df = I dl B df = dq v B

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "df = I dl B df = dq v B"

Transcript

1 Forza Magnetica su un conduttore

2 Forza magnetica agente su un filo percorso da corrente Consideriamo un filo percorso da una corrente in presenza di un campo magnetico. Agirà una forza su ciascuna delle cariche che si muovono nel filo. Quale sarà la forza totale netta df su una porzione di filo di lunghezza dl? Consideriamo una carica dq che si muove con velocità v lungo un filo di sezione A. Forza su ciascuna carica Forza su dq Poichè e I q v df dq v dq d v dt l dt Per un filo di lunghezza L che trasporta una corrente I, la forza agente su di esso è: df I dl F dq N I IL S dl v

3 Forza Magnetica su un conduttore z z df df dl y y dl Se il filo ha una lunghezza finita L e è uniforme allora: b b F I ( dl ) I dl I L a a

4 Forza Magnetica su un conduttore Se il filo è una spira chiusa e è uniforme allora: F I d l 0 poichè dl 0 La forza magnetica netta agente su una spira chiusa immersa in un campo magnetico uniforme è NULLA

5 Conduttore percorso da corrente I, in un campo uniforme e. Consideriamo le due forze agenti: parte rettilinea F I IR 1 l 2 poichè 2 l direzione uscente dal grafico semicirconferenza : df I ds I senθ ds poichè s Rθ e quindi ds Rdθ df IR senθ dθ, diretta verso l'interno del grafico per ottenere F integriamo : 2 2 π Es.: Forza agente su un conduttore semicircolare ( π ) ( ) [ ] F IR senθ dθ IR senθ dθ IR -cosθ IR cos cos0 IR 1 1 2IR F F + F π π

6 Forza su una spira percorsa da corrente Se la spira non è immersa completamente nel campo magnetico, la forza sulla spira può essere 0. F L Corrente I nella spira F R F uscente dalla pagina La forza magnetica sulla parte alta della spira è 0 poichè 0. La forza magnetica sulle due sezioni verticali (sinistra e destra) della spira sono eguali e opposte. La forza totale F tira la spira verso il basso

7 Forza su una spira percorsa da corrente E sempre importante considerare la simmetria. Nella figura in basso un filo che porta una corrente I consiste di due sezioni dritte ed una a semicerchio. dϕ ϕ df dl i F L F R verso l interno della pagina Dividiamo il segmento in 3 sezioni: sinistra e destra dritte più quella semicircolare

8 Forza su una spira percorsa da corrente Le forze sulle sezioni dritte sono eguali e opposte Dividiamo il semicerchio in elementi infinitesimi dl Rdϕ df i dl df irdϕ df ir sinϕdϕ y F X 0 poichè le componenti si cancellano tra loro a causa della simmetria del semicerchio. π π π y ϕ ϕ ϕ ϕ ϕ F F ir sin d ir sin d ir cos 2iR Si sarebbe potuto ottenere lo stesso risultato notando che: 2R

9 Forza magnetica su una spira percorsa da corrente Consideriamo una spira in un campo magnetico (vedi fig.): Se il campo è al piano della spira, la forza totale agente sulla spira è 0! la forza sul tratto superiore cancella quella sul tratto inferiore (F IL) la forza sul tratto destro cancella quella sul tratto sinistro. (F IL) Se il piano della spira non è al campo, ci sarà un momento torcente non-nullo agente sulla spira! F F I F F F. F

10 Momento torcente (motori elettrici) b b τ F1 sen( θ ) + F3 sen( θ ) ( i a ) b sen( θ ) i ab sen( θ ) 2 2 per N spire τ Nτ N i ab sin θ N i A θ ( ) ( ) sin ( )

11 Forze magnetiche e motori elettrici

12 Calcolo del momento torcente Supponiamo che la bobina abbia larghezza w (il lato che si vede) e lunghezza L (verso l interno dello schermo). Il momento torcente è dato da: Definiamo r 1 e r 2 come i vettori distanza dal centro della spira verso sinistra e destra, essendo L la lunghezza totale. τ r F F 1 r 1 r 2 w/2 w/2 F 2 τ τ + τ 1 2 I vettori τ 1 e τ 2 puntano entrambi all interno della pagina. Anche il momento totale punta all interno della pagina. τ w 0 w 0 w w F1 sin 90 + F2 sin 90 il + il iwl

13 τ IA Calcolo del momento torcente Poichè wl è l area A racchiusa dalla spira, allora In generale, il momento torcente è: τ IA A θ w F F. dove τ AI sinθ A wl area spira r r F A A Notare: se, sinθ 0 0 τ 0 τ massimo quando è parallelo a F

14 Applicazioni: strumenti ad indice

15 Momento di Dipolo Magnetico Possiamo definire il momento di dipolo magnetico di una spira percorsa da corrente come segue: modulo : µ AI direzione: al piano della spira nella direzione del pollice della mano destra se le dita indicano la direzione della corrente. θ F θ µ F. Il momento torcente può quindi essere riscritto come: τ AI sinθ τ µ Se vi sono N avvolgimenti (bobina), µ NAI

16 Analogia con il dipolo Elettrico +q τ r F τ r F F q E p 2qa τ F p F p E. -q E θ F θ µ F IL µ NAI τ µ F. (per avvolgimento)

17 Dipolo magnetico

18 Leggi di iot-savart e di Ampère θ r d θ P R i i dl

19 Leggi fondamentali per il calcolo di Legge di iot-savart Legge di Ampere ( forza bruta ) ( elevata simmetria ) Esempio: campo generato da un filo rettilineo da legge di iot-savart da legge di Ampere Forza esercitata su due conduttori paralleli percorsi da corrente

20 Analogia: Calcolo del Campo Elettrico due metodi di calcolo legge di Coulomb E 1 4πε 0 q r 2 rˆ forza bruta" legge Gauss ε 0 E ds q alta simmetria" Quali sono le analoghe equazioni per il Campo Magnetico?

21 Calcolo del Campo Magnetico due metodi di calcolo legge di iot-savart µ 0i ds r d 4π 3 i r forza bruta" legge di Ampere ds µ 0i alta simmetria" Sono equazioni analoghe

22 d r ds θ Legge di iot-savart r X d esperimento: d ds d r d 1 2 r d i d ds d sen θ ( ) i... riassumendo in formula d k m I ds rˆ r 2

23 d r ds θ Legge di iot-savart r d I ds rˆ µ ˆ 0 I ds r k m 2 2 r 4π r 7 T m µ 0 4π 10 2 A permeabilità magnetica X 1 c d ε µ 0 0 Il campo magnetico è distribuito intorno al filo i La legge di -S fornisce il valore del campo magnetico generato in un punto dall elemento di corrente I ds Per calcolare il valore totale occorre sommare vettorialmente i contributi di tutti gli elementi di corrente (integrare)

24 dovuto a un filo rettilineo Calcoliamo il campo in P usando la legge di iot-savart : d µ 0i d r 3 4π r Direzione di? +z θ r d y θ P R i d + µ 0i ( d) r sinθ 3 4π r Il risultato finale è: 2 µ i 0 π R vediamo come...

25 dovuto a un filo rettilineo Calcoliamo il campo in P usando la legge di iot-savart d d + µ 0i d r 3 4π r Direzione di? +z µ 0i ( d) r sinθ 3 4π r scriviamo θ in termini di R : R r sinθ tan R θ y P θ r R θ d i R cot θ 1 quindi, d R dθ 2 sin θ d 2 r dθ R

26 dovuto a un filo rettilineo π µ i dθ 0 0 4π R sin θ θ r d θ P R i µ i π µ 0I 0 sinθdθ [ ] π cosθ 0 4πR 4πR 0 quindi, µ i 0 2πR

27 dovuto ad un filo di lunghezza finita P ϑ2 ϑ2 µ 0 i d d ϑ 4π y µ µ [ sinϑ sin( ϑ )] 1 [ ] 0 0 sinϑ sinϑ2 sin( ϑ1 ) cosϑ ϑ i i 4π y 4π y µ i 4π y θ θ 1 y 2 i y lungh. segmento ϑ ϑ ϑ

28 Esempio 1 Qual è il valore del campo magnetico al centro della spira di raggio R, in cui scorre una corrente i? i R (a) 0 (b) (µ 0 i)/(2r) (c) (µ 0 i)/(2πr) Usiamo iot-savart per calcolare il campo magnetico al centro della spira: µ 0 i ds d 3 4π r Teniamo conto che: ids is sempre perpendicolare a r r è costante (r R) µ i ( ds) R µ i µ i d 0 ds 0 0 (2π R) 4π R 4π R 4π R r µ 0i 2R

29 Elevata simmetria Legge di Ampere L integrale di linea dl lungo un qualsiasi percorso chiuso è uguale a µ 0 I, con I corrente continua totale concatenata col percorso chiuso. dl µ 0I Integrale lungo un cammino sperabilmente uno semplice Corrente racchiusa dal cammino I

30 Calcoliamo il campo a distanza R dal filo usando la legge di Ampere: Scegliamo come linea chiusa un cerchio di raggio R centrato sul filo in un piano al filo. Perchè? dovuto ad un filo rettilineo Il valore di è costante (funzione di R soltanto) La direzione di è parallela al percorso. ds µ i i dl R Calcoliamo l integrale di linea: ds ( 2πR ) La corrente racchiusa dal percorso vale i Applichiamo la Legge di Ampere: µ 0i 2 πr µ i 0 2 πr La legge di Ampere semplifica il calcolo grazie alla simmetria della corrente! (assiale/cilindrica) 0

31 Esempio 2 Una corrente i fluisce in un filo rettililineo infinito nella direzione +z (vedi fig.). Un cilindro infinito concentrico di raggio R porta una corrente 2i nella direzione -z. Quanto vale il campo magnetico (a) nel punto a, appena al di fuori del cilindro? (a) (a) < 0 (b) (a) 0 (c) (a) > 0 Lo schema ha una simmetria cilindrica Applicando la legge di Ampere, si vede che il campo nel punto a deve essere il campo prodotto da un filo infinito percorso da una corrente i nella direzione z! i y a b i 2i

32 Esempio 3 Una corrente i fluisce in un filo rettililineo infinito nella direzione +z (vedi fig.). Un cilindro infinito concentrico di raggio R porta una corrente 2i nella direzione -z. Quanto vale il campo magnetico (a) nel punto b, appena dentro il cilindro? (a) (b) < 0 (b) (b) 0 (c) (b) > 0 y a b i 2i Questa volta, il percorso di Ampere racchiude solo la corrente i in direzione +z il percorso è interno al cilindro! La corrente nel tubo cilindrico non contribuisce al valore di nel punto b. i

33 Domanda Come facciamo a verificare il risultato precedente? Ci aspettiamo che generato dal filo sia i/r. Misuriamo la FORZA agente sul filo che porta la corrente, dovuta al campo generato da UN SECONDO FILO attraversato da corrente! d F i b i a Come dipende questa forza dalle correnti e dalla distanza di separazione?

34 F su 2 Fili Paralleli percorsi da corrente Calcoliamo la forza su una lunghezza L del filo b dovuta al campo generato da a: Il campo in b dovuto ad a è : L i a F i b d a µ 0ia 2πd Modulo di F agente su b F b i b L a µ 0iai 2πd b L Calcoliamo la forza sulla lunghezza L del filo a dovuta al campo generato da b: Il campo in a dovuto a b è : µ 0ib b Modulo di F F 2πd a ia agente su a L L i a b i b µ 0iaibL 2πd d F

35 Forza tra due conduttori paralleli Correnti parallele e concordi si attraggono, mentre correnti parallele e discordi si respingono. La forza che agisce tra le correnti è utilizzata per definire l ampere: L Ampere è quella corrente costante che, se mantenuta in due conduttori rettilinei di lunghezza infinita, di sezione circolare trascurabile, e posti ad 1 m di distanza, producono su ognuno di questi conduttori una forza pari a N per m di lunghezza.

36 all interno di un filo rettilineo infinito Supponiamo che una corrente totale i scorra attraverso il filo di raggio a verso l interno dello schermo. Calcoliamo in funzione di r,, la distanza dal centro del filo. r a Il campo è funzione solo di r scegliamo un percorso circolare di raggio r: dl (2πr) Corrente che scorre nella sezione di raggio r : Legge di Ampere : dl µ i i r a 2 racchiusa 2 0 o racchiusa 2 i µ i r 2π a

37 all interno di un filo rettilineo infinito All interno del filo: (r < a) µ 0i r 2π a 2 a All esterno del filo: ( r > a ) µ 0i 2π r r

38 di un Solenoide Un campo magnetico costante può essere prodotto (in linea di principio) da una lamina di corrente. In pratica, però, si preferisce usare un solenoide. Un solenoide è caratterizzato da una corrente I che score in un filo avvolto a spirale n volte per unità di lunghezza intorno ad un cilindro di raggio a e lunghezza L. Se a << L, è, in prima approssimazione, contenuto all interno del solenoide, in direzione assiale, con intensità costante. In queste condizioni (ideali), calcoliamone il valore con la legge di Ampere. L a

39 di un Solenoide Per calcolare il campo di un solenoide usando la legge di Ampere, giustifichiamo l ipotesi che sia nullo all esterno del solenoide. Consideriamo il solenoide come composto da 2 lamine di corrente. I campi risultano concordi nella regione interna e discordi in quella esterna (cancellandosi). Disegnamo un percorso rettangolare di l w: dl l ( solo il contributo di l interno 0) I nli µ ni 0 w l

40 Toroide Il Toroide è descritto da un numero totale N di spire percorse dalla corrente i. 0 all esterno! (Supponiamo di integrare lungo un cerchio esterno) Per trovare all interno interno, consideriamo un cerchio di raggio r, centrato al centro del toroide. dl I (2π r) Ni Applichiamo Ampere: dl µ 0I µ 0Ni 2πr r

41 Origini del magnetismo moto orbitale elettroni: complessivamente si cancella momento intrinseco di spin: sempre presente, in alcuni materiali dà origine ad un momento magnetico totale macroscopico Effetto di magnetizzazione indotta

42 Proprietà magnetiche della materia

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira.

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira. Fenomeni Magnetici Campo Magnetico e Forza di Lorentz Moto di cariche in campo magnetico Momento e campo magnetico di una spira Legge di Ampère Solenoide Campo Magnetico I fenomeni magnetici possono essere

Dettagli

Forze su cariche nei fili: il motore elettrico

Forze su cariche nei fili: il motore elettrico Forze su cariche nei fili: il motore elettrico In presenza di un campo magnetico B, un tratto di filo (d l) percorsa da una corrente i è soggetto ad una forza F = id l B. Un tratto rettilineo di filo di

Dettagli

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio).

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). MAGNETISMO Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). Le proprietà magnetiche si manifestano alle estremità del magnete, chiamate

Dettagli

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo Il Dipolo Elettrico Dipolo Elettrico: due cariche (puntiformi) q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo qa che va da qq a q Dato un punto P molto distante

Dettagli

Esercizi di magnetismo

Esercizi di magnetismo Esercizi di magnetismo Fisica II a.a. 2003-2004 Lezione 16 Giugno 2004 1 Un riassunto sulle dimensioni fisiche e unità di misura l unità di misura di B è il Tesla : definisce le dimensioni [ B ] = [m]

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B.

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B. Φ ε ds ds dφ = dt Legge di Faraday E x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di q in un campo E

Dettagli

Interazioni di tipo magnetico

Interazioni di tipo magnetico INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu Interazioni di tipo magnetico 1 Il campo magnetico In natura vi sono alcune sostanze, quali la magnetite, in grado di esercitare una forza

Dettagli

Fisica II. 7 Esercitazioni

Fisica II. 7 Esercitazioni Esercizi svolti Esercizio 7.1 Il campo magnetico che agisce perpendicolarmente ad un circuito costituito da 3 spire di 3 cm di diametro, passa da un valore di.4t a -.65T in 18 msec. Calcolare la tensione

Dettagli

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1 Liceo Scientifico L. Cremona - Milano. Classe: TEST DI FISICA. Magnetismo. Docente: M. Saita Cognome: Nome: Dicembre 2015 ispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova:

Dettagli

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico Il campo magnetico n Le prime osservazioni dei fenomeni magnetici risalgono all antichità n Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro n Un ago magnetico

Dettagli

Campo magnetico terrestre

Campo magnetico terrestre Magnetismo Vicino a Magnesia, in Asia Minore, si trovava una sostanza capace di attrarre il ferro Due sbarrette di questo materiale presentano poli alle estremità, che si attraggono o si respingono come

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G.

IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G. IL CAMPO MAGNETICO V Classico Prof.ssa Delfino M. G. UNITÀ - IL CAMPO MAGNETICO 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz LEZIONE

Dettagli

1 CIRCUITAZIONE E FLUSSO DEL CAMPO MAGNETICO. 2 Circuitazione di B: il teorema di Ampère

1 CIRCUITAZIONE E FLUSSO DEL CAMPO MAGNETICO. 2 Circuitazione di B: il teorema di Ampère CRCUTAZONE E FLUSSO DEL CAMPO MAGNETCO Abbiamo gia detto che per determinare completamente un campo vettoriale dobbiamo dare il valore della sua circuitazione ed il flusso del campo attraverso una superficie

Dettagli

Appunti di elettromagnetismo

Appunti di elettromagnetismo Appunti di elettromagnetismo Andrea Biancalana ottobre 1999 1 Magneti e correnti elettriche Magneti: esistono materiali che manifestano interazioni non-gravitazionali e non-elettriche; caratteristica dei

Dettagli

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente?

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Si abbia una molla verticale al cui estremo inferiore

Dettagli

Il magnetismo. Il campo magnetico

Il magnetismo. Il campo magnetico Il magnetismo Un magnete (o calamita) è un corpo che genera intorno a sé un campo di forza che attrae il ferro Un magnete naturale è un minerale contenente magnetite, il cui nome deriva dal greco "pietra

Dettagli

Campo magnetico e forza di Lorentz (II)

Campo magnetico e forza di Lorentz (II) Campo magnetico e forza di Lorentz (II) Moto di particelle cariche in un campo magnetico Seconda legge elementare di Laplace Principio di equivalenza di Ampere Effetto Hall Galvanometro Moto di una particella

Dettagli

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza Induzione magne-ca a legge di Faraday- Neumann- enz e l indu7anza egge di Faraday Un filo percorso da corrente crea un campo magnetico. Con un magnete si può creare una corrente? a risposta è naturalmente

Dettagli

FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)!

FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)! FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)! ì Docente: Claudio Melis, Ricercatore a tempo determinato presso il Dipartimento di Fisica! Email: claudio.melis@dsf.unica.it!! Telefono

Dettagli

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite 59 Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite Questa proprietà non è uniforme su tutto il materiale, ma si localizza prevelentemente

Dettagli

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA Se un magnete è posto vicino ad un circuito conduttore chiuso, nel circuito si manifesta una f.e.m. quando il magnete è messo in movimento. Tale

Dettagli

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI Magnete FENOMENI MAGNETICI Che cos è un magnete? Un magnete è un materiale in grado di attrarre pezzi di ferro Prof. Crosetto Silvio 2 Prof. Crosetto Silvio Quando si avvicina ad un pezzo di magnetite

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Esercizio 1 (7 punti): Nella regione di spazio compresa tra due cilindri coassiali

Dettagli

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue 1.1 Una sfera conduttrice di raggio R 1 = 10 cm ha una carica Q = 10-6 C ed è circondata da uno strato sferico di dielettrico di raggio (esterno) R 2 = 20 cm e costante dielettrica relativa. Determinare

Dettagli

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti.

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. 1 / 1 La forza di Lorentz è: una forza conservativa. una forza radiale. una forza

Dettagli

Interazioni fondamentali (origine. delle forze) Elettromagnetica : lungo raggio lega elettroni e protoni per. per formare i nuclei. molecole,, etc.

Interazioni fondamentali (origine. delle forze) Elettromagnetica : lungo raggio lega elettroni e protoni per. per formare i nuclei. molecole,, etc. Interazioni fondamentali (origine delle forze) orte : corto raggio ~10-14 m lega i protoni ed i neutroni per formare i nuclei Elettromagnetica : lungo raggio lega elettroni e protoni per formare atomi,

Dettagli

Fisica Generale II (prima parte)

Fisica Generale II (prima parte) Corso di Laurea in Ing. Medica Fisica Generale II (prima parte) Cognome Nome n. matricola Voto 4.2.2011 Esercizio n.1 Determinare il campo elettrico in modulo direzione e verso generato nel punto O dalle

Dettagli

Il magnetismo magnetismo magnetite

Il magnetismo magnetismo magnetite Magnetismo Il magnetismo Fenomeno noto fin dall antichità. Il termine magnetismo deriva da Magnesia città dell Asia Minore dove si era notato che un minerale, la magnetite, attirava a sé i corpi ferrosi.

Dettagli

Conservazione della carica elettrica

Conservazione della carica elettrica Elettrostatica La forza elettromagnetica è una delle interazioni fondamentali dell universo L elettrostatica studia le interazioni fra le cariche elettriche non in movimento Da esperimenti di elettrizzazione

Dettagli

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa 1 Olimpiadi di Fisica 015 ampo elettrico Franco illa 1. ate le cariche Q = -1 µ e Q = - µ (ale in cm O=0, O=10, =10, O=0) determinare: il potenziale elettrico ed il campo elettrico E (modulo, direzione

Dettagli

(a) ;

(a) ; Corso di Fisica Generale II - A.A. 2005/2006 Proff. S. Amoruso, M. Iacovacci, G. La Rana Esercizi di preparazione alle prove intercorso ------------------------- Cap. VIII Campi elettrici e magnetici variabili

Dettagli

Nome: Cognome: Matricola:

Nome: Cognome: Matricola: Esercizio 1: Una particella ++ si trova in uiete a una istanza = 100 µm a un piano metallico verticale mantenuto a potenziale nullo. i. Calcolare le componenti el campo E in un generico punto P el semispazio

Dettagli

Misure di campi magnetici: bobine di Helmholtz e solenoidi

Misure di campi magnetici: bobine di Helmholtz e solenoidi Misure di campi magnetici: bobine di Helmholtz e solenoidi - S.S., 12 Settembre 2007 - Per il calcolo del campo magnetico prodotto da una corrente che fluisce in un circuito di forma nota è utile servirsi

Dettagli

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 1. Il campo elettrico e legge di Coulomb: esempio del calcolo generato da alcune semplici distribuzioni. 2. Il campo

Dettagli

CAMPO ELETTRICO. F r e = q E r. Newton ;

CAMPO ELETTRICO. F r e = q E r. Newton ; 1 CAMPO ELETTRICO Si definisce campo elettrico (o elettrostatico) una qualunque regione dello spazio nella quale si manifestano azioni su cariche elettriche. 1. DESCRIZIONE DEL CAMPO Per descrivere un

Dettagli

ELETTROTECNICA. Elettromagnetismo. Livello 13. Andrea Ros sdb

ELETTROTECNICA. Elettromagnetismo. Livello 13. Andrea Ros sdb ELETTROTECNICA Livello 13 Elettromagnetismo Andrea Ros sdb Livello 13 Elettromagnetismo Sezione 1 Campi magnetici e correnti elettriche Nel 1820 il fisico Oersted scoprì che il passaggio di una corrente

Dettagli

Prova scritta del corso di Fisica e Fisica 1 con soluzioni

Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prof. F. Ricci-Tersenghi 17/02/2014 Quesiti 1. Un frutto si stacca da un albero e cade dentro una piscina. Sapendo che il ramo da cui si è staccato

Dettagli

Modellistica di sistemi elettromeccanici

Modellistica di sistemi elettromeccanici Modellistica di sistemi elettromeccanici Legge di Lorentz: una carica elettrica q che si muove con velocità v(t) relativamente ad un campo magnetico di induzione B(t) è soggetta ad una forza v(t) q α B(t)

Dettagli

0 : costante dielettrica nel vuoto

0 : costante dielettrica nel vuoto 0 : costante dielettrica nel vuoto Φ Flusso del campo elettrico E dφ E E da EdAcosθ Se la superficie è chiusa (superficie gaussiana) il flusso si calcola come integrale chiuso: Φ E dφ E E da v EdAcosθ

Dettagli

Nuova Forza. La forza Gravitazionale è attrattiva ed agisce su ogni MASSA La forza elettrica è attrattiva o repulsiva ed agisce sulle CARICHE

Nuova Forza. La forza Gravitazionale è attrattiva ed agisce su ogni MASSA La forza elettrica è attrattiva o repulsiva ed agisce sulle CARICHE Nuova Forza La forza Gravitazionale è attrattiva ed agisce su ogni MASSA La forza elettrica è attrattiva o repulsiva ed agisce sulle CARICHE Come Agisce? Può essere attrattiva Un metallo (la magnetite)

Dettagli

Lezione 16 Geometrie toroidali di confinamento magnetico

Lezione 16 Geometrie toroidali di confinamento magnetico Lezione 16 Geometrie toroidali di confinamento magnetico G. osia Universita di Torino G. osia - Fisica del plasma confinato Lezione 16 1 Geometria toroidale I più moderni sistemi di confinamento magnetico

Dettagli

Nome: Cognome: Matricola:

Nome: Cognome: Matricola: Esercizio 1: Una porzione anello carico avente raggio R = 4 cm, giace sul piano x-y (uadrante x e y positivi) come indicato in figura 1. La densità lineare di carica dell anello è di 40 nc/m. i. Calcolare

Dettagli

2. L unità di misura della costante k che compare nella legge di Coulomb è:

2. L unità di misura della costante k che compare nella legge di Coulomb è: Fatti sperimentali e loro descrizione fenomenologica 1 Vero o falso 2 Quesiti a risposta multipla 1. Si considerino due cariche elettriche, q 1 = +2 10 4 C e q 2 = 3 10 5 C, poste alla distanza d = 1,

Dettagli

Tesina Fisica Generale II

Tesina Fisica Generale II Tesina Fisica Generale II Corso di Laurea in Scienza ed Ingegneria dei materiali Coordinatore: Scotti di Uccio Umberto Gruppo V: Caiazzo Dimitri Capasso Giuseppe Nuzzo Giovanni N50000288 N50000296 N50000302

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA Fisica enerale Modulo di Fisica II A.A. 05-6 INDUZIONE EETTOMANETIA Eb. Una spira rettangolare di altezza l 0 cm è 0. T completata da un contatto mobile che viene spostato verso destra alla velocità costante

Dettagli

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Il capo agnetico 1. Fenoeni agnetici 2. Calcolo del capo agnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Prof. Giovanni Ianne 1/21 Fenoeni agnetici La agnetite è un inerale

Dettagli

SCUOLA GALILEIANA - CLASSE DI SCIENZE NATURALI PROVA DI AMMISSIONE A.A.: SOLUZIONE DELLA PROVA SCRITTA DI FISICA

SCUOLA GALILEIANA - CLASSE DI SCIENZE NATURALI PROVA DI AMMISSIONE A.A.: SOLUZIONE DELLA PROVA SCRITTA DI FISICA SCUOLA GALILEIANA - CLASSE DI SCIENZE NATURALI PROBLEMA 1. PROVA DI AMMISSIONE A.A.:2007-2008 SOLUZIONE DELLA PROVA SCRITTA DI FISICA a) da g = GM segue: M = gr2 R 2 G b) La forza centripeta che fa descrivere

Dettagli

Tutorato di Fisica 2 Anno Accademico 2010/2011

Tutorato di Fisica 2 Anno Accademico 2010/2011 Matteo Luca Ruggiero DIFIS@Politecnico di Torino Tutorato di Fisica 2 Anno Accademico 2010/2011 () 2 1.1 Una carica q è posta nell origine di un riferimento cartesiano. (1) Determinare le componenti del

Dettagli

Energia del campo elettromagnetico

Energia del campo elettromagnetico Energia del campo elettromagnetico 1. Energia 2. Quantità di moto 3. Radiazione di dipolo VII - 0 Energia Come le onde meccaniche, anche le onde elettromagnetiche trasportano energia, anche se non si propagano

Dettagli

Teorema di Gauss per il campo elettrico E

Teorema di Gauss per il campo elettrico E Teorema di Gauss per il campo elettrico E Dove vogliamo arrivare? Vogliamo arrivare al teorema di Gauss per il campo elettrico E : Φ E = q ε 0 Che dice fondamentalmente questo: il flusso attraverso una

Dettagli

Esercitazione 3. Soluzione Il raggio della spira varia secondo la legge A = ¼D2. = ¼ 4 4 (D 0 2vt) 2 ; B = BA = ¼ 4 B(D 0 2vt) 2 :

Esercitazione 3. Soluzione Il raggio della spira varia secondo la legge A = ¼D2. = ¼ 4 4 (D 0 2vt) 2 ; B = BA = ¼ 4 B(D 0 2vt) 2 : 19 Gilberto Giugliarelli 3.1 Una spira circolare di materiale conduttore elastico viene stirata (facendo in modo che continui ad avere forma circolare) fino ad assumere un diametro D 0 = 24.0 cm. Un campo

Dettagli

Attrito statico e attrito dinamico

Attrito statico e attrito dinamico Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza

Dettagli

Elettromagnetismo. Applicazioni della legge di Gauss. Lezione n. 6 14.10.2015. Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Applicazioni della legge di Gauss. Lezione n. 6 14.10.2015. Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 6 14.10.2015 Applicazioni della legge di Gauss Anno Accademico 2015/2016 Campo di un guscio sferico cavo Abbiamo già

Dettagli

Derivata materiale (Lagrangiana) e locale (Euleriana)

Derivata materiale (Lagrangiana) e locale (Euleriana) ispense di Meccanica dei Fluidi 0 0 det 0 = [ (0 ) + ( ( ) ) + (0 0 ) ] = 0. Pertanto, v e µ sono indipendenti tra loro e costituiscono una nuova base. Con essi è possibile descrivere altre grandezze,

Dettagli

1.11.3 Distribuzione di carica piana ed uniforme... 32

1.11.3 Distribuzione di carica piana ed uniforme... 32 Indice 1 Campo elettrico nel vuoto 1 1.1 Forza elettromagnetica............ 2 1.2 Carica elettrica................ 3 1.3 Fenomeni elettrostatici............ 6 1.4 Legge di Coulomb.............. 9 1.5 Campo

Dettagli

rdr = 1 2!Bl2 = 0:5 V:

rdr = 1 2!Bl2 = 0:5 V: Lauree in Ing. Gest. dell Inform. e Industr. e Ing. Ambientale A.A. 2010/2011 Corso di Fisica Generale II_con Lab. 28 Gilberto Giugliarelli 4.1 Una sbarretta conduttrice di lunghezza l = 10 cm ruota con

Dettagli

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO FORMULARIO DI FISICA 3 MOTO OSCILLATORIO Corpo attaccato ad una molla che compie delle oscillazioni Calcolare la costante elastica della molla 2 2 1 2 2 ω: frequenza angolare (Pulsazione) ; T: Periodo

Dettagli

Elettrostatica nel vuoto

Elettrostatica nel vuoto Elettrostatica nel vuoto Come abbiamo visto nella parte di meccanica le forze sono o di contatto (attrito, pressione, forza elastica) o a distanza (gravitazione): osservazioni sperimentali hanno mostrato

Dettagli

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991)

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) 1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della

Dettagli

campo magnetico Introduzione

campo magnetico Introduzione campo magnetico ntroduzione F i s i c a s p e r i m e n t a l e Si era detto: La forza elettrica è descritta dalla legge di Coulomb Tuttavia: La verifica sperimentale era fatta in condizioni statiche La

Dettagli

Fisica II CdL Chimica. Magnetismo

Fisica II CdL Chimica. Magnetismo Magnetismo Magnetismo gli effetti magnetici da magneti naturali sono noti da molto tempo. Sono riportate osservazioni degli antichi Greci sin dall 800 A.C. la parola magnetismo deriva dalla parola greca

Dettagli

LINEE CON CAVO COASSIALE

LINEE CON CAVO COASSIALE LINEE CON CAVO COASSIALE Coefficiente di autoinduzione di un cavo coassiale Sia dato il cavo coassiale di fig. 1 Fig. 1 Cavo coassiale esso è costituito da due conduttori coassiali lunghi, di sezione e

Dettagli

L induzione elettromagnetica - Legge di Faraday-Lentz

L induzione elettromagnetica - Legge di Faraday-Lentz Ver. 1. del 7/1/9 L induzione elettromagnetica - Legge di Faraday-Lentz i osservano alcuni fatti sperimentali. 1 ) Consideriamo un filo metallico chiuso su se stesso (spira) tramite un misuratore di corrente

Dettagli

FORMULARIO ELETTROMAGNETISMO

FORMULARIO ELETTROMAGNETISMO FORMULARIO ELETTROMAGNETISMO Forza di Coulomb : forza che intercorre tra due particelle cariche Campo elettrico : quantità vettoriale generata da una carica Densità di carica superficiale, volumetrica

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

DINAMICA E STATICA RELATIVA

DINAMICA E STATICA RELATIVA DINAMICA E STATICA RELATIVA Equazioni di Lagrange in forma non conservativa La trattazione della dinamica fin qui svolta è valida per un osservatore inerziale. Consideriamo, ora un osservatore non inerziale.

Dettagli

Paradosso di Feynman

Paradosso di Feynman Paradosso di Feynman David Marzocca 27 luglio 2007 Paradosso di Feynman [] Immaginiamo di avere una bobina fissata coassialmente ad un disco di materiale isolante. Sul bordo di questo disco, a distanza

Dettagli

Elettrostatica. ɛ 0 = costante dielettrica nel vuoto = Nm 2

Elettrostatica. ɛ 0 = costante dielettrica nel vuoto = Nm 2 Elettrostatica Capitolo 12 Elettrostatica Legge di Coulomb : F = k q1q 2 r 2 con k = 1 4πɛ 0 = 9 10 9 Nm2 C 2 ɛ 0 = costante dielettrica nel vuoto = 8.85 10 12 C2 Nm 2 La legge di Coulomb ci dice quindi

Dettagli

23.2 Il campo elettrico

23.2 Il campo elettrico N.Giglietto A.A. 2005/06-23.3-Linee di forza del campo elettrico - 1 Cap 23- Campi Se mettiamo una carica in una regione dove c è un altra carica essa risentirà della sua presenza manifestando una forza

Dettagli

Applicazioni del teorema di Gauss

Applicazioni del teorema di Gauss Prof. A.Guarrera Liceo Scientifico Galilei - Catania Applicazioni del teorema di Gauss Campo elettrostatico di una distribuzione di carica uniforme e filiforme (filo carico) di densità lineare di carica.

Dettagli

FISICA (modulo 1) PROVA SCRITTA 23/06/2014

FISICA (modulo 1) PROVA SCRITTA 23/06/2014 FISICA (modulo 1) PROVA SCRITTA 23/06/2014 ESERCIZI E1. Un corpo puntiforme di massa m = 2 Kg si muove su un percorso che ha la forma di un quarto di circonferenza di raggio R = 50 cm ed è disposta su

Dettagli

Moto degli elettroni di conduzione per effetto di un campo elettrico.

Moto degli elettroni di conduzione per effetto di un campo elettrico. LA CORRENTE ELETTRICA: Moto degli elettroni di conduzione per effetto di un campo elettrico. Un filo metallico, per esempio di rame, da un punto di vista microscopico, è costituito da un reticolo di ioni

Dettagli

Problemi di Fisica. Elettrostatica. La Legge di Coulomb e il Campo elettrico

Problemi di Fisica. Elettrostatica. La Legge di Coulomb e il Campo elettrico LROSAICA Problemi di isica lettrostatica La Legge di Coulomb e il Campo elettrico LROSAICA ata la distribuzione di carica rappresentata in figura, calcolare la forza totale che agisce sulla carica Q posta

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Fisica Classe VB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 FORZA E CAMPI ELETTRICI (Richiami) Teoria sui vettori I

Dettagli

Esercitazione XII - Elettrostatica e magnetismo

Esercitazione XII - Elettrostatica e magnetismo Esercitazione XII - Elettrostatica e magnetismo Esercizio 1 Una particella di massa m = 10g e carica negativa q = 1mC viene posta fra le armature di un condensatore a piatti piani e paralleli, ed è inoltre

Dettagli

EFFETTO MAGNETICO DELLA CORRENTE

EFFETTO MAGNETICO DELLA CORRENTE IL CAMPO MAGNETICO E GLI EFFETTI MAGNETICI DELLA CORRENTE 1 EFFETTO MAGNETICO DELLA CORRENTE Ogni conduttore percorso da corrente crea intorno a sé un campo magnetico (H), cioè una perturbazione di tipo

Dettagli

Cosa differenzia un conduttore da un dielettrico? Come si comporta un conduttore? Come si utilizza un conduttore?

Cosa differenzia un conduttore da un dielettrico? Come si comporta un conduttore? Come si utilizza un conduttore? 1 Cosa differenzia un conduttore da un dielettrico? A livello macroscopico A livello microscopico Come si comporta un conduttore? In elettrostatica In presenza di cariche in moto (correnti)... Come si

Dettagli

Corso di Fisica Per Informatica Esercitazioni 2009

Corso di Fisica Per Informatica Esercitazioni 2009 Coordinate Esercitatore: Stefano Argirò stefano.argiro@unito.it tel 011670-7372 Ricevimento: su appuntamento tramite e-mail http://www.to.infn.it/ argiro 1 Esercitazioni di Fisica - Vettori 1. Dato un

Dettagli

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente 1 Definizione di lavoro 8. Energia e lavoro Consideriamo una forza applicata ad un corpo di massa m. Per semplicità ci limitiamo, inizialmente ad una forza costante, come ad esempio la gravità alla superficie

Dettagli

Corrente elettrica. a = e E/m. La velocita' cresce linearmente. v= a t

Corrente elettrica. a = e E/m. La velocita' cresce linearmente. v= a t Corrente elettrica In un buon conduttore è disponibile una notevole quantità di elettroni liberi di muoversi Se applico un campo elettrico E essi sono accelerati a = e E/m La velocita' cresce linearmente

Dettagli

MISURA della componente ORIZZONTALE TOTALE del CAMPO MAGNETICO TERRESTRE

MISURA della componente ORIZZONTALE TOTALE del CAMPO MAGNETICO TERRESTRE MISURA della componente ORIZZONTALE TOTALE del CAMPO MAGNETICO TERRESTRE Lavoro svolto da Laura Bianchettin - Flavio Ciprani Premessa Il campo magnetico terrestre è rappresentato da un vettore generalmente

Dettagli

Elettrostatica II. Energia Elettrostatica (richiamo) Potenziale Elettrico. Potenziale di cariche puntiformi. Superfici equipotenziali.

Elettrostatica II. Energia Elettrostatica (richiamo) Potenziale Elettrico. Potenziale di cariche puntiformi. Superfici equipotenziali. Elettrostatica II Energia Elettrostatica (richiamo) Potenziale Elettrico Potenziale di cariche puntiformi Superfici equipotenziali Condensatori Dielettrici Energia potenziale di due cariche Si può dimostrare

Dettagli

Il potenziale elettrico

Il potenziale elettrico Il elettrico Ingegneria Energetica Docente: Angelo Carbone Energia del elettrico e differenza di Relazione tra il elettrico e il Il elettrico dovuto a cariche puntiformi Il elettrico dovuto a una generica

Dettagli

Lezione 15 Geometrie lineari di confinamento magnetico

Lezione 15 Geometrie lineari di confinamento magnetico Lezione 15 Geometrie lineari di confinamento magnetico G. Bosia Universita di Torino G. Bosia Introduzione alla fisica del plasma Lezione 15 1 Disuniformità con gradiente in direzione del campo ( ) Una

Dettagli

Angelo Baracca - Ulteriori Esercizi e Problemi sul Capitolo 7 Pag. 1

Angelo Baracca - Ulteriori Esercizi e Problemi sul Capitolo 7 Pag. 1 - - - o 0 o - - - ULTERIORI PROBLEMI PROPOSTI Problema 7.a. Due cariche elettriche puntiformi con cariche entrambe positive, di intensità q 0 5 C e q, 5 0 6 C sono poste alla distanza di 60 cm: determinare

Dettagli

Proprietà elettriche della materia

Proprietà elettriche della materia Proprietà elettriche della materia Conduttori Materiali in cui le cariche elettriche scorrono con facilità. In un metallo gli elettroni più esterni di ciascun atomo formano una specie di gas all interno

Dettagli

Elettromagnetismo

Elettromagnetismo Elettromagnetismo 1. Una bolla di sapone di raggio r = 7.0 cm è caricata al potenziale V 1 = 150 V. La parete della bolla ha spessore s = 5.2 x 10-6 cm. Se si fa scoppiare la bolla e si suppone di raccogliere

Dettagli

Il campo Magnitico e sue azioni

Il campo Magnitico e sue azioni Il campo Magnitico e sue azioni 1) Definizione operativa del campo magnetico Era nota sin dall antichità l esistenza di alcune sostanze in grado di esercitare delle azioni su piccoli pezzi di materiali

Dettagli

Problemi di Fisica per l ammissione alla Scuola Galileana Problema 1

Problemi di Fisica per l ammissione alla Scuola Galileana Problema 1 Problemi di Fisica per l ammissione alla Scuola Galileana 014-015 Problema 1 Nella regione di spazio interna alla sfera S 1, centrata in O 1 e di raggio R 1, è presente una densità di carica di volume

Dettagli

Lezione 1: Introduzione alle grandezze magnetiche

Lezione 1: Introduzione alle grandezze magnetiche Lezione 1: Introduzione alle grandezze magnetiche 1 Campi Magnetici Il campo magnetico è un campo vettoriale: associa, cioè, ad ogni punto nello spazio un vettore. Un campo magnetico si puo misurare per

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

Cap 31 - Induzione e induttanza. 31.2 Due esperimenti

Cap 31 - Induzione e induttanza. 31.2 Due esperimenti N.Giglietto A.A. 2002/03-31.2 Due esperimenti - 1 Cap 31 - Induzione e induttanza Sappiamo che una spira percorsa da corrente e immersa in un campo magnetico è soggetta ad un momento torcente. Proviamo

Dettagli

APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO

APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO Quando un punto materiale P si sposta di un tratto s per effetto di una forza F costante applicata

Dettagli

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i

Dettagli

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA Esercizio 1 Due cariche q 1 e q 2 sono sull asse x, una nell origine e l altra nel punto x = 1 m. Si trovi il campo elettrico

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 6 Dinamica del punto materiale II Prof.ssa Stefania Petracca 1 Lavoro, energia cinetica, energie potenziali Le equazioni della dinamica permettono di determinare

Dettagli

1 Equilibrio statico nei corpi deformabili

1 Equilibrio statico nei corpi deformabili Equilibrio statico nei corpi deformabili Poiché i materiali reali non possono considerarsi rigidi, dobbiamo immaginare che le forze esterne creino altre forze interne che tendono ad allungare (comprimere)

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli