Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni"

Transcript

1 Statistica Economica Materiale didattico a cura del docente Analisi dei residui Test Esatto di Fisher Differenza fra proporzioni 1

2 Analisi dei residui Il test statistico ed il suo p-valore riassumono la forza delle evidenze statistiche contrarie all ipotesi nulla. Se il χ 2 è grande, allora, in qualche punto della tabella di contingenza i dati si allontanano da ciò che l ipotesi di indipendenza predice Il test, però, non ci dice se tutte le celle o solo una o due di esse deviano dall indipendenza Un confronto cella-per-cella rivela la natura delle prove statistiche fornite dal test La differenza (f o f e ) è chiamato residuo. La prima cella della solita tabella avrà, quindi, come residuo ,4=17,6 Come facciamo a stabilire se un residuo è abbastanza grande da indicare un significativo allontanamento dall ipotesi di indipendenza? Per rispondere impieghiamo una forma aggiustata dei residui che si comporta come uno z-score 2

3 Residui Aggiustati: Il residuo aggiustato per una cella è pari a f o f e fe (1 prop. di riga)(1 prop. di colonna) Il denominatore è l errore standard della differenza (f o f e ) quando le variabili sono davvero indipendenti Se l ipotesi H 0 di indipendenza è vera, il residuo aggiustato è riferito al numero di errori standard che separano la frequenza osservata da quella attesa ed ha distribuzione normale standardizzata per grandi campioni Il residuo aggiustato, quindi, fluttua intorno al valore medio 0 con una deviazione standard pari a 1: così, vi è solo il 5% di probabilità che un particolare residuo sia superiore a 2 in valore assoluto Un grande residuo aggiustato fornisce prove contro l ipotesi di indipendenza per una particolare cella: un valore di tale residuo che supera 3 è una fortissima evidenza contro l indipendenza 2-a

4 Calcoliamo i residui aggiustati per la Tabella dell esempio di A. Agresti sul gap tra i sessi per ciò che attiene l affiliazione partitica Per la prima cella, abbiamo f o = 279 e f e = 261, 4. Le proporzioni marginali per la prima riga e per la prima colonna sono pari a 577/980 = 0, 589 e a 444/980 = 0, 453: Il residuo aggiustato per tale cella è, quindi: , 4 [261, 4(1 0, 589)(1 0, 453)] = 2, 3 Opinione politica Sesso Demo Indip Repubb F 2,3 0,5-2,6 M -2,3-0,5 2,6 Nel caso della prima cella, poiché il residuo è maggiore di 2, constatiamo una discrepanza fra f o ed f e più grande di quella che ci saremmo aspettati se le variabili fossero state davvero indipendenti 2-b

5 La Tabella mostra ampi residui positivi per le femmine Democratiche e per i maschi Repubblicani, le celle, cioè, in cui f o è molto più grande di f e : ciò vuole dire che esiste un numero significativo in più rispetto a ciò che prevede l ipotesi di indipendenza di femmine Democratiche e di maschi Repubblicani La Tabella mostra anche ampi residui negativi per le femmine Repubblicane e per i maschi Democratici, le due celle, cioè, in cui f o è molto più piccolo di f e : ciò vuole dire che ci sono molte meno femmine Repubblicane e molti meno maschi democratici rispetto a quanto si sarebbe dovuto osservare nel caso di indipendenza fra affiliazione partitica e sesso Si noti che, per ogni partito, la tabella in esame contiene solo un residuo aggiustato non ridondante: quello per le femmine è l opposto di quello per i maschi. Infatti, poiché le frequenze osservate e le frequenze attese hanno gli stessi totali di riga e colonna e, quindi, se f o > f e in una cella, l opposto deve avvenire nell altra cella 2-c

6 Il test esatto di Fisher Iniziamo dal caso delle Tabelle 2 2 si consideri una tabella di contingenza di dimensioni 2 2 del tipo B A b 1 b 2 Totale a 1 n 11 n 12 n 1+ a 2 n 21 n 22 n 2+ Totale n +1 n +2 n ++ Una volta che sono fissati i totali di riga e di colonna, è chiaro che il valore di n 11 determina, univocamente i valori delle altre 3 celle Nel 1934, l autorevole statistico britannico Ronald A. Fisher, ha proposto un test di indipendenza per piccoli campioni che si può utilizzare per situazioni come quelle descritte dalla tabella 3

7 Per illustrarne il funzionamento, nel suo libro The Design of Experiments del 1935 Fisher descrisse il seguente esperimento: Una collega di Fisher presso la Stazione Sperimentale di Rothamsted vicino a Londra, affermava di essere in grado, bevendo il tè di distinguere se nella tazza fosse stato versato prima il tè o il latte. Per verificare l attendibilità di tale affermazione, Fisher pianificò un esperimento nel quale la sua collega doveva assaggiare 8 tazze di tè. In 4 tazze mise prima il latte del tè, nelle altre 4 fece l opposto. Alla collega disse che esistevano appunto 4 tazze in cui il latte era stato messo prima del tè e 4 tazze in cui era stato messo dopo. Le tazze vennero presentate alla collega in ordine casuale Applichiamo il test esatto di Fisher per saggiare l ipotesi H 0 : Cio che dice la collega di Fisher è indipendente dall ordine con cui latte e tè sono stati versati 3-a

8 La distribuzione dei possibili valori di n 11 è la distribuzione ipergeometrica definita per tutte le possibili tabelle 2 2 che hanno dei marginali di riga e colonna pari a quelli fissati I potenziali valori per n 11 sono (0,1,2,3,4) Uno dei possibili risultati dell esperimento potrebbe essere, ad esempio, Valutazione collega Versato prima Latte Tè Totale Latte Tè Totale La probabilità di osservare un risultato come questo, fornita dallo schema di campionamento ipergeometrico è P (3) = ( 4 3 )( 4 1) ( 8 ) = [4!/(3!)(1!)][4!/(1!)(3!)] [8!/(4!)(4!)] 4 = 0, 229 Infatti, P (x) = ( n1+ n 11 )( n2+ ) n ) 21 n +1 ( n++ 3-b

9 Una sintesi dei possibili esiti è n 11 Probabilità p valore 0 0,014 1, ,229 0, ,514 0, ,229 0, ,014 0,014 I p valori sono riferiti alla probabilità sottesa la coda destra per un ipotesi unilaterale L ipotesi alternativa H 1 prevede che, al contrario di quanto espresso nella ipotesi nulla, esista un associazione fra quanto indovina la collega di Fisher e l effettivo ordine con cui latte e tè vengono mischiati fra loro Immaginiamo che la collega di Fisher indovini, correttamente, che il tè è stato messo dopo il latte per 3 volte; la probabilità che per effetto del caso si possa osservare un n 11 uguale o più grande di 3 è P = P (3) + P (4) = 0, c

10 Come è ovvio, un tale valore, non fornisce molte prove contro l ipotesi nulla di indipendenza, L esperimento non ci permette, quindi, di stabilire un associazione fra l effettivo ordine di miscelazione e quanto indovinato dalla collega di Fisher Ovviamente è difficile mostrare l associazione con così poche osservazioni, se l assaggiatrice avesse indovinato tutte le 4 tazze con il tè versato dopo il latte (n 11 = 4), allora sì, vi sarebbero state forti prove a favore della sua affermazione di essere capace di stabilire l ordine di miscelazione delle bevande: si sarebbe, infatti, ottenuto il valore più estremo possibile nella coda destra della distribuzione ipergeometrica P (4) = 0, d

11 Differenza fra proporzioni Quando vengono analizzate delle tabelle di contingenza, vengono, di solito, poste le seguenti tre domande: Quanto è verosimile che il livello di associazione osservato in un campione si sarebbe comunque avuto anche se le variabili fossero state realmente indipendenti nella popolazione? Il test Chi-quadrato mira a fornire una risposta a questo quesito. Quanto si allontanano dall indipendenza i dati? Quando due variabili appaiono essere associate, i residui aggiustati evidenziano le celle in cui i conteggi sono significativamente diversi da ciò che l ipotesi di indipendenza prevede. Quanto è forte l associazione? Per rispondere usiamo una statistica come la differenza fra proporzioni, ottenendo così un intervallo di confidenza per stimare quanto forte può essere l associazione a livello di popolazione. L analisi della forza dell associazione ci rivela se l associazione riscontrata è meritevole di attenzione o se essa è, sì, statisticamente significativa ma debole e non importante in termini pratici. Discutiamo qui di come dare risposte al terzo quesito 4

12 Si osservino le due tabelle sotto riportate che descrivono l associazione fra l opinione sulla legalizzazione dell aborto e razza di un campione di 1000 individui Nessuna associazione: Opinione Razza Favorevole Contraria Totale Bianca Nera Totale Massima associazione: Opinione Razza Favorevole Contraria Totale Bianca Nera Totale a

13 La prima tabella mostra indipendenza statistica e rappresenta il livello più basso di associazione che possa registrarsi per le due variabili. Infatti, il 60% è a favore ed il 40% contrario all aborto sia nel gruppo dei bianchi e sia in quello dei neri Di contro, la seconda tabella mostra che tutti i bianchi sono a favore dell aborto mentre tutti i neri sono contrari. In questo caso vediamo come l opinione (variabile risposta) sia completamente dipendente dalla razza del rispondente È necessario trovare, allora, una misura della forza dell associazione che assuma valori nello spettro teorico dei casi che vanno dalla prima alla seconda tabella Misure di Associazione: Una misura di associazione è una statistica che riassume la forza della dipendenza statistica fra due variabili. 4-b

14 In casi come quelli riportati poco sopra una misura di associazione immediata è la differenza fra le proporzioni nei due gruppi per una data categoria della variabile risposta Possiamo misurare la differenza fra le proporzioni di bianchi e neri che sono a favore della aborto legalizzato. Nel caso della prima tabella abbiamo: = 0, 6 0, 6 = La differenza fra le proporzioni nella popolazione è 0 qualora le distribuzioni condizionate siano identiche e, cioè, quando le due variabili sono indipendenti. La differenza è 1 o -1 per le associazioni massime. Ad esempio, per la seconda tabella è: = 1, 0 che è il massimo valore possibile per la differenza Per la stima della differenza fra proporzioni: Intervallo di Confidenza per Grandi Campioni per π 2 π 1 : Un intervallo di confidenza per π 2 π 1 è (ˆπ 2 ˆπ 1 ) ± zˆσˆπ2 ˆπ 1 (ˆπ 2 ˆπ 1 ) ± z che è pari a ˆπ 1 (1 ˆπ 1 ) n 1 + ˆπ 2(1 ˆπ 2 ) n 2 L intervallo è valido, di solito, quando sia n 1 ed n 2 hanno, almeno, 20 osservazioni. 4-c

15 La differenza fra proporzioni varia, come detto, fra -1 e 1: più forte è l associazione, più grande è la differenza in valore assoluto Vediamo come aumenta la differenza tra proporzioni mano a mano che aumenta il grado di associazione fra variabili: Cont. di cella: Diff. fra prop. 0,0 0,2 0, Cont. di cella: Diff. fra prop. 0,6 0,8 1,0 Nella seconda tabella, ad esempio, la proporzione delle osservazioni che ricadono nella prima colonna è pari a 30/( ) = 0, 6 nella riga 1 e a 20/( ) = 0, 4 nella riga 2, la differenza è, quindi, 0, 6 0, 4 = 0, 2 4-d

Il confronto fra proporzioni

Il confronto fra proporzioni L. Boni Il rapporto Un rapporto (ratio), attribuendo un ampio significato al termine, è il risultato della divisione di una certa quantità a per un altra quantità b Il rapporto Spesso, in maniera più specifica,

Dettagli

19txtI_BORRA_2013 18/11/13 10:52 Pagina 449 TAVOLE STATISTICHE

19txtI_BORRA_2013 18/11/13 10:52 Pagina 449 TAVOLE STATISTICHE 19txtI_BORRA_2013 18/11/13 10:52 Pagina 449 TAVOLE STATISTICHE Nell inferenza è spesso richiesto il calcolo di alcuni valori critici o di alcune probabilità per le variabili casuali che sono state introdotte

Dettagli

Analizza/Confronta medie. ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107. Test t. Test t. t-test test e confronto tra medie chi quadrato

Analizza/Confronta medie. ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107. Test t. Test t. t-test test e confronto tra medie chi quadrato Analizza/Confronta medie ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107 t-test test e confronto tra medie chi quadrato C.d.L. Comunicazione e Psicologia a.a. 2008/09 Medie Calcola medie e altre statistiche

Dettagli

METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica

METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica EPIDEMIOLOGIA Ha come oggetto lo studio della distribuzione delle malattie in un popolazione e dei fattori che la influenzano

Dettagli

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per categoriali. Alessandro Valbonesi

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per categoriali. Alessandro Valbonesi LEZIONI DI STATISTCA APPLICATA Parte 2 Statistica inferenziale Variabili continue per categoriali Alessandro Valbonesi SARRF di Scienze ambientali Anno accademico 2010-11 CAPITOLO 4 - TEST STATISTICI CHE

Dettagli

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008 Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica 18 dicembre 008 Esame sull intero programma: esercizi da A a D Esame sulla seconda parte del programma: esercizi

Dettagli

3. Confronto tra medie di due campioni indipendenti o appaiati

3. Confronto tra medie di due campioni indipendenti o appaiati BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

STATISTICA IX lezione

STATISTICA IX lezione Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

ANALISI DELLE FREQUENZE: IL TEST CHI 2

ANALISI DELLE FREQUENZE: IL TEST CHI 2 ANALISI DELLE FREQUENZE: IL TEST CHI 2 Quando si hanno scale nominali o ordinali, non è possibile calcolare il t, poiché non abbiamo medie, ma solo frequenze. In questi casi, per verificare se un evento

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

Excel Terza parte. Excel 2003

Excel Terza parte. Excel 2003 Excel Terza parte Excel 2003 TABELLA PIVOT Selezioniamo tutti i dati (con le relative etichette) Dati Rapporto tabella pivot e grafico pivot Fine 2 La tabella pivot viene messa di default in una pagina

Dettagli

Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti )

Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti ) Esercizio 1 Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti ) Qualitativo Sconnesso: Marca di Jeans preferita, Partito votato nelle ultime elezioni,

Dettagli

Elaborazione dati in Analisi Sensoriale

Elaborazione dati in Analisi Sensoriale Elaborazione dati in Analisi Sensoriale Si è parlato di interpretazione corretta dei risultati ottenuti; a questo concorrono due fattori: affidabilità e validità. Se i test fossero stati ripetuti con lo

Dettagli

Tabella per l'analisi dei risultati

Tabella per l'analisi dei risultati Vai a... UniCh Test V_Statistica_Eliminatorie Quiz V_Statistica_Eliminatorie Aggiorna Quiz Gruppi visibili Tutti i partecipanti Info Anteprima Modifica Risultati Riepilogo Rivalutazione Valutazione manuale

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr.

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr. Corso di Laurea in Scienze e Tecnologie Biomolecolari Matematica e Statistica II Prova di esame del 18/7/2013 NOME COGNOME N. Matr. Rispondere ai punti degli esercizi nel modo più completo possibile, cercando

Dettagli

è decidere sulla verità o falsità

è decidere sulla verità o falsità I test di ipotesi I test di ipotesi Il test delle ipotesi consente di verificare se, e in quale misura, una determinata ipotesi (di carattere sociale, biologico, medico, economico, ecc.) è supportata dall

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Università del Piemonte Orientale. Corsi di laurea triennale di area tecnica. Corso di Statistica Medica. Analisi dei dati in tabelle di contingenza

Università del Piemonte Orientale. Corsi di laurea triennale di area tecnica. Corso di Statistica Medica. Analisi dei dati in tabelle di contingenza Università del Piemonte Orientale Corsi di laurea triennale di area tecnica Corso di Statistica Medica Analisi dei dati in tabelle di contingenza Corsi di laurea triennale di area tecnica - Corso di Statistica

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 10-Il test t per un campione e la stima intervallare (vers. 1.1, 25 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia,

Dettagli

Capitolo 11 Test chi-quadro

Capitolo 11 Test chi-quadro Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova

Dettagli

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre.

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre. Corso di Statistica Medica 2004-2005 Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre. Sono previste 30 ore di lezione di statistica e 12 di

Dettagli

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno.

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Corso di Statistica Medica Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Sono previste 40 ore complessive, di cui almeno 16 di lezione frontale e le restanti

Dettagli

Statistica. Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza statistica

Statistica. Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza statistica Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2008/2009 Statistica Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza Titolo della lezione Analisi dell associazione tra due caratteri: indipendenza e dipendenza Introduzione Analisi univariata, bivariata, multivariata Analizzare le relazioni tra i caratteri, per cercare

Dettagli

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che Statistica Cognome: Laurea Triennale in Biologia Nome: 26 luglio 2012 Matricola: Tema A 1. Parte A 1.1. Sia x 1, x 2,..., x n un campione di n dati con media campionaria x e varianza campionaria s 2 x

Dettagli

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile.

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. ORDINALI E NOMINALI LA PROBABILITÀ Statistica5 23/10/13 Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. Se si afferma che un vitello di razza chianina pesa 780 kg a 18

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA

ESERCIZI DI STATISTICA DESCRITTIVA ESERCIZI DI STATISTICA DESCRITTIVA ES1 Data la seguente serie di dati su Sesso e Altezza di 8 pazienti, riempire opportunamente due tabelle per rappresentare le distribuzioni di frequenze dei due caratteri,

Dettagli

Università del Piemonte Orientale. Corso di Laurea in Igiene Dentale. Corso di Statistica per la ricerca sperimentale e tecnologica

Università del Piemonte Orientale. Corso di Laurea in Igiene Dentale. Corso di Statistica per la ricerca sperimentale e tecnologica Università del Piemonte Orientale Corso di Laurea in Igiene Dentale Corso di Statistica per la ricerca sperimentale e tecnologica Analisi dei dati in tabelle di contingenza Corso di laurea triennale di

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

Progetto m@t.abel DIARIO DI BORDO E ANALISI DIDATTICA. Silvia Porretti e Nicoletta Oreggia. I.T.C.G. Ruffini Imperia 11/03/08 06/05/2008

Progetto m@t.abel DIARIO DI BORDO E ANALISI DIDATTICA. Silvia Porretti e Nicoletta Oreggia. I.T.C.G. Ruffini Imperia 11/03/08 06/05/2008 Progetto m@t.abel DIARIO DI BORDO E ANALISI DIDATTICA Titolo attività Pivot è bello Docenti Silvia Porretti e Nicoletta Oreggia classe scuola II A IGEA I.T.C.G. Ruffini Imperia Data inizio esperienza Data

Dettagli

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/03/2011

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/03/2011 FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/3/2 ESERCIZIO (2+2+2+2) La seguente tabella riporta la distribuzione della variabile "Stato Civile"

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI CAPITOLO III CONFRONTI TRA DISTRIBUZIONI 3.1 CONFRONTI TRA DISTRIBUZIONI OSSERVATE E DISTRIBUZIONI TEORICHE OD ATTESE. Nella teoria statistica e nella pratica sperimentale, è frequente la necessità di

Dettagli

9. La distribuzione 2 e i test per dati su scala nominale

9. La distribuzione 2 e i test per dati su scala nominale 9. La distribuzione e i test per dati su scala nominale 9.1. La distribuzione 9. 1. 1. La statistica e la sua distribuzione In una popolazione distribuita normalmente con parametri e estraiamo un campione

Dettagli

Concetto di potenza statistica

Concetto di potenza statistica Calcolo della numerosità campionaria Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona Concetto di potenza statistica 1 Accetto H 0 Rifiuto H 0 Ipotesi Nulla (H

Dettagli

Inferenza statistica

Inferenza statistica Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione in base ad informazioni ricavate da un campione. Inferenza statistica: indurre

Dettagli

1. Il metodo scientifico

1. Il metodo scientifico Psicologia generale Marialuisa Martelli Metodi di Ricerca 1. Il metodo scientifico! Il metodo scientifico: processo fondato sulla raccolta attenta delle prove attraverso descrizioni e misurazioni precise,

Dettagli

Dipartimento di Scienze dell Educazione Università degli studi Roma Tre

Dipartimento di Scienze dell Educazione Università degli studi Roma Tre Dipartimento di Scienze dell Educazione Università degli studi Roma Tre Materiale del Laboratorio sulle Procedure Statistiche di base con SPSS CASD Centro Analisi Statistica Dati 1 1. Il Questionario Nella

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Prelazione. Lista delle Figure. Lista delle Tabelle

Prelazione. Lista delle Figure. Lista delle Tabelle Indice Prelazione Indice Lista delle Figure Lista delle Tabelle VI IX XV XVI 1 Nozioni Introduttive 1 1.1 Inferenza Statistica 1 1.2 Campionamento 5 1.3 Statistica e Probabilità 7 1.4 Alcuni Problemi e

Dettagli

Questionario N.A.V.I. a.s. 2013/2014

Questionario N.A.V.I. a.s. 2013/2014 ISTITUTO MAGISTRALE STATALE MARIA IMMACOLATA San Giovanni Rotondo Questionario N.A.V.I. L indagine NAVI per il corrente anno scolastico, come negli anni precedenti, è stata svolta su quattro aree (docenti,

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Nella verifica delle ipotesi è necessario fissare alcune fasi prima di iniziare ad analizzare i dati. a) Si deve stabilire quale deve essere l'ipotesi nulla (H0) e quale l'ipotesi

Dettagli

22.03.07 In alcuni casi è possibile applicare sia l analisi log lineare che la regressione logistica. Analisi log lineare e regressione logistica:

22.03.07 In alcuni casi è possibile applicare sia l analisi log lineare che la regressione logistica. Analisi log lineare e regressione logistica: .03.07 In alcuni casi è possibile applicare sia l analisi log lineare che la regressione logistica. Analisi log lineare e regressione logistica: differenze Nella regressione logistica le variabili vengono

Dettagli

FONDAMENTI DI PSICOMETRIA - 8 CFU

FONDAMENTI DI PSICOMETRIA - 8 CFU Ψ FONDAMENTI DI PSICOMETRIA - 8 CFU STIMA DELL ATTENDIBILITA STIMA DELL ATTENDIBILITA DEFINIZIONE DI ATTENDIBILITA (affidabilità, fedeltà) Grado di accordo tra diversi tentativi di misurare uno stesso

Dettagli

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Università degli Studi di Padova Facoltà di Psicologia, L4, Psicometria, Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Statistica descrittiva e inferenziale

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA)

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA) Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 4: Analisi della varianza (ANOVA) Analisi della varianza Analisi della varianza (ANOVA) ANOVA ad

Dettagli

LABORATORIO Excel N.1 VARIABILI QUALITATIVE

LABORATORIO Excel N.1 VARIABILI QUALITATIVE LABORATORIO Excel N.1 VARIABILI QUALITATIVE DESCRIZIONE DEI DATI DA ESAMINARE A un campione di studenti del Michigan sono state poste una serie di domande per capire quali obiettivi si pongono per il futuro.

Dettagli

Statistica inferenziale

Statistica inferenziale Statistica inferenziale Popolazione e campione Molto spesso siamo interessati a trarre delle conclusioni su persone che hanno determinate caratteristiche (pazienti, atleti, bambini, gestanti, ) Osserveremo

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

Analisi di dati di frequenza

Analisi di dati di frequenza Analisi di dati di frequenza Fase di raccolta dei dati Fase di memorizzazione dei dati in un foglio elettronico 0 1 1 1 Frequenze attese uguali Si assuma che dalle risposte al questionario sullo stato

Dettagli

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo.

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo. Corso di Matematica Corso di Laurea in Farmacia, Facoltà di Farmacia Università degli Studi di Pisa Maria Luisa Chiofalo Scheda 18 Esercizi svolti sul calcolo delle probabilità I testi degli esercizi sono

Dettagli

Relazioni tra variabili

Relazioni tra variabili Università degli Studi di Padova Facoltà di Medicina e Chirurgia Corso di Laurea in Medicina e Chirurgia - A.A. 009-10 Scuole di specializzazione in: Medicina Legale, Medicina del Lavoro, Igiene e Medicina

Dettagli

Epidemiologia generale

Epidemiologia generale Epidemiologia Da un punto di vista etimologico, epidemiologia è una parola di origine greca, che letteralmente significa «discorso riguardo alla popolazione» Epidemiologia generale Disciplina che ha come

Dettagli

Elaborazione dei dati su PC Regressione Multipla

Elaborazione dei dati su PC Regressione Multipla 21 Elaborazione dei dati su PC Regressione Multipla Analizza Regressione Statistiche Grafici Metodo di selezione Analisi dei dati 21.1 Introduzione 21.2 Regressione lineare multipla con SPSS 21.3 Regressione

Dettagli

A.A. 2014-2015. Obiettivi formativi del CI di Metodologia epidemiologica OBIETTIVO GENERALE

A.A. 2014-2015. Obiettivi formativi del CI di Metodologia epidemiologica OBIETTIVO GENERALE A.A. 2014-2015 Obiettivi formativi del CI di Metodologia epidemiologica OBIETTIVO GENERALE Utilizzare gli strumenti epidemiologici e statistici appropriati per ridurre l'area dell'incertezza nella rilevazione

Dettagli

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI VERO FALSO CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI 1. V F Un ipotesi statistica è un assunzione sulle caratteristiche di una o più variabili in una o più popolazioni 2. V F L ipotesi nulla unita

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Intervalli di confidenza

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Intervalli di confidenza Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Intervalli di confidenza Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 010-011 Corso di Psicometria - Modulo B Dott. Marco Vicentini marco.vicentini@unipd.it Rev. 10/01/011 La distribuzione F di Fisher - Snedecor

Dettagli

Brugnaro Luca Boscaro Gianni (2009) 1

Brugnaro Luca Boscaro Gianni (2009) 1 STATISTICA PER LE PROFESSIONI SANITARIE - LIVELLO BASE Brugnaro Luca Boscaro Gianni (2009) 1 Perché la statistica Prendere decisioni Bibliografia non soddisfacente Richieste nuove conoscenze Raccolta delle

Dettagli

1 La Matrice dei dati

1 La Matrice dei dati Dispense sull uso di Excel Daniela Marella 1 La Matrice dei dati Un questionario è costituito da un insieme di domande raccolte su un determinato supporto (cartaceo o elettronico) e somministrate alla

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo

Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO Pasquale Iandolo Laboratorio analisi ASL 4 Chiavarese, Lavagna (GE) 42 Congresso Nazionale SIBioC Roma

Dettagli

COORDINAMENTO PER MATERIE 14/15 SETTEMBRE 2010. AREA DISCIPLINARE: Matematica MATERIA Calcolo delle Probabilità-Statistica-Ricerca Operativa

COORDINAMENTO PER MATERIE 14/15 SETTEMBRE 2010. AREA DISCIPLINARE: Matematica MATERIA Calcolo delle Probabilità-Statistica-Ricerca Operativa COORDINAMENTO PER MATERIE 14/15 SETTEMBRE 2010 AREA DISCIPLINARE: Matematica MATERIA Calcolo delle Probabilità-Statistica-Ricerca Operativa COORDINATORE Ranzani Sono presenti i proff. P Ranzani (coordinatore),

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) STATISTICA DESCRITTIVA

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

PROBABILITA' E VARIABILI CASUALI

PROBABILITA' E VARIABILI CASUALI PROBABILITA' E VARIABILI CASUALI ESERCIZIO 1 Due giocatori estraggono due carte a caso da un mazzo di carte napoletane. Calcolare: 1) la probabilità che la prima carta sia una figura oppure una carta di

Dettagli

SCENEGGIATURA Moti rettilinei uniformi: sorpassi, incontri e sistemi di due equazioni

SCENEGGIATURA Moti rettilinei uniformi: sorpassi, incontri e sistemi di due equazioni SCENEGGIATURA Moti rettilinei uniformi: sorpassi, incontri e sistemi di due equazioni Si lavora sulla descrizione e sull'analisi di esperienze cinematiche relative a sorpassi e incontri con moti di persone

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Esercizio 1 Si consideri il seguente modello ad effetti fissi con variabili binarie: + 1 2 a) supponete che N=3. Si mostri che i regressori

Dettagli

Corso integrato di informatica, statistica e analisi dei dati sperimentali Altri esercizi_esercitazione V

Corso integrato di informatica, statistica e analisi dei dati sperimentali Altri esercizi_esercitazione V Corso integrato di informatica, statistica e analisi dei dati sperimentali Altri esercizi_esercitazione V Sui PC a disposizione sono istallati diversi sistemi operativi. All accensione scegliere Windows.

Dettagli

Test statistici di verifica di ipotesi

Test statistici di verifica di ipotesi Test e verifica di ipotesi Test e verifica di ipotesi Il test delle ipotesi consente di verificare se, e quanto, una determinata ipotesi (di carattere biologico, medico, economico,...) è supportata dall

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

Psicologia dello sviluppo Dott.ssa Germana Castoro germanacastoro@gmail.com

Psicologia dello sviluppo Dott.ssa Germana Castoro germanacastoro@gmail.com Psicologia dello sviluppo Dott.ssa Germana Castoro germanacastoro@gmail.com 1 Programma Finalità Il corso si propone di introdurre lo studente alla conoscenza dei principali temi affrontati dalla psicologia

Dettagli

EMBA PART TIME 2012 ROMA I ANNO

EMBA PART TIME 2012 ROMA I ANNO BUSINESS STATISTICS: ASSIGNMENT II: EMBA PART TIME 2012 ROMA I ANNO PROF. MOSCONI ESERCIZIO 1: USO DEL MODELLO DI REGRESSIONE PER DETERMINARE IL VALORE DEGLI IMMOBILI. ESERCIZIO 2: PREVISIONE DI VARIABILI

Dettagli

ANALISI DEL QUESTIONARIO DOCENTI

ANALISI DEL QUESTIONARIO DOCENTI 1 ANALISI DEL QUESTIONARIO DOCENTI L inchiesta che,al termine del passato anno scolastico, ha coinvolto gli insegnanti dell Istituto è, senza dubbio, quella con la più alta attendibilità giacché, in questo

Dettagli

Università degli Studi di Torino

Università degli Studi di Torino Università degli Studi di Torino Questionario sulla valutazione della didattica Anno Accademico: 2008 / 2009 - Primo Semestre FACOLTA' DI SCIENZE POLITICHE Riepilogo delle valutazioni fornite dagli studenti

Dettagli

Indice Prefazione xiii 1 Probabilità

Indice Prefazione xiii 1 Probabilità Prefazione xiii 1 Probabilità 1 1.1 Origini del Calcolo delle Probabilità e della Statistica 1 1.2 Eventi, stato di conoscenza, probabilità 4 1.3 Calcolo Combinatorio 11 1.3.1 Disposizioni di n elementi

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

La distribuzione Gaussiana

La distribuzione Gaussiana Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in biotecnologie - Corso di Statistica Medica La distribuzione

Dettagli

Appunti di Statistica Descrittiva

Appunti di Statistica Descrittiva Appunti di Statistica Descrittiva 30 dicembre 009 1 La tabella a doppia entrata Per studiare dei fenomeni con caratteristiche statistiche si utilizza l espediente della tabella a doppia entrata Per esempio

Dettagli

DEFINIZIONE La statistica è una scienza che si propone di definire con dei numeri cose che non si possono numerare ne misurare.

DEFINIZIONE La statistica è una scienza che si propone di definire con dei numeri cose che non si possono numerare ne misurare. Appunti di Statistica DEFINIZIONE La statistica è una scienza che si propone di definire con dei numeri cose che non si possono numerare ne misurare. PROCESSO STATISTICO L indagine statistica comprende

Dettagli

Premessa. 1. Funzionalità del portale.. 1. Servizi per gli utenti esterni all Amministrazione Scolastica... 3

Premessa. 1. Funzionalità del portale.. 1. Servizi per gli utenti esterni all Amministrazione Scolastica... 3 edumonitor MONITORAGGIO ED ANALISI DEI PERCORSI SCOLASTICI REALIZZATI PER PREVENIRE IL DISAGIO GIOVANILE Guida al Portale Premessa. 1 Funzionalità del portale.. 1 Servizi per gli utenti esterni all Amministrazione

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 L4, Corso Integrato di Psicometria - Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Rev. 18/04/2011 Inferenza statistica Formulazione

Dettagli

Statistica Medica. Verranno presi in esame:

Statistica Medica. Verranno presi in esame: Statistica Medica Premessa: il seguente testo cerca di riassumere e rendere in forma comprensibile ai non esperti in matematica e statistica le nozioni e le procedure necessarie a svolgere gli esercizi

Dettagli

Matlab per applicazioni statistiche

Matlab per applicazioni statistiche Matlab per applicazioni statistiche Marco J. Lombardi 19 aprile 2005 1 Introduzione Il sistema Matlab è ormai uno standard per quanto riguarda le applicazioni ingegneristiche e scientifiche, ma non ha

Dettagli

SINTESI DEI RISULTATI

SINTESI DEI RISULTATI RILEVAZIONE DELLA SODDISFAZIONE DEGLI UTENTI DEI CORSI DI FORMAZIONE ED EVENTI MEMO E DEL COORDINAMENTO PEDAGOGICO 0/6 ANNI ORGANIZZATIDAL MULTICENTRO EDUCATIVO SERGIO NERI SINTESI DEI RISULTATI Modena,

Dettagli

Il test del Chi-quadrato

Il test del Chi-quadrato Il test del Chi-quadrato Prof.ssa Montomoli- Univ. di Pavia Prof.ssa Zanolin Univ. di Verona Il rischio di contrarre epatite C è associato all avere un tatuaggio? Cosa vuol dire ASSOCIAZIONE tra due variabili?

Dettagli

Capitolo 2 Distribuzioni di frequenza

Capitolo 2 Distribuzioni di frequenza Edizioni Simone - Vol. 43/1 Compendio di statistica Capitolo 2 Distribuzioni di frequenza Sommario 1. Distribuzioni semplici. - 2. Distribuzioni doppie. - 3. Distribuzioni parziali: condizionate e marginali.

Dettagli

ESAME DI STATISTICA Nome: Cognome: Matricola:

ESAME DI STATISTICA Nome: Cognome: Matricola: ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli

Dettagli

A.S.E.R. - Convegno Innovazione e PMI - Milano, 11/10/09. A.S.E.R. - Convegno Innovazione e PMI - Milano, 11/10/09

A.S.E.R. - Convegno Innovazione e PMI - Milano, 11/10/09. A.S.E.R. - Convegno Innovazione e PMI - Milano, 11/10/09 Sesso dei partecipanti Femmine 43,6% Maschi 56,4% Età dei partecipanti Oltre 60 anni 18,1% Fino a 30 anni 42,3% Da 30 a 60 anni 39,6% Come ritiene che evolverà la situazione economica? - Totale 14,7% 41,3%

Dettagli

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525 UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525 2 LEZIONE Statistica descrittiva STATISTICA DESCRITTIVA Rilevazione dei dati Rappresentazione

Dettagli