistemi di numerazione e la rappresentazione dei dati

I Sistemi di numerazione e la rappresentazione dei dati I Sistemi di numerazione e la rappresentazione dei dati LA RAPPRESENTAZIONE DELLE INFORMAZIONI (1) Per utilizzare un computer è necessario rappresentare in qualche modo le informazioni da elaborare e il

Dettagli

Corso di Psicometria Progredito

Corso di Psicometria Progredito Corso di Psicometria Progredito 3.1 Introduzione all inferenza statistica Prima Parte Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico 2013-2014

Dettagli

1. Introduzione. 2. I metodi di valutazione

1. Introduzione. 2. I metodi di valutazione 1. Introduzione La Riserva Sinistri è l accantonamento che l impresa autorizzata all esercizio dei rami danni deve effettuare a fine esercizio in previsione dei costi che essa dovrà sostenere in futuro

Dettagli

Vincere a testa o croce

Vincere a testa o croce Vincere a testa o croce Liceo B. Russell - Cles (TN) Classe 3D Insegnante di riferimento: Claretta Carrara Ricercatrice: Ester Dalvit Partecipanti: Alessio, Christian, Carlo, Daniele, Elena, Filippo, Ilaria,

Dettagli

LA CORRETTA SCELTA DI UN IMPIANTO PER LA TEMPRA AD INDUZIONE Come calcolare la potenza necessaria

LA CORRETTA SCELTA DI UN IMPIANTO PER LA TEMPRA AD INDUZIONE Come calcolare la potenza necessaria LA CORRETTA SCELTA DI UN IMPIANTO PER LA TEMPRA AD INDUZIONE Come calcolare la potenza necessaria Quale frequenza di lavoro scegliere Geometria del pezzo da trattare e sue caratteristiche elettromagnetiche

Dettagli

24 - Strutture simmetriche ed antisimmetriche

24 - Strutture simmetriche ed antisimmetriche 24 - Strutture simmetriche ed antisimmetriche ü [.a. 2011-2012 : ultima revisione 1 maggio 2012] In questo capitolo si studiano strutture piane che presentano proprieta' di simmetria ed antisimmetria sia

Dettagli

online La situazione operativa. In ambito aziendale i processi decisionali richiedono assunzioni di responsabilità a vari LABORATORIO 1

online La situazione operativa. In ambito aziendale i processi decisionali richiedono assunzioni di responsabilità a vari LABORATORIO 1 LABORATORIO 1 Scelta tra preventivi per l acquisto di un impianto di Luca CAGLIERO Materie: Informatica, Matematica, Economia aziendale (Triennio IT) L attività da svolgere in laboratorio, di carattere

Dettagli

4. Proiezioni del piano e dello spazio

4. Proiezioni del piano e dello spazio 4. Proiezioni del piano e dello spazio La visualizzazione di oggetti tridimensionali richiede di ottenere una vista piana dell'oggetto. Questo avviene mediante una sequenza di operazioni. Innanzitutto,

Dettagli

Algebra Booleana ed Espressioni Booleane

Algebra Booleana ed Espressioni Booleane Algebra Booleana ed Espressioni Booleane Che cosa è un Algebra? Dato un insieme E di elementi (qualsiasi, non necessariamente numerico) ed una o più operazioni definite sugli elementi appartenenti a tale

Dettagli

Microsoft Access. DataBase introduzione

Microsoft Access. DataBase introduzione Microsoft Access DataBase introduzione Un database può essere definito come un insieme di archivi contenenti dati omogenei che riguardano un certo argomento. Sono database la rubrica telefonica o l'archivio

Dettagli

Capitolo 26: Il mercato del lavoro

Capitolo 26: Il mercato del lavoro Capitolo 26: Il mercato del lavoro 26.1: Introduzione In questo capitolo applichiamo l analisi della domanda e dell offerta ad un mercato che riveste particolare importanza: il mercato del lavoro. Utilizziamo

Dettagli

Architetture Web a tre livelli: CGI, SSI, ISAPI e codice mobile Architetture a 3 livelli (1)

Architetture Web a tre livelli: CGI, SSI, ISAPI e codice mobile Architetture a 3 livelli (1) Pagina 1 di 10 Architetture Web a tre livelli: CGI, SSI, ISAPI e codice mobile Architetture a 3 livelli (1) Nel corso della lezione precedente abbiamo analizzato le caratteristiche dell'architettura CGI.

Dettagli

Dispense di Informatica per l ITG Valadier

Dispense di Informatica per l ITG Valadier La notazione binaria Dispense di Informatica per l ITG Valadier Le informazioni dentro il computer All interno di un calcolatore tutte le informazioni sono memorizzate sottoforma di lunghe sequenze di

Dettagli

L unica linguaggi, consueti. domande e ambiti imprevisti o, comunque, diversi, in generale, da quelli più

L unica linguaggi, consueti. domande e ambiti imprevisti o, comunque, diversi, in generale, da quelli più GIOCHI MATEMATICI ANNO SCOLASTICO PER 2009 SCUOLA - 2010 PRIMARIA Il di Centro Gruppo Matematica di ricerca F. Enriques sulla didattica dell'università della matematica degli Studi nella scuola di Milano,

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 10-Il test t per un campione e la stima intervallare (vers. 1.1, 25 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia,

Dettagli

Trattamento dell informazione

Trattamento dell informazione Insegnamento di Informatica CdS Scienze Giuridiche A.A. 2007/8 Trattamento dell informazione Prof. Giorgio Valle D.ssa Raffaella Folgieri giorgio.valle@unimi.it folgieri@dico.unimi.it Lez1 4.10.07 Trattamento

Dettagli

Obiettivo Principale: Spiegare come la stessa cosa possa essere realizzata in molti modi diversi e come, a volte, ci siano modi migliori di altri.

Obiettivo Principale: Spiegare come la stessa cosa possa essere realizzata in molti modi diversi e come, a volte, ci siano modi migliori di altri. 6 LEZIONE: Algoritmi Tempo della lezione: 45-60 Minuti. Tempo di preparazione: 10-25 Minuti (a seconda che tu abbia dei Tangram disponibili o debba tagliarli a mano) Obiettivo Principale: Spiegare come

Dettagli