Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni"

Transcript

1 Statistica Economica Materiale didattico a cura del docente Analisi dei residui Test Esatto di Fisher Differenza fra proporzioni 1

2 Analisi dei residui Il test statistico ed il suo p-valore riassumono la forza delle evidenze statistiche contrarie all ipotesi nulla. Se il χ 2 è grande, allora, in qualche punto della tabella di contingenza i dati si allontanano da ciò che l ipotesi di indipendenza predice Il test, però, non ci dice se tutte le celle o solo una o due di esse deviano dall indipendenza Un confronto cella-per-cella rivela la natura delle prove statistiche fornite dal test La differenza (f o f e ) è chiamato residuo. La prima cella della solita tabella avrà, quindi, come residuo ,4=17,6 Come facciamo a stabilire se un residuo è abbastanza grande da indicare un significativo allontanamento dall ipotesi di indipendenza? Per rispondere impieghiamo una forma aggiustata dei residui che si comporta come uno z-score 2

3 Residui Aggiustati: Il residuo aggiustato per una cella è pari a f o f e fe (1 prop. di riga)(1 prop. di colonna) Il denominatore è l errore standard della differenza (f o f e ) quando le variabili sono davvero indipendenti Se l ipotesi H 0 di indipendenza è vera, il residuo aggiustato è riferito al numero di errori standard che separano la frequenza osservata da quella attesa ed ha distribuzione normale standardizzata per grandi campioni Il residuo aggiustato, quindi, fluttua intorno al valore medio 0 con una deviazione standard pari a 1: così, vi è solo il 5% di probabilità che un particolare residuo sia superiore a 2 in valore assoluto Un grande residuo aggiustato fornisce prove contro l ipotesi di indipendenza per una particolare cella: un valore di tale residuo che supera 3 è una fortissima evidenza contro l indipendenza 2-a

4 Calcoliamo i residui aggiustati per la Tabella dell esempio di A. Agresti sul gap tra i sessi per ciò che attiene l affiliazione partitica Per la prima cella, abbiamo f o = 279 e f e = 261, 4. Le proporzioni marginali per la prima riga e per la prima colonna sono pari a 577/980 = 0, 589 e a 444/980 = 0, 453: Il residuo aggiustato per tale cella è, quindi: , 4 [261, 4(1 0, 589)(1 0, 453)] = 2, 3 Opinione politica Sesso Demo Indip Repubb F 2,3 0,5-2,6 M -2,3-0,5 2,6 Nel caso della prima cella, poiché il residuo è maggiore di 2, constatiamo una discrepanza fra f o ed f e più grande di quella che ci saremmo aspettati se le variabili fossero state davvero indipendenti 2-b

5 La Tabella mostra ampi residui positivi per le femmine Democratiche e per i maschi Repubblicani, le celle, cioè, in cui f o è molto più grande di f e : ciò vuole dire che esiste un numero significativo in più rispetto a ciò che prevede l ipotesi di indipendenza di femmine Democratiche e di maschi Repubblicani La Tabella mostra anche ampi residui negativi per le femmine Repubblicane e per i maschi Democratici, le due celle, cioè, in cui f o è molto più piccolo di f e : ciò vuole dire che ci sono molte meno femmine Repubblicane e molti meno maschi democratici rispetto a quanto si sarebbe dovuto osservare nel caso di indipendenza fra affiliazione partitica e sesso Si noti che, per ogni partito, la tabella in esame contiene solo un residuo aggiustato non ridondante: quello per le femmine è l opposto di quello per i maschi. Infatti, poiché le frequenze osservate e le frequenze attese hanno gli stessi totali di riga e colonna e, quindi, se f o > f e in una cella, l opposto deve avvenire nell altra cella 2-c

6 Il test esatto di Fisher Iniziamo dal caso delle Tabelle 2 2 si consideri una tabella di contingenza di dimensioni 2 2 del tipo B A b 1 b 2 Totale a 1 n 11 n 12 n 1+ a 2 n 21 n 22 n 2+ Totale n +1 n +2 n ++ Una volta che sono fissati i totali di riga e di colonna, è chiaro che il valore di n 11 determina, univocamente i valori delle altre 3 celle Nel 1934, l autorevole statistico britannico Ronald A. Fisher, ha proposto un test di indipendenza per piccoli campioni che si può utilizzare per situazioni come quelle descritte dalla tabella 3

7 Per illustrarne il funzionamento, nel suo libro The Design of Experiments del 1935 Fisher descrisse il seguente esperimento: Una collega di Fisher presso la Stazione Sperimentale di Rothamsted vicino a Londra, affermava di essere in grado, bevendo il tè di distinguere se nella tazza fosse stato versato prima il tè o il latte. Per verificare l attendibilità di tale affermazione, Fisher pianificò un esperimento nel quale la sua collega doveva assaggiare 8 tazze di tè. In 4 tazze mise prima il latte del tè, nelle altre 4 fece l opposto. Alla collega disse che esistevano appunto 4 tazze in cui il latte era stato messo prima del tè e 4 tazze in cui era stato messo dopo. Le tazze vennero presentate alla collega in ordine casuale Applichiamo il test esatto di Fisher per saggiare l ipotesi H 0 : Cio che dice la collega di Fisher è indipendente dall ordine con cui latte e tè sono stati versati 3-a

8 La distribuzione dei possibili valori di n 11 è la distribuzione ipergeometrica definita per tutte le possibili tabelle 2 2 che hanno dei marginali di riga e colonna pari a quelli fissati I potenziali valori per n 11 sono (0,1,2,3,4) Uno dei possibili risultati dell esperimento potrebbe essere, ad esempio, Valutazione collega Versato prima Latte Tè Totale Latte Tè Totale La probabilità di osservare un risultato come questo, fornita dallo schema di campionamento ipergeometrico è P (3) = ( 4 3 )( 4 1) ( 8 ) = [4!/(3!)(1!)][4!/(1!)(3!)] [8!/(4!)(4!)] 4 = 0, 229 Infatti, P (x) = ( n1+ n 11 )( n2+ ) n ) 21 n +1 ( n++ 3-b

9 Una sintesi dei possibili esiti è n 11 Probabilità p valore 0 0,014 1, ,229 0, ,514 0, ,229 0, ,014 0,014 I p valori sono riferiti alla probabilità sottesa la coda destra per un ipotesi unilaterale L ipotesi alternativa H 1 prevede che, al contrario di quanto espresso nella ipotesi nulla, esista un associazione fra quanto indovina la collega di Fisher e l effettivo ordine con cui latte e tè vengono mischiati fra loro Immaginiamo che la collega di Fisher indovini, correttamente, che il tè è stato messo dopo il latte per 3 volte; la probabilità che per effetto del caso si possa osservare un n 11 uguale o più grande di 3 è P = P (3) + P (4) = 0, c

10 Come è ovvio, un tale valore, non fornisce molte prove contro l ipotesi nulla di indipendenza, L esperimento non ci permette, quindi, di stabilire un associazione fra l effettivo ordine di miscelazione e quanto indovinato dalla collega di Fisher Ovviamente è difficile mostrare l associazione con così poche osservazioni, se l assaggiatrice avesse indovinato tutte le 4 tazze con il tè versato dopo il latte (n 11 = 4), allora sì, vi sarebbero state forti prove a favore della sua affermazione di essere capace di stabilire l ordine di miscelazione delle bevande: si sarebbe, infatti, ottenuto il valore più estremo possibile nella coda destra della distribuzione ipergeometrica P (4) = 0, d

11 Differenza fra proporzioni Quando vengono analizzate delle tabelle di contingenza, vengono, di solito, poste le seguenti tre domande: Quanto è verosimile che il livello di associazione osservato in un campione si sarebbe comunque avuto anche se le variabili fossero state realmente indipendenti nella popolazione? Il test Chi-quadrato mira a fornire una risposta a questo quesito. Quanto si allontanano dall indipendenza i dati? Quando due variabili appaiono essere associate, i residui aggiustati evidenziano le celle in cui i conteggi sono significativamente diversi da ciò che l ipotesi di indipendenza prevede. Quanto è forte l associazione? Per rispondere usiamo una statistica come la differenza fra proporzioni, ottenendo così un intervallo di confidenza per stimare quanto forte può essere l associazione a livello di popolazione. L analisi della forza dell associazione ci rivela se l associazione riscontrata è meritevole di attenzione o se essa è, sì, statisticamente significativa ma debole e non importante in termini pratici. Discutiamo qui di come dare risposte al terzo quesito 4

12 Si osservino le due tabelle sotto riportate che descrivono l associazione fra l opinione sulla legalizzazione dell aborto e razza di un campione di 1000 individui Nessuna associazione: Opinione Razza Favorevole Contraria Totale Bianca Nera Totale Massima associazione: Opinione Razza Favorevole Contraria Totale Bianca Nera Totale a

13 La prima tabella mostra indipendenza statistica e rappresenta il livello più basso di associazione che possa registrarsi per le due variabili. Infatti, il 60% è a favore ed il 40% contrario all aborto sia nel gruppo dei bianchi e sia in quello dei neri Di contro, la seconda tabella mostra che tutti i bianchi sono a favore dell aborto mentre tutti i neri sono contrari. In questo caso vediamo come l opinione (variabile risposta) sia completamente dipendente dalla razza del rispondente È necessario trovare, allora, una misura della forza dell associazione che assuma valori nello spettro teorico dei casi che vanno dalla prima alla seconda tabella Misure di Associazione: Una misura di associazione è una statistica che riassume la forza della dipendenza statistica fra due variabili. 4-b

14 In casi come quelli riportati poco sopra una misura di associazione immediata è la differenza fra le proporzioni nei due gruppi per una data categoria della variabile risposta Possiamo misurare la differenza fra le proporzioni di bianchi e neri che sono a favore della aborto legalizzato. Nel caso della prima tabella abbiamo: = 0, 6 0, 6 = La differenza fra le proporzioni nella popolazione è 0 qualora le distribuzioni condizionate siano identiche e, cioè, quando le due variabili sono indipendenti. La differenza è 1 o -1 per le associazioni massime. Ad esempio, per la seconda tabella è: = 1, 0 che è il massimo valore possibile per la differenza Per la stima della differenza fra proporzioni: Intervallo di Confidenza per Grandi Campioni per π 2 π 1 : Un intervallo di confidenza per π 2 π 1 è (ˆπ 2 ˆπ 1 ) ± zˆσˆπ2 ˆπ 1 (ˆπ 2 ˆπ 1 ) ± z che è pari a ˆπ 1 (1 ˆπ 1 ) n 1 + ˆπ 2(1 ˆπ 2 ) n 2 L intervallo è valido, di solito, quando sia n 1 ed n 2 hanno, almeno, 20 osservazioni. 4-c

15 La differenza fra proporzioni varia, come detto, fra -1 e 1: più forte è l associazione, più grande è la differenza in valore assoluto Vediamo come aumenta la differenza tra proporzioni mano a mano che aumenta il grado di associazione fra variabili: Cont. di cella: Diff. fra prop. 0,0 0,2 0, Cont. di cella: Diff. fra prop. 0,6 0,8 1,0 Nella seconda tabella, ad esempio, la proporzione delle osservazioni che ricadono nella prima colonna è pari a 30/( ) = 0, 6 nella riga 1 e a 20/( ) = 0, 4 nella riga 2, la differenza è, quindi, 0, 6 0, 4 = 0, 2 4-d

Il confronto fra proporzioni

Il confronto fra proporzioni L. Boni Il rapporto Un rapporto (ratio), attribuendo un ampio significato al termine, è il risultato della divisione di una certa quantità a per un altra quantità b Il rapporto Spesso, in maniera più specifica,

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

3. Confronto tra medie di due campioni indipendenti o appaiati

3. Confronto tra medie di due campioni indipendenti o appaiati BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

ANALISI DELLE FREQUENZE: IL TEST CHI 2

ANALISI DELLE FREQUENZE: IL TEST CHI 2 ANALISI DELLE FREQUENZE: IL TEST CHI 2 Quando si hanno scale nominali o ordinali, non è possibile calcolare il t, poiché non abbiamo medie, ma solo frequenze. In questi casi, per verificare se un evento

Dettagli

Elaborazione dati in Analisi Sensoriale

Elaborazione dati in Analisi Sensoriale Elaborazione dati in Analisi Sensoriale Si è parlato di interpretazione corretta dei risultati ottenuti; a questo concorrono due fattori: affidabilità e validità. Se i test fossero stati ripetuti con lo

Dettagli

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per categoriali. Alessandro Valbonesi

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per categoriali. Alessandro Valbonesi LEZIONI DI STATISTCA APPLICATA Parte 2 Statistica inferenziale Variabili continue per categoriali Alessandro Valbonesi SARRF di Scienze ambientali Anno accademico 2010-11 CAPITOLO 4 - TEST STATISTICI CHE

Dettagli

Tabella per l'analisi dei risultati

Tabella per l'analisi dei risultati Vai a... UniCh Test V_Statistica_Eliminatorie Quiz V_Statistica_Eliminatorie Aggiorna Quiz Gruppi visibili Tutti i partecipanti Info Anteprima Modifica Risultati Riepilogo Rivalutazione Valutazione manuale

Dettagli

STATISTICA IX lezione

STATISTICA IX lezione Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri

Dettagli

19txtI_BORRA_2013 18/11/13 10:52 Pagina 449 TAVOLE STATISTICHE

19txtI_BORRA_2013 18/11/13 10:52 Pagina 449 TAVOLE STATISTICHE 19txtI_BORRA_2013 18/11/13 10:52 Pagina 449 TAVOLE STATISTICHE Nell inferenza è spesso richiesto il calcolo di alcuni valori critici o di alcune probabilità per le variabili casuali che sono state introdotte

Dettagli

Analizza/Confronta medie. ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107. Test t. Test t. t-test test e confronto tra medie chi quadrato

Analizza/Confronta medie. ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107. Test t. Test t. t-test test e confronto tra medie chi quadrato Analizza/Confronta medie ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107 t-test test e confronto tra medie chi quadrato C.d.L. Comunicazione e Psicologia a.a. 2008/09 Medie Calcola medie e altre statistiche

Dettagli

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008 Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica 18 dicembre 008 Esame sull intero programma: esercizi da A a D Esame sulla seconda parte del programma: esercizi

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica

METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica EPIDEMIOLOGIA Ha come oggetto lo studio della distribuzione delle malattie in un popolazione e dei fattori che la influenzano

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 L4, Corso Integrato di Psicometria - Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Rev. 18/04/2011 Inferenza statistica Formulazione

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA

ESERCIZI DI STATISTICA DESCRITTIVA ESERCIZI DI STATISTICA DESCRITTIVA ES1 Data la seguente serie di dati su Sesso e Altezza di 8 pazienti, riempire opportunamente due tabelle per rappresentare le distribuzioni di frequenze dei due caratteri,

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) STATISTICA DESCRITTIVA

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

è decidere sulla verità o falsità

è decidere sulla verità o falsità I test di ipotesi I test di ipotesi Il test delle ipotesi consente di verificare se, e in quale misura, una determinata ipotesi (di carattere sociale, biologico, medico, economico, ecc.) è supportata dall

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

Excel Terza parte. Excel 2003

Excel Terza parte. Excel 2003 Excel Terza parte Excel 2003 TABELLA PIVOT Selezioniamo tutti i dati (con le relative etichette) Dati Rapporto tabella pivot e grafico pivot Fine 2 La tabella pivot viene messa di default in una pagina

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 10-Il test t per un campione e la stima intervallare (vers. 1.1, 25 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia,

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Nella verifica delle ipotesi è necessario fissare alcune fasi prima di iniziare ad analizzare i dati. a) Si deve stabilire quale deve essere l'ipotesi nulla (H0) e quale l'ipotesi

Dettagli

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI VERO FALSO CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI 1. V F Un ipotesi statistica è un assunzione sulle caratteristiche di una o più variabili in una o più popolazioni 2. V F L ipotesi nulla unita

Dettagli

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI CAPITOLO III CONFRONTI TRA DISTRIBUZIONI 3.1 CONFRONTI TRA DISTRIBUZIONI OSSERVATE E DISTRIBUZIONI TEORICHE OD ATTESE. Nella teoria statistica e nella pratica sperimentale, è frequente la necessità di

Dettagli

La logica statistica della verifica (test) delle ipotesi

La logica statistica della verifica (test) delle ipotesi La logica statistica della verifica (test) delle ipotesi Come posso confrontare diverse ipotesi? Nella statistica inferenziale classica vengono sempre confrontate due ipotesi: l ipotesi nulla e l ipotesi

Dettagli

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici Test non parametrici Test non parametrici Il test T di Student per uno o per due campioni, il test F di Fisher per l'analisi della varianza, la correlazione, la regressione, insieme ad altri test di statistica

Dettagli

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza Titolo della lezione Analisi dell associazione tra due caratteri: indipendenza e dipendenza Introduzione Analisi univariata, bivariata, multivariata Analizzare le relazioni tra i caratteri, per cercare

Dettagli

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr.

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr. Corso di Laurea in Scienze e Tecnologie Biomolecolari Matematica e Statistica II Prova di esame del 18/7/2013 NOME COGNOME N. Matr. Rispondere ai punti degli esercizi nel modo più completo possibile, cercando

Dettagli

Statistica Medica. Verranno presi in esame:

Statistica Medica. Verranno presi in esame: Statistica Medica Premessa: il seguente testo cerca di riassumere e rendere in forma comprensibile ai non esperti in matematica e statistica le nozioni e le procedure necessarie a svolgere gli esercizi

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA)

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA) Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 4: Analisi della varianza (ANOVA) Analisi della varianza Analisi della varianza (ANOVA) ANOVA ad

Dettagli

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che Statistica Cognome: Laurea Triennale in Biologia Nome: 26 luglio 2012 Matricola: Tema A 1. Parte A 1.1. Sia x 1, x 2,..., x n un campione di n dati con media campionaria x e varianza campionaria s 2 x

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

9. La distribuzione 2 e i test per dati su scala nominale

9. La distribuzione 2 e i test per dati su scala nominale 9. La distribuzione e i test per dati su scala nominale 9.1. La distribuzione 9. 1. 1. La statistica e la sua distribuzione In una popolazione distribuita normalmente con parametri e estraiamo un campione

Dettagli

Capitolo 11 Test chi-quadro

Capitolo 11 Test chi-quadro Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova

Dettagli

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi Idea di base Supponiamo di avere un idea del valore (incognito) di una media di un campione, magari attraverso

Dettagli

Il test del Chi-quadrato

Il test del Chi-quadrato Il test del Chi-quadrato Prof.ssa Montomoli- Univ. di Pavia Prof.ssa Zanolin Univ. di Verona Il rischio di contrarre epatite C è associato all avere un tatuaggio? Cosa vuol dire ASSOCIAZIONE tra due variabili?

Dettagli

Università del Piemonte Orientale. Corsi di laurea triennale di area tecnica. Corso di Statistica Medica. Analisi dei dati in tabelle di contingenza

Università del Piemonte Orientale. Corsi di laurea triennale di area tecnica. Corso di Statistica Medica. Analisi dei dati in tabelle di contingenza Università del Piemonte Orientale Corsi di laurea triennale di area tecnica Corso di Statistica Medica Analisi dei dati in tabelle di contingenza Corsi di laurea triennale di area tecnica - Corso di Statistica

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile.

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. ORDINALI E NOMINALI LA PROBABILITÀ Statistica5 23/10/13 Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. Se si afferma che un vitello di razza chianina pesa 780 kg a 18

Dettagli

Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti )

Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti ) Esercizio 1 Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti ) Qualitativo Sconnesso: Marca di Jeans preferita, Partito votato nelle ultime elezioni,

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 010-011 Corso di Psicometria - Modulo B Dott. Marco Vicentini marco.vicentini@unipd.it Rev. 10/01/011 La distribuzione F di Fisher - Snedecor

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 9 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 TEST D IPOTESI Partiamo da un esempio presente sul libro di testo.

Dettagli

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Esercizio 1 Si consideri il seguente modello ad effetti fissi con variabili binarie: + 1 2 a) supponete che N=3. Si mostri che i regressori

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Nome N. Matricola Ancona, 14 luglio 2015 1. Tre macchine producono gli stessi pezzi

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

Test statistici di verifica di ipotesi

Test statistici di verifica di ipotesi Test e verifica di ipotesi Test e verifica di ipotesi Il test delle ipotesi consente di verificare se, e quanto, una determinata ipotesi (di carattere biologico, medico, economico,...) è supportata dall

Dettagli

Strumenti Informatici 8.1. Realizzare il test della binomiale (o test dei segni) con Excel e SPSS

Strumenti Informatici 8.1. Realizzare il test della binomiale (o test dei segni) con Excel e SPSS 1 Strumenti Informatici 8.1 Realizzare il test della binomiale (o test dei segni) con Excel e SPSS Il test della binomiale (o test dei segni) può essere eseguito con Excel impostando le formule adeguate

Dettagli

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno.

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Corso di Statistica Medica Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Sono previste 40 ore complessive, di cui almeno 16 di lezione frontale e le restanti

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria

Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata Prof. Massimo Aria aria@unina.it Standardizzazione di una variabile Standardizzare una variabile statistica

Dettagli

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre.

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre. Corso di Statistica Medica 2004-2005 Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre. Sono previste 30 ore di lezione di statistica e 12 di

Dettagli

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione) Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso

Dettagli

1. Richiami di Statistica. Stefano Di Colli

1. Richiami di Statistica. Stefano Di Colli 1. Richiami di Statistica Metodi Statistici per il Credito e la Finanza Stefano Di Colli Dati: Fonti e Tipi I dati sperimentali sono provenienti da un contesto delimitato, definito per rispettare le caratteristiche

Dettagli

Brugnaro Luca Boscaro Gianni (2009) 1

Brugnaro Luca Boscaro Gianni (2009) 1 STATISTICA PER LE PROFESSIONI SANITARIE - LIVELLO BASE Brugnaro Luca Boscaro Gianni (2009) 1 Perché la statistica Prendere decisioni Bibliografia non soddisfacente Richieste nuove conoscenze Raccolta delle

Dettagli

La significatività PROVE DI SIGNIFICATIVITA PROVE DI SIGNIFICATIVITA PROVE DI SIGNIFICATIVITA

La significatività PROVE DI SIGNIFICATIVITA PROVE DI SIGNIFICATIVITA PROVE DI SIGNIFICATIVITA PROVE DI SIGNIFICATIVITA Tutti i test statistici di significatività assumono inizialmente la cosiddetta ipotesi zero (o ipotesi nulla) Quando si effettua il confronto fra due o più gruppi di dati, l'ipotesi

Dettagli

Esercitazione n.2 Inferenza su medie

Esercitazione n.2 Inferenza su medie Esercitazione n.2 Esercizio L ufficio del personale di una grande società intende stimare le spese mediche familiari dei suoi impiegati per valutare la possibilità di attuare un programma di assicurazione

Dettagli

OSSERVAZIONI TEORICHE Lezione n. 4

OSSERVAZIONI TEORICHE Lezione n. 4 OSSERVAZIONI TEORICHE Lezione n. 4 Finalità: Sistematizzare concetti e definizioni. Verificare l apprendimento. Metodo: Lettura delle OSSERVAZIONI e risoluzione della scheda di verifica delle conoscenze

Dettagli

Disegni di Ricerca e Analisi dei Dati in Psicologia Clinica. Indici di Affidabilità

Disegni di Ricerca e Analisi dei Dati in Psicologia Clinica. Indici di Affidabilità Disegni di Ricerca e Analisi dei Dati in Psicologia Clinica Indici di Affidabilità L Attendibilità È il livello in cui una misura è libera da errore di misura È la proporzione di variabilità della misurazione

Dettagli

22.03.07 In alcuni casi è possibile applicare sia l analisi log lineare che la regressione logistica. Analisi log lineare e regressione logistica:

22.03.07 In alcuni casi è possibile applicare sia l analisi log lineare che la regressione logistica. Analisi log lineare e regressione logistica: .03.07 In alcuni casi è possibile applicare sia l analisi log lineare che la regressione logistica. Analisi log lineare e regressione logistica: differenze Nella regressione logistica le variabili vengono

Dettagli

Concetto di potenza statistica

Concetto di potenza statistica Calcolo della numerosità campionaria Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona Concetto di potenza statistica 1 Accetto H 0 Rifiuto H 0 Ipotesi Nulla (H

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

Teoria della Stima. Stima della Media e di una Porzione di Popolazione. Introduzione. Corso di Laurea in Scienze Motorie AA2002/03 - Analisi dei Dati

Teoria della Stima. Stima della Media e di una Porzione di Popolazione. Introduzione. Corso di Laurea in Scienze Motorie AA2002/03 - Analisi dei Dati Teoria della Stima. Stima della Media e di una Porzione di Popolazione Introduzione La proceduta in base alla quale ad uno o più parametri di popolazione si assegna il valore numerico calcolato dalle informazioni

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo.

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo. Corso di Matematica Corso di Laurea in Farmacia, Facoltà di Farmacia Università degli Studi di Pisa Maria Luisa Chiofalo Scheda 18 Esercizi svolti sul calcolo delle probabilità I testi degli esercizi sono

Dettagli

Statistica. Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza statistica

Statistica. Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza statistica Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2008/2009 Statistica Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza

Dettagli

PROGETTO INDAGINE DI OPINIONE SUL PROCESSO DI FUSIONE DEI COMUNI NEL PRIMIERO

PROGETTO INDAGINE DI OPINIONE SUL PROCESSO DI FUSIONE DEI COMUNI NEL PRIMIERO PROGETTO INDAGINE DI OPINIONE SUL PROCESSO DI FUSIONE DEI COMUNI NEL PRIMIERO L indagine si è svolta nel periodo dal 26 agosto al 16 settembre 2014 con l obiettivo di conoscere l opinione dei residenti

Dettagli

COMUNE DI COMO. I MATRIMONI NEL COMUNE DI COMO Presentazione dei dati dal 2000 al 2004. (1 Edizione)

COMUNE DI COMO. I MATRIMONI NEL COMUNE DI COMO Presentazione dei dati dal 2000 al 2004. (1 Edizione) COMUNE DI COMO I MATRIMONI NEL COMUNE DI COMO Presentazione dei dati dal 2000 al 2004 (1 Edizione) Settore Statistica - Agosto 2007 I MATRIMONI NEL COMUNE DI COMO Presentazione dei dati dal 2000 al 2004

Dettagli

STATISTICA E PROBABILITá

STATISTICA E PROBABILITá STATISTICA E PROBABILITá Statistica La statistica è una branca della matematica, che descrive un qualsiasi fenomeno basandosi sulla raccolta di informazioni, sottoforma di dati. Questi ultimi risultano

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Inferenza statistica

Inferenza statistica Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione in base ad informazioni ricavate da un campione. Inferenza statistica: indurre

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

CLASSIFICAZIONE DEI CARATTERI

CLASSIFICAZIONE DEI CARATTERI CLASSIFICAZIONE DEI CARATTERI Come abbiamo visto, su ogni unità statistica si rilevano una o più informazioni di interesse (caratteri). Il modo in cui un carattere si manifesta in un unità statistica è

Dettagli

L EFFICACIA DELLE MISURE DI POLITICA ATTIVA DEL LAVORO REALIZZATE IN PROVINCIA DI TORINO NEL 2007-08

L EFFICACIA DELLE MISURE DI POLITICA ATTIVA DEL LAVORO REALIZZATE IN PROVINCIA DI TORINO NEL 2007-08 1 La valutazione L EFFICACIA DELLE MISURE DI POLITICA ATTIVA DEL LAVORO REALIZZATE IN PROVINCIA DI TORINO NEL 2007-08 Esiti occupazionali a 24 dalla partecipazione Vengono qui riassunti i risultati della

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

GENITORI, FIGLI E ALCOOL

GENITORI, FIGLI E ALCOOL GENITORI, FIGLI E ALCOOL Un sondaggio Osservatorio - Doxa SINTESI E GRAFICI Roma, 4 dicembre 2008 I GIOVANI E LA COMUNICAZIONE SULL ALCOOL I GENITORI SONO INFORMATI DI COSA FANNO I FIGLI NEL TEMPO LIBERO?

Dettagli

l insieme delle misure effettuate costituisce il campione statistico

l insieme delle misure effettuate costituisce il campione statistico Statistica negli esperimenti reali si effettuano sempre un numero finito di misure, ( spesso molto limitato ) l insieme delle misure effettuate costituisce il campione statistico Statistica descrittiva

Dettagli

Alla Dottoressa Francesca Sabella Ufficio IV Al Direttore ANSAS nucleo del Veneto Dottoressa A. Missana

Alla Dottoressa Francesca Sabella Ufficio IV Al Direttore ANSAS nucleo del Veneto Dottoressa A. Missana Alla Dottoressa Francesca Sabella Ufficio IV Al Direttore ANSAS nucleo del Veneto Dottoressa A. Missana Oggetto: Relazione della quarta annualità del progetto Psicologia dell'apprendimento della matematica.

Dettagli

Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media.

Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media. FORMA DI UNA DISTRIBUZIONE Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media. Le prime informazioni sulla forma di

Dettagli

Esercizi test ipotesi. Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010

Esercizi test ipotesi. Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Esercizi test ipotesi Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Verifica delle ipotesi - Esempio quelli di Striscia la Notizia" effettuano controlli casuali per vedere se le pompe

Dettagli

Analisi di dati di frequenza

Analisi di dati di frequenza Analisi di dati di frequenza Fase di raccolta dei dati Fase di memorizzazione dei dati in un foglio elettronico 0 1 1 1 Frequenze attese uguali Si assuma che dalle risposte al questionario sullo stato

Dettagli

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini)

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Esercizio 1 In uno studio sugli affitti mensili, condotto su un campione casuale di 14 monolocali nella città nella città

Dettagli

RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL

RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL 1 RAPPRESENTAZIONE GRAFICA Per l analisi dati con Excel si fa riferimento alla versione 2007 di Office, le versioni successive non differiscono

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento

errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento Analisi della varianza a una via a misure ripetute (Anova con 1 fattore within) modello strutturale dell'analisi della varianza a misure ripetute con 1 fattore: y = μ ik 0 +π i +α k + ik ε ik interazione

Dettagli

Che cosa si impara nel capitolo 2

Che cosa si impara nel capitolo 2 Che cosa si impara nel capitolo 2 Si può valutare e confrontare il contenuto, ad esempio di tre diversi settimanali, riducendo gli aspetti qualitativi a valori numerici: quante pagine sono dedicate alla

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Università del Piemonte Orientale. Corso di Laurea in Igiene Dentale. Corso di Statistica per la ricerca sperimentale e tecnologica

Università del Piemonte Orientale. Corso di Laurea in Igiene Dentale. Corso di Statistica per la ricerca sperimentale e tecnologica Università del Piemonte Orientale Corso di Laurea in Igiene Dentale Corso di Statistica per la ricerca sperimentale e tecnologica Analisi dei dati in tabelle di contingenza Corso di laurea triennale di

Dettagli

TERZA INDAGINE SULLE CONDIZIONI DI VITA E DI LAVORO DEGLI INSEGNANTI ITALIANI

TERZA INDAGINE SULLE CONDIZIONI DI VITA E DI LAVORO DEGLI INSEGNANTI ITALIANI TERZA INDAGINE SULLE CONDIZIONI DI VITA E DI LAVORO DEGLI INSEGNANTI ITALIANI APPROFONDIMENTO LOCALE TRENTINO Gentile Insegnante, grazie per aver accettato di compilare il questionario. Il questionario

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

Strumenti informatici 13.1

Strumenti informatici 13.1 1 Strumenti informatici 1.1 I test post-hoc nel caso del confronto fra tre o più proporzioni dipendenti e la realizzazione del test Q di Cochran in SPSS Nel caso dei test post-hoc per il test Q di Cochran,

Dettagli

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Università degli Studi di Padova Facoltà di Psicologia, L4, Psicometria, Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Statistica descrittiva e inferenziale

Dettagli

Strumenti informatici 11.1. Realizzare un test per proporzioni dipendenti in Excel ed SPSS

Strumenti informatici 11.1. Realizzare un test per proporzioni dipendenti in Excel ed SPSS 1 Strumenti informatici 11.1 Realizzare un test per proporzioni dipendenti in Excel ed SPSS Excel non dispone di una funzione che consenta di realizzare il test statistico z per il confronto di proporzioni

Dettagli

Inferenza statistica I Alcuni esercizi. Stefano Tonellato

Inferenza statistica I Alcuni esercizi. Stefano Tonellato Inferenza statistica I Alcuni esercizi Stefano Tonellato Anno Accademico 2006-2007 Avvertenza Una parte del materiale è stato tratto da Grigoletto M. e Ventura L. (1998). Statistica per le scienze economiche,

Dettagli

Elaborazione dei dati su PC Regressione Multipla

Elaborazione dei dati su PC Regressione Multipla 21 Elaborazione dei dati su PC Regressione Multipla Analizza Regressione Statistiche Grafici Metodo di selezione Analisi dei dati 21.1 Introduzione 21.2 Regressione lineare multipla con SPSS 21.3 Regressione

Dettagli

decidiamo, sulla base di un campione, se l ipotesi formulata è plausibile oppure no.

decidiamo, sulla base di un campione, se l ipotesi formulata è plausibile oppure no. LA VERIFICA D IPOTESI Alla base dell inferenza statistica vi è l assunzione che i fenomeni collettivi possano essere descritti efficacemente mediante delle distribuzioni di probabilità. Abbiamo già considerato

Dettagli

Test statistici non-parametrici

Test statistici non-parametrici Test statistici non-parametrici Il test t di Student e l ANOVA sono basati su alcune assunzioni. Variabili continue o almeno misurate in un intervallo (es. non conosco il valore assoluto, ma posso quantificare

Dettagli

Probabilità e Statistica ESERCIZI. EsercizioA3 Data la variabile aleatoria normale standard Z, si calcoli la probabilità

Probabilità e Statistica ESERCIZI. EsercizioA3 Data la variabile aleatoria normale standard Z, si calcoli la probabilità Probabilità e Statistica ESERCIZI EsercizioA1 Data la variabile aleatoria normale standard Z, si calcoli la probabilità che Z sia minore o uguale di 1,2. Soluzione La probabilità che una variabile aleatoria

Dettagli