J yy > Jxx. l o H A R A R B

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "J yy > Jxx. l o H A R A R B"

Transcript

1 oitecnico di Torino I cedimento di una struttura soggetta a carichi statici può avvenire in acuni casi con un meccanismo diverso da queo di superamento dei imiti di resistena de materiae. Tae meccanismo di coasso si presenta in eementi di strutture soggetti a carichi normai di compressione (carichi di punta), che inducono ne eemento una instabiità eastica. Tae modaità di cedimento è particoarmente pericoosa, sia perché può avvenire con tensioni nominai moto a di sotto dei imiti di resistena de materiae, sia perché può avvenire sena acun tipo di preavviso (non vi è una fase di pastificaione) e con effetti di soito catastrofici. er trattare i fenomeno de carico di punta non è più possibie considerare a struttura come corpo rigido, ma sia per scrivere e equaioni di equiibrio sia per vautare e caratteristiche di soecitaione si devono considerare e variaioni geometriche dovute a appicaione de carico. Asta di Euero I caso più sempice di eementi soggetti a carico di punta è queo de asta di Euero, cioè di un eemento asta con una cerniera ad un estremo ed un appoggio sempice ne atro estremo soggetta ad una fora assiae di compressione (vedi figura). I momento d ineria principae minore viene indicato sempicemente con a ettera J. J > J = J o H A R A R B Le reaioni vincoari vagono: HA = RA = 0 RB =0 Si ipotii che asta presenti un piccoo spostamento trasversae aa inea d asse v(); i momento in una generica seione varrà: M -v=0 M =v v() v M Si ha dunque una situaione in cui i momento in una seione generica dipende dao spostamento trasversae. ossiamo scrivere equaione dea inea eastica, che risuta: S 0 - oitecnico di Torino agina 1 di 10 Data utima revisione 3/10/00

2 oitecnico di Torino d v M d v d v = = + d v =0 Si ottiene quindi una equaione differeniae de secondo ordine, omogenea, ineare a coefficienti costanti. La souione di tae equaione è: v = Vsen( ω + ϕ) dove ω = e e costanti V e ϕ vengono determinate in base ae condiioni a contorno, che ne caso in esame risutano ( ϕ) = 0 Vsen( ω + ) 0 = 0 v = 0 = v = 0 cioè Vsen 0 ϕ 0 = Tai condiioni a contorno sono soddisfatte in due distinti casi: 1) ϕ arbitrario V=0. In questo caso o spostamento v è sempre nuo (cioè asta non si infette); ) ϕ=0, V arbitrario se ω 0 = π. In questo caso asta si infette come una sinusoide. Ricordando espressione di ω si ricava i carico che permette a souione ) (carico critico): π ω = = π = π = cr 0 In pratica quando i carico appicato è inferiore a carico critico cr è possibie soo a souione 1) per cui asta rimane rettiinea, mentre quando i carico è uguae o superiore a cr sono possibii entrambe e souioni, cioè asta può anche infettersi. 1) instabie cr 1) stabie ) In questo secondo caso a configuraione 1) è instabie, in quanto basta una piccoa perturbaione, come un carico trasversae anche di ieve entità, una imperfeione de materiae o geometrica, perché si instauri a souione ). In questo caso si ha in pratica un cedimento dea struttura dovuto ad instabiità eastica, noto anche come coasso per carico di punta. Come già detto questo tipo di cedimento è moto pericooso perché avviene praticamente sena preavviso. er anaogia con i cedimento dovuto a snervamento si può effettuare a trattaione in termini di tensione. La tensione critica è definita sempicemente come i carico critico diviso a seione trasversae de asta. σ cr cr π = = A A 0 V oitecnico di Torino agina di 10 Data utima revisione 3/10/00

3 oitecnico di Torino Ricordando a definiione di raggio d ineria ρ = J/A (si ricordi che J è i momento d ineria principae minimo dea seione) e definendo i rapporto 0 /ρ come sneea de asta λ a tensione critica può essere scritta come: ρ π E σcr = π E = 0 λ I grafico mostra andamento dea tensione critica in funione dea sneea. σ cr R p0 σcr π E = λ λ Daa figura si osserva che a tensione che provoca i coasso per carico di punta è più bassa de imite eastico per vaori ati dea sneea, mentre per bassi vaori di sneea (eementi toi), i cedimento avviene per coasso pastico. In reatà a transiione fra coasso pastico e instabiità eastica non è cosi netta, e nea ona di transiione avvengono fenomeni più compessi con instabiità di tipo eastopastico. (curva spessa). Si noti che a tensione critica dipende da fattori geometrici (a sneea) e da moduo di easticità de materiae (E). Questo significa che a sicurea dea struttura rispetto a questo pericoo non viene aumentata utiiando materiai con maggior resistena ma che presentano o stesso moduo eastico. Ne caso considerato (asta incernierata agi estremi) a unghea 0 coincide con a unghea de asta. In casi di vincoo diversi a unghea 0 rappresenta a distana fra due seioni a momento nuo ed è pari aa semiunghea d onda dea deformata. In pratica cambiando e condiioni di vincoo cambia a definiione di 0. Nea figura vengono i vaori da assegnare in acuni casi notevoi. coppia ibero prismatica appoggio incastro incastro incastro 0 = 0 =/ 0 =0.7 oitecnico di Torino agina 3 di 10 Data utima revisione 3/10/00

4 oitecnico di Torino eccentrico Si consideri adesso i caso in cui i carico appicato a asta in compressione non agisca nominamente ne baricentro dea seione ma sia appicato ad una certa distana ( e ) daa inea d asse. La trattaione di questo caso segue o stesso procedimento già visto per i caso sena eccentricità. Ipotiando come in precedena un piccoo spostamento v(), equaione de momento in una seione generica diventa: M -(v+e)=0 M =(v+e) o e v() e o M v S e 0 - L equaione dea inea eastica risuta quindi: e quindi: d v M = = d ( v + e) oitecnico di Torino agina 4 di 10 Data utima revisione 3/10/00 d v d v + = e Questa equaione è ineare a coefficienti costanti non omogenea e ammette a souione: ( ) cos( ) v = V sen ω + V ω e dove ω = 1 Le costanti di integraione vanno determinate a soito imponendo e condiioni a contorno: = 0 v = 0; = v = 0 Utiiando a prima condiione viene determinata a costante V.: 0

5 oitecnico di Torino V e= 0 V = e Utiiando a seconda condiione viene infine determinata a costante V 1 : ( ) ( ω ) ( ω ) ( ω ) ( ω ) 1 cos( ω0 ) ω 0 V1 = e = e tan sen( ω ) 0 = V sen + ecos e V sen = e1 cos L equaione dea deformata risuta quindi: ω v = e tan 0 sen( ω) + cos( ω) 1 La freccia v tende ad infinito quando: v tan ω 0 ω 0 = π cioè quando: ω = = π = π Anaogamente a quanto visto ne caso precedente possiamo quindi individuare un carico critico: 0 cr = π 0 Si noti che espressione de carico critico è identica nei due casi. In questo caso però i fenomeno avviene con modaità eggermente diverse (si veda a figura che riporta a reaione fra a freccia in meeria e i carico appicato): a aumentare de carico a freccia aumenta per tendere asintotticamente ad infinito. I carico non può quindi superare queo critico neanche in condiioni di equiibrio instabie. Anche con carichi a di sotto di queo critico si possono avere frecce non accettabii; in particoare quando tai frecce non sono più piccoe i cacoo dei momenti agenti, e quindi dee tensioni, non può prescindere dao spostamento v, ed i cacoo diventa non ineare. cr v(= 0 /) oitecnico di Torino agina 5 di 10 Data utima revisione 3/10/00

6 oitecnico di Torino In entrambi i casi considerati i raggiungimento di una condiione critica può avvenire, con eementi snei, moto a di sotto a carico che induce un cedimento de materiae. Come consuetudine viene quindi cacoata a tensione critica: ρ π E σcr = π E = 0 λ i cui moduo viene confrontato con a tensione appicata. I coefficienti di sicurea da adottare contro i cedimento per carico di punta devono essere moto eevati, perché tae tipo di cedimento può avvenire sena preavviso e con esiti catastrofici. Nea norma CNR-UNI (Costruioni in acciaio: istruioni per i cacoo, esecuione e a manutenione) sono prescritte e verifiche da effettuarsi in entrambi i casi considerati e vengono dati i diagrammi di resistena per gi acciai da carpenteria in base anche a tipo di profiato utiiato; per i caso di aste pressoinfesse (cioè con carico eccentrico) viene utiiato un metodo formamente diverso da queo qui descritto per sempicità, i metodo ω. Si invita i ettore a fare riferimento aa norma indicata per maggiori dettagi. Eserciio -1 Data una struttura costituita da una trave in acciaio (E = Ma), di seione rettangoare cava 3040, spessore 3 mm, incastrata ad una estremità e ibera a atra estremità, di unghea L = m, cacoare i carico critico e a tensione di compressione in corrispondena di tae carico. oitecnico di Torino agina di 10 Data utima revisione 3/10/00

7 oitecnico di Torino Cenni sue tensioni di origine termica Variaioni uniformi di temperatura E noto che un corpo soggetto a variaioni di temperatura cambia e proprie dimensioni. Consideriamo per esempio una barra (corpo considerato unidimensionae) che ad una certa temperatura T i ha una unghea L. Se a barra subisce una variaione uniforme di temperatura T m a sua unghea diventa L+ L: T m =T f -T i L L La variaione di unghea vae L = αl T m essendo a i coefficiente di diataione termica, tipico de materiae. La barra quindi subisce una deformaione di origine termica pari a: ε L = = L α T m Ne caso tridimensionae ognuna dee dimensioni de corpo (supposto omogeneo ed isotropo) subisce un anaoga deformaione: T m ε = α Tm ε = α Tm ε = α Tm si noti che una variaione uniforme dea temperatura provoca un aumento dee dimensioni ma, se i corpo è asciato ibero di diatarsi, non sono presenti tensioni e non vi sono distorsioni. La egge di Hooke può quindi essere scritta come: ( ) 1 εii = σ ii νσ jj νσ kk + α Tm E oitecnico di Torino agina 7 di 10 Data utima revisione 3/10/00 γ ik = 1 τ G Acuni vaori tipici de coefficiente di diataione termica α in (1/ C) sono i seguenti Acciai a C 1 10 Acciai egati Acciai Ino Leghe A 10 Ottone Brono 0 10 Come si è appena detto e variaioni uniformi di temperatura non provocano tensioni se i corpo è asciato ibero di diatarsi. ik

8 oitecnico di Torino Se invece gi spostamenti provocati dae variaioni di temperatura sono impediti nascono dee tensioni di origine termica. Infatti in corrispondena dei vincoi si generano dee reaioni vincoari che impediscono i movimento, che a oro vota generano dee tensioni ne corpo in esame. Uno schema per i cacoo dee tensioni di origine termica è i seguente: cacoare gi spostamenti che si avrebbero in assena dei vincoi determinare e fore necessarie per imporre spostamenti uguai e contrari (reaioni vincoari che impediscono i movimento) cacoare e tensioni associate ae reaioni vincoari Di soito e dimensioni de corpo sono date per una temperatura di riferimento di 0 (temperatura ambiente), e si suppone che i montaggio dee strutture avvenga a tae temperatura. Variaioni di temperatura non uniformi Variaioni non uniformi di temperatura provocano effetti più compessi in quanto possono generare dee distorsioni de componente, in quanto a deformaione ocae dipende daa temperatura raggiunta in ogni punto de corpo. I caso più sempice da studiare è queo dee travi con una differena di temperatura fra due ati (estradosso ed intradosso). T L(T 0 ) T 1 Si consideri una trave di seione rettangoare ed atea dea seione h soggetta ad una temperatura T 1 a intradosso e T a estradosso; si supponga che a temperatura a interno dea trave segua una distribuione ineare: T 0 T 1 T m La temperatura media varrà T m = (T 1 +T )/. Si indichi con T a differena (T -T 1 ) La temperatura in funione dea coordinata sarà quindi: oitecnico di Torino agina 8 di 10 Data utima revisione 3/10/00 T T T ( )= Tm + h

9 oitecnico di Torino ossiamo quindi dividere effetto dea temperatura fra queo dovuto aa temperatura media (già anaiato in precedena) e queo dovuto a gradiente di temperatura: T() = T m + T h Le deformaioni ungo asse saranno quindi date da: ε = αt ( ) = T α h = k Le deformaioni trovate corrispondono a quee che abbiamo già anaiato ne caso di fessione: θ θ d v d dθ = = k d quindi una variaione di temperatura fra intradosso ed estradosso provoca una fessione dea trave. Anche in questo caso, quindi, se a fessione è impedita nascono dee tensioni di origine termica, che possono essere cacoate seguendo o schema prima esposto. oitecnico di Torino agina 9 di 10 Data utima revisione 3/10/00

10 oitecnico di Torino Eserciio - Si consideri un asta in acciaio (E= Ma, α= / C) di seione quadrata con A=100 mm e unghea 1000 mm ( a 0 ) incastrata fra due pareti indeformabii. Si cacoino e tensioni nea barra se questa viene portata aa temperatura uniforme di 100. L Eserciio -3 Si consideri una trave in acciaio (E= Ma, α = / K) di seione rettangoare hb = 3010 mm, di unghea L = 00 mm, incastrata da un ato e vincoata con una coppia prismatica da atro soggetta ad una variaione di temperatura fra intradosso ed estradosso T= 50. Cacoare i momento appicato da vincoo aa trave e e tensioni a estradosso e a intradosso T T 1 L T = T - T 1 oitecnico di Torino agina 10 di 10 Data utima revisione 3/10/00

5. Limiti di funzione.

5. Limiti di funzione. Istituzioni di Matematiche - Appunti per e ezioni - Anno Accademico / 6 5. Limiti di funzione. 5.. Funzioni imitate. Una funzione y = f(x) definita in un intervao [ a b] imitata superiormente in tae intervao

Dettagli

BLOCCO TEMATICO DI ESTIMO. Standard Internazionali di Valutazione (IVS) Market Comparison Approach (MCA) calcolo dei prezzi marginali

BLOCCO TEMATICO DI ESTIMO. Standard Internazionali di Valutazione (IVS) Market Comparison Approach (MCA) calcolo dei prezzi marginali BLOCCO TEMATICO DI ESTIMO Standard Internazionai di Vautazione (IVS) Market Comparison Approach (MCA) cacoo dei prezzi marginai Docente: geom. Antonio Eero CORSO PRATICANTI 205 I PREZZI MARGINALI I prezzo

Dettagli

BOZZA. a min [mm] A min =P/σ adm [mm 2 ]

BOZZA. a min [mm] A min =P/σ adm [mm 2 ] ezione n. 6 e strutture in acciaio Verifica di elementi strutturali in acciaio Il problema della stabilità dell equilibrio Uno degli aspetti principali da tenere ben presente nella progettazione delle

Dettagli

Le pensioni dal 1 gennaio 2014

Le pensioni dal 1 gennaio 2014 Argomento A cura deo Spi-Cgi de Emiia-Romagna n. 1 gennaio 2014 Le pensioni da 1 gennaio 2014 Perequazione automatica 2014 pensioni, assegni e indennità civii assistenziai importo aggiuntivo per anno 2013

Dettagli

Stefano Falorsi. di seconda e quinta elementare rispettivamente di numerosità e N. I test somministrati alle

Stefano Falorsi. di seconda e quinta elementare rispettivamente di numerosità e N. I test somministrati alle Nota metooogica sua strategia i campionamento e sistema nazionae i vautazione ee competenze per e cassi secona e quinta e primo cico ea scuoa primaria Stefano Faorsi. Obiettivi I Sistema Nazionae i Vautazione

Dettagli

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione METODO DELLE FORZE CORSO DI PROGETTZIONE STRUTTURLE a.a. 010/011 Prof. G. Salerno ppunti elaborati da rch. C. Provenzano 1. METODO DELLE FORZE PER L SOLUZIONE DI STRUTTURE IPERSTTICHE 1.1 Introduzione

Dettagli

CAPITOLO 3 PRINCIPIO DELLE TENSIONI EFFICACI

CAPITOLO 3 PRINCIPIO DELLE TENSIONI EFFICACI CAPITOLO 3 Essendo il terreno un materiale multifase, il suo comportamento meccanico (compressibilità, resistena), in seguito all applicaione di un sistema di sollecitaioni esterne o, più in generale,

Dettagli

BANDO DI GARA D' APPALTO. 1.1) Denominazione, indirizzi e punti di contatto: Roma Capitale Dipartimento

BANDO DI GARA D' APPALTO. 1.1) Denominazione, indirizzi e punti di contatto: Roma Capitale Dipartimento , ROMA CAPTALE '21M~ BANDO D GARA D' APPALTO SEZONE ) AMMNSTRAZONE AGGUDCATRCE. N PUBBLCAZONE DAL~...1:Jj~jM.~ A L _.2 /~L-MZ: = 1.1) Denominazione, indirizzi e punti di contatto: Roma Capitae Dipartimento

Dettagli

Elaborato di Meccanica delle Strutture

Elaborato di Meccanica delle Strutture Università degli Studi di Roma La Sapienza Facoltà di Ingegneria Dipartimento di Meccanica ed Aeronautica Corso di Laurea Triennale in Ingegneria Meccanica Elaborato di Meccanica delle Strutture Docente

Dettagli

Punte a cannone. Hartner 2007. Made in Germany SEF MECCANOTECNICA. E mail: sef@sefmecc.it Web : www.sefmeccanotecnica.it

Punte a cannone. Hartner 2007. Made in Germany SEF MECCANOTECNICA. E mail: sef@sefmecc.it Web : www.sefmeccanotecnica.it Made in Germany Hartner 2007 Punte a cannone SEF MECCANOTECNICA SEE Via degi Orefici - Bocco 26 40050 FUNO (BO) ITALIA Te. 051 66.48811 Fax 051 86.30.59 FILIALE I MILANO Piazzae Martesana, 6 20128 Miano

Dettagli

Roma, 18 settembre 2014. Claai

Roma, 18 settembre 2014. Claai .:.ontratto Coettivo Nazionae di Lavoro per i dipendenti dae imprese artigiane esercenti Servizi di puizia, Disinfezione, Disinfestazione, Derattizzazione e Sanificazione Roma, 18 settembre 2014 Caai Si

Dettagli

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - II

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - II Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI Prof. Ing. Francesco Zanghì FONDAZIONI - II AGGIORNAMENTO 12/12/2014 Fondazioni dirette e indirette Le strutture di fondazione trasmettono

Dettagli

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano PPUNTI DI SCIENZ DEE COSTRUZIONI Giulio lfano nno ccademico 004-005 ii Indice 1 TRVTURE PINE 1 1.1 Geometria, equilibrio e vincoli...................... 1 1.1.1 Piani di simmetria........................

Dettagli

TRAVE SU SUOLO ELASTICO

TRAVE SU SUOLO ELASTICO Capitolo 3 TRAVE SU SUOLO ELASTICO (3.1) Combinando la (3.1) con la (3.2) si ottiene: (3.2) L equazione differenziale può essere così riscritta: (3.3) La soluzione dell equazione differenziale di ordine

Dettagli

STUDIO SULL' EVOLUZIONE DELLA CONCENTRAZIONE NELL' INDUSTRIA DELLA COSTRUZIONE DI MACCHINE NON ELETTRICHE IN ITALIA

STUDIO SULL' EVOLUZIONE DELLA CONCENTRAZIONE NELL' INDUSTRIA DELLA COSTRUZIONE DI MACCHINE NON ELETTRICHE IN ITALIA C0MMISSIOHE DELLE COMUNITÀ EUROPEE DIRE!ZIONE GENERALE DELLA CONCORRENZA IV/A._3 STUDIO SULL' EVOLUZIONE DELLA CONCENTRAZIONE NELL' INDUSTRIA DELLA COSTRUZIONE DI MACCHINE NON ELETTRICHE IN ITALIA - Costruzione

Dettagli

BANDO DI GARA D'APPALTO. 1.1) Denominazione, indirizzi e punti di contatto: Roma Capitale Dipartimento

BANDO DI GARA D'APPALTO. 1.1) Denominazione, indirizzi e punti di contatto: Roma Capitale Dipartimento Po) AA/AZ ft.'f ROMA CAPTALE BANDO D GARA D'APPALTO SEZONE ) AMMNSTRAZONE AGGUDCATRCE. 1.1) Denominazione, indirizzi e punti di contatto: Roma Capitae Dipartimento Sviuppo nfrastrutture e Manutenzione

Dettagli

6. Moto in due dimensioni

6. Moto in due dimensioni 6. Moto in due dimensioni 1 Vettori er descriere il moto in un piano, in analogia con quanto abbiamo fatto per il caso del moto in una dimensione, è utile usare una coppia di assi cartesiani, come illustrato

Dettagli

CARATTERISTICHE DELLA SOLLECITAZIONE

CARATTERISTICHE DELLA SOLLECITAZIONE RRISIH D SOIZIO bbiamo visto che la trave uò essere definita come un solido generato da una figura iana S (detta seione retta o seione ortogonale) che si muove nello saio mantenendosi semre ortogonale

Dettagli

SISTEMI VINCOLATI. 1. Punto fisso: il vincolo impedisce ogni spostamento del punto.

SISTEMI VINCOLATI. 1. Punto fisso: il vincolo impedisce ogni spostamento del punto. SISTEMI VINCOLATI Definizione 1 Si dice vincolo una qualunque condizione imposta ad un sistema materiale che impedisce di assumere una generica posizione e/o atto di moto. La presenza di un vincolo di

Dettagli

24 - Strutture simmetriche ed antisimmetriche

24 - Strutture simmetriche ed antisimmetriche 24 - Strutture simmetriche ed antisimmetriche ü [.a. 2011-2012 : ultima revisione 1 maggio 2012] In questo capitolo si studiano strutture piane che presentano proprieta' di simmetria ed antisimmetria sia

Dettagli

Nel cemento armato si valorizzano le qualità dei due materiali: calcestruzzo e acciaio, che presentano le seguenti caratteristiche

Nel cemento armato si valorizzano le qualità dei due materiali: calcestruzzo e acciaio, che presentano le seguenti caratteristiche CEMENTO ARMATO METODO AGLI STATI LIMITE Il calcestruzzo cementizio, o cemento armato come normalmente viene definito in modo improprio, è un materiale artificiale eterogeneo costituito da conglomerato

Dettagli

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A.

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A. Travature reticolari piane : esercizi svolti e omenico., Fuschi., isano., Sofi. SRZO n. ata la travatura reticolare piana triangolata semplice illustrata in Figura, determinare gli sforzi normali nelle

Dettagli

MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO

MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO MECCANISMO RESISTENTE A PETTINE Un elemento di calcestruzzo tra due fessure consecutive si può schematizzare come una mensola incastrata nel corrente

Dettagli

Dinamica e Misura delle Vibrazioni

Dinamica e Misura delle Vibrazioni Dinamica e Misura delle Vibrazioni Prof. Giovanni Moschioni Politecnico di Milano, Dipartimento di Meccanica Sezione di Misure e Tecniche Sperimentali giovanni.moschioni@polimi.it VibrazionI 2 Il termine

Dettagli

1) IL MOMENTO DI UNA FORZA

1) IL MOMENTO DI UNA FORZA 1) IL MOMENTO DI UNA FORZA Nell ambito dello studio dei sistemi di forze, diamo una definizione di momento: il momento è un ente statico che provoca la rotazione dei corpi. Le forze producono momenti se

Dettagli

RELAZIONE TECNICA 1. 1 - DESCRIZIONE GENERALE DELLE LAVORAZIONI

RELAZIONE TECNICA 1. 1 - DESCRIZIONE GENERALE DELLE LAVORAZIONI RELAZIONE TECNICA 1. 1 - DESCRIZIONE GENERALE DELLE LAVORAZIONI Le lavorazioni oggetto della presente relazione sono rappresentate dalla demolizione di n 14 edifici costruiti tra gli anni 1978 ed il 1980

Dettagli

NUOVI STRUMENTI OTTICI PER IL CONTROLLO DI LABORATORIO E DI PROCESSO

NUOVI STRUMENTI OTTICI PER IL CONTROLLO DI LABORATORIO E DI PROCESSO NUOVI STRUMENTI OTTICI PER IL CONTROLLO DI LABORATORIO E DI PROCESSO Mariano Paganelli Expert System Solutions S.r.l. L'Expert System Solutions ha recentemente sviluppato nuove tecniche di laboratorio

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente Unità G16 - La corrente elettrica continua La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente 1 Lezione 1 - La corrente elettrica

Dettagli

Esercitazioni di Meccanica Applicata alle Macchine

Esercitazioni di Meccanica Applicata alle Macchine Università degli Studi di Roma La Sapienza Facoltà di Ingegneria Dipartimento di Meccanica ed Aeronautica Corso di Laurea Triennale in Ingegneria Meccanica Esercitazioni di Meccanica Applicata alle Macchine

Dettagli

2. FONDAMENTI DELLA TECNOLOGIA

2. FONDAMENTI DELLA TECNOLOGIA 2. FONDAMENTI DELLA TECNOLOGIA 2.1 Principio del processo La saldatura a resistenza a pressione si fonda sulla produzione di una giunzione intima, per effetto dell energia termica e meccanica. L energia

Dettagli

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come Numeri complessi 9 Da questi esempi si può osservare che, facendo le successive potene di un numero complesso, i punti corrispondenti girano attorno all origine. Se inoltre > allora i punti si allontanano

Dettagli

MODELLO ELASTICO (Legge di Hooke)

MODELLO ELASTICO (Legge di Hooke) MODELLO ELASTICO (Legge di Hooke) σ= Eε E=modulo elastico molla applicazioni determinazione delle tensioni indotte nel terreno calcolo cedimenti MODELLO PLASTICO T N modello plastico perfetto T* non dipende

Dettagli

Long Carbon Europe Sections and Merchant Bars. Trave Angelina TM. Perfetta combinazione di forza, leggerezza e trasparenza

Long Carbon Europe Sections and Merchant Bars. Trave Angelina TM. Perfetta combinazione di forza, leggerezza e trasparenza Long Carbon Europe Sections and Merchant Bars Trave Angelina TM Perfetta combinazione di forza, leggerezza e trasparenza Trave Angelina TM Un idea brillante, applicata ad un prodotto industriale Slanciata,

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t; CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S

Dettagli

Seconda Legge DINAMICA: F = ma

Seconda Legge DINAMICA: F = ma Seconda Legge DINAMICA: F = ma (Le grandezze vettoriali sono indicate in grassetto e anche in arancione) Fisica con Elementi di Matematica 1 Unità di misura: Massa m si misura in kg, Accelerazione a si

Dettagli

IL MOTO. 1 - Il moto dipende dal riferimento.

IL MOTO. 1 - Il moto dipende dal riferimento. 1 IL MOTO. 1 - Il moto dipende dal riferimento. Quando un corpo è in movimento? Osservando la figura precedente appare chiaro che ELISA è ferma rispetto a DAVIDE, che è insieme a lei sul treno; mentre

Dettagli

AUTOLIVELLI (orizzontalità ottenuta in maniera automatica); LIVELLI DIGITALI (orizzontalità e lettura alla stadia ottenute in maniera automatica).

AUTOLIVELLI (orizzontalità ottenuta in maniera automatica); LIVELLI DIGITALI (orizzontalità e lettura alla stadia ottenute in maniera automatica). 3.4. I LIVELLI I livelli sono strumenti a cannocchiale orizzontale, con i quali si realizza una linea di mira orizzontale. Vengono utilizzati per misurare dislivelli con la tecnica di livellazione geometrica

Dettagli

Modelli di dimensionamento

Modelli di dimensionamento Introduzione alla Norma SIA 266 Modelli di dimensionamento Franco Prada Studio d ing. Giani e Prada Lugano Testo di: Joseph Schwartz HTA Luzern Documentazione a pagina 19 Norma SIA 266 - Costruzioni di

Dettagli

4.1 COSTRUZIONI DI CALCESTRUZZO.. 7.4 COSTRUZIONI DI CALCESTRUZZO..

4.1 COSTRUZIONI DI CALCESTRUZZO.. 7.4 COSTRUZIONI DI CALCESTRUZZO.. E. Cosenza NORME TECNICHE Costruzioni di calcestruzzo Edoardo Cosenza Dipartimento di Ingegneria Strutturale Università di Napoli Federico II 4.1 COSTRUZIONI DI CALCESTRUZZO.. 7.4 COSTRUZIONI DI CALCESTRUZZO..

Dettagli

Progettazione di stampi in conglomerato cementizio per il processo di stampaggio ad iniezione di materiali plastici

Progettazione di stampi in conglomerato cementizio per il processo di stampaggio ad iniezione di materiali plastici Uniersità Politecnica delle Marche Scuola di Dottorato di Ricerca in Sciene dell Ingegneria Curriculum in Ingegneria dei Materiali, delle Acque e dei erreni ----------------------------------------------------------------------------------------

Dettagli

COMPLESSO xxxxxxxxxxx

COMPLESSO xxxxxxxxxxx PROVE DI CARICO SU PALI E INDAGINI SIT COMPLESSO xxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx PROVE N 131/132/133/134/135 /FI 8, 9, 10, 11 Giugno 2009 Committente: Direttore Lavori: Relatore: xxxxxxxxxxxxxxxx

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

OPERE PREFABBRICATE INDUSTRIALI

OPERE PREFABBRICATE INDUSTRIALI Cap. XIV OPERE PREFABBRICATE INDUSTRIALI PAG. 1 14.1 OPERE COMPIUTE Opere prefabbricate in cemento armato. Prezzi medi praticati dalle imprese specializzate del ramo per ordinazioni dirette (di media entità)

Dettagli

SVILUPPO IN SERIE DI FOURIER

SVILUPPO IN SERIE DI FOURIER SVILUPPO IN SERIE DI FOURIER Cenni Storici (Wikipedia) Jean Baptiste Joseph Fourier ( nato a Auxerre il 21 marzo 1768 e morto a Parigi il 16 maggio 1830 ) è stato un matematico e fisico, ma è conosciuto

Dettagli

Numeri complessi. x 2 = 1.

Numeri complessi. x 2 = 1. 1 Numeri complessi Nel corso dello studio della matematica si assiste ad una progressiva estensione del concetto di numero. Dall insieme degli interi naturali N si passa a quello degli interi relativi

Dettagli

PRODOTTI DA COSTRUZIONE CON L OBBLIGO DI DOP E MARCATURA CE (elenco aggiornato al 31 luglio 2014) ACCIAI e altri PRODOTTI DA COSTRUZIONE

PRODOTTI DA COSTRUZIONE CON L OBBLIGO DI DOP E MARCATURA CE (elenco aggiornato al 31 luglio 2014) ACCIAI e altri PRODOTTI DA COSTRUZIONE CON L OBBLIGO DI DOP E MARCATURA CE (elenco aggiornato al 31 luglio 2014) ACCIAI e altri Acciai per la realizzazione di strutture metalliche e di strutture composte (laminati, tubi senza saldatura, tubi

Dettagli

GEOTECNICA. ing. Nunziante Squeglia 13. OPERE DI SOSTEGNO. Corso di Geotecnica Corso di Laurea in Ingegneria Edile - Architettura

GEOTECNICA. ing. Nunziante Squeglia 13. OPERE DI SOSTEGNO. Corso di Geotecnica Corso di Laurea in Ingegneria Edile - Architettura GEOTECNICA 13. OPERE DI SOSTEGNO DEFINIZIONI Opere di sostegno rigide: muri a gravità, a mensola, a contrafforti.. Opere di sostegno flessibili: palancole metalliche, diaframmi in cls (eventualmente con

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Dinamica dei corpi deformabili. Conservazione della quantità di moto

Dinamica dei corpi deformabili. Conservazione della quantità di moto Capitolo 2 Dinamica dei corpi deformabili. Conservazione della quantità di moto 2.1 Forze Le forze che agiscono su un elemento B n del corpo B sono essenzialmente di due tipi: a) forze di massa che agiscono

Dettagli

STUDIO SULL' EVOLUZIONE DELLA CONCENTRAZIONE NELL' INDUSTRIA ALIMENTARE IN ITALIA

STUDIO SULL' EVOLUZIONE DELLA CONCENTRAZIONE NELL' INDUSTRIA ALIMENTARE IN ITALIA COMMISSIONE DELLE COMUNITÀ EUROPEE DIREZIONE GENERALE DELLA CONCORRENZA IV/ A-3 STUDIO SULL' EVOLUZIONE DELLA CONCENTRAZIONE NELL' INDUSTRIA ALIMENTARE IN ITALIA - Industria aimentare in compesso - Industria

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

10 CALCOLO AGLI STATI LIMITE DELLE STRUTTURE IN C.A.

10 CALCOLO AGLI STATI LIMITE DELLE STRUTTURE IN C.A. 10 CALCOLO AGLI STATI LIMITE DELLE STRUTTURE IN C.A. Il capitolo fa riferimento alla versione definitiva dell'eurocodice 2, parte 1.1, UNI EN 1992-1-1, recepito e reso applicabile in Italia dal DM del

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

Trattasi di un edificio monopiano con sito d impianto su suolo costituito da n. 4

Trattasi di un edificio monopiano con sito d impianto su suolo costituito da n. 4 1. Descrizione della struttura portante Trattasi di un edificio monopiano con sito d impianto su suolo costituito da n. 4 terrazzamenti delimitati da preesistenti muri di sostegno. L edificio è suddiviso

Dettagli

CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE

CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE Consideriamo adesso un corpo esteso, formato da più punti, e che abbia un asse fisso, attorno a cui il corpo può ruotare. In questo caso l

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

L EQUILIBRIO CHIMICO

L EQUILIBRIO CHIMICO EQUIIBRIO CHIMICO Molte reazioni chimiche possono avvenire in entrambe i sensi: reagenti e prodotti possono cioè scambiarsi fra di loro; le reazioni di questo tipo vengono qualificate come reazioni reversibili.

Dettagli

Metodi risolutivi per le disequazioni algebriche

Metodi risolutivi per le disequazioni algebriche Metodi risolutivi per le disequazioni algebriche v.scudero Una disequazioni algebrica si presenta in una delle quattro forme seguenti: () P( () P( (3) P( () P( essendo P( un polinomio in. Noi studieremo

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

RICERCA SULLE NUOVE AZIENDE SIDERURGICHE

RICERCA SULLE NUOVE AZIENDE SIDERURGICHE COMMISSIONE DELLE. COMUNITÀ EUROPEE COMUNITÀ EUROPEA DEL CARBONE E DELL'ACCIAIO RICERCA SULLE NUOVE AZIENDE SIDERURGICHE Le maestranze deo stabiimento tasider di Taranto Atteggiamenti operai e avoro siderurgico

Dettagli

BBC Betonrossi Basic Concrete a cura di Luigi Coppola e del Servizio Tecnologico di Betonrossi S.p.A.

BBC Betonrossi Basic Concrete a cura di Luigi Coppola e del Servizio Tecnologico di Betonrossi S.p.A. 22 IL CONTROLLO DELLA QUALITA DEL CALCESTRUZZO IN OPERA S e i risultati del controllo di accettazione dovessero non soddisfare una delle disuguaglianze definite dal tipo di controllo prescelto (A o B)

Dettagli

1 Introduzione alla dinamica dei telai

1 Introduzione alla dinamica dei telai 1 Introduzione alla dinamica dei telai 1.1 Rigidezza di un telaio elementare Il telaio della figura 1.1 ha un piano solo e i telai che hanno un piano solo, sono chiamati, in questo testo, telai elementari.

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

Rexroth Pneumatics. Cilindro senz asta Cilindri senza stelo. Pressione di esercizio min/max Temperatura ambiente min./max.

Rexroth Pneumatics. Cilindro senz asta Cilindri senza stelo. Pressione di esercizio min/max Temperatura ambiente min./max. Rexroth Pneumatics 1 Pressione di esercizio min/max 2 bar / 8 bar Temperatura ambiente min./max. -10 C / +60 C Fluido Aria compressa Dimensione max. particella 5 µm contenuto di olio dell aria compressa

Dettagli

Cuscinetti a strisciamento e a rotolamento

Cuscinetti a strisciamento e a rotolamento Cuscinetti a strisciamento e a rotolamento La funzione dei cuscinetti a strisciamento e a rotolamento è quella di interporsi tra organi di macchina in rotazione reciproca. Questi elementi possono essere

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

SAFAP 2012, Napoli 14-15 giugno ISBN 978-88-7484-230-8

SAFAP 2012, Napoli 14-15 giugno ISBN 978-88-7484-230-8 Valutazione della Minimum Pressurizing Temperature (MPT) per reattori di elevato spessore realizzati in acciai bassolegati al Cr-Mo, in esercizio in condizioni di hydrogen charging Sommario G. L. Cosso*,

Dettagli

ANALISI PUSHOVER Statica Lineare Dinamica Lineare Statica Non Lineare Dinamica Non Lineare PUSH-OVER

ANALISI PUSHOVER Statica Lineare Dinamica Lineare Statica Non Lineare Dinamica Non Lineare PUSH-OVER ANALISI PUSHOVER - Analisi sismica Statica Lineare - Analisi sismica Dinamica Lineare - Analisi sismica Statica Non Lineare - Analisi sismica Dinamica Non Lineare Con il nome di analisi PUSH-OVER si indica

Dettagli

Unità Didattica N 28 Punti notevoli di un triangolo

Unità Didattica N 28 Punti notevoli di un triangolo 68 Unità Didattica N 8 Punti notevoli di un triangolo Unità Didattica N 8 Punti notevoli di un triangolo 0) ircocentro 0) Incentro 03) Baricentro 04) Ortocentro Pagina 68 di 73 Unità Didattica N 8 Punti

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

PROGETTAZIONE DI STRUTTURE IN ACCIAIO con le nuove Norme Tecniche e gli Eurocodici: basi concettuali ed esempi di calcolo

PROGETTAZIONE DI STRUTTURE IN ACCIAIO con le nuove Norme Tecniche e gli Eurocodici: basi concettuali ed esempi di calcolo PROGETTAZIONE DI STRUTTURE IN ACCIAIO con le nuove Norme Tecniche e gli Eurocodici: basi concettuali ed esempi di calcolo Stefania Arangio, Francesca Bucchi, Franco Bontempi Stefania Arangio, Francesca

Dettagli

Università degli Studi della Basilicata Facoltà di Ingegneria. Corso di TECNICA DELLE COSTRUZIONI STRUTTURE IN ACCIAIO

Università degli Studi della Basilicata Facoltà di Ingegneria. Corso di TECNICA DELLE COSTRUZIONI STRUTTURE IN ACCIAIO Università degli Studi della Basilicata Facoltà di Ingegneria Corso di TECNICA DELLE COSTRUZIONI STRUTTURE IN ACCIAIO Docente: Collaboratori: Prof. Ing. Angelo MASI Dr. Ing. Giuseppe Santarsiero Ing. Vincenzo

Dettagli

TRATTAMENTI TERMOCHIMICI DEGLI ACCIAI

TRATTAMENTI TERMOCHIMICI DEGLI ACCIAI TRATTAMENTI TERMOCHIMICI DEGLI ACCIAI m12 Scopi dei trattamenti diffusivi Trattamenti di Carbocementazione,, Nitrurazione, Borurazione Proprietà ed applicazioni TRATTAMENTI TERMOCHIMICI di DIFFUSIONE TRATTAMENTI

Dettagli

Capitolo 7 TRAVI COMPOSTE ACCIAIO-CALCESTRUZZO 7 COSTRUZIONI IN ACCIAIO-CALCESTRUZZO. 7.1 Principi generali. 7.1.1 Premessa BOZZA

Capitolo 7 TRAVI COMPOSTE ACCIAIO-CALCESTRUZZO 7 COSTRUZIONI IN ACCIAIO-CALCESTRUZZO. 7.1 Principi generali. 7.1.1 Premessa BOZZA BOZZA Capitolo 7 TRAVI COMPOSTE ACCIAIO-CALCESTRUZZO 7 COSTRUZIONI IN ACCIAIO-CALCESTRUZZO 7.1 Principi generali 7.1.1 Premessa Con il nome di strutture composte acciaio-calcestruzzo vengono indicate usualmente

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

Strumenti Elettronici Analogici/Numerici

Strumenti Elettronici Analogici/Numerici Facoltà di Ingegneria Università degli Studi di Firenze Dipartimento di Elettronica e Telecomunicazioni Strumenti Elettronici Analogici/Numerici Ing. Andrea Zanobini Dipartimento di Elettronica e Telecomunicazioni

Dettagli

Calettatori per attrito SIT-LOCK

Calettatori per attrito SIT-LOCK Calettatori per attrito INDICE Calettatori per attrito Pag. Vantaggi e prestazioni dei 107 Procedura di calcolo dei calettatori 107 Gamma disponibile dei calettatori Calettatori 1 - Non autocentranti 108-109

Dettagli

Edifici in muratura in zona sismica

Edifici in muratura in zona sismica Collegio dei Geometri e dei Geometri Laureati Reggio Emilia - 26 novembre 2010 Edifici in muratura in zona sismica Dott. Ing. Nicola GAMBETTI, Libero Professionista EDIFICI IN MURATURA IN ZONA SISMICA

Dettagli

Protezione dai contatti indiretti

Protezione dai contatti indiretti Protezione dai contatti indiretti Se una persona entra in contatto contemporaneamente con due parti di un impianto a potenziale diverso si trova sottoposto ad una tensione che può essere pericolosa. l

Dettagli

9. Urti e conservazione della quantità di moto.

9. Urti e conservazione della quantità di moto. 9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

- Seminario tecnico -

- Seminario tecnico - Con il contributo di Presentano: - Seminario tecnico - prevenzione delle cadute dall alto con dispositivi di ancoraggio «linee vita» Orario: dalle 16,00 alle 18,00 presso GENIOMECCANICA SA, Via Essagra

Dettagli

175 CAPITOLO 14: ANALISI DEI PROBLEMI GEOTECNICI IN CONDIZIONI LIMITE

175 CAPITOLO 14: ANALISI DEI PROBLEMI GEOTECNICI IN CONDIZIONI LIMITE 175 ntroduzione all analisi dei problemi di collasso. L analisi del comportamento del terreno potrebbe essere fatta attraverso dei modelli di comportamento elasto plastici, ma questo tipo di analisi richiede

Dettagli

profili per il fai da te

profili per il fai da te Profilpas S.p.A. profili in alluminio anodizzato (con etichetta codice a barre) lunghezza m.1 lunghezza m.2 misure argento argento piatto 12x2 10100 10104 15x2 10108 10112 20x2 10116 10120 25x2 10124 10128

Dettagli

Cuscinetti SKF con Solid Oil

Cuscinetti SKF con Solid Oil Cuscinetti SKF con Solid Oil La terza alternativa per la lubrificazione The Power of Knowledge Engineering Cuscinetti SKF con Solid Oil la terza alternativa di lubrificazione Esistono tre metodi per erogare

Dettagli

PROGETTAZIONE PER AZIONI SISMICHE

PROGETTAZIONE PER AZIONI SISMICHE CAPITOLO 7. 7. PROGETTAZIONE PER AZIONI SISMICHE BOZZA DI LAVORO Ottobre 2014 278 [BOZZA DI LAVORO OTTOBRE 2014] CAPITOLO 7 Il presente capitolo disciplina la progettazione e la costruzione delle nuove

Dettagli

Vetro e risparmio energetico Controllo solare. Bollettino tecnico

Vetro e risparmio energetico Controllo solare. Bollettino tecnico Vetro e risparmio energetico Controllo solare Bollettino tecnico Introduzione Oltre a consentire l ingresso di luce e a permettere la visione verso l esterno, le finestre lasciano entrare anche la radiazione

Dettagli

Laboratorio di Elettrotecnica

Laboratorio di Elettrotecnica 1 Laboratorio di Elettrotecnica Rappresentazione armonica dei Segnali Prof. Pietro Burrascano - Università degli Studi di Perugia Polo Scientifico Didattico di Terni 2 SEGNALI: ANDAMENTI ( NEL TEMPO, NELLO

Dettagli

Sommario. vengono riconosciuti. duttili. In. pareti, solai. applicazioni

Sommario. vengono riconosciuti. duttili. In. pareti, solai. applicazioni APPLICAZIONI INNOVATIVE CON MICROCA ALCESTRUZZI DUTTILI PER RINFORZII ED ADEGUAMENTI SISMICI Dario Rosignoli Stefano Maringoni Tecnochem Italiana S.p.A. Sommario Con gli acronimi HPFRC High Performancee

Dettagli

Serie RTC. Prospetto del catalogo

Serie RTC. Prospetto del catalogo Serie RTC Prospetto del catalogo Bosch Rexroth AG Pneumatics Serie RTC Cilindro senza stelo, Serie RTC-BV Ø 16-80 mm; a doppio effetto; con pistone magnetico; guida integrata; Basic Version; Ammortizzamento:

Dettagli

Macchine rotanti. Premessa

Macchine rotanti. Premessa Macchine rotanti Premessa Sincrono, asincrono, a corrente continua, brushless sono parecchi i tipi di motori elettrici. Per ognuno teoria e formule diverse. Eppure la loro matrice fisica è comune. Unificare

Dettagli

/ * " 6 7 -" 1< " *,Ê ½, /, "6, /, Ê, 9Ê -" 1/ " - ÜÜÜ Ìi «V Ì

/ *  6 7 - 1<  *,Ê ½, /, 6, /, Ê, 9Ê - 1/  - ÜÜÜ Ìi «V Ì LA TRASMISSIONE DEL CALORE GENERALITÀ 16a Allorché si abbiano due corpi a differenti temperature, la temperatura del corpo più caldo diminuisce, mentre la temperatura di quello più freddo aumenta. La progressiva

Dettagli

: acciaio (flangia in lega d alluminio)

: acciaio (flangia in lega d alluminio) FILTRI OLEODINAMICI Filtri in linea per media pressione, con cartuccia avvitabile Informazioni tecniche Pressione: Max di esercizio (secondo NFPA T 3.1.17): FA-4-1x: 34,5 bar (5 psi) FA-4-21: 24 bar (348

Dettagli

Teoria quantistica della conduzione nei solidi e modello a bande

Teoria quantistica della conduzione nei solidi e modello a bande Teoria quantistica della conduzione nei solidi e modello a bande Obiettivi - Descrivere il comportamento quantistico di un elettrone in un cristallo unidimensionale - Spiegare l origine delle bande di

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli