Circonferenza e cerchio

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Circonferenza e cerchio"

Transcript

1 Circonferenza e cerchio è il luogo dei punti che hanno dal centro una distanza assegnata. La figura costituita da tutti i punti di una circonferenza e dai suoi punti interni si chiama Prendi uno spago, misura la sua lunghezza l e poi avvolgilo fino a formare una circonferenza. Misura poi il diametro d di tale circonferenza. Calcola poi l d Ripeti la stessa operazione con diversi spaghi. Il valore che hai ottenuto è circa uguale a Manipola la relazione ottenuta fino ad ottenere la nota formula C=2πr Considera ora la circonferenza riportata qui sotto e completa. Il segmento BC è detto.. della mentre le 2 parti di circonferenza limitate dai punti B e C sono detti di.. Traccia ora la perpendicolare al segmento BC, passante per il suo punto medio M. Che cosa noti? Essa passa... Risolvi ora il seguente problema sfruttando quanto appreso precedentemente Trova il centro della circonferenza passante per i 3 punti qui sotto.

2 1.1 Angoli alla circonferenza Figura 1 ˆ e FEG ˆ sono detti angoli alla circonferenza in quanto hanno il.. Gli angoli CBD sulla circonferenza e i lati che li comprendono entrambi. o uno. e l altro la circonferenza. Ogni angolo alla circonferenza ha un corrispondente angolo al centro. L angolo alla ˆ, mentre FEG ˆ ha come corrispondente angolo al centro COD ˆ ha circonferenza CBD come corrispondente angolo al centro... Figura 2: caso 1 Figura 3: caso 2 ˆ è inscritto nell arco CBD e che insiste Si dice che l angolo alla circonferenza CBD nell arco DC Ogni angolo alla centro. circonferenza è la metà del corrispondente angolo al

3 La dimostrazione andrebbe fatta per 6 diversi casi; noi ci limiteremo al seguente caso. Caso 1 x=o B C= perché...è un triangolo isoscele Quindi C= BO dato che la somma degli angoli di un triangolo è 180 gradi. Si ricava quindi che ε =180 B O C =180 ( )= Applicando lo stesso ragionamento al triangolo OBC si ha che..=2y Si conclude che ε=2x, θ=2y quindi ogni angolo alla circonferenza è... L angolo alla circonferenza che insiste su una semicirconferenza è retto (è una conseguenza evidente del teorema precedente)

4 1.2 Area del cerchio Chiama P il perimetro dell esagono e R il raggio della circonferenza inscritta. Trova una formula che permetta di calcolare l area dell esagono in funzione di P e R A=... P R... L area dell esagono è una approssimazione per... dell area del cerchio inscritto. Chiama P il perimetro del decagono e R il raggio della circonferenza inscritta. Trova una formula che permetta di calcolare l area del decagono in funzione di P e R A=... P R... Come potrai intuire tale formula vale per tutti i poligoni. L area del decagono è un approssimazione per. dell area del cerchio migliore di quella dell esagono. Prova ora ad immaginare un poligono con infiniti lati. Esso avrà area uguale a quella del inscritto. L area sarà : A=... P R, con P=.., dato che si... tratta del perimetro di una circonferenza. Quindi A=

5 1.3 Esercizi 1) Gli archi, nei quali 3 punti A B C dividono una circonferenza, sono lunghi 47,1 m 62,8 m 78,5 m; determinare il raggio della circonferenza e l ampiezza degli angoli del triangolo ABC. 2)Un arco di 120 è lungo 24Π cm; determinare la lunghezza della corda che unisce i punti estremi. 3)Dimostra che l'area e il perimetro delle 2 figure sono quelle indicate dalle formule.

6 4) Trova area e perimetro delle seguenti figure 5) Dimostra che la somma delle 4 lunule ha area equivalente a quella del quadrato. (Chiama x il lato del quadrato) 6) Dimostra che le 2 aree evidenziate in figura sono equivalenti. Dimostra che le superfici non evidenziate sono ciascuna equivalente a un quarto del quadrato di lato AB. (Suggerimento: x = DA ) Calcola inoltre la differenza tra i 2 perimetri

7 7) Dimostra che l area della superficie evidenziata è equivalente a quella del cerchio che ha come diametro il segmento GH. Trova il perimetro di tale figura in funzione di x e y. 8) Se l'area in colore nella figura a lato è 100πcm2 quanto misura il segmento AB. (Imposta un'equazione ) 9)Calcola area e perimetro

8 10) Nella figura sotto AD e CB sono uguali e le semicirconferenze di diametri AB e DC hanno come centro comune O. Dimostra che le 2 superfici colorate in figura sono equivalenti e che la differenza tra i loro contorni è congruente alla circonferenza di diametro AD. (Chiama AO=x,DO=y)

9 1.4 Sangaku 1)Trova una relazione tra il raggio R della circonferenza maggiore e il lato c del quadrato. 2)Trova una relazione tra il raggio r della circonferenza minore e il lato c del quadrato. 1) Risolvi prima la prima parte del problema aiutandoti con il seguente disegno e compilando i dati mancanti. Definisci i 3 segmenti solo in funzione di c e R GL =... AG =... AL =... Trova ora una relazione tra i 3 segmenti che ti permetterà di trovare il raggio in funzione del lato c del quadrato.

10 Trova ora una relazione che ti permetterà di trovare il raggio r in funzione del lato c del quadrato. 2) Risolvi prima la seconda parte del problema aiutandoti con il seguente disegno e compilando i dati mancanti. Definisci i segmenti in funzione solo di c e r. AH =... HR =... AR =... BH =... HS = r BS = Esercizi 1)Verifica con geogebra che che l angolo al centro è il doppio di quello sulla circonferenza. 2) Disegna con geogebra un esagono, e un decagono. 3)) Disegna con geogebra la figura del sangaku.

Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta.

Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta. CLASSE III C RECUPERO GEOMETRIA AREA PERIMETRO POLIGONI Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta. ES: se ho fatto questo disegno e so che 1 quadretto vale

Dettagli

I teoremi di Euclide e di Pitagora

I teoremi di Euclide e di Pitagora I teoremi di Euclide e di Pitagora In questa dispensa vengono presentati i due teoremi di Euclide ed il teorema di Pitagora, fondamentali per affrontare diverse questioni sui triangoli rettangoli. I teoremi

Dettagli

Geogebra. Numero lati: Numero angoli: Numero diagonali:

Geogebra. Numero lati: Numero angoli: Numero diagonali: TRIANGOLI Geogebra IL TRIANGOLO 1. Fai clic sull icona Ic2 e nel menu a discesa scegli Nuovo punto : fai clic all interno della zona geometria e individua il punto A. Fai di nuovo clic per individuare

Dettagli

r.berardi COSTRUZIONI GEOMETRICHE

r.berardi COSTRUZIONI GEOMETRICHE r.berardi COSTRUZIONI Costruzioni geometriche di base perpendicolari Pag.. 2 OVALI Pag. 12 Bisettrice e divisione Pag. 3 angoli COSTRUZIONE POLIGONI RACCORDI GRAFICI DATO IL LATO Triangolo equilatero,

Dettagli

I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli.

I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli. I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli. In ogni triangolo un lato è sempre minore della somma degli altri due e sempre maggiore della loro differenza. Relazione fra i lati di

Dettagli

Anno 4 I Triangoli qualsiasi

Anno 4 I Triangoli qualsiasi Anno 4 I Triangoli qualsiasi 1 Introduzione In questa lezione descriveremo i triangoli qualunque. Enunceremo i teoremi su questi triangoli e illustreremo le loro applicazioni. Al termine della lezione

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Se il polinomio

Dettagli

Parte Seconda. Geometria

Parte Seconda. Geometria Parte Seconda Geometria Geometria piana 99 CAPITOLO I GEOMETRIA PIANA Geometria: scienza che studia le proprietà delle figure geometriche piane e solide, cioè la forma, l estensione e la posizione dei

Dettagli

N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi

N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi Tra i molteplici interessi scientifici di Leonardo non dobbiamo dimenticare la matematica.

Dettagli

IL TEOREMA DI PITAGORA

IL TEOREMA DI PITAGORA GEOMETRIA IL TEOREMA DI PITAGORA E LE SUE APPLICAZIONI PREREQUISITI l conoscere le rorietaá delle quattro oerazioni ed oerare con esse l conoscere il significato ed oerare con otenze ed estrazioni di radici

Dettagli

Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto italiano.

Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto italiano. Il punto Il punto è un elemento geometrico fondamentale privo di dimensioni ed occupa solo una posizione. Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 7

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 7 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 7 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora sommario.

Dettagli

ABCD è un parallelogrammo 90. Dimostrazione

ABCD è un parallelogrammo 90. Dimostrazione EQUISCOMPONIBILITÀ Problema G2.360.1 È dato il parallelogrammo ABCD: dai vertici A e B si conducano le perpendicolari alla retta del lato CD e siano rispettivamente E e F i piedi di tali perpendicolari

Dettagli

PROBLEMI DI MASSIMO E MINIMO ESEMPI INTRODUTTIVI ELEMENTARI. PROBLEMA 1: Tra i rettangoli di perimetro 20 cm, determina quello di area massima.

PROBLEMI DI MASSIMO E MINIMO ESEMPI INTRODUTTIVI ELEMENTARI. PROBLEMA 1: Tra i rettangoli di perimetro 20 cm, determina quello di area massima. PROBLEMI DI MASSIMO E MINIMO ESEMPI INTRODUTTIVI ELEMENTARI Introduzione Vengono qui presentati alcuni semplici problemi di massimo e minimo. Leggi con attenzione e completa i passaggi mancanti. Prova

Dettagli

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Sessione straordinaria - a.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Tema di: MATEMATICA a.s. 9- Svolgimento a cura di Nicola De Rosa Il candidato risolva uno

Dettagli

Anno 4 Applicazioni dei teoremi di trigonometria

Anno 4 Applicazioni dei teoremi di trigonometria Anno 4 Applicazioni dei teoremi di trigonometria 1 Introduzione In questa lezione descriveremo le applicazioni dei teoremi di trigonometria. Inizieremo, illustrando alcune formule di trigonometria, utili

Dettagli

Un portfolio è una raccolta dinamica, mirata e sistematica di elaborati che testimonia e riflette gli sforzi, i progressi e le prestazioni dello

Un portfolio è una raccolta dinamica, mirata e sistematica di elaborati che testimonia e riflette gli sforzi, i progressi e le prestazioni dello r.berardi Un portfolio è una raccolta dinamica, mirata e sistematica di elaborati che testimonia e riflette gli sforzi, i progressi e le prestazioni dello studente in un determinato ambito disciplinare

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

LE GEOMETRIE NON EUCLIDEE FRA CULTURA, STORIA E DIDATTICA DELLA MATEMATICA. Dario Palladino (Università di Genova)

LE GEOMETRIE NON EUCLIDEE FRA CULTURA, STORIA E DIDATTICA DELLA MATEMATICA. Dario Palladino (Università di Genova) LE GEOMETRIE NON EUCLIDEE FRA CULTURA, STORIA E DIDATTICA DELLA MATEMATICA Dario Palladino (Università di Genova) Seconda parte Momenti della storia dei tentativi di dimostrazione del V postulato di Euclide

Dettagli

30 o. 60 o. assocubo.ggb. Disegno tecnico + costruzione cartellina. a cura di Manuela Menzaghi 1

30 o. 60 o. assocubo.ggb. Disegno tecnico + costruzione cartellina. a cura di Manuela Menzaghi 1 assocubo.ggb Assonometria monometrica del cubo con gli strumenti geometrici di NOTEBOOK Z Y 60 o 60 o 30 o X L.T. Assonometria monometrica con squadra e righello interattivo a cura di Manuela Menzaghi

Dettagli

Liceo G.B. Vico Corsico

Liceo G.B. Vico Corsico Liceo G.B. Vico Corsico Classe: 3A Materia: MATEMATICA Insegnante: Nicola Moriello Testo utilizzato: Bergamini Trifone Barozzi: Manuale blu.0 di Matematica Moduli S, L, O, Q, Beta ed. Zanichelli 1) Programma

Dettagli

La trigonometria prima della trigonometria. Maurizio Berni

La trigonometria prima della trigonometria. Maurizio Berni La trigonometria prima della trigonometria Maurizio Berni 9 maggio 2010 Negli istituti tecnici agrari la trigonometria viene affrontata: nella seconda classe in Disegno e Topografia (risoluzione di triangoli

Dettagli

3; 2 1 2 ;5 3;0 1; 2

3; 2 1 2 ;5 3;0 1; 2 Risolvere mediante la fattorizzazione le seguenti equazioni. 1. 4 12 +9=0 0; 3 2 2. 7 +14 8=0 1;2;4 3. 4 12 +9=0 3 2 ; 3 2 4. +2 = 3 4 1 2 ;3 2 +4=0 5. +3 +1=0 + 2 =3 6. + +2 4=15 3; 2 1 2 ;5 3;0 1; 2

Dettagli

Piano Lauree Scientifiche 2011-2012

Piano Lauree Scientifiche 2011-2012 Piano Lauree Scientifiche 2011-2012 «non si può intendere se prima non s impara a intender lingua, e conoscer i caratteri, nei quali è scritto. Egli è scritto in lingua matematica, e i caratteri sono triangoli,

Dettagli

IGiochidiArchimede--Soluzionitriennio

IGiochidiArchimede--Soluzionitriennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionitriennio 18 novembre 2009 Griglia delle risposte

Dettagli

LA GEOMETRIA CON GEOGEBRA

LA GEOMETRIA CON GEOGEBRA La geometria con Geogebra Introduzione 1 SERGIO BALSIMELLI LA GEOMETRIA CON GEOGEBRA (seconda edizione) Esercizi per la scuola secondaria di primo grado e di secondo grado La geometria con Geogebra Introduzione

Dettagli

SIMULAZIONE QUARTA PROVA: MATEMATICA

SIMULAZIONE QUARTA PROVA: MATEMATICA SIMULAZIONE QUARTA PROVA: MATEMATICA COGNOME: NOME: TEMPO IMPIEGATO: VOTO: TEMPO DELLA PROVA = 44 (a fianco di ogni quesito si trova il tempo consigliato per lo svolgimento dell esercizio). PUNTEGGIO TOTALE

Dettagli

IGiochidiArchimede--Soluzionitriennio 22 novembre 2011

IGiochidiArchimede--Soluzionitriennio 22 novembre 2011 PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionitriennio 22 novembre 2011 Griglia delle risposte

Dettagli

INdAM QUESITI A RISPOSTA MULTIPLA

INdAM QUESITI A RISPOSTA MULTIPLA INdAM Prova scritta per il concorso a 40 borse di studio, 2 borse aggiuntive e a 40 premi per l iscrizione ai Corsi di Laurea in Matematica, anno accademico 2011/2012. Piano Lauree Scientifiche. La prova

Dettagli

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π PROBLEMA Il triangolo rettangolo ABC ha l ipotenusa AB = a e l angolo CAB =. a) Si descriva, internamente al triangolo, con centro in B e raggio, l arco di circonferenza di estremi P e Q rispettivamente

Dettagli

MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree

MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree MODULO DI MATEMATICA di accesso al triennio Abilità interessate Utilizzare terminologia specifica. Essere consapevoli della necessità di un linguaggio condiviso. Utilizzare il disegno geometrico, per assimilare

Dettagli

C.d.L. "Scienze della Formazione Primaria" Corso Integrato di Geometria e Algebra. Modulo di GEOMETRIA. A. Gimigliano, A.A.

C.d.L. Scienze della Formazione Primaria Corso Integrato di Geometria e Algebra. Modulo di GEOMETRIA. A. Gimigliano, A.A. C.d.L. "Scienze della Formazione Primaria" Corso Integrato di Geometria e Algebra Modulo di GEOMETRIA A. Gimigliano, A.A. 009/10 Note supplementari per il corso INDICE 0. INTRODUZIONE. 1. LA GEOMETRIA

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATIA Scuola secondaria di II grado lasse... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

I TRIANGOLI I TRIANGOLI 1. IL TRIANGOLO. Il triangolo è un poligono avente tre lati. a) Proprietà di un triangolo

I TRIANGOLI I TRIANGOLI 1. IL TRIANGOLO. Il triangolo è un poligono avente tre lati. a) Proprietà di un triangolo I TRIANGOLI 1. IL TRIANGOLO Il triangolo è un poligono avente tre lati. a) Proprietà di un triangolo In un triangolo: I lati e i vertici sono consecutivi fra loro. La somma degli angoli interni è sempre

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

UNIONE MATEMATICA ITALIANA. C. I. I. M. Commissione Italiana per l'insegnamento della Matematica

UNIONE MATEMATICA ITALIANA. C. I. I. M. Commissione Italiana per l'insegnamento della Matematica UNIONE MATEMATICA ITALIANA C. I. I. M. Commissione Italiana per l'insegnamento della Matematica ESEMPI DI TERZE PROVE per il NUOVO ESAME DI STATO LA COMPONENTE MATEMATICA ISTITUTO MAGISTRALE Tipologia

Dettagli

Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta

Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta Il concetto di similitudine è innato: riconosciamo lo stesso oggetto se è più o meno distante

Dettagli

giocare con le forme

giocare con le forme IS science centre immaginario scientifico Laboratorio dell'immaginario Scientifico - Trieste tel. 040224424 - fax 040224439 - e-mail: lis@lis.trieste.it - www.immaginarioscientifico.it indice A caccia

Dettagli

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva, matematicamente.it PROBLEMA Data una semicirconferenza di diametro AB =, si prenda su di essa un punto P e sia M la proiezione di P

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

I Giochi di Archimede-- Soluzioni triennio

I Giochi di Archimede-- Soluzioni triennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE I Giochi di Archimede-- Soluzioni triennio 17 novembre 2010 Griglia delle

Dettagli

IGiochidiArchimede--Soluzionibiennio

IGiochidiArchimede--Soluzionibiennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionibiennio 17 novembre 2010 Griglia delle risposte

Dettagli

Punti notevoli di un triangolo

Punti notevoli di un triangolo Punti notevoli dei triangoli (UbiLearning). - 1 Punti notevoli di un triangolo Particolarmente importanti in un triangolo sono i punti dove s intersecano specifici segmenti, rette o semirette (Encyclopedia

Dettagli

Kangourou Italia Gara del 18 marzo 2010 Categoria Junior Per studenti di seconda o terza della secondaria di secondo grado

Kangourou Italia Gara del 18 marzo 2010 Categoria Junior Per studenti di seconda o terza della secondaria di secondo grado Testi_10Mat.qxp 15-02-2010 7:17 Pagina 22 Kangourou Italia Gara del 18 marzo 2010 Categoria Per studenti di seconda o terza della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti

Dettagli

1. Particolari terne numeriche e teorema di PITAGORA. 2. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora.

1. Particolari terne numeriche e teorema di PITAGORA. 2. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora. TEOREMA DI PITAGORA Contenuti 1. Particolari terne numeriche e teorema di PITAGORA. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora Competenze 1. Sapere il significato di terna pitagorica

Dettagli

Invitare a misurare l area delle seguenti figure verificando quante delle sottoindicate unità di misura sono contenute in ciascuna di esse.

Invitare a misurare l area delle seguenti figure verificando quante delle sottoindicate unità di misura sono contenute in ciascuna di esse. Laboratorio di geometria nella scuola secondaria di primo grado. Ricerca e sperimentazione di metodologie e attività orientative nello svolgimento dei curricoli di Matematica nella Scuola di Primo Grado

Dettagli

Author: Ing. Giulio De Meo. Geometria Euclidea

Author: Ing. Giulio De Meo. Geometria Euclidea Geometria Euclidea La Geometria Euclidea è finalizzata a descrivere le figure geometriche e le relazioni spaziali dello spazio fisico che ci circonda, ricavandole in maniera deduttiva a partire da alcune

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008 PRVA SPERIMENTALE P.N.I. 8 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 8 Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Nel piano riferito

Dettagli

Appunti di Geometria

Appunti di Geometria ISTITUTO COMPRENSIVO N.7 - VIA VIVALDI - IMOLA Via Vivaldi, 76-40026 Imola (BOLOGNA) Centro Territoriale Permanente: Istruzione Degli Adulti - IDA Appunti di Geometria Scuola Secondaria di I Grado - Ex

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione 0 0 0 0 0 0 0 70 80 90 00 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni. n olora,

Dettagli

Anna Montemurro. 2Geometria. e misura

Anna Montemurro. 2Geometria. e misura Anna Montemurro Destinazione Matematica 2Geometria e misura GEOMETRIA E MISURA UNITÀ 11 Le aree dei poligoni apprendo... 11. 1 FIGURE PIANE EQUIVALENTI Consideriamo la figura A. A Le figure B e C

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 1 Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PRBLEM 1 Si consideri la funzione reale

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-15 SCUOLA: Liceo Linguistico Teatro alla Scala DOCENTE: BASSO RICCI MARIA MATERIA: MATEMATICA- INFORMATICA Classe 2 Sezione A CONTENUTI Sistemi lineari numerici

Dettagli

I VETTORI. 1 Somma di vettori: metodo graco. 19 dicembre 2007. ESERCIZI Risolti e Discussi

I VETTORI. 1 Somma di vettori: metodo graco. 19 dicembre 2007. ESERCIZI Risolti e Discussi I VETTORI ESERCIZI Risolti e Discussi 19 dicembre 2007 1 Somma di vettori: metodo graco 1.0.1 Si considerino due spostamenti, uno di modulo 3 m e un altro di modulo 4 m. Si mostri in che modo si possono

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Seconda media A Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto

Seconda media A Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto Seconda media A Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto Carissimi, eccovi gli argomenti trattati in quest anno scolastico. Ti servono quale ripasso!!!se qualcosa non fosse chiaro batti

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

ESPERIENZE E STRUMENTI

ESPERIENZE E STRUMENTI ESPERIENZE E STRUMENTI DISORGANIZZAZIONE DISLESSIA CONCENTRAZIONE DISGRAFIA LENTEZZA DSA DISORTOGRAFIA MEMORIA DISCALCULIA DISPRASSIA DISNOMIA DISLESSIA difficoltà Studio della teoria sul libro. Comprensione

Dettagli

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014 SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 01 1. Determiniamo l espressione analitica di g() dividendo il suo dominio in intervalli. La circonferenza di diametro AO ha equazione (+) + = + + = 0

Dettagli

Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente.

Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente. Linee Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente. a. curva spezzata retta mista aperta chiusa b. curva spezzata

Dettagli

Con carta e forbici alla scoperta del paese Geometria

Con carta e forbici alla scoperta del paese Geometria Con carta e forbici alla scoperta del paese Geometria Anna Asti Enrica Ventura La parola non serve a nulla, il disegno non basta, è necessaria l azione perché il bambino giunga a combinare delle operazioni

Dettagli

Misure di circonferenza e cerchio. Il numero Unità 38

Misure di circonferenza e cerchio. Il numero Unità 38 Prerequisiti: - Conoscere le proprietà elementari della circonferenza, del cerchio e delle loro parti. - Possedere sufficiente abilità nel calcolo algebrico. L unità è indirizzata agli studenti del biennio

Dettagli

Il più famoso teorema della geometria euclidea. Prof.ssa Laura Salvagno

Il più famoso teorema della geometria euclidea. Prof.ssa Laura Salvagno Il più famoso teorema della geometria euclidea 1 Il teorema di Pitagora è uno dei più importanti teorema della geometria euclidea che stabilisce la relazione fondamentale tra i lati di un triangolo rettangolo.

Dettagli

GEOMETRIA CLASSE TERZA

GEOMETRIA CLASSE TERZA GEOMETRIA CLASSE TERZA Le principali figure geometriche del piano e dello spazio. Rette incidenti, perpendicolari e parallele. Introduzione del concetto di angolo a partire da contesti concreti. Introduzione

Dettagli

Trigonometria 30 = 3. l angolo inferiore ad un angolo retto per un trentesimo di quadrante è ampio un quadrante meno un trentesimo e cioè 87.

Trigonometria 30 = 3. l angolo inferiore ad un angolo retto per un trentesimo di quadrante è ampio un quadrante meno un trentesimo e cioè 87. Trigonometria Introduzione storica La trigonometria nasce dal problema pratico di calcolare a partire dalla misura di tre elementi di un triangolo (di cui almeno un lato) le misure dei tre elementi mancanti.

Dettagli

AREA LOGICO-MATEMATICA

AREA LOGICO-MATEMATICA SCUOLA DELL INFANZIA AREA LOGICO-MATEMATICA TRAGUARDI SCUOLA DELL INFANZIA 3 ANNI 4 ANNI 5 ANNI NUCLEO: NUMERO E SPAZIO PREREQUISITI -Raggruppare e ordinare secondo criteri diversi, confrontare e valutare

Dettagli

La città misteriosa a cura di Fabio Brunelli, Roberto Imperiale, Carmela Milone, Franco Spinelli

La città misteriosa a cura di Fabio Brunelli, Roberto Imperiale, Carmela Milone, Franco Spinelli La città misteriosa a cura di Fabio Brunelli, Roberto Imperiale, Carmela Milone, Franco Spinelli Introduzione...2 Descrizione dell attività...3 Indicazioni metodologiche... 10 Eventuali difficoltà e suggerimenti...

Dettagli

COSTRUZIONI E DISEGNO RELATIVO E NOZIONI DI GEOMETRIA DESCRITTIVA (SEZIONE DI AGRIMENSURA)

COSTRUZIONI E DISEGNO RELATIVO E NOZIONI DI GEOMETRIA DESCRITTIVA (SEZIONE DI AGRIMENSURA) Istruzioni e programmi d insegnamento per gli istituti tecnici approvati con regio decreto 2 ottobre 1891 n. 622 (Raccolta ufficiale delle leggi e dei decreti del Regno d Italia, Roma, Stamperia Reale,

Dettagli

FIGURE GEOMETRICHE SIMILI

FIGURE GEOMETRICHE SIMILI FIGUE GEOMETICHE SIMILI Nel linguaggio comune si dice che due oggetti sono simili quando si «assomigliano». Così si dicono simili due cani della stessa razza, i fiori della stessa pianta, gli abiti dello

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secondaria di secondo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio à t i n U 1 Sistemi di primo grado

Dettagli

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1)

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) Un ente (geometrico) è un oggetto studiato dalla geometria. Per descrivere gli enti vengono utilizzate delle definizioni. Una definizione è una

Dettagli

Titolo: Il Teorema di Pitagora. Palmira Ronchi. Nucleo: Spazio e forme. PREREQUISITI: riconoscere e costruire poligoni equiscomponibili.

Titolo: Il Teorema di Pitagora. Palmira Ronchi. Nucleo: Spazio e forme. PREREQUISITI: riconoscere e costruire poligoni equiscomponibili. Titolo: Il Teorema di Pitagora Palmira Ronchi Nucleo: Spazio e forme PREREQUISITI: riconoscere e costruire poligoni equiscomponibili. Scheda di lavoro 1: Le mattonelle ATTIVITÁ Il Teorema di Pitagora Scheda

Dettagli

MEDICINA ODONTOIATRIA Test di matematica anni: 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011. Anno Accademico 1997/1998

MEDICINA ODONTOIATRIA Test di matematica anni: 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011. Anno Accademico 1997/1998 Anno Accademico 1997/1998 MATEMATICA anno 1997 1998 n. 69 L'espressione (4 + 2x 12y) / 2 si può ridurre a: A) 2 + 2 (x + 6y) B) 4 + y + 6x C) 2 + x + 6y D) 4 + x + 6y E) 2 + 2x + 6y MATEMATICA anno 1997

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

TEST PSICOMETRICO. Corso preparatorio all esame in italiano del 2014

TEST PSICOMETRICO. Corso preparatorio all esame in italiano del 2014 TEST PSICOMETRICO Corso preparatorio all esame in italiano del 2014 Febbraio Marzo 2014 Docente: Giacomo Sassun E-mail: gsassun@yahoo.it info@israeluni.it Realizzato grazie al contributo dell UNIONE DELLE

Dettagli

Esame di Stato - Matematica (1998-2008)

Esame di Stato - Matematica (1998-2008) Esame di Stato - Matematica (1998-2008) 17 settembre 2008 2 1. (Sessione Ordinaria, 1998) - Corso di Ordinamento (a) In un piano, riferito a un sistema di assi cartesiani ortogonali Oxy, sono assegnate

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo differenziale in IR N. Dott. Franco Obersnel

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo differenziale in IR N. Dott. Franco Obersnel Università di Trieste Facoltà d Ingegneria Esercizi sul calcolo differenziale in IR N Dott Franco Obersnel Esercizio 1 Si calcoli la derivata direzionale nell origine lungo la direzione y del versore v

Dettagli

LA PROVA PER LE BORSE DI STUDIO INDAM DEL 2002 4000 EURO PER I MIGLIORI STUDENTI DI MATEMATICA

LA PROVA PER LE BORSE DI STUDIO INDAM DEL 2002 4000 EURO PER I MIGLIORI STUDENTI DI MATEMATICA 00 rchimede L PROV PER LE BORSE DI STUDIO INDM DEL 00 RTICOLI 4000 EURO PER I MIGLIORI STUDENTI DI MTEMTIC Per il terzo anno consecutivo, l INdM ha bandito il concorso per assegnare 50 borse di studio

Dettagli

Alla ricerca del rettangolo più bello

Alla ricerca del rettangolo più bello Alla ricerca del rettangolo più bello Livello scolare: biennio Abilità interessate Individuare nel mondo reale situazioni riconducibili alla similitudine e descrivere le figure con la terminologia specifica.

Dettagli

Soluzioni del Certamen Mathematicum

Soluzioni del Certamen Mathematicum Soluzioni del Certamen Mathematicum dicembre 2004 1. Notiamo che un qualsiasi quadrato modulo 4 è sempre congruo o a 0 o a 1. Infatti, se tale numero è pari possiamo scriverlo come 2k, seè dispari invece

Dettagli

PROGRAMMI PER GLI ESAMI I PATENTE DE MAESTRI E DELLE MAESTRE DELLE SCUOLE PRIMARIE

PROGRAMMI PER GLI ESAMI I PATENTE DE MAESTRI E DELLE MAESTRE DELLE SCUOLE PRIMARIE Programmi per le Scuole normali e magistrali, e per gli esami di Patente de Maestri e delle Maestre delle Scuole primarie approvati con regio decreto 9 novembre 1861 n. 315 (Raccolta ufficiale delle leggi

Dettagli

I ESERCITAZIONE. Soluzione

I ESERCITAZIONE. Soluzione I ESERCITAZIONE 1. Moto rettilineo uniforme Un bagnino B è sulla spiaggia a distanza d B = 50 m dalla riva e deve soccorrere un bagnante H che è in acqua a d H = 100 m dalla riva. La distanza tra il punto

Dettagli

B. Vogliamo determinare l equazione della retta

B. Vogliamo determinare l equazione della retta Risoluzione quesiti ordinamento Quesito N.1 Indicata con α la misura dell angolo CAB, si ha che: 1 Area ( ABC ) = AC AB sinα = 3 sinα π 3 sinα = 3 sinα = 1 α = Il triangolo è quindi retto in A. La misura

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

Programmazione didattica classe 1A Schilpario, Anno Scolastico: 2014/2015

Programmazione didattica classe 1A Schilpario, Anno Scolastico: 2014/2015 METODOLOGIA DIDATTICA E STRUMENTI Le lezioni teoriche vengono sviluppate a partire da momenti pratici e di osservazione di fenomeni. I principi teorici verranno quindi o presentati dall insegnate o ricavati

Dettagli

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane)

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane) 1/7 PRIMO ANNO Testo consigliato: BERGAMINI TRIFONE BAROZZI, Matematica.azzurro, vol. 1, Zanichelli Obiettivi minimi. Acquisire il linguaggio specifico della disciplina; sviluppare espressioni algebriche

Dettagli

dell istitutonazionale di alta matematica

dell istitutonazionale di alta matematica 01 Archimede Nella valutazione della prova, si è rilevato, ancora una volta, un notevole affanno nei problemi dimostrativi: i punteggi medi in ognuno di essi sono stati di circa 5 punti su 0. Anche tenendo

Dettagli

PROGRAMMAZIONE DEL DIPARTIMENTO DI MATEMATICA 2015/2016 Classi Prime

PROGRAMMAZIONE DEL DIPARTIMENTO DI MATEMATICA 2015/2016 Classi Prime PROGRAMMAZIONE DEL DIPARTIMENTO DI MATEMATICA 2015/2016 Classi Prime Metodi e strumenti Nelle lezioni in aula si farà uso: [] della lezione dialogata (utilizzata di norma, e che prevede lo sviluppo anche

Dettagli

geometriche. Parte Sesta Trasformazioni isometriche

geometriche. Parte Sesta Trasformazioni isometriche Parte Sesta Trasformazioni isometriche In questa sezione di programma di matematica parliamo della geometria delle trasformazioni che studia le figure geometriche soggette a movimenti. Tali movimenti,

Dettagli

Simulazione di prova d Esame di Stato

Simulazione di prova d Esame di Stato 1 Simulazione di prova d Esame di Stato Risolvi uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario Nome Cognome Classe Data / / Problema 1 Sia y = f(x) una funzione reale di variabile

Dettagli

ᵩ LA SEZIONE AUREA Misura dell'armonia matematica

ᵩ LA SEZIONE AUREA Misura dell'armonia matematica ᵩ LA SEZIONE AUREA Misura dell'armonia matematica Il bello della matematica... LA SINTESI: ambiti completamente diversi della matematica convergono nello stesso argomento o concetto i e =0 IL DIVERTIMENTO:

Dettagli

I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno

I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno Testi_09.qxp 15-04-2009 20:26 agina 16 Kangourou Italia Gara del 19 marzo 2009 Categoria Cadet er studenti di terza della scuola secondaria di primo grado o prima della secondaria di secondo grado I quesiti

Dettagli

CORSO DI LAUREA IN INGEGNERIA.

CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 4 GEOMETRIA E ALGEBRA LINEARE 2010/11 Esercizio 4.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x).

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x). Esame liceo Scientifico : ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMI Problema. Sia ABCD un quadrato di lato, P un punto di AB e γ la circonferenza

Dettagli

Osserva i seguenti poligoni, disegna tutte le possibili diagonali e completa la tabella. Infine rispondi alle domande.

Osserva i seguenti poligoni, disegna tutte le possibili diagonali e completa la tabella. Infine rispondi alle domande. I poligoni Osserva i seguenti poligoni, disegna tutte le possibili diagonali e completa la tabella. Infine rispondi alle domande. 6 7 8 9 Figura Nome Numero Numero Numero lati angoli diagonali triangolo

Dettagli

CURRICOLO MATEMATICA SCUOLA PRIMARIA

CURRICOLO MATEMATICA SCUOLA PRIMARIA CURRICOLO MATEMATICA SCUOLA PRIMARIA CLASSE PRIMA Traguardi per lo sviluppo delle competenze Sviluppare un atteggiamento positivo nei confronti della matematica. Obiettivi di apprendimento NUMERI Acquisire

Dettagli