Corso di ordinamento - Sessione suppletiva - a.s

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010"

Transcript

1 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno su di ss tr punti A, B, C, tli ch AB BC.. Si clcoli, in unzion dll ngolo AÔB, l quntità: controllndo ch risulti: ( ) cos cos. Si studi l unzion () si trcci il suo grico γ nll intrvllo π. Si vriichi ch l curv γ è simmtric risptto ll rtt di quzion π. Si clcoli il vlor mdio dll unzion () nll intrvllo π. PROBLEMA Si dt l unzion ( ). Si dtrmini il dominio di () si dic s l unzion è continu drivil in ogni punto di sso.. Si studi l unzion () s n trcci il grico γ.. Si clcoli l r dll prt di pino R rcchius dl grico γ dl smiss positivo dll sciss.. L rgion R gnr, nll rotzion ttorno ll ss dll sciss, un solido S. In S si inscriv un cono circolr rtto con vrtic nll origin. Si dtrminino rggio ltzz dl cono, inchè il suo volum si mssimo. QUESTIONARIO. In cim d un rocci picco sull riv di un ium è stt costruit un torrtt d ossrvzion lt mtri. L mpizz dgli ngoli di dprssion pr un punto situto sull riv oppost dl ium, misurt rispttivmnt dll s dll sommità dll torrtt, sono pri. Si dtrmini l lrghzz dl ium in qul punto.. Considrt l unzion ( ), dov è un costnt rl positiv, si dtrmini tl costnt, spndo ch lim ( ).. Su un pino orizzontl α si pongono un cono circolr rtto, il cui rggio di s è r l ltzz r, un sr di rggio r. A qul distnz dl pino α isogn sgr qusti du solidi con un pino orizzontl ß, prché l somm dll r dll szioni così ottnut si mssim?

2 Corso di ordinmnto - Sssion suppltiv -.s. 9-. Si dimostri ch pr gli zri di un unzion ( ) c vl l rlzion ) ( ) si di un intrprtzion gomtric dll rmzion dimostrt. ( ( ). Si clcoli il vlor mdio dll unzion ( ), nll intrvllo.. Si dtrminino in modo tl ch il grico dll unzion y pssi pr i punti dl pino y di coordint (,) (,). 7. Un ttrdro d un ottdro rgolri hnno gli spigoli dll stss lunghzz l. Si dimostri ch il volum dll ottdro è il qudruplo di qullo dl ttrdro.. Si trovi l quzion dll rtt tngnt ll curv di quzioni prmtrich t y nl suo punto di coordint (,). t 9. Si dimostri ch s un unzion () è drivil nl punto, ivi è nch continu; si porti un smpio di unzion continu in un punto ivi non drivil.. Si dimostri ch l dirnz di qudrti di du lti di un tringolo è ugul ll dirnz di qudrti dll rispttiv proizioni di lti stssi sul trzo lto dl tringolo.

3 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA Punto Considrimo l igur di sguito. B O A C Posto A ÔB si h ABˆ O OÂB. L ngolo l vrtic è A Bˆ C ABˆ O. Applicndo il torm di Crnot l tringolo AOB si h: AB AO OB AO OB cos ( ) cos( ) cos( ) Anlogmnt, pplicndo il torm di Crnot l tringolo ABC si h: AC AC Quindi: AB Punto )AB BC ( ) ( ) ( ) ) cos cos AB BC AB BC cos AB AB cos( ) AB [ cos( ) ] [ cos( ) ] [ cos( ) ] [ cos( ) ] [ cos( ) ] cos ( ) [ cos( )] cos ( ) [ ] cos ( ) cos( ) BC CA Studimo l unzion ( ) cos ( ) cos( ) [ cos( ) ] [ cos( ) ] in [,π] Dominio: [,π]; Intrszion ss sciss: ( ) [ cos( ) ] [ cos( ) ] ( ) cos > Intrszion ss ordint: ( ) Simmtri: l unzion è priodic di priodo [,π] ( ) π cos T π pri in qunto ( ) cos ( ) cos( ) cos ( ) cos( ) ( ) Positività: ( ) > cos( ) > cos( ) (,π) ; ;

4 Corso di ordinmnto - Sssion suppltiv -.s. 9- Asintoti vrticli: non v n sono in qunto l unzion è priodic limitt; Asintoti orizzontli: non v n sono in qunto l unzion è priodic limitt; Asintoti oliqui: non v n sono in qunto l unzion è priodic limitt; Crscnz dcrscnz: l drivt prim è ( ) sin( ) cos( ) sin( ) sin( ) [ cos( ) ] ; di sguito il qudro di sgni sin cos ( ) ( ) ( ) > π π π > π π π > π sin ( ) cos( ) π π π π Dl qudro soprstnt dducimo ch l π π du mssimi rltivi in M,9, M, 9 ; m ( π,) unzion prsnt un minimo rltivo in [ ] Concvità convssità: l drivt scond è ( ) cos ( ) cos( ) pr cui rccos ( ) > cos( ) cos( ) π rccos π rccos π rccos π > Quindi l unzion prsnt concvità vrso l lto in, rccos π rccos π rccos, π rccos,π prsnt quttro lssi tngnt oliqu in

5 Corso di ordinmnto - Sssion suppltiv -.s. 9- rccos π rccos,, π rccos Il grico è di sguito prsntto:,, π rccos 7,,, Punto Un unzion è simmtric risptto ll rtt k s ( ) ( k ). Nl cso in sm ( π ) cos ( π ) cos( π ) cos ( ) cos( ) ( ) pr cui ( ) simmtric risptto ll rtt Punto π. Il vlor mdio di un unzion ( ) in [ ] M π π π π π cos [ ( ) ( ) ] ( ) cos cos d π π è, è M ( )d. Nl cso in sm π [ cos( ) cos( ) ] d [ sin( ) sin( ) ] π cos ( ) π d

6 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA Punto Il dominio dll unzion ( ) Nl dominio l unzion è continu. L drivt prim è ( ) è dto d:. d cui dducimo ch l unzion non è drivil ni punti ± in cui prsnt un tngnt vrticl; intti lim ( ) lim ( ) dominio sclusi i punti con sciss ±. Punto Studimo l unzion ( ) Dominio: ;. In conclusion l unzion è drivil in tutti i punti dl Intrszion ss sciss: ( ) Intrszion ss ordint: ( ) Simmtri: l unzion è dispri in qunto ( ) ( ) ( ) Positività: > > ( ) > Asintoti vrticli: non v n sono in qunto lim ( ) lim ( ) Asintoti orizzontli: non sistono visto il dominio chiuso [,] ; Asintoti oliqui: non sistono visto il dominio chiuso [,] ; Crscnz dcrscnz: l ; drivt prim è ( ) ; il qudro di sgni è lto prsntto: d sso dducimo l prsnz di un minimo rltivo

7 Corso di ordinmnto - Sssion suppltiv -.s. 9-7, m d un mssimo rltivo, M ; Concvità convssità: l drivt scond è ( ) ( ) ( ) ( ) ( ) ( ) pr cui, ricordndo ch il dominio è, si h ( ) > > > cioè l unzion prsnt concvità vrso l lto in ( ), vrso il sso in ( ), ; l unzion prsnt quindi un lsso tngnt oliqu ( ), F con tngnt inlssionl di quzion y. Di sguito il grico: Punto L r richist è pri ( ) ( ) d d d d S Punto Si ( ), P con un punto gnrico pprtnnt l rmo dl primo qudrnt dll unzion ( ). Il rggio dl cono inscritto srà pri ll ordint dl punto P cioè R mntr l ltzz srà pri ll sciss cioè h. Il volum dl cono srà llor ( ) ( ) ( ) h R π π π. L mssimizzzion l ttuimo mdint

8 Corso di ordinmnto - Sssion suppltiv -.s. 9- drivzion: l drivt prim è ( ) ( ) π pr cui l unzion volum, ricordndo l limitzion gomtric è strttmnt crscnt in, strttmnt dcrscnt in, d cui dducimo ch il volum è mssimo qundo l ltzz è pri d il rggio è pri R. Il vlor mssimo è prtnto pri 9 π π.

9 Corso di ordinmnto - Sssion suppltiv -.s. 9- QUESTIONARIO Qusito Considrimo l igur lto. Doimo clcolr l lunghzz dl sgmnto PO. Applicndo il torm di tringoli rttngoli i tringoli POT OH si h l rlzion ( ) PO tn( ) PO tn d cui PO 9m Qusito Il limit richisto si prsnt nll orm indtrmint pr cui possimo pplicr il torm di d lim l Hospitl: Qusito si h lim 7 ln ln Si considri l igur sgunt: A ln lim ln ln ln 7 ln ln ln. Imponndo ln ln ln ln ln ln ln 7. O K L D E B H C F Indichimo con, r, l distnz tr pini α β. L intrszioni dl pinoβ con il cono l sr sono du circonrnz rispttivmnt di rggio 9

10 Corso di ordinmnto - Sssion suppltiv -.s. 9- R C KL or i du rggi: R S DE. L somm dll r dll szioni è quindi S π π R C R S. Clcolimo Rggio R C I tringolo AKL AHC sono simili ssndo ntrmi rttngoli con un ngolo in comun pr cui vl l sgunt proporzion tr lti omologhi: ( r ) AK : KL AH : HC d cui AK HC r KL r pr cui l r dll circonrnz di rggio AH r KL r è Rggio R S A C RC π r π ; Il tringolo ODE è rttngolo pr cui DE OE OD r ( r ) r pr cui l r dll circonrnz di rggio R S R S DE r è AS π RS π ( r ). π con L somm dll r è quindi ( ) S r π ( r ) π r r. Notimo ch l unzion ( ) r il mssimo nll sciss dl vrtic mssim pr r vl S r S è un prol con concvità vrso il sso ch prsnt r r ; quindi l somm dll du r è 9 π r r r r πr. Altrntivmnt possimo prosguir mdint drivzion: l drivt prim dll unzion S ( ) è S ( ) π r pr cui S ( ) > r d cui dducimo ch ( ) crscnt in, r strttmnt dcrscnt in r, r r è l sciss dl mssimo. Qusito Gli zri dll quzion c sono S è strttmnt S pr cui ; inoltr ( ) π c c, ; l drivt prim di ( ) c è ( ) pr cui

11 Corso di ordinmnto - Sssion suppltiv -.s. 9- ( ) ( ) c c c c d cui dducimo ch ( ) ( ). Pr dr un intrprtzion gomtric l risultto ottnuto riscrivimo l somm ( ) ( ) [ ] : ss è pri ( ) ( ) ( ) ( ) ( ) imponndo ch si null ottnimo ( ) o quivlntmnt ( ). L rlzion ppn ricvt ci dic ch l smisomm dll soluzioni è pri ch è l sciss dl vrtic; in ltri trmini gli zri dll prol sono simmtrici risptto ll rtt coincidnt con l ss di simmtri dll prol. Qusito Il vlor mdio di un unzion ( ) in [ ], è ( )d M. Nl cso in sm ( ) d M ; pplicndo l intgrzion pr prti si h ( ) ( ) ( ) d d d M Qusito L s dll unzion potnz dv ssr >. Imponndo il pssggio pr i punti ( )( ),,, si h: in cui l soluzion è stt scrtt in qunto non soddis l condizion >. Qusito 7 Considrimo il ttrdro l ottdro sottostnti:

12 Corso di ordinmnto - Sssion suppltiv -.s. 9- Clcolimo i du volumi. olum ttrdro L ltzz di ognuno di tringoli quiltri componnti è DK l ; ricordndo ch l ortocntro di un tringolo quiltro divid ognun dll tr ltzz in du prti di cui un doppi dll ltr si h KH l l pr cui l ltzz dl ttrdro è pri DH DK KH l l l ; il volum è llor pri l l A h l ; T olum ottdro Il volum dll ottdro può ssr visto com l somm di volumi dll du pirmidi componnti. In ccordo con l igur soprstnt si h l OH, CH l, CO CH OH l pr cui il volum di un dll du pirmidi è l l A h l pr cui il volum dll ottdro è P corrispond l qudruplo dl volum dl ttrdro. P l ch O

13 Corso di ordinmnto - Sssion suppltiv -.s. 9- Qusito L quzioni prmtrich possono ssr scritt com t y y ; l quzion dll rtt tngnt in (,) l drivt prim dll unzion y è t d cui dducimo l curv è y m( ) con y ( ) ( ) conclusion l quzion dll rtt tngnt è ( ) Qusito 9 Dimostrzion ( ) ( ) Ipotsi: inito il limit lim ( ) Tsi: lim ( ) ( ) ( ) ( ) Scrivimo: ( ) ( ) ( ) Sgu: ( ) ( ) lim ( ) lim ( ) lim ( ) ( ( ( ) ( ) ) lim lim( ) ( ) ( ) ( ) com volvsi dimostrr. ) m ; y pr cui m y ( ) ; in y. S l drivilità in un punto n implic l continuità, non vl il vicvrs. Bst prndr in considrzion l unzion ( ) s s in in cui prsnt un punto ngoloso in qunto lim ( ) lim ( ) lim ( ) lim ( ) ch risult ssr continu m non drivil

14 Corso di ordinmnto - Sssion suppltiv -.s. 9- Qusito Considrimo l igur lto. I tringoli AHB d AHC sono rttngoli in H. Applicndo il torm di Pitgor d ntrmi si h: A AB AC AH AH BH HC Sottrndo mmro mmro si h: AB AC ( AH BH ) ( AH HC ) BH HC coincid con qunto volvmo dimostrr. B H C ch

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

L ELLISSOIDE TERRESTRE

L ELLISSOIDE TERRESTRE L ELLISSOIDE TERRESTRE Fin dll scond mtà dl XVII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di rifrimnto pr l Trr è stt individut in un ELLISSOIDE DI ROTAZIONE. E l suprfici

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

CORSO DI TOPOGRAFIA A - A.A. 2006-2007 ESERCITAZIONI - 09.05.07 ALLEGATO al file Esercizi di geodesia. r a. Z c. nella quale

CORSO DI TOPOGRAFIA A - A.A. 2006-2007 ESERCITAZIONI - 09.05.07 ALLEGATO al file Esercizi di geodesia. r a. Z c. nella quale CORSO DI TOPOGRAFIA A - A.A. 6-7 ESERCITAZIONI - 9.5.7 ALLEGATO l fil Esrcizi di godsi Ellissoid trrstr Fin dll scond mtà dl VII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI

SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI PROBLEMA SESSIONE ORDINARIA 0 CORSI SPERIMENTALI Sia ( x) ln ( x) ln x sia ( x) ln ( x) ln x.. Si dtrmino i domini di di.. Si disnino, nl mdsimo sistma di assi cartsiani ortoonali Oxy, i raici di di..

Dettagli

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le Pro. Frnando D Anglo. class 5DS. a.s. 007/008. Nll pagin sgunti trovrt una simulazion di sconda prova su cui lavorrmo dopo l vacanz di Pasqua. Pr mrcoldì 6/03/08 guardat il problma 4 i qusiti 1 8 9-10.

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE L funzioni iprbolich sono funzioni spcili dott di proprità formlmnt simili qull di cui sono dott l funzioni goniomtrich ordinri. Anch l loro dfinizion in trmini gomtrici è molto simil

Dettagli

Matematica 15 settembre 2009

Matematica 15 settembre 2009 Nom: Mtriol: Mtmti 5 sttmbr 2009 Non sono mmss loltrii. Pr l domnd rispost multipl, rispondr brrndo o rhindo hirmnt un un sol lttr. Pr l ltr domnd srivr l soluzion on svolgimnto ngli spzi prdisposti..

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Mhin non ompltmnt spifit Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spifit Comptiilità Vrsion l 5/12/02 Sono mhin in ui pr lun onfigurzioni

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Costruiamo un aquilone SLED

Costruiamo un aquilone SLED Costruimo un quon SLED Sgnr sul sgmnto cod du rifrimnti 3 cm dgli spigoli (vrso l'trno) poi sul bordo ntrior dll du li 11 cm dgli spigoli (vrso l'strno); qusto punto si dvono pplicr l du mnich sul bordo

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S Sessione ordinri 996 Liceo di ordinmento Soluzione di De Ros Nicol ) In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le prbole di equzione:, dove è un numero rele positivo.

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes I Teoremi di Green, dell divergenz o di Guss e di Stokes In R Si un sottoinsieme limitto di R semplice rispetto d entrmbi gli ssi crtesini con costituit dll unione di un numero finito di sostegni di curve

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti Problemi di mssimo e minimo in Geometri olid Problemi su poliedri Indice dei problemi risolti In generle, un problem si riferisce un figur con crtteristice specifice (p.es., il numero dei lti dell bse)

Dettagli

Successioni numeriche

Successioni numeriche 08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl

Dettagli

Diagrammi di Influenza (Influence Diagrams: ID)

Diagrammi di Influenza (Influence Diagrams: ID) Digrmmi di Influnz (Influnc Digrms: ID) Linguggio pr l rpprsntzion grfic di prolmi dcisionli Crttristich vntggi prmttono un rpprsntzion dll struttur gnrl dl prolm, st su un pproccio visul prmttono di formlizzr

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

MODELLI DEI SISTEMI ELETTROMECCANICI

MODELLI DEI SISTEMI ELETTROMECCANICI Ing Mrigrzi Dotoli Controlli Autotici NO (9 CFU) Modlli di Sisti Elttroccnici MODELLI DEI SISTEMI ELETTROMECCANICI Nl sguito ci occupio dll odllzion di sisti ibridi ch cobinno sisti lttrici con sisti ccnici,

Dettagli

+ poligoni e l equivalenza di figure piane + triangoli + quadrilateri

+ poligoni e l equivalenza di figure piane + triangoli + quadrilateri + poligoni + poligoni l quivlnz i figur pin + tringoli + quriltri + poligoni l quivlnz i figur pin 1 Stilisi s l sgunti ffrmzioni sono vr o fls. SEZ. E In un poligono i lti sono onsutivi u u. L somm gli

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

Capitolo 7 - Predizione lineare

Capitolo 7 - Predizione lineare Appunti di lborzion numric di sgnli Cpitolo 7 - Prdizion linr Introduzion... rror mdio di prvision...3 Ossrvzion: prdizion linr com sbinctor dll squnz di ingrsso 5 Ortogonlità tr dti d rror...6 Vlor minimo

Dettagli

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4 Corso di Laura in Economia Matmatica pr l applicazioni conomich finanziari Esrcizi 4 Vrificar s l sgunti funzioni, nll intrvallo chiuso indicato, soddisfano l ipotsi dl torma di Roll, in caso affrmativo,

Dettagli

Circuiti Sequenziali Macchine Non Completamente Specificate

Circuiti Sequenziali Macchine Non Completamente Specificate CEFRIEL Consorzio pr l Formzion l Rir in Inggnri ll Informzion Politnio i Milno Ciruiti Squnzili Mhin Non Compltmnt Spifit Introuzion Comptiilità Riuzion l numro gli stti Mtoo gnrl FSM non ompltmnt spifit

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali Problemi di Fisic Moti unidimensionli Moti nel pino. Moti unidimensionli Problem N. Rppresentre grficmente le seguenti leggi del moto rettilineo uniforme e commentrle: ) S 0 -t ) S 5t 3) S -0 + 3t 4) S

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 005 Sessione suppletiv Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PROBLEMA Sono dti un pirmide

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h?

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h? 1) L unità l SI pr l tmprtur l mss sono, rispttivmnt gri grmmi klvin kilogrmmi Clsius milligrmmi Clsius kilogrmmi klvin grmmi 2) Qul mtril ffon nll olio ( = 0,94 g/m 3 )? ghiio ( = 0,92 g/m 3 ) sughro

Dettagli

Corso di Fisica Tecnica (ING-IND/11). 1 anno laurea specialistica in architettura: indirizzo città Docente: Antonio Carbonari

Corso di Fisica Tecnica (ING-IND/11). 1 anno laurea specialistica in architettura: indirizzo città Docente: Antonio Carbonari Corso di Fisic cnic (ING-IND/). nno lur spcilistic in rchitttur: indirizzo città Docnt: Antonio Crbonri Cpitolo I Il sistm città l uso pproprito dll nrgi.. Introduzion Un insdimnto urbno è un sistm strmmnt

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

L INTEGRALE DEFINITO b f (x) d x a 1

L INTEGRALE DEFINITO b f (x) d x a 1 L INTEGRALE DEFINITO ( ) d ARGOMENTI. Il Trpezoide re del Trpezoide. L itegrle deiito de. Di Riem. Proprietà dell itegrle deiito teorem dell medi. L uzioe itegrle teorem di Torricelli-Brrow e corollrio

Dettagli

Modelli equivalenti del BJT

Modelli equivalenti del BJT Modll ulnt dl JT Pr lo studo dll pplczon crcutl dl JT, s è rso opportuno formulr d modll ulnt dl dsposto ch srssro rpprsntr n modo connnt l suo comportmnto ll ntrno d crcut. A scond dl tpo d pplczon (mplfczon

Dettagli

CHIARA ZUCCHELLI. Florenzi, arriva il premio: contratto fino al 2016 e stipendio aumentato. Scritto da Redazione Giovedì 04 Ottobre 2012 07:31 -

CHIARA ZUCCHELLI. Florenzi, arriva il premio: contratto fino al 2016 e stipendio aumentato. Scritto da Redazione Giovedì 04 Ottobre 2012 07:31 - Flornzi rriv il prmio: contrtto fino l 2016 stipno umntto CHIARA ZUCCHELLI Il prmio più mritto rrivto Com nnuncito si d Sbtini si dl suo gnt Alssndro Lucci rrivto il rinnovo dl contrtto Alssndro Flornzi

Dettagli

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Sessione straordinaria - a.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Tema di: MATEMATICA a.s. 9- Svolgimento a cura di Nicola De Rosa Il candidato risolva uno

Dettagli

RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI

RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI 2 L soluzion dimnsionl ottiml pr signz prtiolri Rordi on snz ihir Innsti on snz ihir Clssi sondo nssità Dimtro di usit vriil Collgmnto l fondo

Dettagli

Integrali curvilinei e integrali doppi

Integrali curvilinei e integrali doppi Integrli curvilinei e integrli doppi Integrli curvilinei di prim specie Prim di inizire l trttzione di questo rgomento dimo l definizione di curv. Per curv nello 3 3 spzio R intendimo un sottoinsieme di

Dettagli

Minimizzazione degli Stati in una Rete Sequenziale Sincrona

Minimizzazione degli Stati in una Rete Sequenziale Sincrona Minimizzzion gli Stti in un Rt Squnzil Sinron Murizio Plsi Murizio Plsi 1 Sintsi i Rti Squnzili Sinron Il proimnto gnrl i sintsi si svolg ni sgunti pssi: 1. Rlizzzion l igrmm gli stti prtir ll spifih l

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

Equivalenza tra equazioni di Lagrange e problemi variazionali

Equivalenza tra equazioni di Lagrange e problemi variazionali Equivlenz tr equzioni di Lgrnge e problemi AM Cherubini 20 Aprile 2007 1 / 21 Problemi Mostrimo or come si possono ricvre sistemi di equzioni con struttur lgrngin in un mbito diverso: prim si er crtterizzt

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

Ing. Gestionale Ing. Informatica Ing. Meccanica Ing. Tessile. Cognome Nome Matricola

Ing. Gestionale Ing. Informatica Ing. Meccanica Ing. Tessile. Cognome Nome Matricola Ing Gstional Ing Informatica Ing Mccanica Ing Tssil Cognom Nom Matricola Univrsità dgli Studi di Brgamo Scondo Compitino di Matmatica II ) Si considri la matric 2 3 3 2 Si calcolino gli autovalori gli

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

Minimizzazione degli Stati in una macchina a stati finiti

Minimizzazione degli Stati in una macchina a stati finiti Rti Loih Sintsi i rti squnzili sinron Minimizzzion li Stti in un mhin stti initi Proimnto: Spiih Dirmm li stti Tll li stti Minimizzzion li stti Coii li stti Tll ll trnsizioni Slt lmnti i mmori Tll ll itzioni

Dettagli

PIANI DI AMMORTAMENTO

PIANI DI AMMORTAMENTO ESERCITAZIONE MATEMATICA FINANZIARIA 09//203 PIANI DI AMMORTAMENTO Pino di mmortmento Itlino Esercizio 2 ESERCIZIO Si clcoli il pino di mmortmento quot cpitle costnte e rt semestrle reltivo d un prestito

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione ll lgebr E. Modic ersmo@glois.it Liceo Scientifico Sttle S. Cnnizzro Corso P.O.N. Modelli mtemtici e reltà A.S. 2010/2011 Premess Codificre e Decodificre Nell vit quotidin ci cpit spesso di

Dettagli

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x) Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

June 14, 2011. solidi e realtà.notebook. apr 6 17.59. mar 20 12.20. mar 17 18.22. mar 17 18.23

June 14, 2011. solidi e realtà.notebook. apr 6 17.59. mar 20 12.20. mar 17 18.22. mar 17 18.23 solidi e reltà.noteook Un solido è un prte di spzio delimitt d un superficie cius. SOLII E RELT' (immgini per l mtemtic) I solidi delimitti d poligoni vengono cimti poliedri I solidi ce nno superfici curve

Dettagli

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1 Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati

Dettagli

MODALITA DIVALUTAZIONE DEGLI STUDENTI CON CARENZE NEL SECONDO QUADRIMESTRE ESITO SOSPESO MATEMATICA BIENNIO. Coordinatrice: Prof. ANTONINA CASTANIOTTO

MODALITA DIVALUTAZIONE DEGLI STUDENTI CON CARENZE NEL SECONDO QUADRIMESTRE ESITO SOSPESO MATEMATICA BIENNIO. Coordinatrice: Prof. ANTONINA CASTANIOTTO LICEO SCIENTICO STATALE LEONARDO DA VINCI GENOVA.s.04-5 MODALITA DIVALUTAZIONE DEGLI STUDENTI CON CARENZE NEL SECONDO QUADRIMESTRE ESITO SOSPESO MATEMATICA BIENNIO Coordintrice: Prof. ANTONINA CASTANIOTTO

Dettagli

Progressioni geometriche

Progressioni geometriche Progressioi geometriche Comicimo co due esempi: Esempio Cosiderimo l successioe di umeri:, 6,, 4, 48, 96 L successioe è tle che si pss d u termie l successivo moltiplicdo il precedete per. Si dice che

Dettagli

CLIMATIZZAZIONE DI AMBIENTI CONFINATI: FUNZIONE COMPENSATRICE DEGLI IMPIANTI

CLIMATIZZAZIONE DI AMBIENTI CONFINATI: FUNZIONE COMPENSATRICE DEGLI IMPIANTI Corso di Impinti Tcnici.. 2009/2010 Docnt: Prof. C. Istti CAPITOLO 4 : FUNZIONE COMPENSATRICE DEGLI IMPIANTI 4.1 Gnrlità Col trmin impinto di climtizzzion si intnd un dispositivo cpc di compnsr i flussi

Dettagli

LA RESPIRAZIONE ORALE E LE SUE CORRELAZIONI CON LO SVILUPPO CRANIOFACCIALE

LA RESPIRAZIONE ORALE E LE SUE CORRELAZIONI CON LO SVILUPPO CRANIOFACCIALE LA RESPIRAZIONE ORALE E LE SUE CORRELAZIONI CON LO SVILUPPO CRANIOFACCIALE www.pg.it cur dll S.I.O.I. (Socità Itlin di Odontoitri Infntil ) Cos è Con il trmin rspirzion orl si indic un situzion noml in

Dettagli

Teorema della Divergenza (di Gauss)

Teorema della Divergenza (di Gauss) eorem dell ivergenz (di Guss) i un dominio tridimensionle regolre, l cui frontier è un superficie chius orientt con cmpo normle unitrionˆ uscente d. e F(,,z) F (,,z) i F (,,z) j F (,,z) k è un cmpo vettorile

Dettagli

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA Nome.Cognome. 8 Dicembre 008 Clsse G VERIFICA di MATEMATICA A) Risolvi le seguenti disequzioni goniometriche sin ) sin + ) 0 6 tn cos + sin ) 0 (punti:0,5) ) tn + tn > 0 sin 5) sin > cos (punti: ) 6) sin

Dettagli

INTEGRALI DOPPI Esercizi svolti

INTEGRALI DOPPI Esercizi svolti INTEGRLI OPPI Esrcizi svolti. Calcolar i sgunti intgrali doppi: a b c d f g h i j k y d dy, {, y :, y }; d dy, {, y :, y }; + y + y d dy, {, y :, y }; y d dy, {, y :, y }; y d dy, {, y :, y + }; + y d

Dettagli

Allegato D - ELENCO DEI COSTI - COMPUTO DEI SERVIZI E. Settore Tecnico DETERMINAZIONE DELL'IMPORTO D'APPALTO

Allegato D - ELENCO DEI COSTI - COMPUTO DEI SERVIZI E. Settore Tecnico DETERMINAZIONE DELL'IMPORTO D'APPALTO C I T T À DI SQUILLACE -Prov. di Catanzaro- (Piazza Municipio, 1 88069 SQUILLACE- tl. 0961/912040-fax 0961/914019) -mail:utsquillac@libro.it-partita I.V.A 00182160796) Sttor Tcnico PROGETTO DI IGIENE URBANA

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

ANTON FILIPPO FERRARI

ANTON FILIPPO FERRARI ANTON FILIPPO FERRARI L Rom lo h prticmnt prso C è un ccordo mssim vnno dfiniti i dttgli in pr tic l controprtit tcnich Ngli ultimi du nni molti tifosi itlini in prticolr qulli dll Uns lo hnno conosciuto

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

ITALMOBILIARE SOCIETA PER AZIONI

ITALMOBILIARE SOCIETA PER AZIONI ITALMOBILIARE SOCIETA PER AZIONI COMUNICATO STAMPA Informazioni rlativ ai piani di stock option di ITALMOBILIARE S.p.A. ITALCEMENTI S.p.A. già sottoposti alla dcision di rispttivi organi comptnti antcdntmnt

Dettagli

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione Lzion 6 (BAG cap. 5) Mrcati finanziari aspttativ Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia Schma Lzion Ruolo dll aspttativ nl dtrminar ii przzi di azioni obbligazioni Sclta fra tanti

Dettagli

Grandezze, funzioni empiriche e matematiche. 1 Stabilisci se le seguenti affermazioni sono vere o false.

Grandezze, funzioni empiriche e matematiche. 1 Stabilisci se le seguenti affermazioni sono vere o false. Grnzz unzioni Grnzz, unzioni mpirih mtmtih Grnzz irttmnt invrsmnt proporzionli Applizioni ll proporzionlità Grnzz, unzioni mpirih mtmtih Stilisi s l sunti rmzioni so vr o ls. SZ. I Un rnzz è vriil s ssum

Dettagli

Il calcolo integrale: intro

Il calcolo integrale: intro Il clcolo integrle: intro Le ppliczioni del clcolo integrle sono svrite: esistono, inftti, molti cmpi, dll fisic ll ingegneri, dll iologi ll economi, in cui si f lrgo uso degli integrli. Per fornire l

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

SPERIMENTAZIONE PROGETTO TELELAVORO CUSTOMER SERVICES

SPERIMENTAZIONE PROGETTO TELELAVORO CUSTOMER SERVICES 1 SPERIMENTAZIONE PROGETTO TELELAVORO CUSTOMER SERVICES 21 Luglio 2008 2 SPERIMENTAZIONE TELELAVORO Contct Cntr coinvolti: Rom (2 prson) Npoli (8 prson) Srvizi gstiti in tllvoro: 186 Rom Off Lin Npoli

Dettagli

METTITI ALLA PROVA. b. Posto che a, b e c siano i valori trovati al punto precedente, calcola: lim fx ( ); lim fx ( ).

METTITI ALLA PROVA. b. Posto che a, b e c siano i valori trovati al punto precedente, calcola: lim fx ( ); lim fx ( ). Mettiti ll prov METTITI ALLA PROVA Limiti e continuità b - + c e, c Si dt l funzione f ( ) se $ 0! = * sin, con b,! R, c! R + se 0 Ricv i vlori di, b e c in modo tle che: f() si continu in = 0 ; lim f

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

Sistemi lineari COGNOME... NOME... Classe... Data...

Sistemi lineari COGNOME... NOME... Classe... Data... Cpitolo Sistmi linri Risoluzion grfi lgri rifi pr l lss prim COGNOME............................... NOME............................. Clss.................................... Dt...............................

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

e n. inquinante 2 Frantoio 20.000 3 10 0,70 F.T.

e n. inquinante 2 Frantoio 20.000 3 10 0,70 F.T. QUADRO RIASSUNTIVO DELLE EMISSIONI CONVOGLIATE IN ATMOSFERA (cfr. A.I.A. n. 367/2014) Ei Tipo di Concntrazion Portata Durata Emiss. Camino Provninza n. inquinant rif. Nm 3 /h h / g m 1 Trasporto carbon

Dettagli

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti:

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti: Minori di un mtrice Si A K m,n, si definisce minore di ordine p con p N, p

Dettagli

Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione

Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione eori di Jourwski ü [A.. 0-03 : ultim revisione 4 gennio 03] Si pplic l teori di Jourwski l fine di clcolre l distribuzione di tensioni tngenzili su lcune sezioni soggette sforzo di tglio.. Sezione d ê

Dettagli

Università degli studi di Cagliari CORSO ANALISI II A.A. 2007/2008. Rappresentazione delle CONICHE e QUADRICHE

Università degli studi di Cagliari CORSO ANALISI II A.A. 2007/2008. Rappresentazione delle CONICHE e QUADRICHE Università degli studi di Cgliri CORSO ANALISI II A.A. 007/008 Rppresentzione delle CONICHE e QUADRICHE Rppresentzione delle CONICHE Generlità Si definiscono coniche le curve pine risultto dell intersezione

Dettagli

Totti, 37 anni da leggenda. Un monumento vivente. Scritto da Redazione Venerdì 27 Settembre 2013 08:39 - VALERIA META

Totti, 37 anni da leggenda. Un monumento vivente. Scritto da Redazione Venerdì 27 Settembre 2013 08:39 - VALERIA META 37 nni d lggnd Un monumnto vivnt Scritto d Rdzion VALERIA META Scrivrlo sull fccit Sn Pitro potv ffttivmnt smbrr irrivrnt pr qunto l omonimo inquino dl Vticno si si mostrto prson ll mno Così gli uguri

Dettagli

Casi clinici Una Esperienza di Trattamento ACUDETOX Antifumo in Fabbrica

Casi clinici Una Esperienza di Trattamento ACUDETOX Antifumo in Fabbrica Una Esprinza di Trattamnto ACUDETOX Antifumo in Fabbrica Rmo ANGELINO Dirttor SC Dipndnz Patologich - ASL 10 Pinrolo TO, Antonio POTOSNJAK I.P. SC Dipndnz Patologich - ASL 10 Pinrolo TO Prmssa La rlazion

Dettagli