CONNESSIONI TRA LA SERIE DI FIBONACCI, LE FREQUENZE DI ZIPF, IL TEOREMA DI TED HILL E LE LEGGI DI SCALA

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CONNESSIONI TRA LA SERIE DI FIBONACCI, LE FREQUENZE DI ZIPF, IL TEOREMA DI TED HILL E LE LEGGI DI SCALA"

Transcript

1 CONNESSIONI TRA LA SERIE DI FIBONACCI, LE FREQUENZE DI ZIPF, IL TEOREMA DI TED HILL E LE LEGGI DI SCALA (Oltre che con la legge di Benford e la legge di Poisson) Ing. Pier Franz Roggero, Dott. Michele Nardelli, P.A. Francesco Di Noto Abstract In this paper we show some connections between Fibonacci numbers, Zipf s law case, Ted Hill Theorem and scale laws Riassunto In questo lavoro mostreremo delle connessioni tra serie numerica di Fibonacci, un caso della legge statistica di Zipf, il teorema di Ted Hill e le leggi statistiche di scala ( ma anche con la legge di Benford e di Poisson) Da Rif. 1 ( RIF.1 Bellos, I numeri ci somigliano, pag.45 sul caso del libro Ulisse di James Joyce, riportiamo in Tabella 1 le frequenze di alcune parole del suddetto libro Ulisse e una possibile forte connessione con i 1

2 numeri di Fibonacci TABELLA 1 parola posizione frequenza n. di Fibonacci vicini I (io) (18 ) (18 17 =(13+21)/2 Say (dico) (13 ) Bag (borsa) (8 ) Orangefiery (arancione (3 ) acceso) differenza n. di Fibonacci vicini (10 ) 10,5 (5 )+(7 ) =(5+13)2=9 10,5 (10 ) (9 ) (8 ) 5 = 5 (5 ) 0 = 0 La frequenza costeggia da vicino la serie di Fibonacci 2584, 233, 21 e 2, con differenze anch esse vicine ai numeri di Fibonacci 55, 34, 5 e 0 Ma anche, sorpresa, i numeri d ordine (tra parentesi) di numeri di Fibonacci, sono anch essi numeri di Fibonacci (13, 8 e 3) o loro medie, media aritmetica tra 13 e 21. Da un numero all altro sono compresi altri cinque numeri di Fibonacci intermedi, infatti si salta dal 3 all 8, dall 8 al 13 al 18. Queste connessioni potrebbero contribuire a trovare in futuro una spiegazione più semplice della legge di Zifps, connessa alla Legge di 2

3 Benford (Rif.2), anche questa connessa ai numeri di Fibonacci. Una dimostrazione rigorosa si basa invece sulla teoria ergodica, vedi nota finale, connessa al teorema di Ted Hill, riportato nelle conclusioni. Conclusioni Queste nostre connessioni potrebbero contribuire a trovare una spiegazione più semplice della legge di Zifps, connessa alla Legge di Benford (Rif.2), anche questa connessa ai numeri di Fibonacci Una dimostrazione rigorosa, da parte di Ted Hill della legge cumulativa di Benford si basa sulla teoria ergodica, come accennato da Bellos a pag. 42 : Ha dimostrato il suo teorema mediante la teoria ergodica, un campo avanzato che unisce il calcolo della probabilità alla fisica statistica e viene insegnato soltanto a livello di laurea specialistica... nonostante sia semplice da descrivere, il suo teorema non ha una dimostrazione semplice Per cui, per questa difficoltà, per il momento ci rinunciamo e ci limitiamo soltanto a questa semplice connessione tra la serie numerica di Fibonacci e la legge di Zipf. 3

4 Ma riportiamo, da Rif.1, pag. 42,, per gli eventuali interessati, il teorema di Ted Hill (il più famoso dei suoi): Se si prendono campioni a caso di insiemi di dati scelti a caso, quanti più insiemi e campioni si scelgono, tanto più la distribuzione della prima cifra dei campioni combinati si avvicinerà alla legge di Benford Da pag.61 del libro di Bellos (Rif. 1) riportiamo anche gli esponenti n di costanti k relativi a fenomeni statistici,relativi a cose che crescono al crescere di una città (numeri di inventori, salari totali, casi di Aids, crimini, numeri di stazioni di servizi, lunghezza dei cavi elettrici, nello stesso ordine degli esponenti di k qui di seguito) per una possibile altra connessione con la sezione aurea, i numeri di Fibonacci e le leggi statistiche di scala: 1,27 1,12 1,23 1, ,83 Se li mettiamo ora in ordine strettamente decrescente, abbiamo: 1,27 1,23 1,16 4

5 1,12 0,83 0,77 Con il nostro solito metodo dei rapporti successivi per cercare connessioni con la sezione aurea, abbiamo la Tabella 2: Esponenti n di k^n Rapporti successivi TABELLA 2 Valori reali Stima 2^16 1,618032= 1,0305 1,27 1,27/1,23 1,032 1,0305 1,23 1,23/1,16 1,060 1,0305^2=1,061 1,16 1,16/1,12 1,035 1,0305 1,12 1,12/0,83 1,034 1,0305 0,83 0,83/0,77 1,077 1,0305^2=1,061 0,77 Media aritmetica 5,238/5 =1,0476 1,050 = 2^16 1,618032* 2^32 1,618032= 1,035 *1,015= 1,050 1,0476 La connessione con Fibonacci quindi è evidente, essendo coinvolte le radici 2^16 esima e 2^32 esima di Ф =1, Quindi questa costante matematica è coinvolta, oltre che nella legge di Benford, anche nella legge di Poisson, nella legge di Zipf e nel teorema di Ted Hill, 5

6 Riferimenti 1) Bellos, I numeri ci somigliano, Einaudi 2 )LA LEGGE DI BENFORD: CONNESSIONE CON I NUMERI DI FIBONACCI E UN APPLICAZIONE CON LE TARGHE AUTOMOBILISTICHE Ing. Pier Franz Roggero, Dott. Michele Nardelli, P.A. Francesco Di Noto Abstract: In this paper we show s connection between Benford s law and Fibonacci numbers. Also we study an application with license plates of Italian and German car. Sul nostro sito E la versione inglese: 3) BENFORD S LAW : CONNECTIONS WITH FIBONACCI'S NUMBERS Eng. Pier Franz Roggero, Dott. Michele Nardelli, Francesco Di Noto Abstract: In this paper we show s connection between Benford s law and Fibonacci numbers. Also we study an application with license plates of Italian and German car. Sul nostro sito 6

7 4 ) I primi 500 numeri della serie di Fibonacci Sul sito cipolab.forumfree.it/?t= Nota finale sulla teoria ergodica Parzialmente da Wikipedia, per chi volesse approfondire l argomento, sebbene non vi appaia alcuna connessione teorica con il teorema di Ted Hill e la legge di Benford Teoria ergodica Da Wikipedia, l'enciclopedia libera. Vai a: navigazione, ricerca La teoria ergodica (dal greco érgon, lavoro, energia, e eidos, aspetto [1] ) si occupa principalmente dello studio matematico del comportamento medio, a lungo termine, di sistemi dinamici. Indice La teoria[modifica modifica wikitesto] Il termine ergodico è stato introdotto da Ludwig Boltzmann ( ) con riferimento ai sistemi meccanici complessi ai quali era attribuita la proprietà di assumere, nella loro evoluzione spontanea, tutti gli stati dinamici microscopici compatibili con il loro stato macroscopico. Le particelle costituenti il sistema, cioè, avrebbero dovuto assumere ogni insieme di valori istantanei di posizione e velocità le cui caratteristiche medie corrispondessero allo stato macroscopico del sistema. L'ipotesi ergodica, ossia una formulazione più tecnica della precedente idea, è stata proposta da Josiah Willard Gibbs ( ). Essa prevede che la media temporale di una proprietà del sistema in esame sia perfettamente equivalente alla media istantanea della medesima proprietà nell'insieme canonico quando il numero dei sistemi tende all'infinito. 7

8 Se lo stato del sistema viene rappresentato con un punto che si muove in un opportuno spazio delle fasi, e vincolato da considerazioni energetiche su una particolare superficie immersa in esso, l'ipotesi ergodica assicura che il punto finirebbe col passare prima o poi per tutti i punti della superficie. Questa congettura si è dimostrata falsa se applicata alla generalità dei sistemi meccanici per i quali era stata formulata, per cui si è cominciato a parlare di sistemi quasi-ergodici, che hanno la proprietà, più debole, di passare per stati arbitrariamente prossimi agli stati microscopici compatibili con l'energia totale. 8

NUOVO NUMERO PRIMO DI MERSENNE (NOSTRA PREVISIONE ATTENDIBILE. e nuova previsione per il. 50 numero primo di Mersenne) -

NUOVO NUMERO PRIMO DI MERSENNE (NOSTRA PREVISIONE ATTENDIBILE. e nuova previsione per il. 50 numero primo di Mersenne) - NUOVO NUMERO PRIMO DI MERSENNE (NOSTRA PREVISIONE ATTENDIBILE e nuova previsione per il 50 numero primo di Mersenne) - Ing. Pier Franz Roggero, Dott. Michele Nardelli, P.A. Francesco Di Noto Abstract In

Dettagli

DAI NUMERI PRIMI AL BOSONE DI HIGGS TRAMITE LE SIMMETRIE

DAI NUMERI PRIMI AL BOSONE DI HIGGS TRAMITE LE SIMMETRIE DAI NUMERI PRIMI AL BOSONE DI HIGGS TRAMITE LE SIMMETRIE (numeri primi-numeri di Lie-gruppi eccezionali di Lie-simmetrieteorie di stringa-e8xe8-bosone di Higgs) Gruppo B. RIEMANN * Francesco Di Noto, Michele

Dettagli

I NUMERI PERFETTI DISPARI. (proposta di dimostrazione della loro inesistenza)

I NUMERI PERFETTI DISPARI. (proposta di dimostrazione della loro inesistenza) I NUMERI PERFETTI DISPARI (proposta di dimostrazione della loro inesistenza) Gruppo B. Riemann Michele Nardelli, Francesco Di Noto Abstract In this paper we show the inexistence of odd perfect numbers

Dettagli

I doppi di Fibonacci ( 2F(n) ) in fisica e. nel calcolo delle probabilità

I doppi di Fibonacci ( 2F(n) ) in fisica e. nel calcolo delle probabilità I doppi di Fibonacci ( 2F(n) ) in fisica e nel calcolo delle probabilità Gruppo B.Riemann * Francesco Di Noto, Michele Nardelli *Gruppo amatoriale per la ricerca matematica sui numeri primi, sulle loro

Dettagli

LA LEGGE DI BENFORD: CONNESSIONE CON I NUMERI DI FIBONACCI E UN APPLICAZIONE CON LE TARGHE AUTOMOBILISTICHE

LA LEGGE DI BENFORD: CONNESSIONE CON I NUMERI DI FIBONACCI E UN APPLICAZIONE CON LE TARGHE AUTOMOBILISTICHE Pagina 1 di 21 LA LEGGE DI BENFORD: CONNESSIONE CON I NUMERI DI FIBONACCI E UN APPLICAZIONE CON LE TARGHE AUTOMOBILISTICHE Ing. Pier Franz Roggero, Dott. Michele Nardelli, P.A. Francesco Di Noto Abstract:

Dettagli

POPOLAZIONE MONDIALE

POPOLAZIONE MONDIALE Pagina 1 di 11 POPOLAZIONE MONDIALE Ing. Pier Franz Roggero, Dott. Michele Nardelli, P.A. Francesco Di Noto Abstract: In this paper we show an estimate of the actual world population and the total number

Dettagli

3 Il problema dell impacchettamento come problema

3 Il problema dell impacchettamento come problema 3 Il problema dell impacchettamento come problema NP - Le partizioni di numeri e i Taxicab come possibili esempi di soluzione Francesco Di Noto, Michele Nardelli, Pierfrancesco Roggero Abstract In this

Dettagli

Teoria cinetica di un sistema di particelle

Teoria cinetica di un sistema di particelle Teoria cinetica di un sistema di particelle La meccanica dei fluidi modellati come sistemi continui, sviluppata dal XII e XIII secolo e in grado di descrivere fenomeni dinamici macroscopici con buona approssimazione

Dettagli

CONNESSIONI MATEMATICHE PRINCIPALI TRA LE COSTANTI. Francesco Di Noto, Michele Nardelli, Pierfrancesco Roggero

CONNESSIONI MATEMATICHE PRINCIPALI TRA LE COSTANTI. Francesco Di Noto, Michele Nardelli, Pierfrancesco Roggero CONNESSIONI MATEMATICHE PRINCIPALI TRA LE COSTANTI π, Φ ed e Francesco Di Noto, Michele Nardelli, Pierfrancesco Roggero Abstract In this paper we show some connections between π, Φ and e Riassunto In questo

Dettagli

DAI NUMERI COMPLESSI ALLA REALTA FISICA. (in particolare gli ottonioni)

DAI NUMERI COMPLESSI ALLA REALTA FISICA. (in particolare gli ottonioni) DAI NUMERI COMPLESSI ALLA REALTA FISICA (in particolare gli ottonioni) Gruppo B. Riemann Michele Nardelli, Francesco Di Noto *Gruppo amatoriale per la ricerca matematica sui numeri primi, sulle loro congetture

Dettagli

Gruppo B. Riemann * Michele Nardelli, Francesco Di Noto Abstract

Gruppo B. Riemann * Michele Nardelli, Francesco Di Noto Abstract Dai numeri primi alla realtà fisica attraverso i numeri primi, i numeri di Fibonacci, i numeri di Lie (e relative simmetrie), le partizioni di numeri, la funzione zeta, l ipotesi di Riemann, e le teorie

Dettagli

La statistica. Elaborazione e rappresentazione dei dati Gli indicatori statistici. Prof. Giuseppe Carucci

La statistica. Elaborazione e rappresentazione dei dati Gli indicatori statistici. Prof. Giuseppe Carucci La statistica Elaborazione e rappresentazione dei dati Gli indicatori statistici Introduzione La statistica raccoglie ed analizza gruppi di dati (su cose o persone) per trarne conclusioni e fare previsioni

Dettagli

FORMULE PER TROVARE NUMERI PRIMI

FORMULE PER TROVARE NUMERI PRIMI FORMULE PER TROVARE NUMERI PRIMI Ing. Pier Francesco Roggero, Dott. Michele Nardelli, Francesco Di Noto Abstract In this paper we examine in detail a class of special prime numbers. Pagina 2 di 28 Index:

Dettagli

Ricorsività (o ricorrenza) nelle somme di numeri particolari successivi (caso generale a, b)

Ricorsività (o ricorrenza) nelle somme di numeri particolari successivi (caso generale a, b) Ricorsività (o ricorrenza) nelle somme di numeri particolari successivi (caso generale a, b) casi particolari a=b=1 (numeri di Fibonacci, F, e a=b=2 (le dimensioni coinvolte nelle teorie di stringa, 2F)

Dettagli

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Le Derivate Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato durante

Dettagli

I NUMERI DI PADOVAN (CONNESSIONI TRA LA SERIE DI PADOVAN ED ALTRE SERIE NUMERICHE)

I NUMERI DI PADOVAN (CONNESSIONI TRA LA SERIE DI PADOVAN ED ALTRE SERIE NUMERICHE) I NUMERI DI PADOVAN (CONNESSIONI TRA LA SERIE DI PADOVAN ED ALTRE SERIE NUMERICHE) Gruppo B. Riemann Francesco Di Noto, Michele Nardelli Abstract In this paper we show some connections between Padovan

Dettagli

LE COSTANTI E LE LEGGI FISICHE DIPENDONO DAL TEMPO

LE COSTANTI E LE LEGGI FISICHE DIPENDONO DAL TEMPO Pagina 1 di 8 LE COSTANTI E LE LEGGI FISICHE DIPENDONO DAL TEMPO Ing. Pier Franz Roggero, Dott. Michele Nardelli, P.A. Francesco Di Noto Abstract: This paper explains that all physical constants and consequently

Dettagli

Grandezze fisiche e loro misura

Grandezze fisiche e loro misura Grandezze fisiche e loro misura Cos è la fisica? e di che cosa si occupa? - Scienza sperimentale che studia i fenomeni naturali suscettibili di sperimentazione e caratterizzati da entità o grandezze misurabili.

Dettagli

Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti

Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti Laurea in Scienze dell Educazione Insegnamento di Pedagogia Sperimentale (Prof. Paolo Frignani) Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti giorgio.poletti@unife.it) MEDIA aritmetica semplice

Dettagli

Classi: Prime IA; IB; IC; ID; IE; IF Disciplina: MATEMATICA Ore settimanali previste: 4

Classi: Prime IA; IB; IC; ID; IE; IF Disciplina: MATEMATICA Ore settimanali previste: 4 Classi: Prime IA; IB; IC; ID; IE; IF Disciplina: MATEMATICA Ore settimanali previste: 4 N. modulo Titolo Modulo Titolo unità didattiche Ore previste Periodo Competenze Prerequisiti per l'accesso al modulo

Dettagli

I NUMERI DI LEYLAND E LE SERIE DI FIBONACCI E DI PADOVAN

I NUMERI DI LEYLAND E LE SERIE DI FIBONACCI E DI PADOVAN Gruppo B. Riemann * I NUMERI DI LEYLAND E LE SERIE DI FIBONACCI E DI PADOVAN Francesco Di Noto, Michele Nardelli *Gruppo amatoriale per la ricerca matematica sui numeri primi, sulle loro congetture e sulle

Dettagli

I numeri semiprimi e i numeri RSA. come loro sottoinsieme

I numeri semiprimi e i numeri RSA. come loro sottoinsieme I numeri semiprimi e i numeri RSA come loro sottoinsieme Francesco Di Noto, Michele Nardelli Abstract In this paper we show some connections between semi-primes numbers and RSA numbers. Riassunto In questo

Dettagli

Grandezze fisiche e loro misura

Grandezze fisiche e loro misura Grandezze fisiche e loro misura Cos è la fisica? e di che cosa si occupa? - Scienza sperimentale che studia i fenomeni naturali suscettibili di sperimentazione e caratterizzati da grandezze misurabili.

Dettagli

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 4ALS MATERIA: FISICA

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 4ALS MATERIA: FISICA PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 4ALS MATERIA: FISICA Strategie didattiche: Le lezioni frontali saranno associate a delle esperienze di laboratorio per accompagnare la

Dettagli

Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva

Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva Fondamenti di Informatica Ester Zumpano Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva Lezione 5 Statistica descrittiva La statistica descrittiva mette a disposizione il calcolo di

Dettagli

Capitolo 2 Le misure delle grandezze fisiche

Capitolo 2 Le misure delle grandezze fisiche Capitolo 2 Le misure delle grandezze fisiche Gli strumenti di misura Gli errori di misura Il risultato di una misura Errore relativo ed errore percentuale Propagazione degli errori Rappresentazione di

Dettagli

5. Applicazione ai dati sperimentali, un modello di previsione delle temperature

5. Applicazione ai dati sperimentali, un modello di previsione delle temperature 5. Applicazione ai dati sperimentali, un modello di previsione delle temperature 5.1 Ricostruzione dello spazio delle fasi L utilizzo del teorema di embedding per ricostruire lo spazio delle fasi relativo

Dettagli

R.Bianchi 1. R.Bianchi 2. Fonte: Claudio Bezzi, Il disegno della ricerca valutativa, Nuova edizione, Franco Angeli, Milano, 2004

R.Bianchi 1. R.Bianchi 2. Fonte: Claudio Bezzi, Il disegno della ricerca valutativa, Nuova edizione, Franco Angeli, Milano, 2004 La valutazione è principalmente un attività di di ricerca applicata, realizzata, nell ambito di di un processo decisionale, in in maniera integrata con le le fasi di di programmazione, progettazione e

Dettagli

LA DISTRIBUZIONE NORMALE

LA DISTRIBUZIONE NORMALE LA DISTRIBUZIONE NORMALE Italo Nofroni Statistica medica - Facoltà di Medicina Sapienza - Roma La più nota ed importante distribuzione di probabilità è, senza alcun dubbio, la Distribuzione normale, anche

Dettagli

LE DOMANDE DEI NUMERI PRIMI

LE DOMANDE DEI NUMERI PRIMI LE DOMANDE DEI NUMERI PRIMI UNA SFIDA APERTA DA 23 SECOLI Progetto di attività didattica 10 2 10 3 10 4 10 6 10 9 2 7 5 Classe destinataria: 2 anno del Liceo Scientifico Durata e periodo dell attività:

Dettagli

Il campionamento e l inferenza. Il campionamento e l inferenza

Il campionamento e l inferenza. Il campionamento e l inferenza Il campionamento e l inferenza Popolazione Campione Dai dati osservati mediante scelta campionaria si giunge ad affermazioni che riguardano la popolazione da cui essi sono stati prescelti Il campionamento

Dettagli

Theory Italiano (Italy)

Theory Italiano (Italy) Q3-1 Large Hadron Collider (10 punti) Prima di iniziare questo problema, leggi le istruzioni generali nella busta a parte. In questo problema è discussa la fisica dell acceleratore di particelle del CERN

Dettagli

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 1. Il campo elettrico e legge di Coulomb: esempio del calcolo generato da alcune semplici distribuzioni. 2. Il campo

Dettagli

Università del Piemonte Orientale. Corsi di laurea triennale di area tecnica. Corso di Statistica e Biometria. Test di ipotesi

Università del Piemonte Orientale. Corsi di laurea triennale di area tecnica. Corso di Statistica e Biometria. Test di ipotesi Università del Piemonte Orientale Corsi di laurea triennale di area tecnica Corso di Statistica e Biometria Test di ipotesi Corsi di laurea triennale di area tecnica - Corso di Statistica Medica - Test

Dettagli

CURRICOLO VERTICALE PER COMPETENZE DISCIPLINARI. Scuola Secondaria di Primo Grado Matematica -

CURRICOLO VERTICALE PER COMPETENZE DISCIPLINARI. Scuola Secondaria di Primo Grado Matematica - CURRICOLO VERTICALE PER COMPETENZE DISCIPLINARI Scuola Secondaria di Primo Grado Matematica - Classe Prima COMPETENZA CHIAVE EUROPEA: COMPETENZA MATEMATICA Profilo dello studente al termine del Primo ciclo

Dettagli

Istituto Professionale di Stato Maffeo Pantaleoni di Frascati SCHEDA PROGRAMMAZIONE DIDATTICA DISCIPLINARE

Istituto Professionale di Stato Maffeo Pantaleoni di Frascati SCHEDA PROGRAMMAZIONE DIDATTICA DISCIPLINARE Istituto Professionale di Stato Maffeo Pantaleoni di Frascati SCHEDA PROGRAMMAZIONE DIDATTICA DISCIPLINARE ANNO SCOLASTICO 2013/2014 CLASSI 1 sez, A B C D E F G H MATERIA DOCENTEScienze Integrate: FISICA

Dettagli

Distribuzioni e inferenza statistica

Distribuzioni e inferenza statistica Distribuzioni e inferenza statistica Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

Congettura di Goldbach: Se N è un numero intero, pari e maggiore di 2, allora si possono trovare numeri primi P e Q con N = P + Q

Congettura di Goldbach: Se N è un numero intero, pari e maggiore di 2, allora si possono trovare numeri primi P e Q con N = P + Q Congettura di Goldbach: Se N è un numero intero, pari e maggiore di 2, allora si possono trovare numeri primi P e Q con N = P + Q Fu proposta da Christian Goldbach ad Eulero nel 1742, ed è tuttora indimostrata.

Dettagli

SCUOLA DI INGEGNERIA INDUSTRIALE E DELL INFORMAZIONE. Consiglio di Corso di Studio in Ingegneria dell Automazione

SCUOLA DI INGEGNERIA INDUSTRIALE E DELL INFORMAZIONE. Consiglio di Corso di Studio in Ingegneria dell Automazione POLITECNICO DI MILANO SCUOLA DI INGEGNERIA INDUSTRIALE E DELL INFORMAZIONE Consiglio di Corso di Studio in Ingegneria dell Automazione Regolamento Integrativo della Prova Finale di Laurea e di Laurea Magistrale

Dettagli

Recensione. Francesco Di Noto, Michele Nardelli. Due recensioni del libro di Ian Stewart I grandi problemi della

Recensione. Francesco Di Noto, Michele Nardelli. Due recensioni del libro di Ian Stewart I grandi problemi della Recensione Francesco Di Noto, Michele Nardelli Due recensioni del libro di Ian Stewart I grandi problemi della matematica, seguite da un nostro commento. i Saggi 2014, pp. X - 326, 30,00 ISBN9788806216559

Dettagli

CORSO DI LAUREA IN INFERMIERISTICA. LEZIONI DI STATISTICA Elaborazione dei dati Valori medi

CORSO DI LAUREA IN INFERMIERISTICA. LEZIONI DI STATISTICA Elaborazione dei dati Valori medi CORSO DI LAUREA IN INFERMIERISTICA LEZIONI DI STATISTICA Elaborazione dei dati Valori medi VALORI MEDI In una serie di valori si definisce medio (o intermedio) un valore compreso tra il più piccolo ed

Dettagli

I numeri irrazionali nella geometria e nella storia. Daniela Valenti, Treccani scuola

I numeri irrazionali nella geometria e nella storia. Daniela Valenti, Treccani scuola I numeri irrazionali nella geometria e nella storia 1 Costruzioni geometriche di!a Con la geometria possiamo costruire un segmento che sia lungo esattamente!a Una costruzione semplice e versatile è basata

Dettagli

informatica di base per le discipline umanistiche

informatica di base per le discipline umanistiche informatica di base per le discipline umanistiche vito pirrelli Istituto di Linguistica Computazionale CNR Pisa Dipartimento di linguistica Università di Pavia sesta lezione: la dinamica del testo vito

Dettagli

Statistica. POPOLAZIONE: serie di dati, che rappresenta linsieme che si vuole indagare (reali, sperimentali, matematici)

Statistica. POPOLAZIONE: serie di dati, che rappresenta linsieme che si vuole indagare (reali, sperimentali, matematici) Statistica La statistica può essere vista come la scienza che organizza ed analizza dati numerici per fini descrittivi o per permettere di prendere delle decisioni e fare previsioni. Statistica descrittiva:

Dettagli

iv Indice c

iv Indice c Indice Prefazione ix 1 Numeri 1 1 Insiemi e logica 1 1.1 Concetti di base sugli insiemi 1 1.2 Un po di logica elementare 9 2 Sommatorie e coefficienti binomiali 13 2.1 Il simbolo di sommatoria 13 2.2 Fattoriale

Dettagli

- Spiega il procedimento seguito, anche in forma scritta, mantenendo il controllo sia sul processo risolutivo, sia sui risultati.

- Spiega il procedimento seguito, anche in forma scritta, mantenendo il controllo sia sul processo risolutivo, sia sui risultati. SCUOLA SECONDARIA TRAGUARDI DI SVILUPPO DELLE COMPETENZE MATEMATICA - L alunno si muove con sicurezza nel calcolo anche con i numeri razionali, ne padroneggia le diverse rappresentazioni e stima la grandezza

Dettagli

Università degli Studi di Pavia Facoltà di Medicina e Chirurgia

Università degli Studi di Pavia Facoltà di Medicina e Chirurgia Università degli Studi di Pavia Facoltà di Medicina e Chirurgia CORSO DI LAUREA TRIENNALE CLASSE DELLLE LAUREE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE CLASSE 2 Corso Integrato di Fisica, Statistica,

Dettagli

A.A Corso di Fisica I 12 CFU

A.A Corso di Fisica I 12 CFU A.A. 2016-17 Corso di Fisica I 12 CFU Docente: Prof.ssa Marinella Ragosta Scuola di Ingegneria Email: maria.ragosta@unibas.it Pagina web personale: http://oldwww.unibas.it/utenti/ragosta/index.html Pagina

Dettagli

Matematica. dott. francesco giannino. a. a chiusura del corso. 1

Matematica. dott. francesco giannino. a. a chiusura del corso. 1 Matematica a. a. 2014-2015 dott. francesco giannino 99. chiusura del corso. 1 99. chiusura del corso 99. chiusura del corso. 2 Obiettivo del corso fornire strumenti matematici di base necessari nel prosieguo

Dettagli

L adattamento con le misure al suolo e la preparazione dell Atlante

L adattamento con le misure al suolo e la preparazione dell Atlante Torna alla presentazione Atlante eolico dell Italia L adattamento con le misure al suolo e la preparazione dell Atlante G.Botta 3 marzo 2004 1 Quali obiettivi per l Atlante eolico L Atlante deve fornire

Dettagli

Lezioni di Meccanica Quantistica

Lezioni di Meccanica Quantistica Luigi E. Picasso Lezioni di Meccanica Quantistica seconda edizione Edizioni ETS www.edizioniets.com Copyright 2015 EDIZIONI ETS Piazza Carrara, 16-19, I-56126 Pisa info@edizioniets.com www.edizioniets.com

Dettagli

ANALISI DI SERIE TEMPORALI CAOTICHE (1)

ANALISI DI SERIE TEMPORALI CAOTICHE (1) ANALISI DI SERIE TEMPORALI CAOTICHE (1) Problematiche Ricostruzione dello stato Dimensione di embedding C. Piccardi e F. Dercole Politecnico di Milano ver. 28/12/2009 1/15 Per studiare e comprendere appieno

Dettagli

Perché e come usare Derive nell insegnamento della matematica

Perché e come usare Derive nell insegnamento della matematica 0 0 Perché e come usare Derive nell insegnamento della matematica Carmelo Di Stefano Riassunto Da diversi anni viene suggerito di usare i software nell insegnamento della matematica. Spesso però l insegnante

Dettagli

Dispensa sulla funzione gaussiana

Dispensa sulla funzione gaussiana Sapienza Università di Roma Dipartimento di Scienze di Base e Applicate per l Ingegneria Sezione di Matematica Dispensa sulla funzione gaussiana Paola Loreti e Cristina Pocci A. A. 011-01 1 Introduzione:

Dettagli

1. Lo studio dei gas nella storia 2. I gas ideali e la teoria cinetico-molecolare 3. La pressione dei gas 4. La legge di Boyle o legge isoterma 5.

1. Lo studio dei gas nella storia 2. I gas ideali e la teoria cinetico-molecolare 3. La pressione dei gas 4. La legge di Boyle o legge isoterma 5. Unità n 6 Le leggi dei gas 1. Lo studio dei gas nella storia 2. I gas ideali e la teoria cinetico-molecolare 3. La pressione dei gas 4. La legge di Boyle o legge isoterma 5. La legge di Gay-Lussac o legge

Dettagli

GIUSTIFICAZIONE TEORICA DELLA FORMULA DI PETRY MEDIANTE L ANALISI DIMENSIONALE

GIUSTIFICAZIONE TEORICA DELLA FORMULA DI PETRY MEDIANTE L ANALISI DIMENSIONALE M. G. BUSATO GIUSTIFICAZIONE TEORICA DELLA FORMULA DI PETRY MEDIANTE L ANALISI DIMENSIONALE NOTA TECNICA MGBSTUDIO.NET SOMMARIO La formula di Petry è una formula semiempirica che consente di stimare,

Dettagli

Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa.

Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. IL TEOREMA DI PITAGORA Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. ENUNCIATO: la somma dei quadrati costruiti sui

Dettagli

Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti

Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti Laurea in Scienze dell Educazione Insegnamento di Pedagogia Sperimentale (Prof. Paolo Frignani) Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti giorgio.poletti@unife.it) Cos è la Statistica caratterizzato

Dettagli

Programma di Matematica Classe 2^ E/L.L. Anno scolastico 2015/2016

Programma di Matematica Classe 2^ E/L.L. Anno scolastico 2015/2016 Programma di Matematica Classe 2^ E/L.L. Anno scolastico 2015/2016 ALGEBRA Ripasso programma di prima. Capitolo 5 - I monomi e i polinomi La divisione fra polinomi La divisione di un polinomio per un monomio.

Dettagli

Statistica. Campione

Statistica. Campione 1 STATISTICA DESCRITTIVA Temi considerati 1) 2) Distribuzioni statistiche 3) Rappresentazioni grafiche 4) Misure di tendenza centrale 5) Medie ferme o basali 6) Medie lasche o di posizione 7) Dispersione

Dettagli

Programmazione didattica annuale classi terze Disciplina Matematica

Programmazione didattica annuale classi terze Disciplina Matematica Primo quadrimestre L'alunno si muove con sicurezza nel calcolo algebrico, numerico e letterale NUMERI Utilizzare numeri relativi per descrivere reali Eseguire calcoli in ambito algebrico Eseguire confronti

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Esercizio 1 (stima puntuale) In un processo di controllo di qualità, siamo interessati al numero mensile di guasti

Dettagli

Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate

Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate Anno scolastico 2014/15 Numeri naturali e numeri interi relativi L'insieme dei numeri naturali I numeri naturali e il

Dettagli

INGEGNERIA dell AUTOMAZIONE a Padova

INGEGNERIA dell AUTOMAZIONE a Padova INGEGNERIA dell AUTOMAZIONE a Padova 1 Struttura dei corsi di laurea nel settore 1 Primo anno comune 2 3 INGEGNERIA DELL INFORMAZIONE ELET -prof IFprof BIOprof 4 * 5 * AUT ELET IF TLC BIO Attenzione!!!

Dettagli

ISTITUTO D ISTRUZIONE SUPERIORE BERNALDA-FERRANDINA Presidenza: BERNALDA (MT)- Via Schwartz, Tel./Fax:

ISTITUTO D ISTRUZIONE SUPERIORE BERNALDA-FERRANDINA Presidenza: BERNALDA (MT)- Via Schwartz, Tel./Fax: I.T.E.T. Bernalda Programma di Matematica Classe II B Anno scolastico 2015/2016 Prof.ssa Benedetto Lucia Anna POLINOMI Addizione e moltiplicazione Prodotti notevoli Triangolo di Tartaglia DIVISIONE TRA

Dettagli

Il confronto fra medie

Il confronto fra medie L. Boni Obiettivo Verificare l'ipotesi che regimi alimentari differenti non producano mediamente lo stesso effetto sulla gittata cardiaca Ipotesi nulla IPOTESI NULLA La dieta non dovrebbe modificare in

Dettagli

LICEO SCIENTIFICO - OPZIONE DELLE SCIENZE APPLICATE MATEMATICA

LICEO SCIENTIFICO - OPZIONE DELLE SCIENZE APPLICATE MATEMATICA LICEO SCIENTIFICO - OPZIONE DELLE SCIENZE APPLICATE MATEMATICA OBIETTIVI SPECIFICI DEL BIENNIO 1) utilizzare consapevolmente le tecniche e le procedure di calcolo basilari studiate; 2) riconoscere nei

Dettagli

k=0 a k k=0 a k, quando si voglia precisare qual è l indice iniziale: si possono infatti considerare anche serie del tipo k=1 a k, k=50 a k,

k=0 a k k=0 a k, quando si voglia precisare qual è l indice iniziale: si possono infatti considerare anche serie del tipo k=1 a k, k=50 a k, 2.2 Serie Le serie numeriche sono semplicemente successioni reali o complesse di tipo particolare, che però, per la loro importanza pratica e teorica, meritano una trattazione a parte. Data una successione

Dettagli

Esercitazione: La distribuzione NORMALE

Esercitazione: La distribuzione NORMALE Esercitazione: La distribuzione NORMALE Uno dei più importanti esempi di distribuzione di probabilità continua è dato dalla distribuzione Normale (curva normale o distribuzione Gaussiana); è una delle

Dettagli

Sin dalla più remota antichità il concetto di numero primo affascina e confonde gli esseri umani.

Sin dalla più remota antichità il concetto di numero primo affascina e confonde gli esseri umani. I NUMERI PRIMI 1 Sin dalla più remota antichità il concetto di numero primo affascina e confonde gli esseri umani. [ ] I numeri primi sono gli elementi essenziali della teoria dei numeri. Tratto da L enigma

Dettagli

DESCRITTIVE, TEST T PER IL CONFRONTO DELLE MEDIE DI CAMPIONI INDIPENDENTI.

DESCRITTIVE, TEST T PER IL CONFRONTO DELLE MEDIE DI CAMPIONI INDIPENDENTI. Corso di Laurea Specialistica in Biologia Sanitaria, Universita' di Padova C.I. di Metodi statistici per la Biologia, Informatica e Laboratorio di Informatica (Mod. B) Docente: Dr. Stefania Bortoluzzi

Dettagli

Indice Premessa................................... Cenni storici delle misure......................

Indice Premessa................................... Cenni storici delle misure...................... Indice Premessa................................... 5 1 Cenni storici delle misure...................... 11 1.1 Il numero come misura...................... 13 1.2 I primi campioni di lunghezza..................

Dettagli

STATISTICA APPLICATA Prof.ssa Julia Mortera. Concentrazione

STATISTICA APPLICATA Prof.ssa Julia Mortera. Concentrazione STATISTICA APPLICATA Prof.ssa Julia Mortera Concentrazione Questo materiale non sufficiente per la conoscenza/preparazione dell argomento per il quale si rimanda al testo: Cicchitelli (2012) Statistica:

Dettagli

Misura del rapporto carica massa dell elettrone

Misura del rapporto carica massa dell elettrone Relazione di: Pietro Ghiglio, Tommaso Lorenzon Laboratorio di fisica del Liceo Scientifico L. da Vinci - Gallarate Misura del rapporto carica massa dell elettrone Lezioni di maggio 2015 Lo scopo dell esperienza

Dettagli

La matrice delle correlazioni è la seguente:

La matrice delle correlazioni è la seguente: Calcolo delle componenti principali tramite un esempio numerico Questo esempio numerico puó essere utile per chiarire il calcolo delle componenti principali e per introdurre il programma SPAD. IL PROBLEMA

Dettagli

Statistica. Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza e correlazione

Statistica. Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza e correlazione Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2010/2011 Statistica Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza

Dettagli

DISTRIBUZIONE NORMALE (1)

DISTRIBUZIONE NORMALE (1) DISTRIBUZIONE NORMALE (1) Nella popolazione generale molte variabili presentano una distribuzione a forma di campana, bene caratterizzata da un punto di vista matematico, chiamata distribuzione normale

Dettagli

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale.

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. PROGRAMMA Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. Gli insiemi numerici oggetto del corso: numeri naturali, interi relativi, razionali. Operazioni sui numeri

Dettagli

PIANO DI STUDIO DEL CURRICULUM APPLICATIVO INSEGNAMENTI/ ATTIVITÀ FORMATIVE CFU SEMESTRE S.S.D.

PIANO DI STUDIO DEL CURRICULUM APPLICATIVO INSEGNAMENTI/ ATTIVITÀ FORMATIVE CFU SEMESTRE S.S.D. PIANO DI STUDIO DEL CURRICULUM APPLICATIVO INSEGNAMENTI/ ATTIVITÀ FORMATIVE CFU SEMESTRE S.S.D. Istituzioni di Analisi Superiore 12 1-2 MAT/05 Istituzioni di Geometria Superiore 12 1-2 MAT/03 Probabilità

Dettagli

Dinamica delle Strutture

Dinamica delle Strutture Corso di Laurea magistrale in Ingegneria Civile e per l Ambiente e il Territorio Dinamica delle Strutture Prof. Adolfo SANTINI Ing. Francesco NUCERA Prof. Adolfo Santini - Dinamica delle Strutture 1 Dinamica

Dettagli

Espressione dei risultati per analisi Microbiologiche. Denis Polato

Espressione dei risultati per analisi Microbiologiche. Denis Polato Espressione dei risultati per analisi Microbiologiche Distribuzione dei batteri Distribuzione dei batteri Incertezza di misura Per comprendere al meglio la teoria e la pratica di una misurazione, da cui

Dettagli

Capitolo 9 (9.2, Serie: 1,..., 18).

Capitolo 9 (9.2, Serie: 1,..., 18). Universitá degli Studi di Bari Corso di Laurea in Biotecnologie per l innovazione di Processi e Prodotti Programma dettagliato di MATEMATICA ED ELEMENTI DI STATISTICA- A.A. 2014/2015 Prof. Mario Coclite

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Laurea in Scienze e Tecnologie Agrarie Corso Integrato: Matematica e Statistica Modulo: Matematica (6 CFU) (4 CFU Lezioni + CFU Esercitazioni) Corso di Laurea in Tutela e Gestione del territorio

Dettagli

b) E necessario formulare delle ipotesi per calcolare l intervallo di confidenza ottenuto al punto a? (motivare brevemente la risposta):

b) E necessario formulare delle ipotesi per calcolare l intervallo di confidenza ottenuto al punto a? (motivare brevemente la risposta): ESERCIZIO 1 Una grande banca vuole stimare l ammontare medio di denaro che deve essere corrisposto dai correntisti che hanno il conto scoperto. Si seleziona un campione di 100 clienti su cui si osserva

Dettagli

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 1ALL MATERIA: MATEMATICA

PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 1ALL MATERIA: MATEMATICA PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 1ALL MATERIA: MATEMATICA Modulo n. 1: metodo di studio Collocazione temporale: tutto l anno Strategie didattiche: Per abituare gli allievi

Dettagli

PIANO DI LAVORO ANNUALE DEL DIPARTIMENTO DI MATERIA

PIANO DI LAVORO ANNUALE DEL DIPARTIMENTO DI MATERIA Pag. 1 di 5 ANNO SCOLASTICO 2014-15 DIPARTIMENTO DI Matematica INDIRIZZO Liceo scientifico CLASSE BIENNIO TRIENNIO DOCENTI: De Masi, Zaganelli, Dalmonte, Fidanza. NUCLEI FONDAMENTALI DI CONOSCENZE I QUADRIMESTRE

Dettagli

a) Usando i seguenti livelli di significatività, procedere alla verifica di ipotesi, usando come ipotesi alternativa un'ipotesi unidirezionale:

a) Usando i seguenti livelli di significatività, procedere alla verifica di ipotesi, usando come ipotesi alternativa un'ipotesi unidirezionale: ESERCIZIO 1 Da studi precedenti, il responsabile del rischio di una grande banca sa che l'ammontare medio di denaro che deve essere corrisposto dai correntisti che hanno il conto scoperto è pari a 240.

Dettagli

Gli indici di variabilità

Gli indici di variabilità Le misure della variabilità 4/5 ottobre 2011 Statistica sociale 1 Gli indici di variabilità In tutti gli esempi visti nell ultima lezione, abbiamo visto che le grandezze considerate - pur nelle diverse

Dettagli

Meccanica: Introduzione. Lo Studio del moto degli oggetti

Meccanica: Introduzione. Lo Studio del moto degli oggetti Meccanica: Introduzione Lo Studio del moto degli oggetti 1 Grandezze fisiche n Scalari : esprimibili mediante singoli numeri (es. massa,temperatura, energia, carica elettrica ecc.) n Vettoriali : per essere

Dettagli

Note sulla probabilità

Note sulla probabilità Note sulla probabilità Maurizio Loreti Dipartimento di Fisica Università degli Studi di Padova Anno Accademico 2002 03 1 La distribuzione del χ 2 0.6 0.5 N=1 N=2 N=3 N=5 N=10 0.4 0.3 0.2 0.1 0 0 5 10 15

Dettagli

MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA SECONDARIA DI PRIMO GRADO

MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA SECONDARIA DI PRIMO GRADO MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA SECONDARIA DI PRIMO GRADO - L alunno si muove con sicurezza nel calcolo anche con i numeri razionali, ne padroneggia le diverse

Dettagli

SCHEMA DI COLLOCAZIONE delle monografie disposte a scaffale aperto

SCHEMA DI COLLOCAZIONE delle monografie disposte a scaffale aperto SCHEMA DI COLLOCAZIONE delle monografie disposte a scaffale aperto 00 OPERE DI CARATTERE GENERALE 00A Matematiche generali 00B Atti di convegni internazionali - Proceedings di interesse generale 00C Dizionari

Dettagli

Teorema del limite centrale TCL

Teorema del limite centrale TCL Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni

Dettagli

Simulazione del comportamento energetico di una turbina eolica: bilanci energetici ed analisi economica

Simulazione del comportamento energetico di una turbina eolica: bilanci energetici ed analisi economica Università del Salento Facoltà di Ingegneria Corso di Laurea Specialistica in Ingegneria Meccanica a.a 2006/2007 Esame di Energetica industriale Simulazione del comportamento energetico di una turbina

Dettagli

ITCG Sallustio Bandini

ITCG Sallustio Bandini ANNO SCOLASTICO 2015/2016 PROGRAMMA DI MATEMATICA CLASSE I sez. A corso GRAFICA INSEGNANTE: prof. MARIO SCACCIA Libro di Testo: Matematica.verde Vol. 1 multimediale- Algebra, Geometria, Statistica M.Bergamini

Dettagli

Minimi quadrati pesati per la Regressione Lineare

Minimi quadrati pesati per la Regressione Lineare Minimi quadrati pesati per la Regressione Lineare Salto in alto oltre le formule Ing. Ivano Coccorullo Perchè? La tabella che segue riporta il raggio medio dell orbita R ed il periodo di rivoluzione T

Dettagli

Sommario. Capitolo 1 I dati e la statistica 1. Capitolo 2 Statistica descrittiva: tabelle e rappresentazioni grafiche 25

Sommario. Capitolo 1 I dati e la statistica 1. Capitolo 2 Statistica descrittiva: tabelle e rappresentazioni grafiche 25 Sommario Presentazione dell edizione italiana Prefazione xv xiii Capitolo 1 I dati e la statistica 1 Statistica in pratica: BusinessWeek 1 1.1 Le applicazioni in ambito aziendale ed economico 3 Contabilità

Dettagli

Intervalli di confidenza

Intervalli di confidenza Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

IL CURRICOLO VERTICALE DI MATEMATICA

IL CURRICOLO VERTICALE DI MATEMATICA IL CURRICOLO VERTICALE DI MATEMATICA Sinossi delle competenze per ciascun grado scolastico Scuola primaria Scuola secondaria I grado Scuola secondaria II grado Operare con i numeri nel calcolo scritto

Dettagli

Programma del corso di Matematica per Tecnologia della Produzione Animale

Programma del corso di Matematica per Tecnologia della Produzione Animale Programma del corso di Matematica per Tecnologia della Produzione Animale Anno Accademico 2016/2017 3 agosto 2016 Il corso ha come scopo l acquisizione di conoscenze di matematica di base. A partire dai

Dettagli