Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni"

Transcript

1 Statistica Economica Materiale didattico a cura del docente Analisi dei residui Test Esatto di Fisher Differenza fra proporzioni 1

2 Analisi dei residui Il test statistico ed il suo p-valore riassumono la forza delle evidenze statistiche contrarie all ipotesi nulla. Se il χ 2 è grande, allora, in qualche punto della tabella di contingenza i dati si allontanano da ciò che l ipotesi di indipendenza predice Il test, però, non ci dice se tutte le celle o solo una o due di esse deviano dall indipendenza Un confronto cella-per-cella rivela la natura delle prove statistiche fornite dal test La differenza (f o f e ) è chiamato residuo. La prima cella della solita tabella avrà, quindi, come residuo ,4=17,6 Come facciamo a stabilire se un residuo è abbastanza grande da indicare un significativo allontanamento dall ipotesi di indipendenza? Per rispondere impieghiamo una forma aggiustata dei residui che si comporta come uno z-score 2

3 Residui Aggiustati: Il residuo aggiustato per una cella è pari a f o f e fe (1 prop. di riga)(1 prop. di colonna) Il denominatore è l errore standard della differenza (f o f e ) quando le variabili sono davvero indipendenti Se l ipotesi H 0 di indipendenza è vera, il residuo aggiustato è riferito al numero di errori standard che separano la frequenza osservata da quella attesa ed ha distribuzione normale standardizzata per grandi campioni Il residuo aggiustato, quindi, fluttua intorno al valore medio 0 con una deviazione standard pari a 1: così, vi è solo il 5% di probabilità che un particolare residuo sia superiore a 2 in valore assoluto Un grande residuo aggiustato fornisce prove contro l ipotesi di indipendenza per una particolare cella: un valore di tale residuo che supera 3 è una fortissima evidenza contro l indipendenza 2-a

4 Calcoliamo i residui aggiustati per la Tabella dell esempio di A. Agresti sul gap tra i sessi per ciò che attiene l affiliazione partitica Per la prima cella, abbiamo f o = 279 e f e = 261, 4. Le proporzioni marginali per la prima riga e per la prima colonna sono pari a 577/980 = 0, 589 e a 444/980 = 0, 453: Il residuo aggiustato per tale cella è, quindi: , 4 [261, 4(1 0, 589)(1 0, 453)] = 2, 3 Opinione politica Sesso Demo Indip Repubb F 2,3 0,5-2,6 M -2,3-0,5 2,6 Nel caso della prima cella, poiché il residuo è maggiore di 2, constatiamo una discrepanza fra f o ed f e più grande di quella che ci saremmo aspettati se le variabili fossero state davvero indipendenti 2-b

5 La Tabella mostra ampi residui positivi per le femmine Democratiche e per i maschi Repubblicani, le celle, cioè, in cui f o è molto più grande di f e : ciò vuole dire che esiste un numero significativo in più rispetto a ciò che prevede l ipotesi di indipendenza di femmine Democratiche e di maschi Repubblicani La Tabella mostra anche ampi residui negativi per le femmine Repubblicane e per i maschi Democratici, le due celle, cioè, in cui f o è molto più piccolo di f e : ciò vuole dire che ci sono molte meno femmine Repubblicane e molti meno maschi democratici rispetto a quanto si sarebbe dovuto osservare nel caso di indipendenza fra affiliazione partitica e sesso Si noti che, per ogni partito, la tabella in esame contiene solo un residuo aggiustato non ridondante: quello per le femmine è l opposto di quello per i maschi. Infatti, poiché le frequenze osservate e le frequenze attese hanno gli stessi totali di riga e colonna e, quindi, se f o > f e in una cella, l opposto deve avvenire nell altra cella 2-c

6 Il test esatto di Fisher Iniziamo dal caso delle Tabelle 2 2 si consideri una tabella di contingenza di dimensioni 2 2 del tipo B A b 1 b 2 Totale a 1 n 11 n 12 n 1+ a 2 n 21 n 22 n 2+ Totale n +1 n +2 n ++ Una volta che sono fissati i totali di riga e di colonna, è chiaro che il valore di n 11 determina, univocamente i valori delle altre 3 celle Nel 1934, l autorevole statistico britannico Ronald A. Fisher, ha proposto un test di indipendenza per piccoli campioni che si può utilizzare per situazioni come quelle descritte dalla tabella 3

7 Per illustrarne il funzionamento, nel suo libro The Design of Experiments del 1935 Fisher descrisse il seguente esperimento: Una collega di Fisher presso la Stazione Sperimentale di Rothamsted vicino a Londra, affermava di essere in grado, bevendo il tè di distinguere se nella tazza fosse stato versato prima il tè o il latte. Per verificare l attendibilità di tale affermazione, Fisher pianificò un esperimento nel quale la sua collega doveva assaggiare 8 tazze di tè. In 4 tazze mise prima il latte del tè, nelle altre 4 fece l opposto. Alla collega disse che esistevano appunto 4 tazze in cui il latte era stato messo prima del tè e 4 tazze in cui era stato messo dopo. Le tazze vennero presentate alla collega in ordine casuale Applichiamo il test esatto di Fisher per saggiare l ipotesi H 0 : Cio che dice la collega di Fisher è indipendente dall ordine con cui latte e tè sono stati versati 3-a

8 La distribuzione dei possibili valori di n 11 è la distribuzione ipergeometrica definita per tutte le possibili tabelle 2 2 che hanno dei marginali di riga e colonna pari a quelli fissati I potenziali valori per n 11 sono (0,1,2,3,4) Uno dei possibili risultati dell esperimento potrebbe essere, ad esempio, Valutazione collega Versato prima Latte Tè Totale Latte Tè Totale La probabilità di osservare un risultato come questo, fornita dallo schema di campionamento ipergeometrico è P (3) = ( 4 3 )( 4 1) ( 8 ) = [4!/(3!)(1!)][4!/(1!)(3!)] [8!/(4!)(4!)] 4 = 0, 229 Infatti, P (x) = ( n1+ n 11 )( n2+ ) n ) 21 n +1 ( n++ 3-b

9 Una sintesi dei possibili esiti è n 11 Probabilità p valore 0 0,014 1, ,229 0, ,514 0, ,229 0, ,014 0,014 I p valori sono riferiti alla probabilità sottesa la coda destra per un ipotesi unilaterale L ipotesi alternativa H 1 prevede che, al contrario di quanto espresso nella ipotesi nulla, esista un associazione fra quanto indovina la collega di Fisher e l effettivo ordine con cui latte e tè vengono mischiati fra loro Immaginiamo che la collega di Fisher indovini, correttamente, che il tè è stato messo dopo il latte per 3 volte; la probabilità che per effetto del caso si possa osservare un n 11 uguale o più grande di 3 è P = P (3) + P (4) = 0, c

10 Come è ovvio, un tale valore, non fornisce molte prove contro l ipotesi nulla di indipendenza, L esperimento non ci permette, quindi, di stabilire un associazione fra l effettivo ordine di miscelazione e quanto indovinato dalla collega di Fisher Ovviamente è difficile mostrare l associazione con così poche osservazioni, se l assaggiatrice avesse indovinato tutte le 4 tazze con il tè versato dopo il latte (n 11 = 4), allora sì, vi sarebbero state forti prove a favore della sua affermazione di essere capace di stabilire l ordine di miscelazione delle bevande: si sarebbe, infatti, ottenuto il valore più estremo possibile nella coda destra della distribuzione ipergeometrica P (4) = 0, d

11 Differenza fra proporzioni Quando vengono analizzate delle tabelle di contingenza, vengono, di solito, poste le seguenti tre domande: Quanto è verosimile che il livello di associazione osservato in un campione si sarebbe comunque avuto anche se le variabili fossero state realmente indipendenti nella popolazione? Il test Chi-quadrato mira a fornire una risposta a questo quesito. Quanto si allontanano dall indipendenza i dati? Quando due variabili appaiono essere associate, i residui aggiustati evidenziano le celle in cui i conteggi sono significativamente diversi da ciò che l ipotesi di indipendenza prevede. Quanto è forte l associazione? Per rispondere usiamo una statistica come la differenza fra proporzioni, ottenendo così un intervallo di confidenza per stimare quanto forte può essere l associazione a livello di popolazione. L analisi della forza dell associazione ci rivela se l associazione riscontrata è meritevole di attenzione o se essa è, sì, statisticamente significativa ma debole e non importante in termini pratici. Discutiamo qui di come dare risposte al terzo quesito 4

12 Si osservino le due tabelle sotto riportate che descrivono l associazione fra l opinione sulla legalizzazione dell aborto e razza di un campione di 1000 individui Nessuna associazione: Opinione Razza Favorevole Contraria Totale Bianca Nera Totale Massima associazione: Opinione Razza Favorevole Contraria Totale Bianca Nera Totale a

13 La prima tabella mostra indipendenza statistica e rappresenta il livello più basso di associazione che possa registrarsi per le due variabili. Infatti, il 60% è a favore ed il 40% contrario all aborto sia nel gruppo dei bianchi e sia in quello dei neri Di contro, la seconda tabella mostra che tutti i bianchi sono a favore dell aborto mentre tutti i neri sono contrari. In questo caso vediamo come l opinione (variabile risposta) sia completamente dipendente dalla razza del rispondente È necessario trovare, allora, una misura della forza dell associazione che assuma valori nello spettro teorico dei casi che vanno dalla prima alla seconda tabella Misure di Associazione: Una misura di associazione è una statistica che riassume la forza della dipendenza statistica fra due variabili. 4-b

14 In casi come quelli riportati poco sopra una misura di associazione immediata è la differenza fra le proporzioni nei due gruppi per una data categoria della variabile risposta Possiamo misurare la differenza fra le proporzioni di bianchi e neri che sono a favore della aborto legalizzato. Nel caso della prima tabella abbiamo: = 0, 6 0, 6 = La differenza fra le proporzioni nella popolazione è 0 qualora le distribuzioni condizionate siano identiche e, cioè, quando le due variabili sono indipendenti. La differenza è 1 o -1 per le associazioni massime. Ad esempio, per la seconda tabella è: = 1, 0 che è il massimo valore possibile per la differenza Per la stima della differenza fra proporzioni: Intervallo di Confidenza per Grandi Campioni per π 2 π 1 : Un intervallo di confidenza per π 2 π 1 è (ˆπ 2 ˆπ 1 ) ± zˆσˆπ2 ˆπ 1 (ˆπ 2 ˆπ 1 ) ± z che è pari a ˆπ 1 (1 ˆπ 1 ) n 1 + ˆπ 2(1 ˆπ 2 ) n 2 L intervallo è valido, di solito, quando sia n 1 ed n 2 hanno, almeno, 20 osservazioni. 4-c

15 La differenza fra proporzioni varia, come detto, fra -1 e 1: più forte è l associazione, più grande è la differenza in valore assoluto Vediamo come aumenta la differenza tra proporzioni mano a mano che aumenta il grado di associazione fra variabili: Cont. di cella: Diff. fra prop. 0,0 0,2 0, Cont. di cella: Diff. fra prop. 0,6 0,8 1,0 Nella seconda tabella, ad esempio, la proporzione delle osservazioni che ricadono nella prima colonna è pari a 30/( ) = 0, 6 nella riga 1 e a 20/( ) = 0, 4 nella riga 2, la differenza è, quindi, 0, 6 0, 4 = 0, 2 4-d

Il confronto fra proporzioni

Il confronto fra proporzioni L. Boni Il rapporto Un rapporto (ratio), attribuendo un ampio significato al termine, è il risultato della divisione di una certa quantità a per un altra quantità b Il rapporto Spesso, in maniera più specifica,

Dettagli

3. Confronto tra medie di due campioni indipendenti o appaiati

3. Confronto tra medie di due campioni indipendenti o appaiati BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

ANALISI DELLE FREQUENZE: IL TEST CHI 2

ANALISI DELLE FREQUENZE: IL TEST CHI 2 ANALISI DELLE FREQUENZE: IL TEST CHI 2 Quando si hanno scale nominali o ordinali, non è possibile calcolare il t, poiché non abbiamo medie, ma solo frequenze. In questi casi, per verificare se un evento

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) STATISTICA DESCRITTIVA

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

STATISTICA IX lezione

STATISTICA IX lezione Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri

Dettagli

METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica

METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica EPIDEMIOLOGIA Ha come oggetto lo studio della distribuzione delle malattie in un popolazione e dei fattori che la influenzano

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008 Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica 18 dicembre 008 Esame sull intero programma: esercizi da A a D Esame sulla seconda parte del programma: esercizi

Dettagli

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI VERO FALSO CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI 1. V F Un ipotesi statistica è un assunzione sulle caratteristiche di una o più variabili in una o più popolazioni 2. V F L ipotesi nulla unita

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 9 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 TEST D IPOTESI Partiamo da un esempio presente sul libro di testo.

Dettagli

Analizza/Confronta medie. ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107. Test t. Test t. t-test test e confronto tra medie chi quadrato

Analizza/Confronta medie. ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107. Test t. Test t. t-test test e confronto tra medie chi quadrato Analizza/Confronta medie ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107 t-test test e confronto tra medie chi quadrato C.d.L. Comunicazione e Psicologia a.a. 2008/09 Medie Calcola medie e altre statistiche

Dettagli

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI CAPITOLO III CONFRONTI TRA DISTRIBUZIONI 3.1 CONFRONTI TRA DISTRIBUZIONI OSSERVATE E DISTRIBUZIONI TEORICHE OD ATTESE. Nella teoria statistica e nella pratica sperimentale, è frequente la necessità di

Dettagli

è decidere sulla verità o falsità

è decidere sulla verità o falsità I test di ipotesi I test di ipotesi Il test delle ipotesi consente di verificare se, e in quale misura, una determinata ipotesi (di carattere sociale, biologico, medico, economico, ecc.) è supportata dall

Dettagli

Elaborazione dati in Analisi Sensoriale

Elaborazione dati in Analisi Sensoriale Elaborazione dati in Analisi Sensoriale Si è parlato di interpretazione corretta dei risultati ottenuti; a questo concorrono due fattori: affidabilità e validità. Se i test fossero stati ripetuti con lo

Dettagli

Test statistici di verifica di ipotesi

Test statistici di verifica di ipotesi Test e verifica di ipotesi Test e verifica di ipotesi Il test delle ipotesi consente di verificare se, e quanto, una determinata ipotesi (di carattere biologico, medico, economico,...) è supportata dall

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 10-Il test t per un campione e la stima intervallare (vers. 1.1, 25 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia,

Dettagli

Capitolo 11 Test chi-quadro

Capitolo 11 Test chi-quadro Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova

Dettagli

Strumenti Informatici 8.1. Realizzare il test della binomiale (o test dei segni) con Excel e SPSS

Strumenti Informatici 8.1. Realizzare il test della binomiale (o test dei segni) con Excel e SPSS 1 Strumenti Informatici 8.1 Realizzare il test della binomiale (o test dei segni) con Excel e SPSS Il test della binomiale (o test dei segni) può essere eseguito con Excel impostando le formule adeguate

Dettagli

19txtI_BORRA_2013 18/11/13 10:52 Pagina 449 TAVOLE STATISTICHE

19txtI_BORRA_2013 18/11/13 10:52 Pagina 449 TAVOLE STATISTICHE 19txtI_BORRA_2013 18/11/13 10:52 Pagina 449 TAVOLE STATISTICHE Nell inferenza è spesso richiesto il calcolo di alcuni valori critici o di alcune probabilità per le variabili casuali che sono state introdotte

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Nella verifica delle ipotesi è necessario fissare alcune fasi prima di iniziare ad analizzare i dati. a) Si deve stabilire quale deve essere l'ipotesi nulla (H0) e quale l'ipotesi

Dettagli

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno.

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Corso di Statistica Medica Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Sono previste 40 ore complessive, di cui almeno 16 di lezione frontale e le restanti

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 010-011 Corso di Psicometria - Modulo B Dott. Marco Vicentini marco.vicentini@unipd.it Rev. 10/01/011 La distribuzione F di Fisher - Snedecor

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA

ESERCIZI DI STATISTICA DESCRITTIVA ESERCIZI DI STATISTICA DESCRITTIVA ES1 Data la seguente serie di dati su Sesso e Altezza di 8 pazienti, riempire opportunamente due tabelle per rappresentare le distribuzioni di frequenze dei due caratteri,

Dettagli

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione) Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso

Dettagli

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr.

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr. Corso di Laurea in Scienze e Tecnologie Biomolecolari Matematica e Statistica II Prova di esame del 18/7/2013 NOME COGNOME N. Matr. Rispondere ai punti degli esercizi nel modo più completo possibile, cercando

Dettagli

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per categoriali. Alessandro Valbonesi

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per categoriali. Alessandro Valbonesi LEZIONI DI STATISTCA APPLICATA Parte 2 Statistica inferenziale Variabili continue per categoriali Alessandro Valbonesi SARRF di Scienze ambientali Anno accademico 2010-11 CAPITOLO 4 - TEST STATISTICI CHE

Dettagli

La logica statistica della verifica (test) delle ipotesi

La logica statistica della verifica (test) delle ipotesi La logica statistica della verifica (test) delle ipotesi Come posso confrontare diverse ipotesi? Nella statistica inferenziale classica vengono sempre confrontate due ipotesi: l ipotesi nulla e l ipotesi

Dettagli

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che Statistica Cognome: Laurea Triennale in Biologia Nome: 26 luglio 2012 Matricola: Tema A 1. Parte A 1.1. Sia x 1, x 2,..., x n un campione di n dati con media campionaria x e varianza campionaria s 2 x

Dettagli

Tabella per l'analisi dei risultati

Tabella per l'analisi dei risultati Vai a... UniCh Test V_Statistica_Eliminatorie Quiz V_Statistica_Eliminatorie Aggiorna Quiz Gruppi visibili Tutti i partecipanti Info Anteprima Modifica Risultati Riepilogo Rivalutazione Valutazione manuale

Dettagli

La significatività PROVE DI SIGNIFICATIVITA PROVE DI SIGNIFICATIVITA PROVE DI SIGNIFICATIVITA

La significatività PROVE DI SIGNIFICATIVITA PROVE DI SIGNIFICATIVITA PROVE DI SIGNIFICATIVITA PROVE DI SIGNIFICATIVITA Tutti i test statistici di significatività assumono inizialmente la cosiddetta ipotesi zero (o ipotesi nulla) Quando si effettua il confronto fra due o più gruppi di dati, l'ipotesi

Dettagli

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile.

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. ORDINALI E NOMINALI LA PROBABILITÀ Statistica5 23/10/13 Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. Se si afferma che un vitello di razza chianina pesa 780 kg a 18

Dettagli

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza Titolo della lezione Analisi dell associazione tra due caratteri: indipendenza e dipendenza Introduzione Analisi univariata, bivariata, multivariata Analizzare le relazioni tra i caratteri, per cercare

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 L4, Corso Integrato di Psicometria - Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Rev. 18/04/2011 Inferenza statistica Formulazione

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA)

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA) Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 4: Analisi della varianza (ANOVA) Analisi della varianza Analisi della varianza (ANOVA) ANOVA ad

Dettagli

PROGETTO INDAGINE DI OPINIONE SUL PROCESSO DI FUSIONE DEI COMUNI NEL PRIMIERO

PROGETTO INDAGINE DI OPINIONE SUL PROCESSO DI FUSIONE DEI COMUNI NEL PRIMIERO PROGETTO INDAGINE DI OPINIONE SUL PROCESSO DI FUSIONE DEI COMUNI NEL PRIMIERO L indagine si è svolta nel periodo dal 26 agosto al 16 settembre 2014 con l obiettivo di conoscere l opinione dei residenti

Dettagli

Concetto di potenza statistica

Concetto di potenza statistica Calcolo della numerosità campionaria Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona Concetto di potenza statistica 1 Accetto H 0 Rifiuto H 0 Ipotesi Nulla (H

Dettagli

Excel Terza parte. Excel 2003

Excel Terza parte. Excel 2003 Excel Terza parte Excel 2003 TABELLA PIVOT Selezioniamo tutti i dati (con le relative etichette) Dati Rapporto tabella pivot e grafico pivot Fine 2 La tabella pivot viene messa di default in una pagina

Dettagli

CLASSIFICAZIONE DEI CARATTERI

CLASSIFICAZIONE DEI CARATTERI CLASSIFICAZIONE DEI CARATTERI Come abbiamo visto, su ogni unità statistica si rilevano una o più informazioni di interesse (caratteri). Il modo in cui un carattere si manifesta in un unità statistica è

Dettagli

Il test del Chi-quadrato

Il test del Chi-quadrato Il test del Chi-quadrato Prof.ssa Montomoli- Univ. di Pavia Prof.ssa Zanolin Univ. di Verona Il rischio di contrarre epatite C è associato all avere un tatuaggio? Cosa vuol dire ASSOCIAZIONE tra due variabili?

Dettagli

9. La distribuzione 2 e i test per dati su scala nominale

9. La distribuzione 2 e i test per dati su scala nominale 9. La distribuzione e i test per dati su scala nominale 9.1. La distribuzione 9. 1. 1. La statistica e la sua distribuzione In una popolazione distribuita normalmente con parametri e estraiamo un campione

Dettagli

Disegni di Ricerca e Analisi dei Dati in Psicologia Clinica. Indici di Affidabilità

Disegni di Ricerca e Analisi dei Dati in Psicologia Clinica. Indici di Affidabilità Disegni di Ricerca e Analisi dei Dati in Psicologia Clinica Indici di Affidabilità L Attendibilità È il livello in cui una misura è libera da errore di misura È la proporzione di variabilità della misurazione

Dettagli

Esercizi test ipotesi. Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010

Esercizi test ipotesi. Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Esercizi test ipotesi Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Verifica delle ipotesi - Esempio quelli di Striscia la Notizia" effettuano controlli casuali per vedere se le pompe

Dettagli

Analisi di dati di frequenza

Analisi di dati di frequenza Analisi di dati di frequenza Fase di raccolta dei dati Fase di memorizzazione dei dati in un foglio elettronico 0 1 1 1 Frequenze attese uguali Si assuma che dalle risposte al questionario sullo stato

Dettagli

Prova di autovalutazione Prof. Roberta Siciliano

Prova di autovalutazione Prof. Roberta Siciliano Prova di autovalutazione Prof. Roberta Siciliano Esercizio 1 Nella seguente tabella è riportata la distribuzione di frequenza dei prezzi per camera di alcuni agriturismi, situati nella regione Basilicata.

Dettagli

Strumenti informatici 13.1

Strumenti informatici 13.1 1 Strumenti informatici 1.1 I test post-hoc nel caso del confronto fra tre o più proporzioni dipendenti e la realizzazione del test Q di Cochran in SPSS Nel caso dei test post-hoc per il test Q di Cochran,

Dettagli

Università del Piemonte Orientale. Corsi di laurea triennale di area tecnica. Corso di Statistica Medica. Analisi dei dati in tabelle di contingenza

Università del Piemonte Orientale. Corsi di laurea triennale di area tecnica. Corso di Statistica Medica. Analisi dei dati in tabelle di contingenza Università del Piemonte Orientale Corsi di laurea triennale di area tecnica Corso di Statistica Medica Analisi dei dati in tabelle di contingenza Corsi di laurea triennale di area tecnica - Corso di Statistica

Dettagli

Statistica Medica. Verranno presi in esame:

Statistica Medica. Verranno presi in esame: Statistica Medica Premessa: il seguente testo cerca di riassumere e rendere in forma comprensibile ai non esperti in matematica e statistica le nozioni e le procedure necessarie a svolgere gli esercizi

Dettagli

COMUNE DI COMO. I MATRIMONI NEL COMUNE DI COMO Presentazione dei dati dal 2000 al 2004. (1 Edizione)

COMUNE DI COMO. I MATRIMONI NEL COMUNE DI COMO Presentazione dei dati dal 2000 al 2004. (1 Edizione) COMUNE DI COMO I MATRIMONI NEL COMUNE DI COMO Presentazione dei dati dal 2000 al 2004 (1 Edizione) Settore Statistica - Agosto 2007 I MATRIMONI NEL COMUNE DI COMO Presentazione dei dati dal 2000 al 2004

Dettagli

Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria

Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata Prof. Massimo Aria aria@unina.it Standardizzazione di una variabile Standardizzare una variabile statistica

Dettagli

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi Idea di base Supponiamo di avere un idea del valore (incognito) di una media di un campione, magari attraverso

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Ancora sugli insiemi. Simbologia

Ancora sugli insiemi. Simbologia ncora sugli insiemi Un insieme può essere specificato in vari modi; il più semplice è fare un elenco dei suoi elementi. d esempio l insieme delle nostre lauree triennali è { EOOM, EON, EOMM, EOMK EOTU}

Dettagli

Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti )

Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti ) Esercizio 1 Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti ) Qualitativo Sconnesso: Marca di Jeans preferita, Partito votato nelle ultime elezioni,

Dettagli

Lezione n. 2 (a cura di Chiara Rossi)

Lezione n. 2 (a cura di Chiara Rossi) Lezione n. 2 (a cura di Chiara Rossi) QUANTILE Data una variabile casuale X, si definisce Quantile superiore x p : X P (X x p ) = p Quantile inferiore x p : X P (X x p ) = p p p=0.05 x p x p Graficamente,

Dettagli

Mining Positive and Negative Association Rules:

Mining Positive and Negative Association Rules: Mining Positive and Negative Association Rules: An Approach for Confined Rules Alessandro Boca Alessandro Cislaghi Premesse Le regole di associazione positive considerano solo gli item coinvolti in una

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici Test non parametrici Test non parametrici Il test T di Student per uno o per due campioni, il test F di Fisher per l'analisi della varianza, la correlazione, la regressione, insieme ad altri test di statistica

Dettagli

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Università degli Studi di Padova Facoltà di Psicologia, L4, Psicometria, Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Statistica descrittiva e inferenziale

Dettagli

Statistica. Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza statistica

Statistica. Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza statistica Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2008/2009 Statistica Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza

Dettagli

Esercitazione n.2 Inferenza su medie

Esercitazione n.2 Inferenza su medie Esercitazione n.2 Esercizio L ufficio del personale di una grande società intende stimare le spese mediche familiari dei suoi impiegati per valutare la possibilità di attuare un programma di assicurazione

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Strumenti informatici 11.1. Realizzare un test per proporzioni dipendenti in Excel ed SPSS

Strumenti informatici 11.1. Realizzare un test per proporzioni dipendenti in Excel ed SPSS 1 Strumenti informatici 11.1 Realizzare un test per proporzioni dipendenti in Excel ed SPSS Excel non dispone di una funzione che consenta di realizzare il test statistico z per il confronto di proporzioni

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre.

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre. Corso di Statistica Medica 2004-2005 Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre. Sono previste 30 ore di lezione di statistica e 12 di

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi per la media (varianza nota), p-value del test Il manager di un fast-food

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010 LEZIONE 3 "Educare significa aiutare l'animo dell'uomo ad entrare nella totalità della realtà. Non si può però educare se non rivolgendosi alla libertà, la quale definisce il singolo, l'io. Quando uno

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Nome N. Matricola Ancona, 14 luglio 2015 1. Tre macchine producono gli stessi pezzi

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

1. Richiami di Statistica. Stefano Di Colli

1. Richiami di Statistica. Stefano Di Colli 1. Richiami di Statistica Metodi Statistici per il Credito e la Finanza Stefano Di Colli Dati: Fonti e Tipi I dati sperimentali sono provenienti da un contesto delimitato, definito per rispettare le caratteristiche

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

DATI NORMATIVI PER LA SOMMINISTRAZIONE DELLE PROVE PAC-SI A BAMBINI DI INIZIO SCUOLA PRIMARIA 1

DATI NORMATIVI PER LA SOMMINISTRAZIONE DELLE PROVE PAC-SI A BAMBINI DI INIZIO SCUOLA PRIMARIA 1 DATI NORMATIVI PER LA SOMMINISTRAZIONE DELLE PROVE PAC-SI A BAMBINI DI INIZIO SCUOLA PRIMARIA 1 Marta Desimoni**, Daniela Pelagaggi**, Simona Fanini**, Loredana Romano**,Teresa Gloria Scalisi* * Dipartimento

Dettagli

RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL

RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL 1 RAPPRESENTAZIONE GRAFICA Per l analisi dati con Excel si fa riferimento alla versione 2007 di Office, le versioni successive non differiscono

Dettagli

Sulla monotonia delle funzioni reali di una variabile reale

Sulla monotonia delle funzioni reali di una variabile reale Liceo G. B. Vico - Napoli Sulla monotonia delle funzioni reali di una variabile reale Prof. Giuseppe Caputo Premetto due teoremi come prerequisiti necessari per la comprensione di quanto verrà esposto

Dettagli

Incontro Gruppo RAV lettura dati INVALSI. Liceo Scientifico «A. Volta», 19 maggio 2015

Incontro Gruppo RAV lettura dati INVALSI. Liceo Scientifico «A. Volta», 19 maggio 2015 Incontro Gruppo RAV lettura dati INVALSI Liceo Scientifico «A. Volta», 19 maggio 2015 Rilevazione degli apprendimenti- Popolazione di riferimento I livelli scolari coinvolti : classi II e V della scuola

Dettagli

La f(x) dovrà rimanere all interno di questo intorno quando la x è all interno di un intorno di x 0, cioè I(x 0 ), cioè:

La f(x) dovrà rimanere all interno di questo intorno quando la x è all interno di un intorno di x 0, cioè I(x 0 ), cioè: 1 Limiti Roberto Petroni, 2011 Possiamo introdurre intuitivamente il concetto di limite dicendo che quanto più la x si avvicina ad un dato valore x 0 tanto più la f(x) si avvicina ad un valore l detto

Dettagli

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1)

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) 151 Introduzione Un esperimento è una prova o una serie di prove. Gli esperimenti sono largamente utilizzati nel campo dell ingegneria. Tra le varie applicazioni;

Dettagli

Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo

Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO Pasquale Iandolo Laboratorio analisi ASL 4 Chiavarese, Lavagna (GE) 42 Congresso Nazionale SIBioC Roma

Dettagli

Università del Piemonte Orientale. Corso di Laurea in Igiene Dentale. Corso di Statistica per la ricerca sperimentale e tecnologica

Università del Piemonte Orientale. Corso di Laurea in Igiene Dentale. Corso di Statistica per la ricerca sperimentale e tecnologica Università del Piemonte Orientale Corso di Laurea in Igiene Dentale Corso di Statistica per la ricerca sperimentale e tecnologica Analisi dei dati in tabelle di contingenza Corso di laurea triennale di

Dettagli

LE ASSUNZIONI DELL'ANOVA

LE ASSUNZIONI DELL'ANOVA LE ASSUNZIONI DELL'ANOVA Sono le assunzioni del test t, ma estese a tutti i gruppi: o La variabile deve avere una distribuzione normale in tutte le popolazioni corrispondenti ai gruppi campionati o Le

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Intervalli di confidenza

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Intervalli di confidenza Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Intervalli di confidenza Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica

Dettagli

Elaborazione dei dati su PC Regressione Multipla

Elaborazione dei dati su PC Regressione Multipla 21 Elaborazione dei dati su PC Regressione Multipla Analizza Regressione Statistiche Grafici Metodo di selezione Analisi dei dati 21.1 Introduzione 21.2 Regressione lineare multipla con SPSS 21.3 Regressione

Dettagli

Per il suo compleanno, il goloso Re di un lontano regno riceve in regalo da un altro sovrano un grande canestro contenente 4367 caramelle di tanti

Per il suo compleanno, il goloso Re di un lontano regno riceve in regalo da un altro sovrano un grande canestro contenente 4367 caramelle di tanti Per il suo compleanno, il goloso Re di un lontano regno riceve in regalo da un altro sovrano un grande canestro contenente 4367 caramelle di tanti colori, tra cui 382 rosse. Qualche tempo dopo il donatore

Dettagli

LEZIONE n. 5 (a cura di Antonio Di Marco)

LEZIONE n. 5 (a cura di Antonio Di Marco) LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

Settore Corona Maschi Femmine Totale B < 1,5 - Tumore polmone (n=5) SMR = 115,5

Settore Corona Maschi Femmine Totale B < 1,5 - Tumore polmone (n=5) SMR = 115,5 506 TABELLA D1.3 Sintesi dei risultati conseguiti: SMR rispetto alla Provincia di Firenze (numero di casi). Eccessi privi di significatività statistica (SMR >110 e n di casi >=3) nei settori e nelle corone

Dettagli

Che cosa si impara nel capitolo 2

Che cosa si impara nel capitolo 2 Che cosa si impara nel capitolo 2 Si può valutare e confrontare il contenuto, ad esempio di tre diversi settimanali, riducendo gli aspetti qualitativi a valori numerici: quante pagine sono dedicate alla

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla Il metodo della regressione può essere esteso dal caso in cui si considera la variabilità della risposta della y in relazione ad una sola variabile indipendente X ad una situazione più generale in cui

Dettagli