Introduzione alla Fisica. Ripasso di matematica Grandezze fisiche Vettori

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Introduzione alla Fisica. Ripasso di matematica Grandezze fisiche Vettori"

Transcript

1 Introduzione ll Fisic Ripsso di mtemtic Grndezze fisiche Vettori

2 L fisic come scienz sperimentle Studio di un fenomeno OSSERVAZIONI SPERIMENTALI MISURA DI GRANDEZZE FISICHE IPOTESI VERIFICA LEGGI FISICHE Relzioni mtemtiche tr grndezze fisiche In fisic si us un linguggio mtemtico!!!

3 Alger dei numeri reltivi Numeri reltivi: numeri preceduti dl segno + o dl segno segno, modulo o vlore ssoluto (si indic con ) Due numeri reltivi sono concordi se hnno lo stesso segno es: ( ; 7, ; 600); discordi se hnno segno contrrio es: (+7,6 ;,); opposti se hnno stesso modulo e segno contrrio es: (, ; +,) reciproci (inversi) se hnno lo stesso segno e modulo inverso es: ( / ; /) Chimimo espressione lgeric un espressione mtemtic che contiene numeri reltivi numeric: letterle:

4 ... dove le lettere rppresentno In un espressione mtemtic un generico numero intero (0; ; ; ;...) intero reltivo (.. ; -; 0; ;...) rele (-/; 6,; 7; e,7...) In un legge fisic un grndezz fisic vlore numerico + unità di misur m (,7 kg; 8 mg; l;...) t ( 8,7 ms; h;,7 giorni;...) Stess lger!!

5 Elementi di mtemtic utilizzti in questo corso Frzioni Proprietà delle potenze Potenze di dieci e notzione scientific Mnipolzione, semplificzione di espressioni lgeriche Soluzione di equzioni di primo grdo Proporzioni Conversioni tr unità di misur Percentuli Funzioni e loro rppresentzione grfic Angoli, elementi di trigonometri Elementi di geometri

6 Somm lgeric Nell lger dei numeri reltivi, un espressione contenente ddizioni e sottrzioni numeriche e letterli z + 8y viene sempre considert come un somm lgeric, ovvero intes come somm di numeri reltivi: + + ( z) + ( + ) + ( 8y) + ( ) Not: per lo scioglimento delle prentesi in un espressione si elimin l prentesi se precedut dl segno + + ( x y + z) x y + z si elimin l prentesi cmindo segno tutti i fttori l suo interno se precedut dl segno - ( x y + z) x + y z

7 Le operzioni Addizione (somm) ( ) + ( 6) 8 ( ) + ( + 9) Addendi concordi:somm dei moduli stesso segno Addendi discordi:differenz dei moduli segno dell ddendo di modulo mggiore Sottrzione (differenz) ( ) ( 9) ( ) + ( + 9) + Si ottiene sommndo l primo numero (minuendo) l opposto del secondo (sottrendo) Moltipliczione (prodotto) ( )( )( 7) 8 Il modulo è il prodotto dei moduli Il segno è positivo -> numero pri di segni negtivo -> numero dispri di segni Divisione (quoziente o rpporto) ( ) : ( + 7) ( ) + 7 Si ottiene moltiplicndo il dividendo per il reciproco del divisore

8 Esempi: 6 + : : 6 7 [ ]. R [ ]. R

9 Elementi di mtemtic: Frzioni Un frzione è un rpporto tr due numeri e Frzioni equivlenti numertore Dividendo o moltiplicndo numertore e denomintore per un fttore comune, l frzione non cmi. x x Es: Riduzione i minimi termini 6 6 denomintore sono frzioni equivlenti Esprimere un frzione in un form equivlente con vlori minimi del numertore e denomintore (divisione per tutti i fttori comuni)

10 Frzioni Somm/differenz di frzioni: d c d d c + + d c d d c Es: ( minimo comune multiplo di 6 e ) Moltipliczione di due frzioni d c d c Es: Es: c d d c Divisione di due frzioni: Inverso di un frzione: Es: /

11 Frzioni / e mggiore di /6? Equivlentemente, /-/6 > 0? Confronto tr frzioni Per confrontre due frzioni e opportuno esprimerle in form equivlente con denomintore comune Il minimo comune denomintore tr e 6 e 9 0 < < 0 < 6 Not : > 6

12 Elevmento Potenz Proprietà delle potenze: ( volte) se, esponente un potenz di esponente pri e`sempre positiv; un potenz di esponente dispri e` negtiv se l se e negtiv. n + m (nessun prticolre proprietà) + ( ) + ( ) dipende! n m n+m ( ) ( ) ( n ) m n*m ( ) ( ) ( ) 6 n / m n-m / ( )/( ) n n ( ) n ( ) M ttenzione: / ( )/( ) / - - / ( )/( ) 0 - Perchè l regol continu vlere, occorre definire -n / n potenz esponente negtivo 0 potenz esponente nullo

13 Esempi: ( )( ) + ( + ) ( ) 8 ( ) R. 8 [ R. 8] [ R. 6] [ R. 6] [ R. 9] [ R. 6]

14 Rdice di un numero E` l operzione invers dell elevmento potenz: n è quel numero l cui potenz n-esim è ugule d : ( n ) n n n ( n volte) rdicndo, n indice l rdice di indice pri di un numero negtivo non esiste l rdice di indice dispri di un numero esiste ed è unic 8 ; 7 esistono sempre due rdici di indice pri di un numero positivo ± Not: un potenz con esponente frzionrio è ugule d un rdicle che h per indice il denomintore dell frzione m n n/m Inftti n/m n/m n/m (m volte) mn/m n Esempio: 6 6/ (**)*(**) (**) **

15 Esempi: 6 [ R. ] ( ) ( ) R. ± [ R. ssurdo ] [ R. 00]

16 Proprietà dei rdicli: si verificno fcilmente utilizzndo potenze con esponenti frzionri! n n ; 0 0 ; np mp n m d cui si h n n n n n c n c (prodotto di rdicli dello stesso indice) n n n : : (quoziente di rdicli dello stesso indice) ( ) k n n k (potenz di un rdicle) m n m n (rdice di un rdicle) n n n se >0 n n se n è pri e <0

17 Monomi e Polinomi Monomio: un qulunque espressione lgeric che si present sotto form di prodotto di fttori numerici e letterli Coefficiente Grdo nell letter Prte letterle identici se hnno stesso coefficiente e stess prte letterle ; ; 0,6 ; 6 simili se hnno l stess prte letterle e diverso coefficiente 8 c ; 7 c ;, Polinomio: è un somm lgeric di più monomi non simili c ; ; mn + n ; + 9 inomio trinomio

18 Le operzioni lgeriche con monomi si eseguono seguendo le regole viste in precedenz, e ricordndo che solo monomi simili possono essere sommti lgericmente Esempi: + ( ) ( 6 ) 8 : c 9 c ( ) c [ R ]. [ ] R. 8 R. [ R c]. [ ] 6 R. 9 c

19 Il prodotto di due polinomi si ottiene come somm lgeric dei prodotti di ciscun termine del primo polinomio per tutti i termini del secondo. Esempi: ( )( + ) ( x + y)( x y) [ ] R. 6 [ ] R. x 7xy 0 y I clcoli possono essere semplificti utilizzndi i prodotti notevoli: ( ( + ± )( ) ) ± + ( ± ) ± + ± tringolo di Trtgli

20 Il quoziente di un polinomio per un monomio è ugule ll somm lgeric dei quozienti di ciscun termine del polinomio per il monomio divisore. Esempi: ( ) ( ) : 8 [ ] R. : 9 [ ] 9. R

21 Il quoziente di due polinomi non è in generle risoluile. Tuttvi, è spesso possiile semplificre un frzione lgeric rccogliendo ed eliminndo i fttori moltiplictivi comuni tutti i termini del numertore e del denomintore (scomposizione in fttori) x x x y x y x Esempi: + x x R. R. 6 R y con resto oppure 6 6. y x y x R

22 Le frzioni di frzioni si risolvono fcilmente ricordndo le proprietà viste finor Esempi:

23 Equzione relzione di uguglinz tr due memri verifict per prticolri vlori di un vriile incognit x + 0 Equzioni x -/ Proprietà: Sommndo (sottrendo) un stess quntità entrmi i memri Moltiplicndo (dividendo) per un stess quntità entrmi i memri il risultto non cmi e d qui deriv il metodo di risoluzione: x + 0 x + 0 ; x - x/ -/ ; x -/ Esempio: x x ; x 6 x/ 6/ ; x

24 Esempi: risolvere le equzioni rispetto lle vriili evidenzite ( x + ) + x ( ) + x x + c [ R. x ] [ R. x ] R. + c ( x) x ( x + ) [ R. impossiile] ( x) x ( x + ) [ R. sempre verificto ]

25 : c:d d c Proporzioni Prodotto dei medi prodotto degli estremi Null di mgico: sono solo normli equzioni! / c/d c/d c d/ d/c d c/ Conversione di unità di misur Es. Prezzo in lire Prezzo in euro N lire 96.7 lire x euro Prezzo in euro Prezzo in lire Neuro x euro 96.7 lire x x N lire euro 96.7 lire N Neuro 96.7 lire euro 96.7 euro N N 96.7 lire euro Fttore di conversione rpporto tr due unità di misur

26 Esempio: risolvere usndo le proporzioni Medinte perfusione intrvenos vengono somministrte 0 gocce l min di soluzione fisiologic (0 gocce mlitro). Dopo 0 min, qunti mlitri di soluzione sono stti somministrti? [ R. 7 ml]

27 Potenze di dieci e notzione scientific 0 (si legge dieci ll quint ) è ugule moltiplicto per 0 * (si legge dieci ll meno ) è ugule diviso per 0 / è ugule.0 spostndo l virgol destr di posti è ugule.0 spostndo l virgol sinistr di posti Notzione scientific (form esponenzile) Si us nei clcoli scientifici per esprimere numeri molto grndi e molto piccoli prte numeric numero compreso tr e 0, 0-7 prodotto si usno nche i simoli e potenz di 0 l esponente rppresent il numero di posti decimli di cui occorre spostre l virgol

28 Esempi: convertire d notzione numeric scientific notzione numeric ordinri (o vicevers) 0, ,6 0, 0 7 [ R. ] -, 0 [ R. ] 9,7 0 [ R ] [ R. 0,000000] Le proprietà delle potenze permettono di eseguire velocemente operzioni complicte, con risultti estti o non lontni dl risultto vero. 0,0000 0,000 0, ,

29 Equzioni nell Fisic Relzione di uguglinz tr due memri tutto ciò che è o memro (numeri + unità di misur) deve essere ugule tutto ciò che è o memro Es. Are di un rettngolo: A (0 cm)*( m) 0 cm*m (d evitre!) 0 cm * 00 cm 000 cm 000 cm NO! 0. m * m 0. m 0. m NO! A 0 cm, m Equivlenze tr unità di misur

30 Equivlenze tr unità di misur Occorre conoscere il fttore di conversione tr le diverse unità di misur Es. Velocità km/h m/s m/s km/h km/h 000 m / 600 s m/s 0,00 km / (/600) h 0,8 m/s,6 km/h n km/h n 0,8 m/s n m/s n,6 km/h Velocità di un tlet dei 00 m: di un utomoile: dell luce: 0 m/s 0.6 km/h 6 km/h 0 km/h 0 0,8 m/s,6 m/s km/s 0 8 m/s 0 8,6 km/h, km/h Ovvimente il fttore di conversione inverso è l inverso del fttore di conversione! Es. 0,8 /,6

31 Esempi: convertire le seguenti grndezze nelle unità di misur indicte in/min in cm/s kg/m in g/cm h 7 0 in min

32 Esempi: Percentule Metodo comodo per esprimere vrizioni (umenti o diminuzioni) rispetto un situzione not % / n % n/ n 0.0 n % di 0 /00 0 0,0 0, 0% di , % di 0,00 0,0 0, , % di (rddoppire umentre del 00% pssre l 00 %) Per mille : / % Prte per milione : ppm / % 0.00

33 Attenzione: l percentule e sempre reltiv ll grndezz cui si riferisce! Esempi: 0% di 000 grmmi ( ) grmmi 00 grmmi Aumentre un quntità Q del %: Q Q + %Q Q + 0,0 Q Q ( + 0,0),0 Q Diminuire un quntità Q del %: Q Q - %Q Q - 0,0 Q Q ( - 0,0) 0,9 Q Soluzione di un sostnz in cqu l % in volume: d es. in litro di soluzione, 90 cm d cqu e 0 cm di soluto in peso: d es. in kg di soluzione, 90 g d cqu e 0 g di soluto

34 Superfici e volumi Rett [L] Pino [L] Spzio [L] V (m L (m) S (m ) ) L re dell superficie di un corpo si misur sempre in m, cm, Il volume (o cpcità) di un corpo si misur sempre in m, cm, c S V c r S π r V (/) π r r l S π r V π r l In generle: S se ltezz V re se ltezz Attenzione lle conversioni tr unità di misur! m ( m) (0 cm) 0 cm 0000 cm m ( m) (0 cm) 0 6 cm cm cm ( cm) (0 - m) 0 - m m cm ( cm) (0 - m) 0-6 m m l dm ( dm) (0 - m) 0 - m (0 cm) 0 cm

35 ngolo giro ngolo pitto ngolo retto α R Angolo pino α s 60 π rd 80 π rd 90 π/ rd Unità di misur grdi, minuti, secondi 60' ' 60" es: 7' 8" rdinti lunghezz rco s R Per convertire tr grdi e rdinti si può utilizzre l semplice proporzione x rd : y grdi π : 80 Esempio: convertire 60 o in rdinti

36 Tringolo rettngolo Teorem di Pitgor c + c c Esempio: Csi prticolri c 0 o 60 o c c

37 Funzioni Funzione relzione univoc tr due grndezze vriili vriile dipendente yf(x) vriile indipendente Definire l funzione yf(x) signific stilire come vri l vriile dipendente y l vrire dell vriile indipendente x. L funzione che leg le due grndezze X ed Y può essere rppresentt grficmente ttrverso un curv in un pino crtesino Esempi: yx yx vriile dipendente Y 0 vriile indipendente Assi Crtesini X

38 Attenzione: Un relzione di dipendenz e un funzione se per ogni vlore dell vriile indipendente x esiste uno e un solo vlore dell vriile dipendente y Esempio: person dt di nscit SI NO person trg uto NO SI y y?? x n y n SI x n y n NO SI x NO x Un funzione e invertiile se ogni vlore dell vriile dipendente y corrisponde uno e un solo vlore dell vriile indipendente x.

39 Le funzioni dell Fisic o grdo y rddoppi l rddoppire di x y si dimezz proporz.dirett proporz.invers s v t vs/t λ c T λ c/f F m V R I s v s s v v/ t t Rett t t t Iperole t

40 o grdo y qudruplic l rddoppire di x y si riduce ¼ proporz.dir. qudr. proporz.inv. qudr. s ½ t F g G m m /r E k ½ m v F e K q q /r s s F F s t t Prol t ¼F r r r Proporz.inv.qudr

41 Funzioni dipendenti dl tempo Vst clsse di fenomeni dell Fisic (e dell vit quotidin) Tempo vriile indipendente prmetro del moto Moti: Oscillzioni: Decdimenti: ss(t), vv(t), (t) s(t) A sin(ωt) n(t) n 0 e -λt

Introduzione alla Fisica. Ripasso di matematica Grandezze fisiche Vettori

Introduzione alla Fisica. Ripasso di matematica Grandezze fisiche Vettori Introduzione ll Fisic Ripsso di mtemtic Grndezze fisiche Vettori Alger dei numeri reltivi Numeri reltivi: numeri preceduti dl segno + o dl segno segno 5, modulo o vlore ssoluto (si indic con ) Due numeri

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è un scrittur in cui compiono operzioni tr numeri rppresentti, tutti o in prte, d lettere. Per clcolre il vlore numerico di

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è.... Per clcolre il vlore numerico di un espressione letterle isogn...... c. Non si possono ssegnre lle lettere che compiono

Dettagli

Potenziamento formativo, Infermieristica, M. Ruspa RIPASSO DI MATEMATICA

Potenziamento formativo, Infermieristica, M. Ruspa RIPASSO DI MATEMATICA RIPASSO DI MATEMATICA MATEMATICA DI BASE CHE OCCORRE CONOSCERE Numeri relativi ed operazioni con i medesimi Frazioni Potenze e relative proprieta Monomi, polinomi, espressioni algebriche Potenze di dieci

Dettagli

Radicali. Definizioni Variazioni di radicali Operazioni Razionalizzazione Radicali doppi Potenze con esponente razionale Esercizi

Radicali. Definizioni Variazioni di radicali Operazioni Razionalizzazione Radicali doppi Potenze con esponente razionale Esercizi Rdicli Definizioni Vrizioni di rdicli Operzioni Rzionlizzzione Rdicli doppi Potenze con esponente rzionle Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni n L espressione è comunemente dett rdice

Dettagli

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali.

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali. I rdicli Cos è un rdicle? Il simbolo si chim rdicle e si legge rdice ennesim di. - n si chim indice dell rdice e deve essere un numero nturle mggiore di zero. Qundo l indice si sottintende e il rdicle

Dettagli

Le equazioni di grado superiore al secondo

Le equazioni di grado superiore al secondo Le equzioni di grdo superiore l secondo ITIS Feltrinelli nno scolstico 007-008 R. Folgieri 007-008 1 Teorem fondmentle dell lger Ogni equzione lgeric di grdo n h sempre n soluzioni, che possono essere

Dettagli

X X Y 2 1 0,5 0,25 Y 0,25 1 2,25 4. Disegna i grafici delle rette rappresentate dalle seguenti equazioni

X X Y 2 1 0,5 0,25 Y 0,25 1 2,25 4. Disegna i grafici delle rette rappresentate dalle seguenti equazioni Funzioni Consider le seguenti telle e stilisci se e sono direttmente proporzionli, inversmente proporzionli o se vi è un proporzionlità qudrtic. Scrivi l espressione nlitic delle funzioni e rppresentle

Dettagli

Anno 1. Numeri reali: proprietà e applicazioni di uso comune

Anno 1. Numeri reali: proprietà e applicazioni di uso comune Anno Numeri reli: proprietà e ppliczioni di uso comune Introduzione L insieme dei numeri rzionli è composto d numeri che si ottengono dl rpporto tr due numeri interi. Tle rpporto, o frzione, è sempre ssociile

Dettagli

Alcune mosse che utilizzano le proprietà delle operazioni in N

Alcune mosse che utilizzano le proprietà delle operazioni in N Operzioni in N Proprietà commuttiv dell ddizione + b b +,b N Proprietà ssocitiv dell ddizione ( + b) + c + (b + c) + b + c,b,c N Proprietà invrintiv dell sottrzione b ( + c) (b + c) b ( c) (b c),b,c N,b,c

Dettagli

Strumenti Matematici per la Fisica

Strumenti Matematici per la Fisica Strumenti Mtemtici per l Fisic Strumenti Mtemtici per l Fisic Approssimzioni Notzione scientific (o esponenzile) Ordine di Grndezz Sistem Metrico Decimle Equivlenze Proporzioni e Percentuli Relzioni fr

Dettagli

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI PROPRIETÀ DEI NUMERI INTERI, SCOMPOSIZIONI, ECC.. Se A è ugule e B è ugule, qunto vlgono m.c.m. ed M.C.D. dei numeri A e B? 0 e. Se si moltiplicno due numeri

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

Anno 2. Potenze di un radicale e razionalizzazione

Anno 2. Potenze di un radicale e razionalizzazione Anno Potenze di un rdicle e rzionlizzzione Introduzione In quest lezione impreri utilizzre le ultime due tipologie di operzioni sui rdicli, cioè l potenz di un rdicle e l rdice di un rdicle. Successivmente

Dettagli

MATEMATICA LIGHT. Corso propedeutico di Matematica e Fisica non puoi non sapere! per il corso di laurea Equazioni

MATEMATICA LIGHT. Corso propedeutico di Matematica e Fisica non puoi non sapere! per il corso di laurea Equazioni MATEMATICA LIGHT Ovvero: le cose essenziali che Corso propedeutico di Matematica e Fisica non puoi non sapere! per il corso di laurea Equazioni in Infermieristica sede di Lodi Proporzioni Potenze Notazione

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

ALGEBRA ALGEBRA. esercizi sulle operazioni tra numeri relativi ; ; ; ; ; ; ; ; 9.

ALGEBRA ALGEBRA. esercizi sulle operazioni tra numeri relativi ; ; ; ; ; ; ; ; 9. ALGEBRA Le somme lgeriche vnno clcolte tenendo conto del segno di ogni termine dell'espressione e del ftto che vle l proprietà commuttiv. Es., - - -. Il il segno del prodotto fr numeri reltivi segue l

Dettagli

RADICALI. Q (insieme dei razionali relativi) = numeri che possono essere messi sotto forma di frazioni es: 0,+3;

RADICALI. Q (insieme dei razionali relativi) = numeri che possono essere messi sotto forma di frazioni es: 0,+3; RADICALI In quest sched ti vengono riproposti lcuni concetti ed esercizi che ti dovreero essere fmiliri e che sono indispensili per ffrontre con successo gli studi futuri. INSIEMI NUMERICI Ripsso insiemi

Dettagli

Liceo Scientifico E. Majorana Guidonia Quaderno di lavoro estivo Matematica

Liceo Scientifico E. Majorana Guidonia Quaderno di lavoro estivo Matematica Liceo Scientifico E. Mjorn Guidoni Numeri Nturli Sintesi dell teori Domnde Risposte Esempi Come si indic l insieme dei numeri nturli {0,,,,, }? L insieme dei numeri nturli si indic con l letter N. Quli

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Meccanica dei Solidi. Vettori

Meccanica dei Solidi. Vettori Meccnic dei Solidi Prof. Ing. Stefno Avers Università di Npoli Prthenope.. 2005-06 Lezione 2 Vettori Definizione: Un grndezz vettorile (o un vettore) è un grndezz fisic crtterizzt oltre che d un numero

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI Esponenzili e logritmi ESPONENZIALI E LOGARITMI Potenze Fino d or si sono definite le potenze d esponenete intero e rzionle (si positivi che negtivi). Ripssimo le definizioni e i concetti che li rigurdno:

Dettagli

Teoria in pillole: logaritmi

Teoria in pillole: logaritmi Teori in pillole: logritmi EQUAZIONI ESPONENZIALI Un'equzione si dice esponenzile qundo l'incognit compre soltnto nell'esponente di un o più potenze. L'equzione esponenzile più semplice (elementre) è del

Dettagli

5. Funzioni elementari trascendenti

5. Funzioni elementari trascendenti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 5. Funzioni elementri trscendenti A. A. 2013-2014 1 FUNZIONI ESPONENZIALI Le più semplici funzioni esponenzili sono le funzioni f: R R definite

Dettagli

ELEMENTI GEOMETRIA ANALITICA SABO

ELEMENTI GEOMETRIA ANALITICA SABO ELEMENTI DI GEOMETRIA ANALITICA SABO COORDINATE CARTESIANE Ascisse dei Punti di un Rett Dt un rett orientt (verso di percorrenz positivo d sinistr verso destr per rette orizzontli; dl sso verso l lto per

Dettagli

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA Nome.Cognome. 8 Dicembre 008 Clsse G VERIFICA di MATEMATICA A) Risolvi le seguenti disequzioni goniometriche sin ) sin + ) 0 6 tn cos + sin ) 0 (punti:0,5) ) tn + tn > 0 sin 5) sin > cos (punti: ) 6) sin

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

RIEPILOGO FRAZIONI ALGEBRICHE

RIEPILOGO FRAZIONI ALGEBRICHE RIEPILOGO FRAZIONI ALGEBRICHE Per semplificre un frzione: scomponi numertore e denomintore semplific numertore e denomintore tenendo presente che: il quoziente di due fttori uguli è il quoziente di due

Dettagli

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0 Equzioni letterli di II grdo Un equzione letterle di II grdo è un equzione che contiene, oltre l letter che rppresent l incognit dell equzione, ltre lettere, dette prmetri, che rppresentno numeri ben determinti,

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ ELEMENTI DI CALCOLO ALGEBRICO Test di utovlutzione 0 0 0 0 0 0 60 0 80 90 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle lterntive. n Confront le tue risposte

Dettagli

a è detta PARTE LETTERALE

a è detta PARTE LETTERALE I MONOMI Si die MONOMIO un espressione letterle in ui le unihe operzioni presenti sino il prodotto e l divisione. Esempio è detto COEFFICIENTE del monomio e è dett PARTE LETTERALE Un monomio si die ridotto

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

PRODOTTI NOTEVOLI. Esempi

PRODOTTI NOTEVOLI. Esempi PRODOTTI NOTEVOLI In lger ci sono delle regole per eseguire in modo più reve e più veloce l moltipliczione tr prticolri polinomi. Queste regole (o meglio formule si chimno prodotti notevoli. Anlizzimo

Dettagli

Equazioni parametriche di primo grado

Equazioni parametriche di primo grado Polo Sivigli Equzioni prmetriche di primo grdo Premess Come si s dll lgebr elementre, si chim equzione un uguglinz fr due espressioni letterli che si verific soltnto ttribuendo prticolri vlori lle lettere,

Dettagli

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO EQUAZIONI DI ECONDO GRADO Riepilogo delle soluzioni in bse l segno di < φ : b > : b b Prof I voi, EQUAZIONI DI ECONDO GRADO EQUAZIONI PURE DI ECONDO GRADO : EEMPI ) ) ) 7 7 ) > φ (impossibile) ) impossibil

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

PROGRAMMA SVOLTO A. S. 2014/ 2015

PROGRAMMA SVOLTO A. S. 2014/ 2015 A. S. 4/ Nome docente Borgn Giorgio Mteri insegnt Mtemtic Clsse Previsione numero ore di insegnmento IV G mnutenzione e ssistenz tecnic ore complessive di insegnmento settimne X 4 ore = ore Nome Ins. Tecn.

Dettagli

24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze

24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze Alunno/.. Alunno/ Pgin Esercitzione in preprzione ll PROVA d ESAME Buon Lvoro Prof.ss Elen Sper. Il piccolo fermcrte dell figur è relizzto nel seguente modo. Si prende un cubo di lto cm e su un fcci si

Dettagli

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo Integrli ll integrle deinito ll integrle indeinito Indice dell lezione Integrle Deinito Rettngoloide Integrle deinito come re del rettngoloide Esempi e propriet Primitiv Teorem ondmentle del clcolo integrle

Dettagli

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data...

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data... Cpitolo Monomi e polinomi Monomi Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

MODALITA DIVALUTAZIONE DEGLI STUDENTI CON CARENZE NEL SECONDO QUADRIMESTRE ESITO SOSPESO MATEMATICA BIENNIO. Coordinatrice: Prof. ANTONINA CASTANIOTTO

MODALITA DIVALUTAZIONE DEGLI STUDENTI CON CARENZE NEL SECONDO QUADRIMESTRE ESITO SOSPESO MATEMATICA BIENNIO. Coordinatrice: Prof. ANTONINA CASTANIOTTO LICEO SCIENTICO STATALE LEONARDO DA VINCI GENOVA.s.04-5 MODALITA DIVALUTAZIONE DEGLI STUDENTI CON CARENZE NEL SECONDO QUADRIMESTRE ESITO SOSPESO MATEMATICA BIENNIO Coordintrice: Prof. ANTONINA CASTANIOTTO

Dettagli

CAPITOLO 16 LE EQUAZIONI DI SECONDO GRADO. caffè. succo di frutta. arancia. cappuccino. cornetto. R il numero da determinare in ciascuna proposizione.

CAPITOLO 16 LE EQUAZIONI DI SECONDO GRADO. caffè. succo di frutta. arancia. cappuccino. cornetto. R il numero da determinare in ciascuna proposizione. CAPITOLO 6 LE EQUAZIONI DI SECONDO GRADO 6. Equzioni di secondo grdo e loro clssificzione Luc e Mrt sono l r dell città di Mttown per l solit colzione. Osservndo il listino prezzi, si ccorgono che i prezzi

Dettagli

Matematica C3, Algebra 2

Matematica C3, Algebra 2 Mtemtic C Algebr Relese 0.0 www.mtemticmente.it Mrch 0 Contents Numeri reli. Di numeri nturli i numeri irrzionli................................. Numeri reli.................................................

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA Slvtore Loris Pelell Corso di Mtemtic RCS LIBRI EDUCATION SPA ISBN 88-45-084-3 004 RCS Libri S.p.A.- Milno Prim edizione: gennio 004 Ristmpe 004 005 006 3 4 5 Stmp: V. Bon, Torino Coordinmento editorile

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit 0) L definizione di equzione di seondo grdo d un inognit 0) L risoluzione delle equzioni di

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi

Dettagli

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale Esercitzione di Mtemtic sulle equzioni di secondo grdo (o d esse riconducibili) nel cmpo rele 1. Risolvere, nel cmpo rele, le seguenti equzioni di secondo grdo: () 81x 0; (b) (x 1) 7x ; (c) 7x x 0; (d)

Dettagli

Nome Cognome. Classe 1D 29 Novembre 2010 Verifica di Fisica formula Nome grafico

Nome Cognome. Classe 1D 29 Novembre 2010 Verifica di Fisica formula Nome grafico Noe Cognoe. Clsse D 9 Novebre 00 erific di Fisic forul Noe grfico Proporzionlità qudrtic invers = ) icordndo i possibili legi tr due grndezze,, coplet l seguente tbell ) Specific il significto dei prefissi

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE II

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE II Ingegneri Elettric Politecnico di Torino Luc Crlone ControlliAutomticiI LEZIONE II Sommrio LEZIONE II Sistemi lineri e proprietà di unicità Concetto di Stilità Stilità intern ed estern Criterio di Routh

Dettagli

ESERCIZI ESERCIZI. Test di autoverifica... 206 Prova strutturata conclusiva... 208 ESERCIZI

ESERCIZI ESERCIZI. Test di autoverifica... 206 Prova strutturata conclusiva... 208 ESERCIZI Indice cpitolo Insiemi ed elementi di logic... 7 8 Insiemi... Operzioni con gli insiemi... 8 Introduzione ll logic... 9 Connettivi e tvole di verità... Espressioni proposizionli... 0 Predicti e quntifictori...

Dettagli

Scomposizione di polinomi 1

Scomposizione di polinomi 1 Somposizione i un polinomio Cpitolo Somposizione i polinomi 1 erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x) Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)

Dettagli

Lezione 14. Risoluzione delle equazioni algebriche.

Lezione 14. Risoluzione delle equazioni algebriche. Lezione Prerequisiti: Lezioni 8,. Risoluzione delle equzioni lgebriche. Si F un cmpo, e si K un chiusur lgebric di F. Si f ( ) F[ ] non costnte. Studimo i metodi di risoluzione per l equzione f ( ) = 0,

Dettagli

Verifica 03 LE DISEQUAZIONI DI SECONDO GRADO

Verifica 03 LE DISEQUAZIONI DI SECONDO GRADO Verific 0 LE DISEQUAZIONI DI SECONDO GRADO ESERCIZI LE DISEQUAZIONI Risolvi le seguenti disequzioni lineri numeriche. A 0 8 B 7 8 A B 8 7 8 8 9 Rppresent i seguenti intervlli (o unione di intervlli) medinte

Dettagli

Lezioni particolari di Matematica : I gialli matematici.

Lezioni particolari di Matematica : I gialli matematici. Lezioni prticolri di Mtemtic : I gilli mtemtici. Per chi vuole prtecipre, nche ttivmente, queste lezioni, l indirizzo e-mil del prof. Di Slvtore Eugenio è il seguente: Prof_dislvtore@rundisium.net 3^ Lezione

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Richiami sui vettori. A.1 Segmenti orientati e vettori

Richiami sui vettori. A.1 Segmenti orientati e vettori A Richimi sui vettori Richimimo lcune definizioni e proprietà dei vettori, senz ssolutmente pretendere di drne un trttzione mtemticmente complet. Lvoreremo sempre in uno spzio crtesino (euclideo) tre dimensioni,

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

CALCOLO LETTERALE. Prof. Katia Comandi Dispensa per la classe III ITI Informatico. a.s 2006/2007

CALCOLO LETTERALE. Prof. Katia Comandi Dispensa per la classe III ITI Informatico. a.s 2006/2007 CLCOLO LETTERLE Prof. Kti Comndi Dispens per l clsse III ITI Informtico.s 00/007 Indice Il Clcolo letterle Introduzione pg. Scopo del Clcolo letterle pg. Monomi pg. Polinomi pg.. Prodotti notevoli pg.

Dettagli

Lezione 1 Insiemi e numeri

Lezione 1 Insiemi e numeri Lezione Insiemi e numeri. Nozione di insieme, sottoinsieme, pprtenenz Con l prol insieme intendimo un collezione di oggetti detti suoi elementi. Ogni insieme è denotto con lettere miuscole e i suoi elementi

Dettagli

Due equazioni si dicono equivalenti quando hanno lo stesso insieme soluzione.

Due equazioni si dicono equivalenti quando hanno lo stesso insieme soluzione. EQU EQUAZIONI Le equzioni costituiscono uno dei contenuti fondmentli dell mtemtic Il concetto di equzione è stto d noi introdotto nel prgrfo dell'ud «Le ppliczioni» Successivmente ci simo occupti delle

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z Controlli Automtici Trsformte L e Z e schemi blocchi Esercizi sulle trsformte L e Z Esercizi sulle trsformte L e Z Proposte di esercizi e soluzioni in tempo rele trsformt L di y(t) dt trsformt Z di y(i)

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

Rapporti e proporzioni numeriche

Rapporti e proporzioni numeriche Rpporti e proporzioni numeriche Rpporti. Per rpporto tr due numeri e b, di cui il secondo diverso d zero, s intende il quoziente estto dell divisione dei due numeri dti, cioè :b oppure /b. Ad esempio dire

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

Anno 2. Triangoli rettangoli e teorema delle corde

Anno 2. Triangoli rettangoli e teorema delle corde Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,

Dettagli

a b c d e x = operai addetti a un lavoro y = tempo impiegato per svolgere il lavoro Un operaio impiega 10 giorni

a b c d e x = operai addetti a un lavoro y = tempo impiegato per svolgere il lavoro Un operaio impiega 10 giorni ) Iniviu tr questi grfici quelli in cui è rppresentt un situzione i irett e un situzione i invers; poi inic il rispettivo nome ei grfici scelti. c e ) Per ognun elle seguenti telle te, stilisci il tipo

Dettagli

Equazioni e disequazioni

Equazioni e disequazioni Cpitolo Equzioni e disequzioni.1 Princìpi di equivlenz 1. Sommndo o sottrendo l stess quntità d entrmbi i membri di un equzione o di un disequzione ess non cmbi, ovvero: A(x) B(x) A(x) k(x) B(x) k(x).

Dettagli

Introduzione e strumenti

Introduzione e strumenti Controlli utomtici Introduzione e strumenti Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2

Dettagli

Disequazioni di primo grado

Disequazioni di primo grado Cpitolo Disequzioni i primo gro Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

EQUAZIONI DI SECONDO GRADO

EQUAZIONI DI SECONDO GRADO EQUAZIONI DI SECONDO GRADO DESTINATARI: II nno del liceo scientifico PNI come consiglito nell Circolre Ministerile n 4 del 6 ferio 99 dove l rgomento trttto in quest unità didttic è il punto e - Equzioni,

Dettagli

CORSO DI PREPARAZIONE AL TEST per l ammissione ai corsi triennali dell area sanitaria

CORSO DI PREPARAZIONE AL TEST per l ammissione ai corsi triennali dell area sanitaria CORSO DI PREPARAZIONE AL TEST per l mmissione i corsi triennli dell re snitri MATERIALI PER LA PREPARAZIONE AI TEST DI MATEMATICA Premess: l presente dispens non h lcun pretes né di rigore mtemtico, né

Dettagli

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante Prof.. Di Muro Moto rettilineo uniformemente ccelerto ( m.r.u.. ) Il moto rettilineo uniformemente ccelerto è un moto che iene su un rett con ccelerzione costnte. Dll definizione di ccelerzione t t t t

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 curdi Luc Cio e Wlter Didimo Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 1 espressioni regolri e grmmtiche regolri proprietà decidiili dei linguggi regolri teorem di Myhill-Nerode notzioni sul

Dettagli

Un carrello del supermercato viene lanciato con velocità iniziale

Un carrello del supermercato viene lanciato con velocità iniziale Esempio 44 Un utomobile procede lungo l utostrd ll velocità costnte di m/s, ed inizi d ccelerre in vnti di m/s.5 proprio nell istnte in cui super un cmion fermo in un re di sost. In quel preciso momento

Dettagli

Liceo Scientifico Statale Leonardo da Vinci Via Possidonea Reggio Calabria Anno Scolastico 2008/2009 Classe III Sezione G

Liceo Scientifico Statale Leonardo da Vinci Via Possidonea Reggio Calabria Anno Scolastico 2008/2009 Classe III Sezione G Liceo Scientifico Sttle Leonrdo d Vinci Vi Possidone 14 8915 Reggio Clbri Anno Scolstico 008/009 Clsse III Sezione G Dirigente scolstico: Preside Prof. ss Vincenzin Mzzuc Professore coordintore del progetto:

Dettagli

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE.

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE. L prol In figur è trccito il grfico di un prol con sse di simmetri verticle. Si vede suito dl grfico ce: l curv è simmetric rispetto l suo sse di simmetri il suo punto più in sso è il vertice il vertice

Dettagli

Definiamo ora alcuni vettori particolarmente importanti detti versori.

Definiamo ora alcuni vettori particolarmente importanti detti versori. Prof. A. Di Mro I versori Definimo or lcni vettori prticolrmente importnti detti versori. Un versore è semplicemente n vettore di modlo nitrio. Normlmente gli ssi, e z vengono ssociti i versori i ˆ, ˆj,

Dettagli

Il dominio della funzione, cioè l'insieme dei valori che si possono attribuire a x è tutto R ;

Il dominio della funzione, cioè l'insieme dei valori che si possono attribuire a x è tutto R ; CAPITOLO ESPONENZIALI E LOGARITMI ESPONENZIALI Teori in sintesi Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z. + Sono definite:

Dettagli

Siano A e B due insiemi non vuoti. Una funzione f da A a B è un assegnamento di esattamente un elemento di B ad ogni elemento di A

Siano A e B due insiemi non vuoti. Una funzione f da A a B è un assegnamento di esattamente un elemento di B ad ogni elemento di A Funzioni Definizione di funzione: Sino A e B due insiemi non vuoti. Un funzione f d A B è un ssegnmento di esttmente un elemento di B d ogni elemento di A Scrivimo f() = b se b è l unico elemento dell

Dettagli

Esempio verifica integrali indefiniti e definiti - A

Esempio verifica integrali indefiniti e definiti - A Esempio verific integrli indefiniti e definiti - A ) Determin i seguenti integrli indefiniti Esercizi Punti Punti ssegnti ) d ) e / d c) d d) ln d ) Clcol i seguenti integrli definiti e ssoci ciscuno di

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

Integrale definito. Introduzione: il problema delle aree

Integrale definito. Introduzione: il problema delle aree Integrle definito Introduzione: il prolem delle ree Il prolem delle ree è uno dei tre grndi prolemi che ci sono stti trmndti dgli ntichi, che lo definivno come il prolem dell qudrtur del cerchio: trovre,

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido inemtic ed equilirio del corpo rigido Spostmenti virtuli Lvori virtuli ed equilirio Determinzione sttic Numero dei vincoli e determinzione pprofondimenti: lvoro virtule pprofondimenti: forze e momenti

Dettagli

ACCADEMIA NAVALE. Syllabus POLIGRAFICO ACCADEMIA NAVALE LIVORNO

ACCADEMIA NAVALE. Syllabus POLIGRAFICO ACCADEMIA NAVALE LIVORNO ACCADEMIA NAVALE Sllbus POLIGRAFICO ACCADEMIA NAVALE LIVORNO PREFAZIIONE È noto che in tluni ordini dell scuol medi superiore l'insegnmento dell mtemtic non giunge sino ll'ultimo nno, in ltri, lo svolgimento

Dettagli

Teoremi di geometria piana

Teoremi di geometria piana l congruenz teoremi sugli ngoli γ teorem sugli ngoli complementri Se due ngoli sono complementri di uno stesso ngolo α β In generle: Se due ngoli sono complementri di due ngoli congruenti α γ β teorem

Dettagli

Lezione 2 Potenze. Radicali. Logaritmi

Lezione 2 Potenze. Radicali. Logaritmi Lezione Potenze. Rdicli. Logritmi. Potenze con esponente nturle Definizione. Se n N e n 6= 0, si chim potenz n-esim del numero rele, opotenz con bse ed esponente n, e si indic col simbolo n, il prodotto

Dettagli

TRASFORMAZIONI GEOMETRICHE DEL PIANO

TRASFORMAZIONI GEOMETRICHE DEL PIANO TRASFORMAZIONI GEOMETRICHE DEL PIANO INTRODUZIONE Per trsformzione geometric pin si intende un corrispondenz iunivoc fr i punti di un pino, ossi un funzione iiettiv che ssoci d ogni punto P del pino un

Dettagli

Proiettività della Retta e del Piano.

Proiettività della Retta e del Piano. Introduzione. In queste note proponimo l clssificzione delle proiettività per l rett proiettiv ed il pino proiettivo su un corpo lgebricmente chiuso. Nel cso dell rett studieremo nche il cso del corpo

Dettagli

I NUMERI RAZIONALI. È stato dimostrato che i ragazzi hanno significative difficoltà ad apprendere e applicare i concetti legati ai numeri razionali.

I NUMERI RAZIONALI. È stato dimostrato che i ragazzi hanno significative difficoltà ad apprendere e applicare i concetti legati ai numeri razionali. I NUMERI RAZIONALI È stto dimostrto che i rgzzi hnno significtive difficoltà d pprendere e pplicre i concetti legti i numeri rzionli. Esempio: Il N.A.E.P. (Ntionl Assesment of Eduction Progress) h dimostrto

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione ordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione ordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione ordinri Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA In un pino, riferito d un sistem

Dettagli

MATEMATICA CLASSI PRIME A.S. 2013/2014 PROGRAMMA EFFETTIVAMENTE SVOLTO

MATEMATICA CLASSI PRIME A.S. 2013/2014 PROGRAMMA EFFETTIVAMENTE SVOLTO LICEO SCIENTIFICO F.LUSSANA - BEGAMO A.S. 0/0 CLASSE E MATEMATICA CLASSI PIME A.S. 0/0 POGAMMA EFFETTIVAMENTE SVOLTO DOCENTE MAFFI MAIA ANGELA DISCIPLINA MATEMATICA Testi in uso Leonrdo Ssso "Mtemtic colori

Dettagli