Metodi statistici per le ricerche di mercato

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Metodi statistici per le ricerche di mercato"

Transcript

1 Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per la comunicazione d'impresa» A proposito di rappresentatività del campione La rappresentatività di un campione è la sua conformità, ad alcune caratteristiche della popolazione. Un campione scelto casualmente è uno dei campioni possibili estraibili dall universo dei campioni, pertanto il suo grado di rappresentatività, è solo probabile. La casualità rende infatti più probabile che il campione riproduca in media le caratteristiche della popolazione, a meno di errori imputabili sia al fatto che si analizza solo una parte di quest ultima (errore campionario) sia ad altri tipi di errore (non campionari) che intervengono nell intero processo di indagine. Tuttavia se la casualità di un campione è un requisito indispensabile di rappresentatività statistica non è però un requisito sufficiente. 1

2 Errori e rilevazioni parziali Non campionari (esempi): Errore di copertura: le liste utilizzate della popolazione statistica sono incomplete. Errore di non-risposta: esclusione o auto-esclusione dei casi Errore dovuto all intervistatore. Campionari derivano dal fatto che si analizza un particolare sotto-insieme della popolazione. I valori rilevati sul campione sono una «stima» di quelli della popolazione, che presenta un errore. Se il campione è probabilistico la stima degli errori campionari viene effettuata mediante la teoria dei campioni: sono note infatti alcune relazioni che legano gli «stimatori» dell universo dei campioni ai parametri della popolazione. Che cosa è l universo dei campioni E l insieme dei campioni possibili di n unità che si possono estrarre da una popolazione attraverso una operazione di selezione. Adottando il criterio di estrazione casuale, il numero di campioni estraibili da una popolazione è determinato dal numero dei diversi modi nei quali le unità statistiche si possono combinare nel comporre il campione. Se la popolazione è infinita si possono estrarre un numero infinito di campioni. Se la popolazione è finita, di dimensione N, e si estraggono campioni di dimensione n, il loro numero dipende dal tipo di estrazione effettuata. Se ad esempio abbiamo N=100 e vogliamo estrarre un campione di 2 unità, in base al calcolo delle probabilità possiamo ottenere Con reinserimento o bernoulliana: N n = N 2 = = campioni Senza reinserimento o esaustiva tenendo conto dell ordine: D Nn = 100*99= campioni Senza reinserimento o esaustiva non tenendo conto dell ordine: C Nn = 100*99/2= campioni 2

3 La distribuzione delle medie campionarie : il Teorema del limite centrale Sui numerosi campioni estraibili da una popolazione possono essere calcolati diverse statistiche utilizzabili per stimare i parametri della popolazione da cui sono estratti. L insieme delle medie di tutti i possibili campioni costituisce la distribuzione campionarie delle medie. Tale distribuzione, secondo il teorema del limite centrale, qualunque sia la distribuzione della popolazione, all aumentare della dimensione campionaria n (per n >30) si approssima ad una distribuzione normale_ con media: E( ) =µ e varianza : Var ( ) = σ²/n dove σ² è la varianza della popolazione (popolazione norrnale, non finita con qualunque tipo di estrazione; popolazione finita con estrazione con ripetizione ) Var ( ) = σ²/n (N-n/N-1) (popolazione finita con estrazione senza ripetizione ) In altre parole. Sia per l estrazione con ripetizione, sia per quella senza ripetizione, la media dei valori medi campionari è uguale alla media della popolazione, dunque è una stima corretta, centrata e non distorta della media della popolazione. La varianza della distribuzione campionaria delle medie rappresenta l errore medio che si commette nello stimare la media della popolazione mediante quella del campione. Operativamente però si opera con un solo campione e non con tutti i campioni estraibili da una popolazione! Si dovrà dunque stabilire se e di quanto la media del campione differisce da quella della popolazione. Ciò è possibile perché sappiamo quale è la distribuzione delle medie campionarie per n>30: la distribuzione normale. 3

4 La distribuzione normale o di Gauss E una distribuzione teorica di notevole interesse pratico per le sue proprietà matematiche utilizzabili nell ambito dell inferenza statistica. Si ricorre a queste proprietà quando una variabile casuale continua è distribuita normalmente. Caratteristiche: è continua, ha una forma campanulare e simmetrica le sue misure di posizione centrale (media, moda e mediana) coincidono; è asintotica rispetto all asse delle ascisse, assume valori compresi tra - e + Presenta due punti di flesso in corrispondenza di ±1 σ è completamente caratterizzata dai due parametri µ e σ2; L area sottesa alle porzione di curva che si trova tra la media e l ordinata in corrispondenza dello scarto quadratico medio è costante; in particolare - il 68.26% dell area totale è compreso tra µ±1 σ - il 95.44% tra µ±2 σ - il 99,73% tra µ±3 σ Utilità della distribuzione normale nell inferenza Poichè la distribuzione delle medie campionarie, tende al crescere di n a distribuirsi secondo una distribuzione normale, ciò vuol dire che possiamo stimare la probabilità che il valore medio del nostro campione sia più grande o più piccolo della media della popolazione e di quanto. Sappiamo infatti che: Per popolazioni normali, non finite, o nell estrazione con ripetizione: il 68.26% delle medie dei campioni è compreso tra ± il 95.44% tra±2 il 99.73% tra ±3 Per popolazioni non normali, nell estrazione senza ripetizione: il 68.26% delle medie dei campioni è compreso tra ± il 95.44% tra±2 il % tra ±3 4

5 La distribuzione normale standardizzata Oltre alle porzioni di area sottese alla curva citate precedentemente, possiamo conoscere quelle comprese tra il valore medio e qualsiasi altro valore, o tra due valori qualsiasi, utilizzando apposite tavole. Le tavole sono calcolate riferendosi ad una distribuzione normale standardizzata che ha media 0 e varianza pari a 1 Per utilizzare le tavole è necessario standardizzare i valori della nostra distribuzione, mediante la seguente relazione: ( µ) z = X σ TAVOLA A Un numero della tavola indica la porzione di area sottesa dalla curva da - a z. Ad esempio l area sottesa fino a z=2 è di 0,97725 ossia del 97,73% dell area totale. 5

6 TAVOLA B A volte si trova un altra tavola in cui ogni numero indica la porzione di area sottesa dalla curva da z=0 e una altro valore di z 0. Ad esempio l area sottesa da z=0 a fino a z=2 è di 0,4772 ossia del 47,72% dell area totale. Usare la tavola A o la B è indifferente basta tener conto del significato dei valori riportati Uso delle tavole : esempio 1 Supponiamo di voler conoscere l area compresa tra la media=0 e z=1,96. Nella colonna dei punti z, si scendere fino a trovare z=1,9 e, rimanendo nella stessa riga fino a trovare quella indicata con 0,06. Il punteggio che troveremo in quel punto è 0,9750 ed indica la porzione di area compresa tra - ez=1,96. Poiché l area sotto la curva a sinistra del valore corrispondente alla media=0,00 è 0,5000, l area tra la media e z =1,96 sarà 0,9750-0,5000=0,4750 L area compresa è del 47,50% 12 6

7 Uso delle tavole : esempio 2 Supponiamo di voler conoscere l area a destra del punto z=1,96. Nella colonna dei punti z, si scendere fino a trovare z=1,9 e, rimanendo nella stessa riga fino a trovare quella indicata con 0,06. Il punteggio che troveremo in quel punto è 0,9750 ed indica la porzione di area compresa tra - ez=1,96. Poiché l area totale è uguale a 1, l area che resta alla destra del punto z=1,96 sarà (1,0000-0,9750) =0,025. L area a destra di z=1,96 sarà del 2,5% Uso delle tavole : esempio 3 Supponiamo di voler conoscere l area compresa tra z=-1 e z=+1 Nella colonna dei punti z, si scendere fino a trovare z=1 e, rimanendo nella stessa riga fino a trovare quella indicata con 0,00. Il punteggio che troveremo in quel punto è 0,8413 ed indica la porzione di area compresa tra - e z=1. Per trovare il valore compreso tra z=-1 e z=+1 possiamo sottrarre metà dell area e moltiplicare per 2, in virtù della simmetria della distribuzione. (0, )*2=0,3413*2=0,6826 L area compresa è del 68,26% 14 7

8 Uso delle tavole : esempio 4 Supponiamo di voler conoscere l area compresa tra z=0,54 e z=0,35. Per trovare l area compresa tra - e z=0,54, nella colonna dei punti z, si scendere fino a trovare z=0,5 e, rimanendo nella stessa riga fino a trovare quella indicata con 0,04. Il punteggio che troveremo in quel punto è 0,7054. Per trovare l area compresa tra - e z=0,35, nella colonna dei punti z, si scendere fino a trovare z=0,3 e, rimanendo nella stessa riga fino a trovare quella indicata con 0,05. Il punteggio che troveremo in quel punto è 0,6368. Per trovare l area compresa tra z=0,54 e z=0,35 basterà sottrarre i due valori: 0,7054-0,6368=0,0686. L area compresa è del 6,9% 15 Esercizio La spesa media per prodotti telefonici nella popolazione statistica considerata, che si distribuisce in modo normale, è di 350 euro con uno scarto quadratico medio di 50. Estraendo un campione probabilistico di 150 individui si ottiene una spesa media di 359 euro. Quale è la probabilità di ottenere un campione che ha una spesa media maggiore di quella trovata nel campione estratto? E inferiore o uguale? Facendo riferimento alla distribuzione delle medie campionarie la spesa media di tutti i possibili campioni di 150 unità estraibili dalla popolazione si distribuisce normalmente con media: E( ) =µ =350 e errore medio : Var ( ) = σ/ n =4,082 Come procedere 1. Trovare il valore medio e l errore standard delle medie campionarie 2. Calcolare il valore standardizzato 3. Disegnare la distribuzione normale 4. Calcolare la probabilità sulla tavola della distribuzione normale 5. Trarre le conclusioni Z=, = 2,20 La probabilità di ottenere un campione con media -inferiore o uguale a 359 è 0,9861 -superiore 359 è di 0,0139 8

9 Esercizio Il prezzo di un prodotto sul mercato risulta, da indagini precedenti, essere di 125 euro con uno scarto quadratico medio di 30. Estraendo un campione probabilistico di 60 negozi si ottiene un prezzo medio di 130 euro. Quale è la probabilità di ottenere un campione casuale di negozi che vendono il prodotto ad un prezzo superiore o uguale? Quale è la probabilità di ottenere un campione con dei negozi che vendono il prodotto a 123 euro o meno? Z=, = 1,29 La probabilità di ottenere un campione con media -superiore o uguale a 130 è (1-0,9015)=0,0984 -inferiore o uguale a 123 è (1-0,6985)=0,3015 Z=, = -0,52 Dalla media del campione a quella della popolazione Fino ad ora abbiamo calcolato il valore di z utilizzando µ e poi abbiamo individuato la probabilità di ottenere il valore della media del nostro campione espressa in forma standardizzata Ma se non conosciamo µ, come procediamo? Come si stabilisce se il valore medio di un campione è una buona stima di quello della popolazione? 9

10 Gli intervalli di confidenza Si fa riferimento agli intervalli di confidenza: intervalli di valori, definiti da un estremo inferiore e superiore e costruiti a partire dalla media del campione, entro i quali possiamo ritenere che con una certa probabilità, sia inclusa la media della popolazione. La probabilità che il valore vero del parametro della popolazione cada nell intervallo si definisce livello di confidenza e si indica con (1 -α) α (denominato livello di significatività) è la probabilità che il parametro si trovi al di fuori dell intervallo di confidenza. Se il livello di confidenza è (1-α)=95% α =5% Se il livello di confidenza è (1-α)=99% α =1% Intervallo di confidenza per la media con σ noto X Z σ / n µ X + Z σ / n α / 2 α / 2 A partire dalla media del campione costruiamo un intervallo di valori sottraendo e sommando Z α/2 moltiplicato per l errore medio. Z α/2 è il valore, detto critico, a cui corrisponde un area cumulata della distribuzione normale standardizzata pari a (1- α/2 ). Ciò vuol dire che se vogliamo avere un livello di confidenza del 95%, dobbiamo individuare sulle tavole della curva normale il valore z che ci consente di ottenere attorno al valore medio della distribuzione il 95% dei casi, lasciando a destra dell area il 2,5% e a sinistra il 2,5%. Questo valore è z=±1,96 10

11 Esercizio Se vogliamo avere un livello di confidenza del 99%, quale è il valore critico di z? Come procedere 1. Calcolare α/2= (1-0,99)/2=0, Cercare sulla tavola della curva normale standardizzata (tav.a) l area pari a (1- α/2 )=(1-0,005)=0, Individuare il valore di z corrispondente. 4. Disegnare la curva normale Esercizio: stima ad intervallo A un campione casuale semplice di 80 clienti è stato chiesto di attribuire un punteggio da 1 a 100 a un prodotto immesso sul mercato nell ultimo anno. Il valore medio del punteggio è stato 74. Sapendo che lo scarto quadratico medio del punteggio nella popolazione è di 2,5, stimare il punteggio medio del prodotto nella popolazione di riferimento, calcolando l intervallo di confidenza al 95%, al 99% e al 99,73%. Come procedere (1-0,95)/2=0,025 (1-0,025)= 0,9750 standardizzata (tav.a) l area pari a (1- α/2 ) 1. Calcolare α/2= (1-p)/2 2. Cercare sulla tavola della curva normale 74 1,96 (2,5/ 80 ) μ 74+1,96 (2,5/ 80) 73,45 μ 74,55 (1-0,99) /2=0, Individuare il valore di z corrispondente. 4. Utilizzare il valore z per costruire gli intervalli di confidenza X Z σ / n µ X + Z σ / n α / 2 α / ,58 (2,5/ 80 ) μ 74+2,58 (2,5/ 80) 73,28 μ 74,72 ( )/2 =0, (2,5/ 80 ) μ 74+3 (2,5/ 80) 73,16 μ 74,84 11

12 Esercizio: stima ad intervallo (segue) Possiamo dunque affermare che a partire dal punteggio medio rilevato nel campione di 74, il punteggio medio attribuito dalla popolazione dei clienti al prodotto è compreso tra : 73,45 e 74,55, con un livello di confidenza del 95% e con una probabilità del 5% che sia esterno a questo intervallo. 73,28 e 74,72, con un livello di confidenza del 99% e con una probabilità del 1% che sia esterno a questo intervallo. 73,16 e 74,84 con un livello di confidenza del 99,73% e con una probabilità dello 0,27% che sia esterno a questo intervallo. Per facilitarci il compito: Valori di Zα/2 in corrispondenza dei livelli di confidenza 1-α sign. α Zα/2 0,6827 0,3173 1,00 0,7000 0,3000 1,04 0,8000 0,2000 1,28 0,9000 0,1000 1,64 0,9500 0,0500 1,96 0,9545 0,0455 2,00 0,9900 0,0100 2,58 0,9973 0,0027 3,00 In statistica in genere si ritiene accettabile un rischio di non più del 5%. Pertanto i livelli di confidenza utilizzati sono quelli di almeno il 95% ossia di (1- α) 0,95, a cui corrisponde appunto un livello di significatività α 0,05. Si ritengono accettabili dunque valori di Sign= α 0,05, che risultano associati a valori di Zα/2 1,96 12

13 Se σ non è noto In genere lo scarto quadratico medio della popolazione σ, al pari della mediaμ, non è noto. Pertanto, per ottenere un intervallo di confidenza per la media della popolazione, occorre utilizzare la deviazione standard del campione. Al posto dell errore medio " # $ = standard stimato: & # $= ' & # $= ' utilizziamo l errore (per popolazioni normali ed n >50, popolazioni infinite, per popolazioni non normali senza valori eccezionali ed n>100) 1 (per popolazioni finite) Dove s è la deviazione standard del campione Esercizio: stima ad intervallo con σ non noto Su un campione di 120 intervistati si è rilevata una spesa media mensile per telefonate su cellulare di 15 euro con scarto quadratico medio di 5,4. Assumendo che la popolazione è distribuita in modo normale, stimare la spesa media nella popolazione di riferimento, con un livello di confidenza del 95,45%. Come procedere 1. Calcolare α/2= (1-0,9545)/2 2. Cercare sulla tavola della curva normale standardizzata (tav.a) l area pari a (1- α/2 ) 3. Individuare il valore di z corrispondente. 4. Utilizzare il valore z per costruire gli intervalli di confidenza ( )* + & - 1 ( +)* + & (5.4/ 119 ) μ 15+2 (5.4/ 119 ) 14,01 μ 15,99 Possiamo dunque affermare che a partire dalla spesa media rilevata sul campione di 15 euro, la spesa media della popolazione, è compresa tra 14,01 e 15,99 euro, con un livello di confidenza del 95,45% e con una probabilità del 4,55% che sia esterna (maggiore o minore) a questo intervallo. 13

14 Esercizio Su un campione di 110 punti vendita si è rilevato che il prezzo di vendita di un noto modello di cellulare è di 355 euro, con uno scarto quadratico medio di 16 euro. Assumendo che la popolazione sia distribuita in modo normale, stimare il prezzo di vendita di quel prodotto nella popolazione di riferimento, con un livello di confidenza del 99,73%. Se σ non è noto: approfondimenti Negli esercizi precedenti in cui n era grande (n>100), anche quando σ non era noto, abbiamo utilizzato l errore standard stimato e abbiamo fatto riferimento, per semplicità, alla distribuzione normale standard. In realtà, se la variabile casuale X ha una distribuzione normale allora la statistica : 1 = # ha una distribuzione t di Student con (n 1) gradi di libertà. Una t di Student con molti gradi di libertà (n>100) si approssima ad una distribuzione normale standard. Tuttavia per un numero inferiore di gradi di libertà e dunque al diminuire di n la distribuzione t di Student differisce da quella normale e dunque invece della variabile z si utilizza t. 14

15 T di student La distribuzione t di Student ha una forma simile a quella della normale standardizzata. Il grafico è più appiattito e l area sottesa sulle code è maggiore di quella della normale perché il fatto che σ non è noto e viene stimato da s, è fonte di incertezza e dunque di maggiore variabilità di t. La distribuzione T è simmetrica rispetto alla media 0 e la forma dipende dal numero dei gradi di libertà Gdl o v=( n-1) Se n è grande la distribuzione T si approssima alla curva normale. Intervalli di confidenza con la T di Student gli intervalli di confidenza vengono costruiti facendo riferimento a valori di t in corrispondenza di un dato livello di confidenza e dei gradi di libertà (gdl o v=n-1). Gli intervalli: ' ±1, includono il valore incognito µ con il 95% di probabilità ' ±1, includono il valore incognito µ con il 99% di probabilità I valori 1 * dipendono dal numero di gradi di libertà e vengono individuati utilizzando apposite tavole. 15

16 La tavola della T di student La tavola fornisce i valori critici per la distribuzione t. La colonna a sinistra contiene il numero dei gradi di libertà, mentre le altre colonne danno i valori di t in corrispondenza dei vari livelli di significatività, cioè le porzioni di area nelle due code della distribuzione. Quindi α=0,050 corrisponde a due aree α/2=0,025, a destra e a sinistra della distribuzione. Esercizio: stima ad intervallo con σ non noto e n piccolo Su un campione di 30 intervistati si è rilevata una spesa media mensile per sigarette elettroniche di 58 euro con scarto quadratico medio di 4 euro. Assumendo che la popolazione è distribuita in modo normale, stimare la spesa media nella popolazione di riferimento, con un livello di confidenza del 95%. Come procedere 1. Calcolare α= (1-0,95)=0, Calcolare i gradi di libertà v= (n-1) 3. Cercare sulla tavola della t di Student il valore di t in corrispondenza del valore α e di v. 4. Individuare il valore di t corrispondente. 3. Utilizzare il valore t per costruire gli intervalli di confidenza ( 1 * & - 1 ( +1 * & ,045 (4/ 29 ) μ 58+2,045 (4/ 29 ) 56,48 μ 59,52 Possiamo dunque affermare che a partire dalla spesa media rilevata sul campione di 58 euro, la spesa media della popolazione, è compresa tra 56, ,53 euro, con un livello di confidenza del 95% e con una probabilità del 5% che sia esterna (maggiore o minore) a questo intervallo. 16

17 Esercizio Su un campione di 25 donne si è rilevato un consumo medio di alcol settimanale di 9 unità con uno scarto quadratico medio di 2,5 unità. Assumendo che la popolazione è distribuita in modo normale, stimare il consumo medio della popolazione di riferimento, con un livello di confidenza del 99%. Come procedere 1. Calcolare α= (1-0,99)=0,01 2. Calcolare i gradi di libertà v= (n-1) 3. Cercare sulla tavola della t di Student il valore di t in corrispondenza del valore α e di v. 4. Individuare il valore di t corrispondente. 3. Utilizzare il valore t per costruire gli intervalli di confidenza 9 2,797 (2,5/ 24 ) μ 9+2,797 (2,5/ 24 ) 7,57 μ 10,42 ( 1 * & - 1 ( +1 * & - 1 Quando il parametro da stimare è una proporzione Spesso nelle ricerche di mercato le statistiche che interessano non sono espressi in valori medi, ma in proporzioni. Si è interessati ad esempio a conoscere la proporzione di clienti soddisfatti o insoddisfatti, oppure di consumatori di un determinato prodotto. Una volta rilevate queste proporzioni su un campione come possiamo procedere a stimare la proporzione reale nella popolazione di riferimento? Anche in questo caso possiamo procedere analogamente alla stima dei valori medi, poiché la distribuzione delle proporzioni campionarie p, tende, se n è grande a distribuirsi secondo una distribuzione normale, con con media: E(p) =P dove P è la proporzione reale nella popolazione e varianza : Var (p) = PQ/n dove Q=(1-P) (popolazione, non finita con qualunque tipo di estrazione; popolazione finita con estrazione con ripetizione, n>30) ) Var (p) = PQ/n [(N-n)/(N-1)] (popolazione finita con estrazione senza ripetizione) 17

18 Possiamo dunque procedere analogamente a quanto abbiamo fatto per stimare i valori medi, anche nel caso di proporzioni. Sappiamo infatti che: Per n grande, o per popolazioni non finite, o nell estrazione con ripetizione: il 68.26% delle proporzioni dei campioni è compreso tra 8± 9: il 95.44% tra8±2 9: il 99.73% tra 8±3 9: Per popolazioni il 95.44% tra finite, 8±2 nell estrazione 9: senza ripetizione: il 68.26% delle proporzioni dei campioni è compreso tra 8± 9: il 99.73% tra 8±3 9: il 95.44% tra 8±2 9: il % tra P±3 9: Esercizio Su un campione di n=100 negozi, risulta che 40 hanno adottato un nuovo orario di apertura. Perciò la proporzione campionaria è di 0,40. Da altre indagini di fonte ufficiale risulta invece che la porzione di negozi in tutta la zona che hanno adottato il nuovo orario è del 36%, quindi la proporzione della popolazione è di 0,36. Quale è la probabilità di ottenere un campione che ha una proporzione superiore di 0,40 se quella della popolazione è di 0,36? Facendo riferimento alla distribuzione delle proporzioni campionarie la proporzione media di tutti i possibili campioni di 100 unità estraibili dalla popolazione si distribuisce normalmente con media: E(p) =P =0,36 e errore medio delle proporzioni: Var (p) = PQ/n = 0,048 Z=,,<, = 0,83 Come procedere 1. Trovare il valore medio e l errore standard delle proporzioni campionarie 2. Calcolare il valore standardizzato 3. Disegnare la distribuzione normale 4. Calcolare la probabilità sulla tavola della distribuzione normale 5. Trarre le conclusioni La probabilità di ottenere un campione con una proporzione -superiore a 0,40 è di (1-0,7967)=0,2033 = 20% Quindi il 20% 18

19 Intervallo di confidenza per proporzioni A partire dalla proporzione del campione p possiamo costruire un intervallo di valori sottraendo e sommando Z α/2 e moltiplicando per l errore. Come sappiamo Z α/2 è il valore a cui corrisponde un area cumulata della distribuzione normale standardizzata pari a (1- α/2 ). Se n è grande possiamo usare la proporzione p del campione come buona approssimazione della proporzione della popolazione nel calcolo dell errore standard: & = = =>? )* + - 8?+)* + - Esercizio: stima ad intervallo di una proporzione Su un campione casuale semplice di 150 intervistati si è rilevata che la percentuale di soggetti che legge un quotidiano è del 40%. Stimare la vera percentuale di lettori di quotidiani nella popolazione, con un livello di confidenza del 95,45% e del 99%. Come procedere: 1. Individuare il valore di z corrispondente a livello di confidenza richiesto. 2.Utilizzare il valore z per costruire gli intervalli di confidenza A BC + AE D F G A+BC + AE D F Attenzione p non è la percentuale, ma la proporzione!! 0,40 2 0,40 2,58,,<,,< (1-α)=95% 8 0,40+2 0,32 8 0,48 (1-α)=99% 8 0,40+2,58 0,30 8 0,50,,<,,< Possiamo dunque affermare che a partire dalla percentuale rilevata sul campione, la percentuale di lettori di quotidiani nella popolazione di riferimento è compresa tra il 32% e il 48% con un livello di confidenza del 95,45% e tra il 30% e il 50% con un livello di confidenza del 99%. 19

20 Esercizio In un campione di 80 intervistati, 36 clienti hanno detto di preferire l hotel Royal agli altri hotel della zona. A- Si vuole applicare il risultato all intera popolazione di riferimento, con un livello di confidenza del 95%. Quale intervallo di gradimento si ottiene per l hotel Royal? B- Se si decide di estendere la rilevazione a 250 clienti ottenendo una percentuale di preferenze per l hotel Royal del 48%, quali sono i nuovi intervalli di confidenza? Come procedere: 1. Calcolare la proporzione p di clienti che preferiscono l hotel Royal 2. Calcolare l errore standard delle proporzioni 3. Individuare il valore di z corrispondente a livello di confidenza richiesto. 4. Utilizzare il valore z per costruire gli intervalli di confidenza? )H I => 8?+)H I => Risposta A p=36/80=0,45 & = =?K - 0,45 (1 0,45) = =0, ,45 1,96 0, ,45+1,96 0,056 0,34 8 0,56 Esercizio Da una ricerca di mercato effettuata su un campione di 200 intervistati risulta che solo 80 individui sono a favore della costruzione di un centro commerciale. A- Si stimi la proporzione della popolazione a favore della costruzione calcolando l intervallo di confidenza al 95,54% B- Se l impresa che costruisce il centro commerciale sostiene che nella popolazione il 70% è a favore della costruzione, qual è la probabilità di avere un campione di 200 persone con la proporzione che abbiamo osservato se la vera proporzione della popolazione è dello 0,7? L impresa ha ragione o torto? 20

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

ANALISI DELLE FREQUENZE: IL TEST CHI 2

ANALISI DELLE FREQUENZE: IL TEST CHI 2 ANALISI DELLE FREQUENZE: IL TEST CHI 2 Quando si hanno scale nominali o ordinali, non è possibile calcolare il t, poiché non abbiamo medie, ma solo frequenze. In questi casi, per verificare se un evento

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

3. Confronto tra medie di due campioni indipendenti o appaiati

3. Confronto tra medie di due campioni indipendenti o appaiati BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE ED IL TERRITORIO CORSO DI STATISTICA E CALCOLO DELLE PROBABILITA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N ARGOMENTO: CALCOLO DELLE PROBABILITA

Dettagli

La dissomiglianza tra due distribuzioni normali

La dissomiglianza tra due distribuzioni normali Annali del Dipartimento di Scienze Statistiche Carlo Cecchi Università degli Studi di Bari Aldo Moro - Vol. X (2011): 43-50 Editore CLEUP, Padova - ISBN: 978-88-6129-833-0 La dissomiglianza tra due distribuzioni

Dettagli

1 Medie. la loro media aritmetica è il numero x dato dalla formula: x = x 1 + x 2 +... + x n

1 Medie. la loro media aritmetica è il numero x dato dalla formula: x = x 1 + x 2 +... + x n 1 Medie La statistica consta di un insieme di metodi atti a elaborare e a sintetizzare i dati relativi alle caratteristiche di una fissata popolazione, rilevati mediante osservazioni o esperimenti. Col

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA)

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA) Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 4: Analisi della varianza (ANOVA) Analisi della varianza Analisi della varianza (ANOVA) ANOVA ad

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA)

4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA) 4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA) L analisi della varianza è un metodo sviluppato da Fisher, che è fondamentale per l interpretazione statistica di molti dati biologici ed è alla

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA Pag 1 di 92 Francesco Sardo ELEMENTI DI STATISTICA PER VALUTATORI DI SISTEMI QUALITA AMBIENTE - SICUREZZA REV. 11 16/08/2009 Pag 2 di 92 Pag 3 di 92 0 Introduzione PARTE I 1 Statistica descrittiva 1.1

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Lezioni di STATISTICA MATEMATICA A

Lezioni di STATISTICA MATEMATICA A Università di Modena e Reggio Emilia Facoltà di Ingegneria Lezioni di STATISTICA MATEMATICA A Corso di Laurea in Ingegneria Meccanica Corso di Laurea in Ingegneria dei Materiali - Anno Accademico 010/11

Dettagli

LA CORRELAZIONE LINEARE

LA CORRELAZIONE LINEARE LA CORRELAZIONE LINEARE La correlazione indica la tendenza che hanno due variabili (X e Y) a variare insieme, ovvero, a covariare. Ad esempio, si può supporre che vi sia una relazione tra l insoddisfazione

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi Idea di base Supponiamo di avere un idea del valore (incognito) di una media di un campione, magari attraverso

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i DISTRIBUZIONE di PROBABILITA Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che uò assumere i valori: ; ;, n al verificarsi degli eventi incomatibili e comlementari: E ; E ;..;

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y =

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y = ESERCIZI Testi (1) Un urna contiene 20 palline di cui 8 rosse 3 bianche e 9 nere; calcolare la probabilità che: (a) tutte e tre siano rosse; (b) tutte e tre bianche; (c) 2 rosse e una nera; (d) almeno

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Se si insiste non si vince

Se si insiste non si vince Se si insiste non si vince Livello scolare: 2 biennio Abilità interessate Valutare la probabilità in diversi contesti problematici. Distinguere tra eventi indipendenti e non. Valutare criticamente le informazioni

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

INCERTEZZA DI MISURA

INCERTEZZA DI MISURA L ERRORE DI MISURA Errore di misura = risultato valore vero Definizione inesatta o incompleta Errori casuali Errori sistematici L ERRORE DI MISURA Errori casuali on ne si conosce l origine poiche, appunto,

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011

VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011 VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011 1 RAPPRESENTARE I DATI: TABELLE E GRAFICI Un insieme di misure è detto serie statistica o serie dei dati 1) Una sua prima elementare elaborazione può

Dettagli

TEORIA DELL UTILITÀ E DECISION PROCESS

TEORIA DELL UTILITÀ E DECISION PROCESS TEORIA DELL UTILITÀ E DECISION PROCESS 1 UTILITÀ Classicamente sinonimo di Desiderabilità Fisher (1930):... uno degli elementi che contribuiscono ad identificare la natura economica di un bene e sorge

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

STATISTICA (A-K) a.a. 2007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 2007

STATISTICA (A-K) a.a. 2007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 2007 A STATISTICA (A-K) a.a. 007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 007 STESS N.O. RD 00 GORU N.O. RD 006 ) La distribuzione del numero degli occupati (valori x 000) in una provincia

Dettagli

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso Esercizio 1 Data la funzione di domanda: ELASTICITÀ Dire se partendo da un livello di prezzo p 1 = 1.5, al produttore converrà aumentare il prezzo fino al livello p 2 = 2. Sarebbe conveniente per il produttore

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

LOGISTICA APPUNTI DI STATISTICA

LOGISTICA APPUNTI DI STATISTICA Cos'é la Statistica LOGISTICA APPUNTI DI STATISTICA La statistica è la disciplina che applica metodi scientifici alla raccolta di dati e informazioni per una loro classificazione, elaborazione e rappresentazione

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

4. Confronto tra medie di tre o più campioni indipendenti

4. Confronto tra medie di tre o più campioni indipendenti BIOSTATISTICA 4. Confronto tra medie di tre o più campioni indipendenti Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza. L esponente della potenza è l indice della radice che può essere: quadrata (); cubica (); quarta (4); ecc. La base della

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1 Potenza dello studio e dimensione campionaria Laurea in Medicina e Chirurgia - Statistica medica 1 Introduzione Nella pianificazione di uno studio clinico randomizzato è fondamentale determinare in modo

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

LA POVERTÀ IN ITALIA. Anno 2013. 14 luglio 2014

LA POVERTÀ IN ITALIA. Anno 2013. 14 luglio 2014 14 luglio 2014 Anno 2013 LA POVERTÀ IN ITALIA Nel 2013, il 12,6% delle famiglie è in condizione di povertà relativa (per un totale di 3 milioni 230 mila) e il 7,9% lo è in termini assoluti (2 milioni 28

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Calcolo combinatorio

Calcolo combinatorio Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Calcolo combinatorio Ines Campa e Marco Longhi Probabilità e Statistica

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento

errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento Analisi della varianza a una via a misure ripetute (Anova con 1 fattore within) modello strutturale dell'analisi della varianza a misure ripetute con 1 fattore: y = μ ik 0 +π i +α k + ik ε ik interazione

Dettagli

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile.

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. ORDINALI E NOMINALI LA PROBABILITÀ Statistica5 23/10/13 Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. Se si afferma che un vitello di razza chianina pesa 780 kg a 18

Dettagli

1 Valore atteso o media

1 Valore atteso o media 1 Valore atteso o media Definizione 1.1. Sia X una v.a., si chiama valore atteso (o media o speranza matematica) il numero, che indicheremo con E[X] o con µ X, definito come E[X] = i x i f(x i ) se X è

Dettagli

Cenni sul calcolo combinatorio

Cenni sul calcolo combinatorio Cenni sul calcolo combinatorio Disposizioni semplici Le disposizioni semplici di n elementi distinti di classe k con kn sono tutti i gruppi di k elementi scelti fra gli n, che differiscono per almeno un

Dettagli

Il significato della MEDIA e della MEDIANA in una raccolta di dati numerici

Il significato della MEDIA e della MEDIANA in una raccolta di dati numerici Il significato della MEDIA e della MEDIANA in una raccolta di dati numerici Ogni qual volta si effettua una raccolta di dati di tipo numerico è inevitabile fornirne il valore medio. Ma che cos è il valore

Dettagli

Rapporto CESI. Cliente: Oggetto: Ordine: Contratto CESI n. 71/00056. Note: N. pagine: 13 N. pagine fuori testo: Data: 30.05.2000.

Rapporto CESI. Cliente: Oggetto: Ordine: Contratto CESI n. 71/00056. Note: N. pagine: 13 N. pagine fuori testo: Data: 30.05.2000. A0/010226 Pag.1/13 Cliente: Ricerca di Sistema Oggetto: Determinazione della tenacità di acciai eserciti - Correlazioni per stime di FATT da prove Small Punch Ordine: Contratto CESI n. 71/00056 Note: DEGRADO/GEN04/003

Dettagli

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1 UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA Filippo Romano 1 1. Introduzione 2. Analisi Multicriteri o Multiobiettivi 2.1 Formule per l attribuzione del

Dettagli

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1 Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 Capitolo 3. L'analisi della varianza. Il problema dei confronti multipli. La soluzione drastica di Bonferroni ed il test

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto

Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto Il presente capitolo continua nell esposizione di alcune basi teoriche della manutenzione. In particolare si tratteranno

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

ELEMENTI DI STATISTICA DESCRITTIVA ED INFERENZIALE

ELEMENTI DI STATISTICA DESCRITTIVA ED INFERENZIALE ELEMENTI DI STATISTICA DESCRITTIVA ED INFERENZIALE Per gli studenti del 1 Anno della Facoltà di Agraria APPUNTI DALLE LEZIONI (A.A. 00/003) Andrea Onofri Dipartimento di Scienze Agroambientali e della

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE La presentazione dei dati per molte ricerche mediche fa comunemente riferimento a frequenze, assolute o percentuali. Osservazioni cliniche conducono sovente

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Esercizi di calcolo combinatorio

Esercizi di calcolo combinatorio CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi di calcolo combinatorio Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability di Sheldon Ross, quinta

Dettagli

PRESENTAZIONE DEL CAPITOLO SULLE EQUAZIONI E DISEQUAZIONI IRRAZIONALI O COL VALORE ASSOLUTO

PRESENTAZIONE DEL CAPITOLO SULLE EQUAZIONI E DISEQUAZIONI IRRAZIONALI O COL VALORE ASSOLUTO 9 PRESENTAZIONE DEL CAPITOLO SULLE EQUAZIONI E DISEQUAZIONI IRRAZIONALI O COL VALORE ASSOLUTO Il capitolo che sta per iniziare presenta alcuni argomenti dall aspetto un po arido. Tuttavia, nelle facoltà

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

STATISTICA 1 ESERCITAZIONE 1 CLASSIFICAZIONE DELLE VARIABILI CASUALI

STATISTICA 1 ESERCITAZIONE 1 CLASSIFICAZIONE DELLE VARIABILI CASUALI STATISTICA 1 ESERCITAZIONE 1 Dott. Giuseppe Pandolfo 30 Settembre 2013 Popolazione statistica: insieme degli elementi oggetto dell indagine statistica. Unità statistica: ogni elemento della popolazione

Dettagli

La ricerca operativa

La ricerca operativa S.S.I.S. PUGLIA Anno Accademico 2003/2004 Laboratorio di didattica della matematica per l economia e la finanza La ricerca operativa Prof. Palmira Ronchi (palmira.ronchi@ssis.uniba.it) Gli esercizi presenti

Dettagli

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della RELAZIONE TRA VARIABILI QUANTITATIVE Lezione 7 a Accade spesso nella ricerca in campo biomedico, così come in altri campi della scienza, di voler studiare come il variare di una o più variabili (variabili

Dettagli

Introduzione alla probabilità

Introduzione alla probabilità Introduzione alla probabilità CAPITOLO TEORIA Il dilemma di Monty Hall In un popolare show televisivo americano il presentatore mostra al concorrente tre porte chiuse. Dietro a una di esse si cela il premio

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli