Corso di ordinamento - Sessione suppletiva - a.s

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010"

Transcript

1 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno su di ss tr punti A, B, C, tli ch AB BC.. Si clcoli, in unzion dll ngolo AÔB, l quntità: controllndo ch risulti: ( ) cos cos. Si studi l unzion () si trcci il suo grico γ nll intrvllo π. Si vriichi ch l curv γ è simmtric risptto ll rtt di quzion π. Si clcoli il vlor mdio dll unzion () nll intrvllo π. PROBLEMA Si dt l unzion ( ). Si dtrmini il dominio di () si dic s l unzion è continu drivil in ogni punto di sso.. Si studi l unzion () s n trcci il grico γ.. Si clcoli l r dll prt di pino R rcchius dl grico γ dl smiss positivo dll sciss.. L rgion R gnr, nll rotzion ttorno ll ss dll sciss, un solido S. In S si inscriv un cono circolr rtto con vrtic nll origin. Si dtrminino rggio ltzz dl cono, inchè il suo volum si mssimo. QUESTIONARIO. In cim d un rocci picco sull riv di un ium è stt costruit un torrtt d ossrvzion lt mtri. L mpizz dgli ngoli di dprssion pr un punto situto sull riv oppost dl ium, misurt rispttivmnt dll s dll sommità dll torrtt, sono pri. Si dtrmini l lrghzz dl ium in qul punto.. Considrt l unzion ( ), dov è un costnt rl positiv, si dtrmini tl costnt, spndo ch lim ( ).. Su un pino orizzontl α si pongono un cono circolr rtto, il cui rggio di s è r l ltzz r, un sr di rggio r. A qul distnz dl pino α isogn sgr qusti du solidi con un pino orizzontl ß, prché l somm dll r dll szioni così ottnut si mssim?

2 Corso di ordinmnto - Sssion suppltiv -.s. 9-. Si dimostri ch pr gli zri di un unzion ( ) c vl l rlzion ) ( ) si di un intrprtzion gomtric dll rmzion dimostrt. ( ( ). Si clcoli il vlor mdio dll unzion ( ), nll intrvllo.. Si dtrminino in modo tl ch il grico dll unzion y pssi pr i punti dl pino y di coordint (,) (,). 7. Un ttrdro d un ottdro rgolri hnno gli spigoli dll stss lunghzz l. Si dimostri ch il volum dll ottdro è il qudruplo di qullo dl ttrdro.. Si trovi l quzion dll rtt tngnt ll curv di quzioni prmtrich t y nl suo punto di coordint (,). t 9. Si dimostri ch s un unzion () è drivil nl punto, ivi è nch continu; si porti un smpio di unzion continu in un punto ivi non drivil.. Si dimostri ch l dirnz di qudrti di du lti di un tringolo è ugul ll dirnz di qudrti dll rispttiv proizioni di lti stssi sul trzo lto dl tringolo.

3 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA Punto Considrimo l igur di sguito. B O A C Posto A ÔB si h ABˆ O OÂB. L ngolo l vrtic è A Bˆ C ABˆ O. Applicndo il torm di Crnot l tringolo AOB si h: AB AO OB AO OB cos ( ) cos( ) cos( ) Anlogmnt, pplicndo il torm di Crnot l tringolo ABC si h: AC AC Quindi: AB Punto )AB BC ( ) ( ) ( ) ) cos cos AB BC AB BC cos AB AB cos( ) AB [ cos( ) ] [ cos( ) ] [ cos( ) ] [ cos( ) ] [ cos( ) ] cos ( ) [ cos( )] cos ( ) [ ] cos ( ) cos( ) BC CA Studimo l unzion ( ) cos ( ) cos( ) [ cos( ) ] [ cos( ) ] in [,π] Dominio: [,π]; Intrszion ss sciss: ( ) [ cos( ) ] [ cos( ) ] ( ) cos > Intrszion ss ordint: ( ) Simmtri: l unzion è priodic di priodo [,π] ( ) π cos T π pri in qunto ( ) cos ( ) cos( ) cos ( ) cos( ) ( ) Positività: ( ) > cos( ) > cos( ) (,π) ; ;

4 Corso di ordinmnto - Sssion suppltiv -.s. 9- Asintoti vrticli: non v n sono in qunto l unzion è priodic limitt; Asintoti orizzontli: non v n sono in qunto l unzion è priodic limitt; Asintoti oliqui: non v n sono in qunto l unzion è priodic limitt; Crscnz dcrscnz: l drivt prim è ( ) sin( ) cos( ) sin( ) sin( ) [ cos( ) ] ; di sguito il qudro di sgni sin cos ( ) ( ) ( ) > π π π > π π π > π sin ( ) cos( ) π π π π Dl qudro soprstnt dducimo ch l π π du mssimi rltivi in M,9, M, 9 ; m ( π,) unzion prsnt un minimo rltivo in [ ] Concvità convssità: l drivt scond è ( ) cos ( ) cos( ) pr cui rccos ( ) > cos( ) cos( ) π rccos π rccos π rccos π > Quindi l unzion prsnt concvità vrso l lto in, rccos π rccos π rccos, π rccos,π prsnt quttro lssi tngnt oliqu in

5 Corso di ordinmnto - Sssion suppltiv -.s. 9- rccos π rccos,, π rccos Il grico è di sguito prsntto:,, π rccos 7,,, Punto Un unzion è simmtric risptto ll rtt k s ( ) ( k ). Nl cso in sm ( π ) cos ( π ) cos( π ) cos ( ) cos( ) ( ) pr cui ( ) simmtric risptto ll rtt Punto π. Il vlor mdio di un unzion ( ) in [ ] M π π π π π cos [ ( ) ( ) ] ( ) cos cos d π π è, è M ( )d. Nl cso in sm π [ cos( ) cos( ) ] d [ sin( ) sin( ) ] π cos ( ) π d

6 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA Punto Il dominio dll unzion ( ) Nl dominio l unzion è continu. L drivt prim è ( ) è dto d:. d cui dducimo ch l unzion non è drivil ni punti ± in cui prsnt un tngnt vrticl; intti lim ( ) lim ( ) dominio sclusi i punti con sciss ±. Punto Studimo l unzion ( ) Dominio: ;. In conclusion l unzion è drivil in tutti i punti dl Intrszion ss sciss: ( ) Intrszion ss ordint: ( ) Simmtri: l unzion è dispri in qunto ( ) ( ) ( ) Positività: > > ( ) > Asintoti vrticli: non v n sono in qunto lim ( ) lim ( ) Asintoti orizzontli: non sistono visto il dominio chiuso [,] ; Asintoti oliqui: non sistono visto il dominio chiuso [,] ; Crscnz dcrscnz: l ; drivt prim è ( ) ; il qudro di sgni è lto prsntto: d sso dducimo l prsnz di un minimo rltivo

7 Corso di ordinmnto - Sssion suppltiv -.s. 9-7, m d un mssimo rltivo, M ; Concvità convssità: l drivt scond è ( ) ( ) ( ) ( ) ( ) ( ) pr cui, ricordndo ch il dominio è, si h ( ) > > > cioè l unzion prsnt concvità vrso l lto in ( ), vrso il sso in ( ), ; l unzion prsnt quindi un lsso tngnt oliqu ( ), F con tngnt inlssionl di quzion y. Di sguito il grico: Punto L r richist è pri ( ) ( ) d d d d S Punto Si ( ), P con un punto gnrico pprtnnt l rmo dl primo qudrnt dll unzion ( ). Il rggio dl cono inscritto srà pri ll ordint dl punto P cioè R mntr l ltzz srà pri ll sciss cioè h. Il volum dl cono srà llor ( ) ( ) ( ) h R π π π. L mssimizzzion l ttuimo mdint

8 Corso di ordinmnto - Sssion suppltiv -.s. 9- drivzion: l drivt prim è ( ) ( ) π pr cui l unzion volum, ricordndo l limitzion gomtric è strttmnt crscnt in, strttmnt dcrscnt in, d cui dducimo ch il volum è mssimo qundo l ltzz è pri d il rggio è pri R. Il vlor mssimo è prtnto pri 9 π π.

9 Corso di ordinmnto - Sssion suppltiv -.s. 9- QUESTIONARIO Qusito Considrimo l igur lto. Doimo clcolr l lunghzz dl sgmnto PO. Applicndo il torm di tringoli rttngoli i tringoli POT OH si h l rlzion ( ) PO tn( ) PO tn d cui PO 9m Qusito Il limit richisto si prsnt nll orm indtrmint pr cui possimo pplicr il torm di d lim l Hospitl: Qusito si h lim 7 ln ln Si considri l igur sgunt: A ln lim ln ln ln 7 ln ln ln. Imponndo ln ln ln ln ln ln ln 7. O K L D E B H C F Indichimo con, r, l distnz tr pini α β. L intrszioni dl pinoβ con il cono l sr sono du circonrnz rispttivmnt di rggio 9

10 Corso di ordinmnto - Sssion suppltiv -.s. 9- R C KL or i du rggi: R S DE. L somm dll r dll szioni è quindi S π π R C R S. Clcolimo Rggio R C I tringolo AKL AHC sono simili ssndo ntrmi rttngoli con un ngolo in comun pr cui vl l sgunt proporzion tr lti omologhi: ( r ) AK : KL AH : HC d cui AK HC r KL r pr cui l r dll circonrnz di rggio AH r KL r è Rggio R S A C RC π r π ; Il tringolo ODE è rttngolo pr cui DE OE OD r ( r ) r pr cui l r dll circonrnz di rggio R S R S DE r è AS π RS π ( r ). π con L somm dll r è quindi ( ) S r π ( r ) π r r. Notimo ch l unzion ( ) r il mssimo nll sciss dl vrtic mssim pr r vl S r S è un prol con concvità vrso il sso ch prsnt r r ; quindi l somm dll du r è 9 π r r r r πr. Altrntivmnt possimo prosguir mdint drivzion: l drivt prim dll unzion S ( ) è S ( ) π r pr cui S ( ) > r d cui dducimo ch ( ) crscnt in, r strttmnt dcrscnt in r, r r è l sciss dl mssimo. Qusito Gli zri dll quzion c sono S è strttmnt S pr cui ; inoltr ( ) π c c, ; l drivt prim di ( ) c è ( ) pr cui

11 Corso di ordinmnto - Sssion suppltiv -.s. 9- ( ) ( ) c c c c d cui dducimo ch ( ) ( ). Pr dr un intrprtzion gomtric l risultto ottnuto riscrivimo l somm ( ) ( ) [ ] : ss è pri ( ) ( ) ( ) ( ) ( ) imponndo ch si null ottnimo ( ) o quivlntmnt ( ). L rlzion ppn ricvt ci dic ch l smisomm dll soluzioni è pri ch è l sciss dl vrtic; in ltri trmini gli zri dll prol sono simmtrici risptto ll rtt coincidnt con l ss di simmtri dll prol. Qusito Il vlor mdio di un unzion ( ) in [ ], è ( )d M. Nl cso in sm ( ) d M ; pplicndo l intgrzion pr prti si h ( ) ( ) ( ) d d d M Qusito L s dll unzion potnz dv ssr >. Imponndo il pssggio pr i punti ( )( ),,, si h: in cui l soluzion è stt scrtt in qunto non soddis l condizion >. Qusito 7 Considrimo il ttrdro l ottdro sottostnti:

12 Corso di ordinmnto - Sssion suppltiv -.s. 9- Clcolimo i du volumi. olum ttrdro L ltzz di ognuno di tringoli quiltri componnti è DK l ; ricordndo ch l ortocntro di un tringolo quiltro divid ognun dll tr ltzz in du prti di cui un doppi dll ltr si h KH l l pr cui l ltzz dl ttrdro è pri DH DK KH l l l ; il volum è llor pri l l A h l ; T olum ottdro Il volum dll ottdro può ssr visto com l somm di volumi dll du pirmidi componnti. In ccordo con l igur soprstnt si h l OH, CH l, CO CH OH l pr cui il volum di un dll du pirmidi è l l A h l pr cui il volum dll ottdro è P corrispond l qudruplo dl volum dl ttrdro. P l ch O

13 Corso di ordinmnto - Sssion suppltiv -.s. 9- Qusito L quzioni prmtrich possono ssr scritt com t y y ; l quzion dll rtt tngnt in (,) l drivt prim dll unzion y è t d cui dducimo l curv è y m( ) con y ( ) ( ) conclusion l quzion dll rtt tngnt è ( ) Qusito 9 Dimostrzion ( ) ( ) Ipotsi: inito il limit lim ( ) Tsi: lim ( ) ( ) ( ) ( ) Scrivimo: ( ) ( ) ( ) Sgu: ( ) ( ) lim ( ) lim ( ) lim ( ) ( ( ( ) ( ) ) lim lim( ) ( ) ( ) ( ) com volvsi dimostrr. ) m ; y pr cui m y ( ) ; in y. S l drivilità in un punto n implic l continuità, non vl il vicvrs. Bst prndr in considrzion l unzion ( ) s s in in cui prsnt un punto ngoloso in qunto lim ( ) lim ( ) lim ( ) lim ( ) ch risult ssr continu m non drivil

14 Corso di ordinmnto - Sssion suppltiv -.s. 9- Qusito Considrimo l igur lto. I tringoli AHB d AHC sono rttngoli in H. Applicndo il torm di Pitgor d ntrmi si h: A AB AC AH AH BH HC Sottrndo mmro mmro si h: AB AC ( AH BH ) ( AH HC ) BH HC coincid con qunto volvmo dimostrr. B H C ch

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

L ELLISSOIDE TERRESTRE

L ELLISSOIDE TERRESTRE L ELLISSOIDE TERRESTRE Fin dll scond mtà dl XVII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di rifrimnto pr l Trr è stt individut in un ELLISSOIDE DI ROTAZIONE. E l suprfici

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti Problemi di mssimo e minimo in Geometri olid Problemi su poliedri Indice dei problemi risolti In generle, un problem si riferisce un figur con crtteristice specifice (p.es., il numero dei lti dell bse)

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L scelt di equilirio del consumtore ntegrzione del C. 21 del testo di Mnkiw 1 Prte 1 l vincolo di ilncio Suonimo che il reddito di un consumtore

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti:

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti: Minori di un mtrice Si A K m,n, si definisce minore di ordine p con p N, p

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

REPORT DELLA VALUTAZIONE COLLETTIVA

REPORT DELLA VALUTAZIONE COLLETTIVA CONCORSO DI PROGETTAZIONE UNA NUOVA VIVIBILITA PER IL CENTRO DI NONANTOLA PROCESSO PARTECIPATIVO INTEGRATO CENTRO ANCH IO! REPORT DELLA VALUTAZIONE COLLETTIVA ESITO DELLE VOTAZIONI RACCOLTE DURANTE LE

Dettagli

Provvedimento di Predisposizione del Programma Annuale dell'esercizio finanziario 2014. Il Dsga

Provvedimento di Predisposizione del Programma Annuale dell'esercizio finanziario 2014. Il Dsga Provvdimnto di Prdisposizion dl Programma Annual dll'srcizio finanziario 2014 Il Dsga Visto Il Rgolamnto crnnt l istruzioni gnrali sulla gstion amministrativotabil dll Istituzioni scolastich Dcrto 01 Fbbraio

Dettagli

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro.

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro. Viett l pubbliczione, l riprouzione e l ivulgzione scopo i lucro. GA00001 Qul è l mpiezz ell ngolo che si ottiene ) 95 b) 275 c) 265 ) 5 b sottreno 85 un ngolo giro? GA00002 Due ngoli ll circonferenz che

Dettagli

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è:

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è: Titolzione Acido Debole Bse Forte L rezione che vviene nell titolzione di un cido debole HA con un bse forte NOH è: HA(q) NOH(q) N (q) A (q) HO Per quest rezione l costnte di equilibrio è: 1 = = >>1 w

Dettagli

Appunti di Analisi matematica 1. Paolo Acquistapace

Appunti di Analisi matematica 1. Paolo Acquistapace Appunti di Anlisi mtemtic Polo Acquistpce 23 febbrio 205 Indice Numeri 4. Alfbeto greco................................. 4.2 Insiemi..................................... 4.3 Funzioni....................................

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

Le politiche per l equilibrio della bilancia dei pagamenti

Le politiche per l equilibrio della bilancia dei pagamenti L politich pr l quilibrio dlla bilancia di pagamnti Politich pr ottnr l quilibrio dlla bilancia di pagamnti (BP = + MK = 0) nl lungo priodo BP 0 non è sostnibil prchè In cambi fissi S BP0 si sauriscono

Dettagli

Macchine elettriche in corrente continua

Macchine elettriche in corrente continua cchine elettriche in corrente continu Generlità Può essere definit mcchin un dispositivo che convert energi d un form un ltr. Le mcchine elettriche in prticolre convertono energi elettric in energi meccnic

Dettagli

2.1 Proprietà fondamentali dei numeri reali. 1. Elenchiamo separatamente le proprietà dell addizione, moltiplicazione e relazione d ordine.

2.1 Proprietà fondamentali dei numeri reali. 1. Elenchiamo separatamente le proprietà dell addizione, moltiplicazione e relazione d ordine. Capitolo 2 Numri rali In qusto capitolo ci occuprmo dll insim di numri rali ch indichrmo con il simbolo R: lfunzionidfinitsutaliinsimiavaloriralisonol oggttodistudiodll analisi matmatica in una variabil.

Dettagli

- Radioattività - - 1 - 1 Ci = 3,7 1010 dis / s. ln 2 T 2T = e ln 2 2 = e 2ln 2 = 1 4

- Radioattività - - 1 - 1 Ci = 3,7 1010 dis / s. ln 2 T 2T = e ln 2 2 = e 2ln 2 = 1 4 Radioattività - Radioattività - - - Un prparato radioattivo ha un attività A 0 48 04 dis / s. A quanti μci (microcuri) si riduc l attività dl prparato dopo du tmpi di dimzzamnto? Sapndo ch: ch un microcuri

Dettagli

LE INTERSEZIONI Dispense didattiche di TOPOGRAFIA

LE INTERSEZIONI Dispense didattiche di TOPOGRAFIA lsse qurt Docente: In. Ntt MODULO I: IL RILIEVO TOOGRFIO UD I: L INQUDRMENTO ON LE RETI - INTERSEZIONI LE INTERSEZIONI Dispense didttiche di TOOGRFI r M unto di ollins O s θ 00 O d O d 00 θ θ ω ' ω θ c'

Dettagli

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π PROBLEMA Il triangolo rettangolo ABC ha l ipotenusa AB = a e l angolo CAB =. a) Si descriva, internamente al triangolo, con centro in B e raggio, l arco di circonferenza di estremi P e Q rispettivamente

Dettagli

METODO VOLTAMPEROMETRICO

METODO VOLTAMPEROMETRICO METODO OLTAMPEOMETCO Tle etodo consente di isrre indirettente n resistenz elettric ed ipieg l definizione stess di resistenz : doe rppresent l tensione i cpi dell resistenz e l corrente che l ttrers coe

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

ESERCIZI SUI PRODOTTI NOTEVOLI. ESERCIZI SUL M.C.D. E m.c.m. ESERCIZI SUL RACCOGLIMENTO A FATTOR COMUNE ERCIZI SURUFFINI

ESERCIZI SUI PRODOTTI NOTEVOLI. ESERCIZI SUL M.C.D. E m.c.m. ESERCIZI SUL RACCOGLIMENTO A FATTOR COMUNE ERCIZI SURUFFINI Esercii dell leione di Alger di se ESERCIZI SUI PRODOTTI NOTEVOLI ESERCIZI SUL M.C.D. E m.c.m. ESERCIZI SUL RACCOGLIMENTO A FATTOR COMUNE ES ES ERCIZI SURUFFINI ERCIZI SULLE SEMPLIFICAZIONI DI FRAZIONI

Dettagli

Variazioni di sviluppo del lobo frontale nell'uomo

Variazioni di sviluppo del lobo frontale nell'uomo Istituto di Antropologi dell Regi Università di Rom Vrizioni di sviluppo del lobo frontle nell'uomo pel Dott. SERGIO SERGI Libero docente ed iuto ll cttedr di Antropologi. Il problem dei rpporti di sviluppo

Dettagli

Alberi di copertura minimi

Alberi di copertura minimi Albr d coprtur mnm Sommro Albr d coprtur mnm pr grf pst Algortmo d Kruskl Algortmo d Prm Albro d coprtur mnmo Un problm d notvol mportnz consst nl dtrmnr com ntrconnttr fr d loro dvrs lmnt mnmzzndo crt

Dettagli

Comunità Europea (CE) International Accounting Standards, n. 36. Riduzione durevole di valore delle attività

Comunità Europea (CE) International Accounting Standards, n. 36. Riduzione durevole di valore delle attività Scopo contnuto dl documnto Comunità Europa (CE) Intrnational Accounting Standards, n. 36 Riduzion durvol di valor dll attività Riduzion durvol di valor dll attività SOMMARIO Finalità 1 Ambito di applicazion

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

Guida allʼesecuzione di prove con risultati qualitativi

Guida allʼesecuzione di prove con risultati qualitativi TitoloTitl Guida allʼscuzion di prov con risultati qualitativi Guid to prform tsts with qualitativ rsults SiglaRfrnc DT-07-DLDS RvisionRvision 00 DataDat 0602203 Rdazion pprovazion utorizzazion allʼmission

Dettagli

PROGETTAZIONE DIDATTICA PER COMPETENZE

PROGETTAZIONE DIDATTICA PER COMPETENZE ISTITUTO TECNICO INDUSTRIALE STATALE G. M. MONTANI CONVITTO ANNESSO AZIENDA AGRARIA 63900 FERMO Via Montani n. 7 - Tl. 0734-622632 Fax 0734-622912 www.istitutomontani.it -mail aptf010002@istruzion.it Coc

Dettagli

MINISTERO DELL ISTRUZIONE, DELL UNIVERSITÁ E DELLA RICERCA UFFICIO SCOLASTICO PROVINCIALE DI SALERNO PIANO EDUCATIVO INDIVIDUALIZZATO

MINISTERO DELL ISTRUZIONE, DELL UNIVERSITÁ E DELLA RICERCA UFFICIO SCOLASTICO PROVINCIALE DI SALERNO PIANO EDUCATIVO INDIVIDUALIZZATO Distrtto Scolastico N 53 Nocra Infrior (SA) SCUOLA MEDIA STATALE Frsa- Pascoli Vial Europa ~ 84015 NOCERA SUPERIORE (SA) Tl. 081 933111-081 931395- fax: 081 936230 C.F.: 94041550651 Cod: Mcc.: SAMM28800N

Dettagli

EQUILIBRI IN SOLUZIONE ACQUOSA

EQUILIBRI IN SOLUZIONE ACQUOSA Dispense CHIMICA GENERALE E ORGANICA (STAL) 010/11 Prof. P. Crloni EQUILIBRI IN SOLUZIONE ACQUOSA Qundo si prl di rezioni di equilirio dei composti inorgnici, un considerzione prticolre viene rivolt lle

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

MATRICI SIMILI E MATRICI DIAGONALIZZABILI

MATRICI SIMILI E MATRICI DIAGONALIZZABILI MATRICI SIMILI E MATRICI DIAGONALIZZABILI DEFINIZIONE: Due mtici qudte A e B, dello stesso odine n, si dicono simili se esiste un mtice non singole S, tle che isulti: B S A S L mtice S si chim nche mtice

Dettagli

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE.

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE. FCA D UN CCUTO SSTO CONTNNT PÙ GNATO CON UN TMNAL COMUN SNZA TMNAL COMUN. Si verifino quttro iruiti on due genertori: genertori on polrità onorde e un terminle omune genertori on polrità disorde e un terminle

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

Art. 1. - Campo di applicazione e definizioni Art. 2. - Classificazione di reazione al fuoco

Art. 1. - Campo di applicazione e definizioni Art. 2. - Classificazione di reazione al fuoco DM 10 marzo 2005 Classi di razion al fuoco pr i prodotti da costruzion da impigarsi nll opr pr l quali ' prscritto il rquisito dlla sicurzza in caso d'incndio. (GU n. 73 dl 30-3-2005) IL MINISTRO DELL'INTERNO

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto italiano.

Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto italiano. Il punto Il punto è un elemento geometrico fondamentale privo di dimensioni ed occupa solo una posizione. Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

10 Progetto con modelli tirante-puntone

10 Progetto con modelli tirante-puntone 0 Progetto con modelli tirnte-puntone 0. Introduzione I modelli tirnte-puntone (S&T Strut nd Tie) sono utilizzti per l progettzione delle membrture in c.. che non possono essere schemtizzte come solidi

Dettagli

07 GUIDA ALLA PROGETTAZIONE. Guida alla progettazione

07 GUIDA ALLA PROGETTAZIONE. Guida alla progettazione 07 Guid ll progettzione Scelt tubzioni e giunti 2 tubi di misur [mm] Dimetro tubzioni unità esterne (A) Giunti 12Hp 1Hp 1Hp Selezionre il dimetro delle unità esterne dll seguente tbell Giunto Y tr unità

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

TEORIA DELLA PROBABILITÀ II

TEORIA DELLA PROBABILITÀ II TEORIA DELLA PROBABILITÀ II Diprtimento di Mtemti ITIS V.Volterr Sn Donà di Pive Versione [14-15] Indie 1 Clolo omintorio 1 1.1 Introduzione............................................ 1 1.2 Permutzioni...........................................

Dettagli

Cuscinetti ad una corona di sfere a contatto obliquo

Cuscinetti ad una corona di sfere a contatto obliquo Cuscinetti d un coron di sfere conttto obliquo Cuscinetti d un coron di sfere conttto obliquo 232 Definizione ed ttitudini 232 Serie 233 Vrinti 233 Tollernze e giochi 234 Elementi di clcolo 236 Crtteristiche

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

Parcheggi e altre rendite aeroportuali

Parcheggi e altre rendite aeroportuali Argomnti Parchggi altr rndit aroportuali Marco Ponti Elna Scopl La rgolamntazion dl sistma aroportual italiano fino al 2007 non ha vitato la formazion di rndit ingiustificat. In particolar l attività non-aviation,

Dettagli

Metodi d integrazione di Montecarlo

Metodi d integrazione di Montecarlo Metodi d itegrzioe di Motecrlo Simulzioe l termie simulzioe ell su ccezioe scietific h u sigificto diverso dll ccezioe correte. Nell uso ordirio è sioimo si fizioe; ell uso scietifico è sioimo di imitzioe,

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

Le operazioni fondamentali in N Basic Arithmetic Operations in N

Le operazioni fondamentali in N Basic Arithmetic Operations in N Operzioi fodetli i - 1 Le operzioi fodetli i Bsic Arithetic Opertios i I geerle u operzioe è u procedieto che due o più ueri, dti i u certo ordie e detti terii dell'operzioe, e ssoci u ltro, detto risultto

Dettagli

Esercizi e Problemi di Termodinamica.

Esercizi e Problemi di Termodinamica. Esercizi e Problemi di Termodinamica. Dr. Yves Gaspar March 18, 2009 1 Problemi sulla termologia e sull equilibrio termico. Problema 1. Un pezzetto di ghiaccio di massa m e alla temperatura di = 250K viene

Dettagli

IL NUOVO QUADRO LEGISLATIVO ITALIANO SULL EFFICIENZA ENERGETICA DEGLI EDIFICI

IL NUOVO QUADRO LEGISLATIVO ITALIANO SULL EFFICIENZA ENERGETICA DEGLI EDIFICI IL NUOVO QUADRO LEGISLATIVO ITALIANO SULL EFFICIENZA ENERGETICA DEGLI EDIFICI D.Lgs. 192/2005 + D.Lgs. 311/2006 Vincnzo Corrado, Matto Srraino Dipartimnto di Enrgtica Politcnico Di Torino un progtto di:

Dettagli

( D) =,,,,, (11.1) = (11.3)

( D) =,,,,, (11.1) = (11.3) G. Ptrucci Lzioni di Cotruzion di Macchin. CRITERI DI RESISTENZA La vrifica di ritnza ha o copo di tabiir o tato tniona d mnto truttura anaizzato è ta da provocarn i cdimnto into com rottura o nrvamnto.

Dettagli

TRASFORMAZIONI GEOMETRICHE Una trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti del piano: ( ) , :,

TRASFORMAZIONI GEOMETRICHE Una trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti del piano: ( ) , :, TRASFORMAZIONI GEOMETRICHE Un rsforzione geoeric del pino in sé è un corrispondenz iunivoc r i puni del pino P P, P P P è l igine di P rispeo ll rsforzione. Ad ogni puno P(,) corrisponde uno ed un solo

Dettagli

LINGUAGGI'CREATIVITA 'ESPRESSIONE' '

LINGUAGGI'CREATIVITA 'ESPRESSIONE' ' LINGUAGGICREATIVITA ESPRESSIONE 3 4ANNI 5ANNI Mniplrmtrilidivritipin finlizzt. Fmilirizzrindivrtntcnil cmputr Ricnsclmntidl mnd/rtificilcglindn diffrnzprfrmmtrili Distingugliggttinturlidqulli rtificili.

Dettagli

Progetto I CARE Progetto CO.L.O.R.

Progetto I CARE Progetto CO.L.O.R. Attori in rt pr la mobilità di risultati dll apprndimnto Dirtta WEB, 6 dicmbr 2011 Progtto I CARE Progtto CO.L.O.R. Elmnti distintivi complmntarità Michla Vcchia Fondazion CEFASS gli obittivi Facilitar

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

Anno 2013 Tipologia Istituzione U - UNITA' SANITARIE LOCALI. Istituzione 9565 - ASL VENEZIA - MESTRE 12 Contratto SSNA - SERVIZIO SANITARIO NAZIONALE

Anno 2013 Tipologia Istituzione U - UNITA' SANITARIE LOCALI. Istituzione 9565 - ASL VENEZIA - MESTRE 12 Contratto SSNA - SERVIZIO SANITARIO NAZIONALE nno 213 Tipologia Istituzione U - UNIT' SNIT LCLI Istituzione 9565 - SL VNZI - MSTR 12 Contratto SSN - SRVIZI SNIT NZINL Fase/Stato Rilevazione: pprovazione/ttiva Data Creazione Stampa: 19/6/215 14:15:25

Dettagli

1. LA STRUTTURA DI RELAZIONI TRA MANIFATTURA E SERVIZI ALLE IMPRESE IN UN CONTESTO EUROPEO

1. LA STRUTTURA DI RELAZIONI TRA MANIFATTURA E SERVIZI ALLE IMPRESE IN UN CONTESTO EUROPEO 1. La struttura di rlazioni tra manifattura srvizi all imprs in un contsto uropo 11 1. LA STRUTTURA DI RELAZIONI TRA MANIFATTURA E SERVIZI ALLE IMPRESE IN UN CONTESTO EUROPEO La quota di srvizi sul commrcio

Dettagli

LA TRASFORMATA DI LAPLACE

LA TRASFORMATA DI LAPLACE LA RASFORMAA DI LAPLACE Pr dcrivr l voluzion di un itma in rgim tranitorio, oia durant il paaggio dll ucit da un rgim tazionario ad un altro, è ncario ricorrr ad un modllo più gnral riptto al modllo tatico,

Dettagli

Poteri/ funzioni attribuiti dalla norma

Poteri/ funzioni attribuiti dalla norma Compiti funzioni attribuiti dalla tiva all nazional Lgg Art. 6, comma 5 Art. 6, comma 7, ltt.a Art. 6, comma 7, ltt.b Potri/ funzioni attribuiti dalla Vigilanza su tutti i contratti pubblici (lavori, srvizi

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Momento di una forza rispettto ad un punto

Momento di una forza rispettto ad un punto Momento di un fo ispettto d un punto Rihimimo lune delle definiioni e popietà sui vettoi già disusse ll iniio del oso Podotto vettoile: ϑ ϑ sin sin θ Il vettoe è dietto lungo l pependiole l pino individuto

Dettagli

MATEMATICA C3 - GEOMETRIA 1 2. CONGRUENZA NEI TRIANGOLI

MATEMATICA C3 - GEOMETRIA 1 2. CONGRUENZA NEI TRIANGOLI MATEMATICA C3 - GEOMETRIA 1 2. CONGRUENZA NEI TRIANGOLI Indice Triangle Shapes Photo by: maxtodorov Taken from: http://www.flickr.com/photos/maxtodorov/3066505212/ License: Creative commons Attribution

Dettagli

Lo strato limite PARTE 11. Indice

Lo strato limite PARTE 11. Indice PARTE 11 a11-stralim-rv1.doc Rl. /5/1 Lo strato limit Indic 1. Drivazion dll qazioni indfinit di Prandtl pr lo strato limit sottil pag. 3. Intgrazion nmrica dll qazioni indfinit di Prandtl. 11 3. Lo strato

Dettagli

APPROFONDIMENTI SUI NUMERI

APPROFONDIMENTI SUI NUMERI APPROFONDIMENTI SUI NUMERI. Il sistem di umerzioe deimle Be presto, ll operzioe turle del otre, si è ggiut l esigez di «rppresetre» i umeri. I sistemi di umerzioe possiili soo molti; per or i limitimo

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Z>,n zorrr Reg. Gen. IL CAPO AREA AA.GG

Z>,n zorrr Reg. Gen. IL CAPO AREA AA.GG Piazza Toselli n. 1-96010 Buccheri (SR) Tel. 0931880359 - Fax 0931880559 DETERMINA DEL CAPO AREA AFFARI GENERATI DETERMINAN,/UóDEL Z>,n zorrr Reg. Gen. Oggetto: Liquidazione fatîure a ll'associazio ne

Dettagli

Comparazione delle performance di 6 cloni di Gamay ad altitudine elevata

Comparazione delle performance di 6 cloni di Gamay ad altitudine elevata Comprzione delle performnce di 6 cloni di Gmy d ltitudine elevt 1 / 46 Motivzioni Selezione clonle IAR-4 Lo IAR-4 è stto selezionto in mbiente montno d un prticolre popolzione di mterile stndrd, dll qule

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Tutti i nostri viaggi prevedono una copertura assicurativa inclusa nella Quota d Apertura Pratica,

Tutti i nostri viaggi prevedono una copertura assicurativa inclusa nella Quota d Apertura Pratica, ppur Tutti i nstri viggi prvdn un cprtur ssicurtiv clus nl Qut d Aprtur Prtic, grntit d Tutti i nstri viggi prvdn un cprtur ssicurtiv tiv utmticmnt clus nl Qut d iscriz, iz ssicurt t d In clbrz z cn 34

Dettagli

Le spese di ricerca e sviluppo: gestione contabile ed iscrizione in bilancio *

Le spese di ricerca e sviluppo: gestione contabile ed iscrizione in bilancio * www.solmp.it Le : gestione contbile ed iscrizione in bilncio * Piero Pisoni, Fbrizio Bv, Dontell Busso e Alin Devlle ** 1. Premess Le sono esminte nei seguenti spetti: Il presente elborto è trtto d: definizione

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Lo studio di unzione Ing. Alessandro Pochì Appunti di analisi Matematica per la Classe VD (a.s. 011/01) Schema generale per lo studio di una unzione Premessa Per Studio unzione si intende, generalmente,

Dettagli

a Crediamo nel concetto di cucina a chilometro zero e nei prodotti di stagione, crediamo nel rispetto dell ambiente e delle tradizioni.

a Crediamo nel concetto di cucina a chilometro zero e nei prodotti di stagione, crediamo nel rispetto dell ambiente e delle tradizioni. Credimo nel concetto di cucin chilometro zero e nei prodotti di stgione, credimo nel rispetto dell mbiente e delle trdizioni. L nostr propost enogstronomic è bst sull riscopert delle ricette più semplici

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO

SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO Così come avviene per i numeri ( 180 = 5 ), la scomposizione in fattori di un polinomio è la trasformazione di un polinomio in un prodotto di più polinomi irriducibili

Dettagli

Codici bifissi ed insiemi Sturmiani

Codici bifissi ed insiemi Sturmiani Università degli Studi di Plermo Fcoltà di Scienze MM. FF. NN. Corso di Lure Specilistic in Mtemtic Codici ifissi ed insiemi Sturmini Studente Frncesco Dolce Reltore Prof. Antonio Restivo Anno Accdemico

Dettagli

Il presente Regolamento Particolare di Gara. è stato approvato in data con numero di approvazione RM / CR /2015.

Il presente Regolamento Particolare di Gara. è stato approvato in data con numero di approvazione RM / CR /2015. Vrsion 5 3 Agosto Valità 2015 la Manifstazion : Campionato Italiano Rally Assoluto Campionato Italiano Rally Junior Campionato Italiano Rally Costruttori Coppa ACI-SPORT Rally CIR Equipaggi Inpndnti Coppa

Dettagli

JOHANN SEBASTIAN BACH Invenzioni a due voci

JOHANN SEBASTIAN BACH Invenzioni a due voci JOH EBTI BCH Invnzon a u voc BWV 772 7 cura Lug Catal trascrzon ttuata con UP htt//ckngmuscarchvorg/ c 200 Lug Catal (lucatal@ntrrt) Ths ag s ntntonally lt ut urchtg nltung Wormt nn Lbhabrn s Clavrs, bsonrs

Dettagli

TASSI DI ASSENZA, MAGGIOR PRESENZA E ASSENTEISMO NETTO DEL PERSONALE DIPENDENTE DIVISO PER AREE DIRIGENZIALI (compresi i Dirigenti)

TASSI DI ASSENZA, MAGGIOR PRESENZA E ASSENTEISMO NETTO DEL PERSONALE DIPENDENTE DIVISO PER AREE DIRIGENZIALI (compresi i Dirigenti) CAMERA DI COMMERCIO NUMERO UNITA' DI PERSONALE 333 333 333 329 332 332 329 328 363 365 360 358 1.256 996 896 1.691 879 1.089 1.736 3.368 1.157 817 1.049 1.543 B) GIORNI LAVORATI COMPLESSIVI 5.709 5.962

Dettagli

F N dell'area edificata in settori a pericolosità geologica elevata individuata nella "Carta di Sintesi" 25 27 B LOCALITA'

F N dell'area edificata in settori a pericolosità geologica elevata individuata nella Carta di Sintesi 25 27 B LOCALITA' LOALITA' Aa NTRO STORIO I b γ Ab NTRO STORIO I Ac NTRO STORIO I a LASS I IONITA' URANISTIA IR. 7/LAP ascia fluviale ex PS PRSRIZIONI INTGRATIV RISPTTO Presenza di tratti stradali, convoglianti le acque

Dettagli

. analisi teorica (studio di esistenza, unicità della soluzione, sensitività rispetto ai dati, regolarità, comportamento qualitativo).

. analisi teorica (studio di esistenza, unicità della soluzione, sensitività rispetto ai dati, regolarità, comportamento qualitativo). 1 Modelli matematici Un modello è un insieme di equazioni e altre relazioni matematiche che rappresentano fenomeni fisici, spiegando ipotesi basate sull osservazione della realtà. In generale un modello

Dettagli

www.scuolainweb.altervista.org Problemi di Fisica La Dinamica

www.scuolainweb.altervista.org Problemi di Fisica La Dinamica www.suolinweb.ltevist.og L Dinmi Poblemi di isi L Dinmi PROBLEA N. Un opo di mss m 4 kg viene spostto on un foz ostnte 3 N su un supefiie piv di ttito pe un ttto s,3 m. Supponendo he il opo inizilmente

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

I N D I C A Z I O N E D E L L E P R E S T A Z I O N I

I N D I C A Z I O N E D E L L E P R E S T A Z I O N I Srvizio Tnio i Bino Romgn S i Rimini Lvori: 11162_INTERVENTI DI MITIGAZIONE DEL DISSESTO E MESSA IN SICUREZZA DELLA STRADA PROVINCIALE SP. 84 VALPIANO MIRATOIO, IN LOCALITA CA GUIDI LA PETRA, IN COMUNE

Dettagli