Geometria figure piane Raccolta di esercizi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Geometria figure piane Raccolta di esercizi"

Transcript

1 Geometria figure piane Raccolta di esercizi RETTANGOLO 1. Calcola il perimetro e l area di un rettangolo le cui dimensioni misurano rispettivamente 13 cm e 22 cm. [70 cm; 286 cm 2 ] 2. Un rettangolo ha la base di 15 cm e l altezza data dal valore della seguente espressione: (38 14) :{9 3 [96:(25 23) (7 + 16)]} Calcola il perimetro e l area. [54 cm; 180 cm 2 ] 3. Calcola il perimetro e l area di un rettangolo le cui dimensioni misurano rispettivamente 17,8 cm e 253 mm (esprimere i risultati in cm). [86,2 cm; 450,34 cm 2 ] 4. Calcola il perimetro e l area di un rettangolo: la misura della base risulta dall operazione m.c.m. (15; 35) e l altezza dall operazione M.C.D. (20; 70), esprimendo i risultati in cm. [230 cm; 1050 cm 2 ] 5. In un rettangolo, avente l area di 135 cm 2, l altezza è data, in cm, dal valore della seguente espressione: {( ) :[2 2 3 ( ) ( : 12 2 : 3 2 )]} Calcola la misura della base e del perimetro. [9 cm; 48 cm] 6. Calcola il perimetro e l area di un rettangolo avente la base che risulta dall operazione M.C.D. (44; 132) e l altezza congruente ai 7/11 della base (esprimere i risultati in cm). [144 cm; 1232 cm 2 ] 7. In un rettangolo, avente l altezza di 12,8 cm, l area è di 0,96 dm 2. Calcola la misura della base e il perimetro (esprimere i risultati in cm). [7,5 cm; 39,6 cm] 8. Calcola il perimetro di un rettangolo avente l area di 6150 cm 2 e la base risultante dall operazione m.c.m. (15; 75), esprimendo il risultato in dm. [31,4 dm] 9. Calcola perimetro e area di un rettangolo avente la base lunga 39 cm e l altezza il doppio della base. [234 cm; 3042 cm 2 ] 10. Calcola perimetro e area di un rettangolo avente l altezza che risulta dall operazione M.C.D. (98; 196) e la base metà dell altezza (esprimere i risultati in cm). [294 cm; 4802 cm 2 ] 11. In un rettangolo l altezza è il quadruplo della base, che misura 4,5 cm. Calcola perimetro e area. [45 cm; 81 cm 2 ] 12. In un rettangolo il perimetro è dato, in cm, dal valore della seguente espressione: ( ) 6 :( ) 2 e l altezza è 2/3 della base. Calcola l area del rettangolo. [600 cm 2 ]

2 13. La misura della base di un rettangolo è data, in metri, dal valore della seguente espressione: Sapendo che l altezza è il doppio della base, calcola perimetro e area. [108 m; 648 m 2 ] 14. Il perimetro di un rettangolo è dato, in metri, dal valore della seguente espressione: : Sapendo che la base è i 5/3 dell altezza, calcola l area del rettangolo. [135 m 2 ] QUADRATO 15. Calcola il perimetro e l area di un quadrato avente il lato lungo 26,5 cm. [106 cm; 702,25 cm 2 ] 16. Il lato di un quadrato è dato dal risultato della seguente espressione: (38 14) : {9 3 [96 : (25 23) (7 + 16)]} Calcola il perimetro e l area del quadrato. [48 cm; 144 cm 2 ] 17. Calcola il perimetro di un quadrato avente l area di 3721 cm 2. [244 cm] 18. L area di un quadrato è data, in cm 2, dal m.c.m. (18; 48). Calcola il perimetro. [48 cm] 19. Un quadrato ha il perimetro, espresso in cm, che risulta dall operazione M.C.D. (800; 1200). Calcola la misura dell area. [10000 cm 2 ] 20. Un quadrato ha l area di 3136 cm 2. Calcola il perimetro. [224 cm] 21. La misura dell area di un quadrato, espressa in cm 2, corrisponde al risultato della seguente espressione: {5 2 [5 3 : 5 (5 2 ) 3 ] 4 : 5} 2 : 5 62 Calcola il perimetro. [100 cm] 22. Calcola il perimetro e l area di un quadrato avente il lato lungo 300 mm (esprimere i risultati in cm). [120 cm; 900 cm 2 ] PARALLELOGRAMMA 23. Calcola l area di un parallelogramma avente la base e l altezza lunghe rispettivamente 86 cm e 64 cm. [5504 cm 2 ] 24. Calcola l area di un parallelogramma avente la base lunga quanto il risultato della seguente espressione: 1 + {25 + [31 ( )] 17} + 7 [ ( )] e l altezza a essa relativa i 4/5 della base. [720 cm 2 ]

3 25. In un parallelogramma la base misura quanto il risultato della seguente espressione: {9 (29 6 4) 7 [20 ( )]} {8 5 [15 3 ( )] (21 9 2)} e l altezza relativa supera la base di 3,5 cm. Calcola l area del parallelogramma. [823,5 cm 2 ] 26. In un parallelogramma l altezza misura 12,6 cm e la base relativa è i suoi 2/3. Calcola l area del parallelogramma. [105,84 cm 2 ] 27. In un parallelogramma la base risulta dall operazione M.C.D. (72; 216; 288) ed è i 9/7 della altezza relativa. Calcola l area del parallelogramma. [4032 cm 2 ] 28. In un parallelogramma un lato risulta dall operazione m.c.m. (12; 16; 24) e l altezza a esso relativa è i suoi 3/4. Calcola il perimetro del parallelogramma sapendo che l altra altezza è metà della prima. [288 cm] 29. Calcola l area di un parallelogramma avente la base e l altezza lunghe rispettivamente 50 cm e 200 mm (esprimere i risultati in cm). [1000 cm 2 ] 30. Calcola l area di un parallelogramma avente la base lunga quanto il risultato della seguente espressione: 4 {[32:(20: 5) ] :( ) 10} e l altezza i 3/10 della base. [480 cm 2 ] 31. L area di un parallelogramma è 1272 cm 2 e la base misura quanto il risultato della seguente espressione: {[( ) : 2 3 3] ( ) : 6 2 ] Calcola la misura dell altezza relativa alla base. [53 cm] TRIANGOLO 32. Calcola l area di un triangolo sapendo che la base misura 22 cm e l altezza 39 cm. [429 cm 2 ] 33. Calcola l area di un triangolo sapendo che la base misura, in cm, quanto il risultato della seguente espressione: [95 (90: ) : 4] :(3 + 4) + 5 e l altezza è i suoi 5/8. [80 cm 2 ] 34. L area di un parallelogramma è 284,7 cm 2. Calcola la misura dell altezza relativa alla base, sapendo che la base misura 13 cm. [21,9 cm] 35. In un triangolo la base misura, in cm, quanto il risultato della seguente espressione: {9 (29 6 4) 7 [20 ( )]} {8 5 [15 3 ( )] (21 9 2)} Calcola la misura dell altezza sapendo che l area è 513 cm 2. [38 cm]

4 36. Calcola il perimetro e l area di un triangolo i cui lati misurano rispettivamente 52 cm, 56 cm e 60 cm. [168 cm; 1344 cm 2 ] 37. Calcola l area di un triangolo sapendo che la base misura 55 cm e l altezza 750 mm (esprimere i risultati in cm). [2062,5 cm 2 ] 38. Calcola l area di un triangolo avente l altezza lunga 9,2 cm e la base il triplo dell altezza. [126,96 cm 2 ] 39. In un triangolo la base misura, in cm, quanto il risultato della seguente espressione: 3 5 :(3 2 ) 2 [(3 2 ) 3 ]:[(3 3 ) 2 ] 3 2 e l altezza è i suoi 5/9. Calcolane l area. [202,5 cm 2 ] 40. Un triangolo ha l area di 493 cm 2 e la base lunga 29 cm. Calcola la misura dell altezza. [34 cm] 41. Un triangolo ha l area di mm 2 e la base lunga 23,4 cm. Calcola la misura dell altezza (esprimere i risultati in cm). [15,7 cm] 42. In un triangolo isoscele il lato obliquo misura 25 cm e la base risulta da M.C.D. (162; 216; 288). Sapendo che l altezza è i 2/3 della base, calcola perimetro e area del triangolo. [68 cm; 108 cm 2 ] 43. Un triangolo equilatero ha l area di 70,2 cm 2 e la sua altezza misura 7,8 cm. Calcolane il perimetro. [54 cm] 44. In un triangolo scaleno i tre lati misurano rispettivamente 20 cm, 40 cm e 30 cm. Calcola l area e il perimetro. [290,47 cm 2 ; 90 cm] ROMBO 45. Un rombo ha le diagonali lunghe rispettivamente 16 cm e 24 cm. Calcola l area. 46. In un rombo la diagonale minore misura 120 cm e la maggiore è i suoi 5/3. Calcola l area. [192 cm 2 ] [12000 cm 2 ] 47. In un rombo, avente l area di 374 cm 2, la diagonale maggiore misura, in cm, quanto il risultato della seguente espressione: [(6 3) 2 2 4] + ( : 2) Calcola la misura della diagonale minore. [22 cm] 48. In un rombo la diagonale maggiore misura 160 cm e la minore è i suoi 3/4. Calcola l area. [9600 cm 2 ] 49. In un rombo la diagonale minore misura, in cm, quanto il risultato della seguente espressione: {36 [3 (12: 4) + (6 + 19)]} 8 e la maggiore è i suoi 7/4. Calcolane l area. [224 cm 2 ]

5 50. In un rombo la diagonale maggiore misura 48 cm ed è gli 8/5 della minore. Calcolane l area. [720 cm 2 ] 51. In un rombo la diagonale maggiore misura 56 cm e supera la minore di 9 cm. Calcola l area del rombo. [1316 cm 2 ] 52. In un rombo il lato misura, in cm, quanto il risultato della seguente espressione: {( ) :[2 2 3 ( ) ( : 12 2 : 3 2 )]} la diagonale minore è uguale al lato, la diagonale maggiore è il doppio del lato. Calcola perimetro e area del rombo. [60 cm; 225 cm 2 ] 53. Un rombo ha l area di 527,4 cm 2 e la diagonale minore lunga 29,3 cm. Calcola la misura della diagonale maggiore. [36 cm] 54. Un rombo ha l area di 10,608 dm 2 e la diagonale maggiore è lunga quanto M.C.D. (255; 306; 408). Calcola la misura della diagonale minore (esprimere i risultati in cm). [41,6 cm] TRAPEZIO 55. In un trapezio le basi misurano rispettivamente 35 cm e 42 cm e l altezza misura 40 cm. Calcola l area del trapezio. [1540 cm 2 ] 56. In un trapezio la base maggiore misura 320 cm e la minore è i 4/5 di essa. Sapendo che l altezza misura 160 cm, calcola l area. [46080 cm 2 ] 57. In un trapezio, avente l area di 4960 cm 2, le basi misurano rispettivamente 68 cm e 56 cm. Calcola la misura dell altezza. [80 cm] 58. In un trapezio la base minore misura, in cm, quanto il risultato della seguente espressione: {7 (78: 3 19) ( ) :[31 (65 36)]} + 2 la maggiore è il triplo della minore e l altezza misura 8 cm. Calcola l area. [240 cm 2 ] 59. In un trapezio la base maggiore misura quanto M.C.D. (28; 84; 196), la minore è la quarta parte della maggiore e l altezza misura 16 cm. Calcola l area del trapezio. [280 cm 2 ] 60. In un trapezio la base minore misura, in cm, quanto il risultato della seguente espressione: 15 [(12 2 : 3 2 ): 2 2 ] (2 2 ) (20 4 : 5 4 ) : la maggiore è i 7/5 della minore è l altezza misura 24 cm. Calcola l area del trapezio. [1008 cm 2 ] 61. In un trapezio la base maggiore misura 185 cm, la minore quanto M.C.D. (95; 665) e l altezza è i 3/20 della loro somma. Calcola l area del trapezio.

6 [5880 cm 2 ] 62. In un trapezio l area è di 247 cm 2 e le basi misurano rispettivamente 16 cm e 22 cm. Calcola la misura dell altezza. [13 cm] 63. In un trapezio, di area 264,55 cm 2, l altezza e la base minore misurano rispettivamente 7,4 cm e 31,2 cm. Calcola la misura della base maggiore. [40,3 cm] 64. In un trapezio, avente l area di 1000 cm 2, la base maggiore misura quanto il risultato della seguente espressione: {( ) :(3 4 : : 6 2 ) + [3 2 2 :(12 9) 2 ] 5} e la minore è i suoi 3/5. Calcola la misura dell altezza. [25 cm] 65. La base minore di un trapezio misura 24,6 cm, la maggiore è i suoi 3/2 e l altezza è i 4/3 della loro differenza. Calcola l area del trapezio. [504,3 cm 2 ] 66. In un trapezio la base minore misura, in cm, quanto il risultato della seguente espressione: 60 (43 20) {70 30 [ ( )] 2} l altezza supera la base minore di 7 cm e la base maggiore supera l altezza di 12 cm. Calcola l area del trapezio. [493,5 cm 2 ] 67. In un trapezio la base maggiore misura 45 cm, le minore è la quinta parte della maggiore e l altezza misura 22 cm. Calcola l area del trapezio. [594 cm 2 ] CERCHIO 68. Calcola la lunghezza di una circonferenza di un cerchio che ha il raggio lungo 113 cm. [709,64 cm] 69. Il raggio di un cerchio si trova calcolando M.C.D. (26; 39). Calcola la misura della circonferenza e l area del cerchio. [81,64 dm; 530,66 dm 2 ] 70. Il diametro di un cerchio è lungo, in cm, quanto il risultato della seguente espressione: {(6 3 : ) 2 :(4 3 2 ) 3 [(2 3 ) 4 :( ] : 3} + 10 Calcola la misura della circonferenza. [109,9 cm] 71. Calcola l area di un cerchio il cui raggio è lungo 12,3 cm. [475,05 cm 2 ] 72. La lunghezza della circonferenza di un cerchio è di 31,4 cm. Calcola l area del cerchio. [78,5 cm 2 ] 73. L area di un cerchio è 1384,74 cm 2. Calcola la misura della circonferenza. [131,88 cm]

7 74. L area di un cerchio è 706,5 cm 2. Calcola la misura del suo raggio. [15 cm] FIGURE PIANE EQUIVALENTI 75. Un quadrato, il cui perimetro è 224 cm, è equivalente ai 4/5 di un rettangolo la cui base è 5/4 del lato del quadrato. Calcola il perimetro del rettangolo. [252 cm] 76. Due rettangoli sono equivalenti e le dimensioni del primo misurano rispettivamente 26 m e 48 m. calcola il perimetro e l area dell altro rettangolo, sapendo che la sua base misura 24 m. [152 m] 77. Un rettangolo, di perimetro 180 cm, ha la base lunga 50 cm. Calcola il perimetro di un rettangolo equivalente al primo e avente l altezza lunga il doppio dell altezza del primo. [210 cm] 78. Il perimetro di un quadrato è 152 cm. Calcola la misura della base di un parallelogramma equivalente al quadrato e avente l altezza lunga 19 cm. [76 cm] 79. Due rettangoli equivalenti hanno le basi lunghe 72 cm e 48 cm. Calcola la differenza dei perimetri sapendo che l area di ciascun rettangolo è di 1296 cm 2. [30 cm] 80. Un triangolo è equivalente a un quadrato avente il lato lungo 13,5 cm. Calcola la misura della base del triangolo sapendo che l altezza misura 30 cm. [12,15 cm] 81. In un rombo le diagonali misurano, rispettivamente, 125 cm e 90 cm. Calcola il perimetro di un quadrato equivalente al rombo. [300 cm] 82. Due rettangoli hanno le stesso perimetro di 80 cm. Calcola la differenza dello loro aree sapendo che le rispettive altezze misurano 16 cm e 12 cm. [48 cm 2 ] 83. Un trapezio, avente l area di 870 cm 2, ha le basi lunghe rispettivamente 54 cm e 33 cm. Calcola il perimetro e l area di un quadrato avente il lato congruente all altezza del trapezio. [80 cm; 400 cm 2 ] 84. Il perimetro di un quadrato è 128 cm. Calcola il perimetro di un rettangolo equivalente al quadrato e avente la base il doppio del lato del quadrato. [160 cm] 85. Calcola il perimetro di un quadrato equivalente a 1/9 di un altro quadrato avente il lato lungo 48 m. [64 m] 86. In un parallelogramma l altezza misura 45 cm. Calcola la misura della base sapendo che il parallelogramma è equivalente a un quadrato avente il lato lungo 30 cm. [20 cm]

8 87. Il lato di un quadrato misura 48 cm. Calcola il perimetro di un rettangolo equivalente ai 7/4 del quadrato e avente l altezza congruente al semiperimetro del quadrato. [276 cm] 88. In un parallelogramma la base misura, in cm, quanto il risultato della seguente espressione: {[(3 + 7) 9 (3 2 2) 10 (5 7 5) (2 5 9)] :(2 5) } Calcola l area del parallelogramma sapendo che l altezza relativa è congruente al lato di un quadrato avente l area di 144 cm 2. [228 cm 2 ] 89. In un parallelogramma le misure di un lato e dell altezza a esso relativa sono date rispettivamente, in metri, dal valore delle seguenti espressioni: 15: : : Calcola il perimetro di un quadrato equivalente al doppio del parallelogramma. [128 m] 90. Un rombo è equivalente a un rettangolo avente il perimetro di 346 cm e la base lunga 125 cm. Calcola la misura della diagonale maggiore del rombo sapendo che la minore misura 80 cm. [150 cm] 91. Un triangolo ha la base lunga 57 cm e l altezza a essa relativa è i suoi 2/5. Calcola la misura della diagonale minore del rombo equivalente ai 5/3 del triangolo e avente la diagonale maggiore lunga 72,2 cm. [30 cm] 92. Un rombo ha la diagonale lunga 52 m e l altra è data, in metri, dal valore della seguente espressione: 21: Calcola la misura dell altezza di un triangolo equivalente al rombo e avente la base congruente ai 5/7 della diagonale maggiore. [72,8 m]

Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta.

Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta. CLASSE III C RECUPERO GEOMETRIA AREA PERIMETRO POLIGONI Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta. ES: se ho fatto questo disegno e so che 1 quadretto vale

Dettagli

Parte Seconda. Geometria

Parte Seconda. Geometria Parte Seconda Geometria Geometria piana 99 CAPITOLO I GEOMETRIA PIANA Geometria: scienza che studia le proprietà delle figure geometriche piane e solide, cioè la forma, l estensione e la posizione dei

Dettagli

STUDIO ESTIVO IN PREPARAZIONE ALLA SCUOLA SUPERIORE

STUDIO ESTIVO IN PREPARAZIONE ALLA SCUOLA SUPERIORE www.istitutocalabrese.vr.it e-mail vris@istruzione.it www.liceoprimolevi.it STUDIO ESTIVO IN PREPARAZIONE ALLA SCUOLA SUPERIORE Gli insegnanti di matematica delle Scuole Medie di BUSSOLENGO CAPRINO VERONESE

Dettagli

SIMULAZIONE QUARTA PROVA: MATEMATICA

SIMULAZIONE QUARTA PROVA: MATEMATICA SIMULAZIONE QUARTA PROVA: MATEMATICA COGNOME: NOME: TEMPO IMPIEGATO: VOTO: TEMPO DELLA PROVA = 44 (a fianco di ogni quesito si trova il tempo consigliato per lo svolgimento dell esercizio). PUNTEGGIO TOTALE

Dettagli

Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente.

Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente. Linee Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente. a. curva spezzata retta mista aperta chiusa b. curva spezzata

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATIA Scuola secondaria di II grado lasse... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

Osserva i seguenti poligoni, disegna tutte le possibili diagonali e completa la tabella. Infine rispondi alle domande.

Osserva i seguenti poligoni, disegna tutte le possibili diagonali e completa la tabella. Infine rispondi alle domande. I poligoni Osserva i seguenti poligoni, disegna tutte le possibili diagonali e completa la tabella. Infine rispondi alle domande. 6 7 8 9 Figura Nome Numero Numero Numero lati angoli diagonali triangolo

Dettagli

MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree

MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree MODULO DI MATEMATICA di accesso al triennio Abilità interessate Utilizzare terminologia specifica. Essere consapevoli della necessità di un linguaggio condiviso. Utilizzare il disegno geometrico, per assimilare

Dettagli

Problemi sul parallelogramma con le incognite

Problemi sul parallelogramma con le incognite Problemi sl parallelogramma con le incognite Qante altezze ha n parallelogramma Il concetto di altezza rimanda direttamente a qello della distanza di in pnto da na retta La distanza di n pnto da na retta

Dettagli

Raccolta di problemi di geometra solida sul prisma con la risoluzione

Raccolta di problemi di geometra solida sul prisma con la risoluzione 3D Geometria solida - 1 Raccolta di problemi di geometra solida sul prisma con la risoluzione 1. Un prisma alto 9 cm ha per base un triangolo isoscele che ha l altezza relativa alla base di 8 cm e i lati

Dettagli

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1)

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) Un ente (geometrico) è un oggetto studiato dalla geometria. Per descrivere gli enti vengono utilizzate delle definizioni. Una definizione è una

Dettagli

I teoremi di Euclide e di Pitagora

I teoremi di Euclide e di Pitagora I teoremi di Euclide e di Pitagora In questa dispensa vengono presentati i due teoremi di Euclide ed il teorema di Pitagora, fondamentali per affrontare diverse questioni sui triangoli rettangoli. I teoremi

Dettagli

I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli.

I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli. I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli. In ogni triangolo un lato è sempre minore della somma degli altri due e sempre maggiore della loro differenza. Relazione fra i lati di

Dettagli

Appunti di Geometria

Appunti di Geometria ISTITUTO COMPRENSIVO N.7 - VIA VIVALDI - IMOLA Via Vivaldi, 76-40026 Imola (BOLOGNA) Centro Territoriale Permanente: Istruzione Degli Adulti - IDA Appunti di Geometria Scuola Secondaria di I Grado - Ex

Dettagli

Anna Montemurro. 2Geometria. e misura

Anna Montemurro. 2Geometria. e misura Anna Montemurro Destinazione Matematica 2Geometria e misura GEOMETRIA E MISURA UNITÀ 11 Le aree dei poligoni apprendo... 11. 1 FIGURE PIANE EQUIVALENTI Consideriamo la figura A. A Le figure B e C

Dettagli

A tal fine ritengono utile fornire alcune indicazioni preliminari. Matematica. Conoscenza dei seguenti argomenti:

A tal fine ritengono utile fornire alcune indicazioni preliminari. Matematica. Conoscenza dei seguenti argomenti: Gli insegnanti di Matematica del liceo A.Righi ritengono opportuno ricordare ai futuri studenti ed alle loro famiglie, al fine di affrontare con serenità e competenza il primo anno del nuovo corso di studi,

Dettagli

Vertici opposti. Fig. C6.1 Definizioni relative ai quadrilateri.

Vertici opposti. Fig. C6.1 Definizioni relative ai quadrilateri. 6. Quadrilateri 6.1 efinizioni Un poligono di 4 lati è detto quadrilatero. I lati di un quadrilatero che hanno un vertice in comune sono detti consecutivi. I lati di un quadrilatero non consecutivi tra

Dettagli

PIANO DI LAVORO DEL DOCENTE prof. Tomasetig Laura A.S. 2014/2015 CLASSE 1ACAT MATERIA: Matematica

PIANO DI LAVORO DEL DOCENTE prof. Tomasetig Laura A.S. 2014/2015 CLASSE 1ACAT MATERIA: Matematica PIANO DI LAVORO DEL DOCENTE prof. Tomasetig Laura A.S. 2014/2015 CLASSE 1ACAT MATERIA: Matematica Modulo n. 1: Insiemi Collocazione temporale: settembre-dicembre Strategie didattiche: L insegnamento dei

Dettagli

Matematica Livello secondario I Indice del Quaderno d'accompagnamento 1

Matematica Livello secondario I Indice del Quaderno d'accompagnamento 1 Matematica Livello secondario I Indice del Quaderno d'accompagnamento 1 Indice / Terminologia addendo x L'addizione, la somma, l'addendo, più 1 2a 24 addizionare x L'addizione, la somma, l'addendo, più

Dettagli

Con carta e forbici alla scoperta del paese Geometria

Con carta e forbici alla scoperta del paese Geometria Con carta e forbici alla scoperta del paese Geometria Anna Asti Enrica Ventura La parola non serve a nulla, il disegno non basta, è necessaria l azione perché il bambino giunga a combinare delle operazioni

Dettagli

matematica per la classe seconda media

matematica per la classe seconda media Matematica per la Scuola Media www.pernigo.com/math matematica per la classe seconda media 99 più esercizi di ripasso e consolidamento Ubaldo Pernigo, Gianfranco Caoduro e Stefano Cristani Versione 0.

Dettagli

LICEO STATALE G. MAZZINI

LICEO STATALE G. MAZZINI LICEO STATALE G. MAZZINI LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO DELLE SCIENZE UMANE OPZIONE ECONOMICO-SOCIALE Viale Aldo Ferrari, 37 Tel. 0187743000 19122 La Spezia Fax 0187743208 www.liceomazzini.org

Dettagli

INVIARE AL NOSTRO UFFICIO TECNICO, VIA FAX AL NUMERO: +39 049 9449438 OPPURE ALL INDIRIZZO E-MAIL:

INVIARE AL NOSTRO UFFICIO TECNICO, VIA FAX AL NUMERO: +39 049 9449438 OPPURE ALL INDIRIZZO E-MAIL: mod. 05.01 Diametro (Ø) o 30 o 35 S= 85mm (Ø30) S= 87,5mm (Ø35) mod. 05.02 Diametro (Ø) o 30 o 35 S= 85mm (Ø30) S= 87,5mm (Ø35) mod. 05.15 Diametro (Ø) o 20 o 25 o 30 o 35 Quota (S) mm mod. 05.14 Diametro

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2004 2005 PROVA DI MATEMATICA. Scuola Secondaria di I grado. Classe Prima. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2004 2005 PROVA DI MATEMATICA. Scuola Secondaria di I grado. Classe Prima. Codici. Scuola:... Ministero dell Istruzione dell Università e della Ricerca Istituto Nazionale per la valutazione del sistema educativo di istruzione e di formazione Rilevazione degli apprendimenti Anno Scolastico 2004

Dettagli

Seconda media A Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto

Seconda media A Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto Seconda media A Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto Carissimi, eccovi gli argomenti trattati in quest anno scolastico. Ti servono quale ripasso!!!se qualcosa non fosse chiaro batti

Dettagli

IL TEOREMA DI PITAGORA

IL TEOREMA DI PITAGORA GEOMETRIA IL TEOREMA DI PITAGORA E LE SUE APPLICAZIONI PREREQUISITI l conoscere le rorietaá delle quattro oerazioni ed oerare con esse l conoscere il significato ed oerare con otenze ed estrazioni di radici

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione 0 0 0 0 0 0 0 70 80 90 00 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni. n olora,

Dettagli

Kangourou della Matematica 2015 Coppa a squadre Kangourou Semifinale turno A Cervia, 9 maggio 2015. Quesiti

Kangourou della Matematica 2015 Coppa a squadre Kangourou Semifinale turno A Cervia, 9 maggio 2015. Quesiti Kangourou della Matematica 015 Coppa a squadre Kangourou Semifinale turno A Cervia, 9 maggio 015 Quesiti 1. La busta La figura mostra in che modo, ripiegando opportunamente un foglio di carta a forma di

Dettagli

LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry

LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry La costruzione di figure geometriche al computer con

Dettagli

Geogebra. Numero lati: Numero angoli: Numero diagonali:

Geogebra. Numero lati: Numero angoli: Numero diagonali: TRIANGOLI Geogebra IL TRIANGOLO 1. Fai clic sull icona Ic2 e nel menu a discesa scegli Nuovo punto : fai clic all interno della zona geometria e individua il punto A. Fai di nuovo clic per individuare

Dettagli

matematica per la classe prima media

matematica per la classe prima media Matematica per la Scuola Media www.pernigo.com/math matematica per la classe prima media 00 meno esercizi di ripasso e consolidamento Ubaldo Pernigo, Gianfranco Caoduro e Stefano Cristani Versione 0. INTRODUZIONE

Dettagli

Piano Lauree Scientifiche 2011-2012

Piano Lauree Scientifiche 2011-2012 Piano Lauree Scientifiche 2011-2012 «non si può intendere se prima non s impara a intender lingua, e conoscer i caratteri, nei quali è scritto. Egli è scritto in lingua matematica, e i caratteri sono triangoli,

Dettagli

2 Dato il triangolo rettangolo della figura, quale delle seguenti proporzioni esprime il primo teorema di Euclide?

2 Dato il triangolo rettangolo della figura, quale delle seguenti proporzioni esprime il primo teorema di Euclide? 1 Le seguenti affermazioni sono tutte vere, tranne una. Quale? due triangoli con un angolo retto sono sempre simili due triangoli equilateri sono sempre simili due triangoli isosceli sono simili se hanno

Dettagli

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA. Scuola... Classe... Alunno...

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA. Scuola... Classe... Alunno... VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA Scuola..........................................................................................................................................

Dettagli

Liceo Scientifico Statale. Leonardo da Vinci. Fisica. Programma svolto durante l anno scolastico 2012/13 CLASSE I B. DOCENTE Elda Chirico

Liceo Scientifico Statale. Leonardo da Vinci. Fisica. Programma svolto durante l anno scolastico 2012/13 CLASSE I B. DOCENTE Elda Chirico Liceo Scientifico Statale Leonardo da Vinci Fisica Programma svolto durante l anno scolastico 2012/13 CLASSE I B DOCENTE Elda Chirico Le Grandezze. Introduzione alla fisica. Metodo sperimentale. Grandezze

Dettagli

Gilda Flaccavento Romano. Quaderno. studente. per lo

Gilda Flaccavento Romano. Quaderno. studente. per lo Gilda Flaccavento Romano Quaderno per lo studente indice esercizi di recupero I numeri relativi 6 Il calcolo letterale 8 Equazioni e disequazioni 11 La risoluzione algebrica dei problemi 13 La statistica

Dettagli

IL TEOREMA. Lezioni UNITÀ2. Geometria

IL TEOREMA. Lezioni UNITÀ2. Geometria 7_0_TEORI 9_ -0-007 6:8 Pagina 9 UNITÀ IL TEOREM I PITGOR Geometria Le conoscenze che devi avere Lezioni Le proprietà dei poligoni Il concetto di figure equivalenti Le abilità che devi avere Usare i procedimenti

Dettagli

Classe: 1 a A AFM...2 Classe: 1 a B AFM...3 Classe: 2 a A AFM...4 Classe: 3 a A AFM...5 Classe: 4 a A IGEA...6

Classe: 1 a A AFM...2 Classe: 1 a B AFM...3 Classe: 2 a A AFM...4 Classe: 3 a A AFM...5 Classe: 4 a A IGEA...6 Classe: 1 a A AFM...2 Classe: 1 a B AFM...3 Classe: 2 a A AFM...4 Classe: 3 a A AFM...5 Classe: 4 a A IGEA...6 Classe: 1 a A AFM GLI INSIEMI NUMERICI E LE OPERAZIONI Ripasso del calcolo numerico: espressioni

Dettagli

geometriche. Parte Sesta Trasformazioni isometriche

geometriche. Parte Sesta Trasformazioni isometriche Parte Sesta Trasformazioni isometriche In questa sezione di programma di matematica parliamo della geometria delle trasformazioni che studia le figure geometriche soggette a movimenti. Tali movimenti,

Dettagli

MINISTERO DELLA DIFESA DIREZIONE GENERALE PER IL PERSONALE MILITARE

MINISTERO DELLA DIFESA DIREZIONE GENERALE PER IL PERSONALE MILITARE MINISTERO DELLA DIFESA DIREZIONE GENERALE PER IL PERSONALE MILITARE CONCORSO PER IL RECLUTAMENTO DI VOLONTARI IN FERMA PREFISSATA QUADRIENNALE NELL ESERCITO, NELLA MARINA E NELL AERONAUTICA 2014 1 a Immissione

Dettagli

INDICE. Unità 7 DALLA CIRCONFERENZA AI POLIGONI REGOLARI, 1 CIRCONFERENZA E CERCHIO, 2 PARTI DELLA CIRCONFERENZA E DEL CERCHIO, 3

INDICE. Unità 7 DALLA CIRCONFERENZA AI POLIGONI REGOLARI, 1 CIRCONFERENZA E CERCHIO, 2 PARTI DELLA CIRCONFERENZA E DEL CERCHIO, 3 INIE Unità 7 LL IRONFERENZ I POLIGONI REGOLRI, Il libro prosegue nel 7. IRONFERENZ E ERIO, ESERIZI da p. 7. PRTI ELL IRONFERENZ E EL ERIO, Le parti della circonferenza, Le parti del cerchio, 7. NGOLI E

Dettagli

TEST PSICOMETRICO. Corso preparatorio all esame in italiano del 2014

TEST PSICOMETRICO. Corso preparatorio all esame in italiano del 2014 TEST PSICOMETRICO Corso preparatorio all esame in italiano del 2014 Febbraio Marzo 2014 Docente: Giacomo Sassun E-mail: gsassun@yahoo.it info@israeluni.it Realizzato grazie al contributo dell UNIONE DELLE

Dettagli

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5 ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA PER IL CORSO DI LAUREA IN SCIENZE DELLA FORMAZIONE PRIMARIA Ana Millán Gasca Luigi Regoliosi La lettura e lo studio del libro Pensare in matematica da parte degli

Dettagli

Introduzione. 001_007_pagine_iniziali.indd 7 22/01/14 11.21

Introduzione. 001_007_pagine_iniziali.indd 7 22/01/14 11.21 7 Introduzione Questo volume si propone di riorganizzare i percorsi di aritmetica e di geometria del corso principale adattandoli a studenti con esigenze specifiche. Il progetto grafico originale del corso

Dettagli

Quesito 1 Piano cartesiano. Quesito 2 Equazioni. Quesito 3 Geometria solida. Quesito 4 Leggi di Ohm. x x x

Quesito 1 Piano cartesiano. Quesito 2 Equazioni. Quesito 3 Geometria solida. Quesito 4 Leggi di Ohm. x x x Esame di stato scuola media Esempio di tema d esame 002 UbiMath - 1 Quesito 1 Piano cartesiano Fissando come unità di misura il metro (1 cm = 1 m = unità di misura) rappresenta in un piano cartesiano ortogonale

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secondaria di secondo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio à t i n U 1 Sistemi di primo grado

Dettagli

PROVA DI MATEMATICA 2 VERSO LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI SECONDO GRADO PROVA DI MATEMATICA. 30 quesiti. Scuola... Classe... Alunno...

PROVA DI MATEMATICA 2 VERSO LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI SECONDO GRADO PROVA DI MATEMATICA. 30 quesiti. Scuola... Classe... Alunno... PRV I MTEMTI VERS L RILEVZINE INVLSI SUL SENRI I SEN GR PRV I MTEMTI 30 quesiti Scuola... lasse... lunno... 7 3 4 6 Sostituendo, nell espressione (n + )(n - ), il numero naturale n con il suo successivo

Dettagli

ESPERIENZE E STRUMENTI

ESPERIENZE E STRUMENTI ESPERIENZE E STRUMENTI DISORGANIZZAZIONE DISLESSIA CONCENTRAZIONE DISGRAFIA LENTEZZA DSA DISORTOGRAFIA MEMORIA DISCALCULIA DISPRASSIA DISNOMIA DISLESSIA difficoltà Studio della teoria sul libro. Comprensione

Dettagli

Anno scolastico 2008/2009. Silenzio ora, inizia il racconto!

Anno scolastico 2008/2009. Silenzio ora, inizia il racconto! Anno scolastico 2008/2009 Le classi quinte dell Europa Unita presentano: Messer Coniglio geometra. Cerca le parole calde e clicca il tasto sinistro tenendo premuto ctrl. Messer Coniglio ricorda una storia

Dettagli

TRIANGOLI, CIRCONFERENZE E PUNTI NOTEVOLI

TRIANGOLI, CIRCONFERENZE E PUNTI NOTEVOLI TRINGOLI, IRONFERENZE E UNTI NOTEVOLI Mazza Lorenzo - Liceo Scientifico io XII (Roma) Incontri Olimpici - etraro, 9-2 ottobre 20 L'universo non potrà essere letto finché non avremo imparato il linguaggio

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Se il polinomio

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 7

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 7 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 7 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora sommario.

Dettagli

ABCD è un parallelogrammo 90. Dimostrazione

ABCD è un parallelogrammo 90. Dimostrazione EQUISCOMPONIBILITÀ Problema G2.360.1 È dato il parallelogrammo ABCD: dai vertici A e B si conducano le perpendicolari alla retta del lato CD e siano rispettivamente E e F i piedi di tali perpendicolari

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-15 SCUOLA: Liceo Linguistico Teatro alla Scala DOCENTE: BASSO RICCI MARIA MATERIA: MATEMATICA- INFORMATICA Classe 2 Sezione A CONTENUTI Sistemi lineari numerici

Dettagli

PROBLEMI DI MASSIMO E MINIMO ESEMPI INTRODUTTIVI ELEMENTARI. PROBLEMA 1: Tra i rettangoli di perimetro 20 cm, determina quello di area massima.

PROBLEMI DI MASSIMO E MINIMO ESEMPI INTRODUTTIVI ELEMENTARI. PROBLEMA 1: Tra i rettangoli di perimetro 20 cm, determina quello di area massima. PROBLEMI DI MASSIMO E MINIMO ESEMPI INTRODUTTIVI ELEMENTARI Introduzione Vengono qui presentati alcuni semplici problemi di massimo e minimo. Leggi con attenzione e completa i passaggi mancanti. Prova

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

AREA RETTANGOLO LIRE IN EURO

AREA RETTANGOLO LIRE IN EURO AREA RETTANGOLO Private Sub Area() Dim h As Integer h = InputBox("altezza") b = InputBox("base") A = b * h MsgBox( L area del Rettangolo è : & A) LIRE IN EURO Dim lire As Double Dim euro As Double lire

Dettagli

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Sessione straordinaria - a.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Tema di: MATEMATICA a.s. 9- Svolgimento a cura di Nicola De Rosa Il candidato risolva uno

Dettagli

matematica classe quarta LA COMPRAVENDITA SCHEDA N. 27 1. Completa la tabella. 2. Completa la tabella. 3. Risolvi i seguenti problemi.

matematica classe quarta LA COMPRAVENDITA SCHEDA N. 27 1. Completa la tabella. 2. Completa la tabella. 3. Risolvi i seguenti problemi. SHE N.. ompleta la tabella. L OMPRVENIT Spesa Ricavo Guadagno Perdita, 0,0.........,0...,0...,......,..., 00,...,.... ompleta la tabella. Merce Peso Ricavo Ricavo Spesa Spesa Guadagno Guadagno unitario

Dettagli

3; 2 1 2 ;5 3;0 1; 2

3; 2 1 2 ;5 3;0 1; 2 Risolvere mediante la fattorizzazione le seguenti equazioni. 1. 4 12 +9=0 0; 3 2 2. 7 +14 8=0 1;2;4 3. 4 12 +9=0 3 2 ; 3 2 4. +2 = 3 4 1 2 ;3 2 +4=0 5. +3 +1=0 + 2 =3 6. + +2 4=15 3; 2 1 2 ;5 3;0 1; 2

Dettagli

Ogni primino sa che...

Ogni primino sa che... Ogni primino sa che... A cura della équipe di matematica 25 giugno 2015 Competenze in ingresso Tradizionalmente, nei primi giorni di scuola, gli studenti delle classi prime del Pascal sostengono una prova

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008 PRVA SPERIMENTALE P.N.I. 8 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 8 Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Nel piano riferito

Dettagli

Istituto Comprensivo Caposele (Av) Curricolo verticale d istituto a.sc. 2013-2014

Istituto Comprensivo Caposele (Av) Curricolo verticale d istituto a.sc. 2013-2014 CURRICOLO DI MATEMATICA SCUOLA PRIMARIA CLASSE PRIMA 1. Contare oggetti o eventi, a voce e mentalmente, in senso progressivo e regressivo e per salti di due, tre, 2. Leggere e scrivere i numeri naturali

Dettagli

Programmazione didattica classe 1A Schilpario, Anno Scolastico: 2014/2015

Programmazione didattica classe 1A Schilpario, Anno Scolastico: 2014/2015 METODOLOGIA DIDATTICA E STRUMENTI Le lezioni teoriche vengono sviluppate a partire da momenti pratici e di osservazione di fenomeni. I principi teorici verranno quindi o presentati dall insegnate o ricavati

Dettagli

Quale numero riportato sulla piantina identifica il Partenone? A. 19 B. 17 C. 14 D. 1

Quale numero riportato sulla piantina identifica il Partenone? A. 19 B. 17 C. 14 D. 1 E1. L immagine qui sotto è una ricostruzione dell Acropoli di Atene. L edificio indicato con P è il Partenone, tempio dedicato alla dea Atena. Osserva ora questa piantina dell Acropoli: Quale numero riportato

Dettagli

Figura Numero di triangolini 1 2 2 8 3 4

Figura Numero di triangolini 1 2 2 8 3 4 Esempi di prova di Matematica C1. Le tre figure seguenti sono divise in triangolini congruenti. a. Completa la tabella seguente. Per prima cosa, indica quanti triangolini costituiscono la figura 3. poi

Dettagli

Dal Tangram alle conoscenze dichiarative in geometria

Dal Tangram alle conoscenze dichiarative in geometria Dal Tangram alle conoscenze dichiarative in geometria II Istituto Comprensivo di Padova R. Ardigò Insegnante: Cacco Loredana e-mail: loredana.cacco@istruzione.it Descrizione dell'esperienza Quadro di riferimento

Dettagli

Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. I triangoli e i criteri di congruenza Diapositive riassemblate e rielaborate da prof. ntonio Manca da materiali offerti dalla rete. ontributi di: tlas editore, matematicamente, Prof.ssa. nnamaria Iuppa,

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90-91 69 92 93 94-95 96-97 98-99

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90-91 69 92 93 94-95 96-97 98-99 Bravissimo/a! Sei arrivato/a alla fine della parte di italiano... Adesso perché non ripassi un po di matematica? A settembre sarai un bolide nelle operazioni, nel risolvere i problemi e in geometria! matematica

Dettagli

4. Programmi di matematica per le scuole tecniche e gli istituti tecnici (1860) 1

4. Programmi di matematica per le scuole tecniche e gli istituti tecnici (1860) 1 4. Programmi di matematica per le scuole tecniche e gli istituti tecnici (1860) 1 SCUOLE TECNICHE MATEMATICHE ELEMENTARI Primo Anno Aritmetica Sistema volgare di numerazione orale e scritta Le quattro

Dettagli

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane)

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane) 1/7 PRIMO ANNO Testo consigliato: BERGAMINI TRIFONE BAROZZI, Matematica.azzurro, vol. 1, Zanichelli Obiettivi minimi. Acquisire il linguaggio specifico della disciplina; sviluppare espressioni algebriche

Dettagli

Geometria in movimento:

Geometria in movimento: Geometria in movimento: alla scoperta di invarianti Aspetti teorici e didattici della geometria delle trasformazioni, con l utilizzo di materiale manipolabile e GeoGebra INCONTRI DI FORMAZIONE C.R.S.E.M.

Dettagli

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica A ARITMETICA I numeri naturali e le quattro operazioni Esercizi supplementari di verifica Esercizio Rappresenta sulla retta orientata i seguenti numeri naturali. ; ; ; 0;. 0 Esercizio Metti una crocetta

Dettagli

Kangourou Italia Gara del 18 marzo 2010 Categoria Junior Per studenti di seconda o terza della secondaria di secondo grado

Kangourou Italia Gara del 18 marzo 2010 Categoria Junior Per studenti di seconda o terza della secondaria di secondo grado Testi_10Mat.qxp 15-02-2010 7:17 Pagina 22 Kangourou Italia Gara del 18 marzo 2010 Categoria Per studenti di seconda o terza della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti

Dettagli

Seminario di didattica 1

Seminario di didattica 1 Seminario di didattica - Contents Seminario di didattica 1 Alessia Bonanini, Alessio Cirimele, Alice Bottaro, Laura Spada, Laura Tarigo 28 maggio 2012 1 Seminario di didattica - Contents Indice Introduzione...................................

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2012 2013 PROVA DI MATEMATICA. Scuola secondaria di II grado. Classe Seconda Fascicolo 1

Rilevazione degli apprendimenti. Anno Scolastico 2012 2013 PROVA DI MATEMATICA. Scuola secondaria di II grado. Classe Seconda Fascicolo 1 PROVA DI MATEMATICA - Scuola Secondaria di II grado - Classe Seconda Rilevazione degli apprendimenti Anno Scolastico 2012 2013 PROVA DI MATEMATICA Scuola secondaria di II grado Classe Seconda Fascicolo

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2012 2013 PROVA DI MATEMATICA. Scuola secondaria di II grado. Classe Seconda Fascicolo 5

Rilevazione degli apprendimenti. Anno Scolastico 2012 2013 PROVA DI MATEMATICA. Scuola secondaria di II grado. Classe Seconda Fascicolo 5 Rilevazione degli apprendimenti Anno Scolastico 2012 2013 PROVA DI MATEMATICA Scuola secondaria di II grado Classe Seconda Fascicolo 5 Spazio per l etichetta autoadesiva ISTRUZIONI Troverai nel fascicolo

Dettagli

UNIONE MATEMATICA ITALIANA. C. I. I. M. Commissione Italiana per l'insegnamento della Matematica

UNIONE MATEMATICA ITALIANA. C. I. I. M. Commissione Italiana per l'insegnamento della Matematica UNIONE MATEMATICA ITALIANA C. I. I. M. Commissione Italiana per l'insegnamento della Matematica ESEMPI DI TERZE PROVE per il NUOVO ESAME DI STATO LA COMPONENTE MATEMATICA ISTITUTO MAGISTRALE Tipologia

Dettagli

I TRIANGOLI I TRIANGOLI 1. IL TRIANGOLO. Il triangolo è un poligono avente tre lati. a) Proprietà di un triangolo

I TRIANGOLI I TRIANGOLI 1. IL TRIANGOLO. Il triangolo è un poligono avente tre lati. a) Proprietà di un triangolo I TRIANGOLI 1. IL TRIANGOLO Il triangolo è un poligono avente tre lati. a) Proprietà di un triangolo In un triangolo: I lati e i vertici sono consecutivi fra loro. La somma degli angoli interni è sempre

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

PROGRAMMI PER GLI ESAMI I PATENTE DE MAESTRI E DELLE MAESTRE DELLE SCUOLE PRIMARIE

PROGRAMMI PER GLI ESAMI I PATENTE DE MAESTRI E DELLE MAESTRE DELLE SCUOLE PRIMARIE Programmi per le Scuole normali e magistrali, e per gli esami di Patente de Maestri e delle Maestre delle Scuole primarie approvati con regio decreto 9 novembre 1861 n. 315 (Raccolta ufficiale delle leggi

Dettagli

Frazioni e numeri razionali

Frazioni e numeri razionali Cognome e nome Data Matematica Teoria - Numeri III Base I Frazioni e numeri razionali I. Introduzione I.. Rappresentazione di frazioni FRAZIONE I.. Frazione come operatore 0? di 0 : Divido in ( ) : di

Dettagli

Verbale n 1 DIPARTIMENTO MATEMATICA con PROGRAMMAZIONE DIDATTICA DISCIPLINARE

Verbale n 1 DIPARTIMENTO MATEMATICA con PROGRAMMAZIONE DIDATTICA DISCIPLINARE Verbale n 1 DIPARTIMENTO MATEMATICA con PROGRAMMAZIONE DIDATTICA DISCIPLINARE 1. Docenti presenti Il giorno 10/09/2013 alle ore 9,00 nell'aula 104 della sede aggregata ITIS dell'i.i.s. A. Volta di Frosinone,

Dettagli

Relazione attività in classe sul Teorema di Pitagora

Relazione attività in classe sul Teorema di Pitagora Relazione attività in classe sul Teorema di Pitagora Lez. 2/04. Prima Lezione A.S. 2011/2012 Insegnante: Siamo nel VI secolo a.c. in Grecia. In questo periodo visse Pitagora che nacque a Samo e vi restò

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Scheda tecnica. Art. 3215. Lampadina a risparmio energetico. Tipologia di lampadina: fluorescente compatta

Scheda tecnica. Art. 3215. Lampadina a risparmio energetico. Tipologia di lampadina: fluorescente compatta Art. 3215 15W 110 ma 800 lm Dimensioni (lungh. x diametro): 132x49 mm Art. 3220 20W 140 ma 1160 lm Dimensioni (lungh. x diametro): 157x49 mm Art. 3411 E14 11W 80 ma 600 lm Dimensioni (lungh. x diametro):

Dettagli

N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi

N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi Tra i molteplici interessi scientifici di Leonardo non dobbiamo dimenticare la matematica.

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo differenziale in IR N. Dott. Franco Obersnel

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo differenziale in IR N. Dott. Franco Obersnel Università di Trieste Facoltà d Ingegneria Esercizi sul calcolo differenziale in IR N Dott Franco Obersnel Esercizio 1 Si calcoli la derivata direzionale nell origine lungo la direzione y del versore v

Dettagli

Come e perché rendere accessibile il testo del problema

Come e perché rendere accessibile il testo del problema Luciana Lenzi Come e perché rendere accessibile il testo del problema Ferrara 9 Aprile 2014 La caratteristica principale del testo del problema è quella di lasciare nell implicito ciò che lo studente

Dettagli

CURRICOLO MATEMATICA SCUOLA PRIMARIA

CURRICOLO MATEMATICA SCUOLA PRIMARIA CURRICOLO MATEMATICA SCUOLA PRIMARIA CLASSE PRIMA Traguardi per lo sviluppo delle competenze Sviluppare un atteggiamento positivo nei confronti della matematica. Obiettivi di apprendimento NUMERI Acquisire

Dettagli

matematica classe quinta GLI ANGOLI SCHEDA N. 49 1. Misura l ampiezza di ogni angolo e scrivila sui puntini.

matematica classe quinta GLI ANGOLI SCHEDA N. 49 1. Misura l ampiezza di ogni angolo e scrivila sui puntini. SE N. 49 GLI NGOLI 1. Misura l ampiezza di ogni angolo e scrivila sui puntini. a b c L angolo a misura.... L angolo b misura.... L angolo c misura.... 2. isegna un angolo di 25, un angolo di 35, un angolo

Dettagli

M. Cerini - R. Fiamenghi - D. Giallongo. Quaderno operativo. Trevisini Editore

M. Cerini - R. Fiamenghi - D. Giallongo. Quaderno operativo. Trevisini Editore M. Cerini - R. Fiamenghi - D. Giallongo Quaderno operativo Trevisini Editore La pubblicazione di un libro è un operazione complessa, che richiede numerosi controlli: sul testo, sulle immagini e sulle relazioni

Dettagli

CLASSE 1ª Manutenzione e Assistenza Tecnica

CLASSE 1ª Manutenzione e Assistenza Tecnica CLASSE 1ª Manutenzione e Assistenza Tecnica Programma svolto di MATEMATICA Anno scolastico 2013/14 ELEMENTI DI RACCORDO CON LA SCUOLA MEDIA GLI INSIEMI CALCOLO LETTERALE GEOMETRIA - Ordinamento, proprietà,

Dettagli

COMPITI PER LE VACANZE ESTIVE 2014

COMPITI PER LE VACANZE ESTIVE 2014 Classe I SEZ. E Prof.ssa Verena Libardi COMPITI PER LE VACANZE ESTIVE 2014 Consolidamento IMPARIAMO A GUARDARE UNA FOGLIA In una foglia possiamo distinguere la lamina (1), che è la parte più larga che

Dettagli

DISORGANIZZAZIONE DISLESSIA CONCENTRAZIONE DISGRAFIA DSA DISORTOGRAFIA LENTEZZA MEMORIA DISCALCULIA DISPRASSIA DISNOMIA.

DISORGANIZZAZIONE DISLESSIA CONCENTRAZIONE DISGRAFIA DSA DISORTOGRAFIA LENTEZZA MEMORIA DISCALCULIA DISPRASSIA DISNOMIA. DISORGANIZZAZIONE DISLESSIA CONCENTRAZIONE DISGRAFIA LENTEZZA DSA DISORTOGRAFIA MEMORIA DISCALCULIA DISPRASSIA DISNOMIA 2 DISLESSIA difficoltà Studio della teoria sul libro. Comprensione del testo di un

Dettagli

DISORGANIZZAZIONE DISLESSIA CONCENTRAZIONE DISGRAFIA DSA DISORTOGRAFIA LENTEZZA MEMORIA DISCALCULIA DISPRASSIA DISNOMIA.

DISORGANIZZAZIONE DISLESSIA CONCENTRAZIONE DISGRAFIA DSA DISORTOGRAFIA LENTEZZA MEMORIA DISCALCULIA DISPRASSIA DISNOMIA. Rita e Marco DISORGANIZZAZIONE DISLESSIA CONCENTRAZIONE DISGRAFIA LENTEZZA DSA DISORTOGRAFIA MEMORIA DISCALCULIA DISPRASSIA DISNOMIA Rita e Marco 3 DISLESSIA difficoltà Studio della teoria sul libro. Comprensione

Dettagli

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE

UNIVERSITÀ DEGLI STUDI DI UDINE. Corsi di Laurea in Ingegneria. Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE UNIVERSITÀ DEGLI STUDI DI UDINE Corsi di Laurea in Ingegneria Luciano BATTAIA, Pier Carlo CRAIGHERO MATEMATICA DI BASE Testi dei temi d esame ed esercizi proposti con soluzione breve Versione del 1 settembre

Dettagli

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico 2002 2003 PROVA DI MATEMATICA. Scuola Secondaria Superiore.

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico 2002 2003 PROVA DI MATEMATICA. Scuola Secondaria Superiore. Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico Progetto Pilota Valutazione della scuola italiana Anno Scolastico

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE POLO COMMERCIALE ARTISTICO GRAFICO MUSICALE

ISTITUTO ISTRUZIONE SUPERIORE POLO COMMERCIALE ARTISTICO GRAFICO MUSICALE a.s.2011/2012 A CURA DEL RESPONSABILE DI AMBITO CAGNESCHI FEDERICA / IMPERATORE DOLORES L AMBITO DISCIPLINARE DI MATEMATICA STABILISCE CHE: 1. I docenti prevedono un congruo numero di ore per il recupero

Dettagli