24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze"

Transcript

1 Alunno/.. Alunno/ Pgin Esercitzione in preprzione ll PROVA d ESAME Buon Lvoro Prof.ss Elen Sper. Il piccolo fermcrte dell figur è relizzto nel seguente modo. Si prende un cubo di lto cm e su un fcci si relizz un cvità form di pirmide con l stess bse del cubo e ltezz / di quell del cubo. Qul è il volume del solido così ottenuto? A. 6 cm B. 9 cm C. cm D. cm Il volume del solido si ottiene dll.. del volume del cubo e il volume dell Clsse III Un urn contiene dieci gettoni numerti d 0. Prendendone uno cso, esce un multiplo di tre. Qule fr le seguenti ffermzioni è FALSA? Il numero uscito può essere nche. A. multiplo di due C. multiplo di quttro B. qudrto perfetto D. numero dispri. Consider un rettngolo di re 4 cm e indic con x l bse e con y l ltezz, espresse in cm. Qule tr le seguenti espressioni rppresent l relzione tr le due dimensioni del rettngolo e l su re? x 4 A. 4 = B. x = C. x + y = 4 D. ( x + y) = 4 y y 4. Prim di prtire per le vcnze Mrio vev 00. Se dopo ver trscorso un settimn in cmpeggio con gli mici ne possiede 55, qunto h speso in medi per ogni giorno di vcnz? A. 5 B. 40 C. 4 D A Borgolieto il costo dell vit è umentto in un nno dello 0,7 % e i prezzi l consumo sono stti deguti tle umento. Se un nno f un fmigli spendev 00 in bollette vrie, qunto spende desso? A 00,7 B. 0,4 C 07 D ( 5 9 : 5 4 ): = A. B. 5 4 C. 0 D. 50 Applicndo le proprietà delle potenze 7. Sono dte in un pino tre rette distinte r, s, t. Qule delle seguenti proposizioni è VERA, qulunque sino le rette ssegnte? A. Se r è perpendicolre s e s è perpendicolre t, llor r è perpendicolre t. B. Se r intersec si s che t, llor le tre rette si incontrno in un unico punto. C. Se r intersec s e s intersec t, llor r intersec t. D. Se r è prllel s e s intersec t, llor nche r intersec t.

2 Alunno/.. Pgin 8. Che cos succede ll lunghezz dell circonferenz e ll re del cerchio se si rddoppi l lunghezz del rggio? A. L prim rimne ugule e l second rddoppi. B. Si l prim che l second rddoppino. C. L prim rddoppi e l second qudruplic. D. Si l prim che l second qudruplicno Per rispondere con mggiore sicurezz, complet prim l seguente tbell. Rggio cm 4 cm cm 6 cm Lunghezz dell circonferenz Are del cerchio 9. L seguente tbell riport i risultti dell rilevzione sulle scuole di provenienz che è stt effettut nell clsse I A di un istituto tecnico. Scuol secondri di I grdo di provenienz Sesso Scuol A Scuol B Scuol C Altre Scuole Mschi Femmine Totle Qule tr le seguenti ffermzioni è FALSA? A. Il numero di lunni mschi provenienti dll scuol B è mggiore del numero delle lunne provenienti dll scuol A. B. Il numero complessivo di lunni provenienti dll scuol C è ugule l numero di lunne provenienti dll scuol A. C. L clsse in cui si effettu l rilevzione è compost d 8 lunni, mschi e 5 femmine. D. Il numero di lunne provenienti dll scuol B è ugule l numero delle lunne provenienti dll scuol C. 0. Se si hnno 4 plline di diversi colori, spendo che pllin su 7 è ross, qunte sono quelle rosse? A. 5 B. 8 C. 7 D. 6

3 Alunno/.. Pgin. Qule tr le seguenti relzioni che esprimono un proporzionlità dirett è rppresentt nel grfico in figur? - A. y = x B. y = x C. y = x D. y = x L rett pss per il punto ( ; ), quindi l relzione deve essere soddisftt per x = e y =, quindi. D un qudrto di lto 4 sono stti ritgliti quttro tringoli rettngoli isosceli come nell figur. Qunto vle l re dell prte colort? Deve essere A. 8 C. 4 colort l B. D. 5 croce centrle. 4 L prte colort è l differenz tr l re del qudrto e l somm dei quttro tringoli rettngoli isosceli. Consider il tringolo costruito sul lto di bse. Essendo un tringolo rettngolo isoscele, è l metà di un di digonle. L su bse è quindi, l su ltezz.. Osserv ttentmente i punti P, Q, R, nell seguente figur. Qule tern di coordinte rppresent i punti P, Q, R? y Q A. P (;), Q (;5), R (5;).. P B. P (;), Q (5;), R (;5). C. P (;), Q (;5), R (5;). R D. P (;), Q (;5), R (4;). x 4. Qule tr le seguenti espressioni h lo stesso vlore di 8,5 0 4? A. 8,5 0 B. 8, C. 0, D. 0,85 0

4 Alunno/.. Pgin 4 5. Sull cim del Monte Amit il 5 Aprile 004, lle ore 6.00, è stt registrt un tempertur di 5 grdi sotto lo zero; lle ore.00 l tempertur er slit di 0 grdi; l misurzione delle ore.00 registrv un diminuzione di grdi rispetto lle ore.00. Qule delle seguenti espressioni esprime correttmente l tempertur delle.00? A. ( 5) + (+0) + ( ) C. ( 5) + ( 0) ( ) B. ( 5) (+0) + ( ) D. ( 5) + ( 0) (+) 6. Dti due numeri nturli e b diversi d 0, se è multiplo di b, qunto vle il minimo comune multiplo? A. b B. C. b D. 7. Nelle due figure lto i qudrti hnno lti uguli. Quli delle seguenti ffermzioni è ver? A. Le prti grigie delle figure hnno l stess re. B. L prte grigi dell figur h re mggiore di quell dell nell figur. C. L prte grigi dell figur h re minore di quell Figur Figur Figur dell nell figur. D. Non si possono confrontre le ree delle prti grigie. Supponimo che ogni qudrto bbi il lto lungo 4 cm. L prte grigi dell figur è costituit d un cerchio di rggio ugule ll metà del lto del qudrto. L re del cerchio colorto è quindi.. L prte grigi dell figur è costituit d un qurto di cerchio vente come rggio.. L su re è quindi ugule π (...) = Qule delle seguenti coppie di numeri verific l relzione x y = 5? A. ( ; ) B. ( ;) C. (; ) D. (;) 9. Qule delle seguenti espressioni rppresent un numero intero che è contempornemente un cubo e un qudrto se e x sono due numeri nturli qulsisi? A x B. 6 b 4 C b D b 6 Affinché l espressione letterle si un qudrto, il segno deve essere ; ffinché si un cubo l prte numeric deve essere un cubo e gli esponenti devono essere tutti multipli di. 0. Se lnci un ddo un sol volt, qule probbilità hi di ottenere un numero pri minore di 6? A. B. C. D. 6

5 Alunno/.. Pgin 5. Le lunne dell I A sono in tutto 0 e costituiscono il 40% dell clsse. Qunti sono gli lunni in totle (mschi e femmine) in I A? A. 5 B. C. 5 D. 0 Indichimo con x il totle degli lunni. 0 : x = : 00 ; d cui. Le digonli di un rombo differiscono di 4 cm. Indicndo con d l misur in cm dell digonle minore, qule tr le seguenti espressioni rppresent l re del rombo in cm? d ( d + 4) + 4 A. B. + d ( d + 4 ) d C. D. d ( d + 4) Se differiscono di 4 cm, l digonle mggiore srà ugule ll minore di 4 cm, quindi.. Qul è l soluzione dell equzione x = 5 5 A. B. C. D. 7 5 A 4. Osserv l seguente figur. Se AB AC e BH = HC, che cos rppresent il segmento AH nel tringolo ABC? B H C A. Un ltezz. B. Un medin. C. Un bisettrice. D. Un sse. 5. Mrco h riportto in mtemtic i seguenti voti: 5, 8, 6, 7. Qunto deve prendere nell prossim verific per ottenere l medi del 7? A. 6 B. 7 C. 8 D. 9 L medi di tutti i voti, compreso quello dell prossim verific, deve essere 7, quindi l somm dei cinque voti deve risultre ugule 7 5 = ; l somm dei quttro voti già ottenuti è, quindi il voto dell prossim verific deve essere. 6. Nell insieme dei numeri nturli, qule delle seguenti espressioni corrisponde un qudrto perfetto? A. 5 B. 5 C. 4 5 D. 4 5 Nessun delle quttro espressioni, così com è, risult un qudrto, poiché in ognun lmeno uno degli esponenti è dispri. In un di esse, però, l bse è un qudrto, quindi può essere espress.. 7. Gli spigoli di un prllelepipedo rettngolo hnno lunghezz, b, c. Qule tr le seguenti è l espressione del volume V c del prllelepipedo? A. V = + b + c B. V = ( b) + c C. V = ( + b) c D. V = b c b

6 Alunno/.. Pgin 6 8. Che cos si definisce digonle di un poligono convesso? Un segmento che. A. congiunge due vertici non consecutivi del poligono. B. congiunge due vertici qulsisi del poligono. C. congiunge i punti medi di due lti consecutivi del poligono. D. divide il poligono in due prti congruenti. 9. Qule tr le seguenti espressioni lgebriche corrisponde ll espressione verble: Aggiungendo un numero n e moltiplicndo il risultto per 4 si ottiene 0? A. 4 n + = 0 B. 4 (n + ) = 0 C. 4 + n = 0 D. (4 + n) = 0 0. L figur rppresent un roulette un po prticolre: non ci sono numeri, m solo settori indicti con delle lettere. A Se l pllin si muove lungo il bordo, qul è l probbilità che si fermi sull rco che delimit il settore A? D 60 A. B. 4 C. 6 D. 8 C 60 B I bordi sono rchi di, le lunghezze degli rchi sono direttmente proporzionli gli ngoli l centro, quindi l rco reltivo l settore A è l. prte dell circonferenz, quindi

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 005 Sessione suppletiv Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PROBLEMA Sono dti un pirmide

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

La statistica nei test Invalsi

La statistica nei test Invalsi L sttisti nei test Invlsi 1) Osserv il grfio seguente he rppresent l distriuzione perentule di fmiglie per numero di omponenti, in se l ensimento 2001.. Qul è l perentule di fmiglie on 2 omponenti? Rispost:..%.

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

Problemi di collegamento delle strutture in acciaio

Problemi di collegamento delle strutture in acciaio 1 Problemi di collegmento delle strutture in cciio Unioni con bulloni soggette tglio Le unioni tglio vengono generlmente utilizzte negli elementi compressi, quli esempio le unioni colonn-colonn soggette

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti Problemi di mssimo e minimo in Geometri olid Problemi su poliedri Indice dei problemi risolti In generle, un problem si riferisce un figur con crtteristice specifice (p.es., il numero dei lti dell bse)

Dettagli

10. Completare la seguente tabella, in cui sono riportate le produzioni assolute e relative di tre colture altamente diffuse in Italia.

10. Completare la seguente tabella, in cui sono riportate le produzioni assolute e relative di tre colture altamente diffuse in Italia. ESERCIZI DI BASE 1. I soci proprietri di un piccol compgni gricol sono tre: i signori A, B, C. Mentre i signori A e C hnno l stess quot di prtecipzione ll ziend, il signor B h solo il 50% dell quot degli

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse Prim Suol..........................................................................................................................................

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri i Primo Gro Clsse Prim Suol..........................................................................................................................................

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Terza. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Terza. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse Terz Suol..........................................................................................................................................

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti:

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti: Minori di un mtrice Si A K m,n, si definisce minore di ordine p con p N, p

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

ESERCIZI ESERCIZI. Test di autoverifica... 206 Prova strutturata conclusiva... 208 ESERCIZI

ESERCIZI ESERCIZI. Test di autoverifica... 206 Prova strutturata conclusiva... 208 ESERCIZI Indice cpitolo Insiemi ed elementi di logic... 7 8 Insiemi... Operzioni con gli insiemi... 8 Introduzione ll logic... 9 Connettivi e tvole di verità... Espressioni proposizionli... 0 Predicti e quntifictori...

Dettagli

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto 7 I costi dell impres 7.1. Per l combinzione di equilibrio dei due input, si ved il grfico successivo. L pendenz dell line di isocosto e` pri ll opposto del rpporto tr i prezzi dei fttori: -10 = 2 = -5.

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

Introduciamo il concetto di trasformazione geometrica prendendo come esempio una rotazione.

Introduciamo il concetto di trasformazione geometrica prendendo come esempio una rotazione. Le trsformzioni geometriche ITL 7 TERI Letture llo specchio! Ingegni, ossesso, nilin: tre esempi di plindromi, ovvero di prole che si possono leggere si d sinistr verso destr, si d destr verso sinistr.

Dettagli

Edizione dicembre 2010 - Rev 0. Manuale per l applicazione dell immagine coordinata

Edizione dicembre 2010 - Rev 0. Manuale per l applicazione dell immagine coordinata Edizione dicembre 20 - Rev 0 Mnule per l ppliczione dell immgine coordint 1 Mnule per l ppliczione dell immgine coordint 1 Presentzione 2 Elementi bse Logotipo generico 3-4 Logotipo d personlizzre 5-8

Dettagli

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x) Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è:

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è: 1) In un equzione differenzile del tipo y (t)= y(t), con > 0, il tempo di rddoppio, cioè il tempo T tle che y(t+t)=y(t) è: A) T = B) 1 T = log e C) 1 T = log e ** D) 1 T = E) T = log e ) L equzione differenzile

Dettagli

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA Slvtore Loris Pelell Corso di Mtemtic RCS LIBRI EDUCATION SPA ISBN 88-45-084-3 004 RCS Libri S.p.A.- Milno Prim edizione: gennio 004 Ristmpe 004 005 006 3 4 5 Stmp: V. Bon, Torino Coordinmento editorile

Dettagli

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro.

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro. Viett l pubbliczione, l riprouzione e l ivulgzione scopo i lucro. GA00001 Qul è l mpiezz ell ngolo che si ottiene ) 95 b) 275 c) 265 ) 5 b sottreno 85 un ngolo giro? GA00002 Due ngoli ll circonferenz che

Dettagli

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO L RLZIONI L FUNZIONI serizi in più SRIZI IN PIÙ SRIZI I FIN PITOLO TST Nell insieme ell figur, l relzione rppresentt goe ell o elle proprietà: TST L relzione «essere isenente i», efinit nell insieme egli

Dettagli

CLASSI PRIME 2013/14

CLASSI PRIME 2013/14 LICEO SCIENTIFICO STATALE G.B. GRASSI CLASSI PRIME 2013/14 INDICAZIONI DI LAVORO PER LA SOSPENSIONE DEL GIUDIZIO IN FISICA Liceo scientifico e liceo delle scienze pplicte In relzione lle esigenze del secondo

Dettagli

Il calcolo integrale: intro

Il calcolo integrale: intro Il clcolo integrle: intro Le ppliczioni del clcolo integrle sono svrite: esistono, inftti, molti cmpi, dll fisic ll ingegneri, dll iologi ll economi, in cui si f lrgo uso degli integrli. Per fornire l

Dettagli

Variazioni di sviluppo del lobo frontale nell'uomo

Variazioni di sviluppo del lobo frontale nell'uomo Istituto di Antropologi dell Regi Università di Rom Vrizioni di sviluppo del lobo frontle nell'uomo pel Dott. SERGIO SERGI Libero docente ed iuto ll cttedr di Antropologi. Il problem dei rpporti di sviluppo

Dettagli

ESPONENZIALI LOGARITMI

ESPONENZIALI LOGARITMI ESPONENZIALI LOGARITMI Prerequisiti: Conoscere e sper operre con potenze con esponente nturle e rzionle. Conoscere e sper pplicre le proprietà delle potenze. Sper risolvere equzioni e disequzioni. Sper

Dettagli

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes I Teoremi di Green, dell divergenz o di Guss e di Stokes In R Si un sottoinsieme limitto di R semplice rispetto d entrmbi gli ssi crtesini con costituit dll unione di un numero finito di sostegni di curve

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

Esercizi sulle curve in forma parametrica

Esercizi sulle curve in forma parametrica Esercizi sulle curve in form prmetric Esercizio. L Elic Cilindric. Dt l curv di equzioni prmetriche: xt cos t yt sin t t 0 T ] > 0 b IR zt bt trovre: versore tngente normle binormle vettore curvtur rggio

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

Prova n. 1 LEGER TEST

Prova n. 1 LEGER TEST Prov n. 1 LEGER TEST Descrizione L prov si svolge su un percorso delimitto d due coni, posti ll distnz di 20 mt l uno dll ltro. Il cndidto deve percorrere spol l distnz tr i due coni, pssndo dll velocità

Dettagli

3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3

3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3 MINIERO DELL'IRUZIONE,DELL'UNIERIÀ E DELLA RICERCA CUOLE IALIANE ALL EERO EAMI DI AO DI LICEO CIENIFICO essioe Ordiri s 00/005 ECONDA PROA CRIA em di Mtemtic Il cdidto risolv uo dei due problemi e quesiti

Dettagli

Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO

Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO Ai gentili Clienti Loro sedi Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO Al termine di ciscun periodo d impost, dopo ver effettuto le scritture di ssestmento e rettific,

Dettagli

Macchine elettriche in corrente continua

Macchine elettriche in corrente continua cchine elettriche in corrente continu Generlità Può essere definit mcchin un dispositivo che convert energi d un form un ltr. Le mcchine elettriche in prticolre convertono energi elettric in energi meccnic

Dettagli

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI Elis Gonizzi N mtricol: 3886 Lezione del -- :3-:3 IRRAGGIAMENO: APPLICAZIONI ED EERCIZI E utile l fine di comprendere meglio le ppliczioni e gli esercizi ricordre cos si intend con i termini CORPI NERI

Dettagli

F (r(t)), d dt r(t) dt

F (r(t)), d dt r(t) dt Cmpi vettorili Un cmpo vettorile è un funzione vlori vettorili F : A R, con A R n, ove in questo cso l imensione el ominio e el coominio è l stess. F ( 1, 2,..., n ) (f 1 ( 1, 2,..., n ), f 2 ( 1, 2,...,

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Regime di sconto commerciale. S = sconto ; K = somma da scontare ; s = tasso di sconto unitario V a = valore attuale ; I = interesse ; C = capitale

Regime di sconto commerciale. S = sconto ; K = somma da scontare ; s = tasso di sconto unitario V a = valore attuale ; I = interesse ; C = capitale Regime di sconto commercile Formule d usre : S = sconto ; K = somm d scontre ; s = tsso di sconto unitrio V = vlore ttule ; I = interesse ; C = cpitle s t = st i t st = st S t Kst V K st () () ; () ( )

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Scala di sicurezza, Palazzo della Ragione, Milano

Scala di sicurezza, Palazzo della Ragione, Milano Scl di sicurezz, Plzzo dell Rgione, Milno Er importnte che l scl fosse progettt in modo d essere legger, trsprente e visivmente utonom rispetto l contesto storico. In seguito ll intervento di conservzione

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

DEBITI VERSO BANCHE 1 PREMESSA 2 CONTENUTO DELLA VOCE. Passivo SP D.4. Prassi Documento OIC n. 12; Documento OIC n. 19 2.

DEBITI VERSO BANCHE 1 PREMESSA 2 CONTENUTO DELLA VOCE. Passivo SP D.4. Prassi Documento OIC n. 12; Documento OIC n. 19 2. Cp. 49 - Debiti verso bnche 49 DEBITI VERSO BANCHE Pssivo SP D.4 Prssi Documento OIC n. 12; Documento OIC n. 19 1 PREMESSA I debiti verso bnche ricomprendono tutti quei debiti in cui l controprte è un

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

UNITÀ DI GUIDA E SLITTE

UNITÀ DI GUIDA E SLITTE UNITÀ DI GUIDA E SLITTE TIPOLOGIE L gmm di unità di guid e di slitte proposte è molto mpi. Rggruppimo le guide in fmiglie: Unità di guid d ccoppire cilindri stndrd Si trtt di unità indipendenti, cui viene

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione ll lgebr E. Modic ersmo@glois.it Liceo Scientifico Sttle S. Cnnizzro Corso P.O.N. Modelli mtemtici e reltà A.S. 2010/2011 Premess Codificre e Decodificre Nell vit quotidin ci cpit spesso di

Dettagli

Conversione A/D e D/A. Quantizzazione

Conversione A/D e D/A. Quantizzazione Conversione A/D e D/A Per il trttmento dei segnli sempre più vengono preferite soluzioni di tipo digitle. È quindi necessrio, in fse di cquisizione, impiegre dispositivi che convertno i segnli nlogici

Dettagli

Temi speciali di bilancio

Temi speciali di bilancio Università degli Studi di Prm Temi specili di bilncio Le imposte (3) Il consolidto fiscle nzionle RIFERIMENTI Normtiv Artt. 117 129 del TUIR Art. 96 del TUIR Prssi contbile Documento OIC n. 25 Documento

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

Integrali curvilinei e integrali doppi

Integrali curvilinei e integrali doppi Integrli curvilinei e integrli doppi Integrli curvilinei di prim specie Prim di inizire l trttzione di questo rgomento dimo l definizione di curv. Per curv nello 3 3 spzio R intendimo un sottoinsieme di

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

Da 9.500,01 a 15.000,00 > 15.000,01 9.500,00 COSTO PASTO 1,15 2,30 3,45 4,60

Da 9.500,01 a 15.000,00 > 15.000,01 9.500,00 COSTO PASTO 1,15 2,30 3,45 4,60 Per l Anno Scolstico 2015/2016 l Deliber di Giunt Comunle n.25 del 16.04.2015 d oggetto: Determinzione dei criteri e ppliczione delle triffe dei servizi comunli introitti dl Comune nno 2015. Ricognizione

Dettagli

ELEMENTI DI DINAMICA DEI FLUIDI

ELEMENTI DI DINAMICA DEI FLUIDI Corso di Fisic tecnic e mbientle.. 011/01 - Docente: Prof. Crlo Isetti ELEMENTI DI DINAMICA DEI FLUIDI 6.1 GENERALITÀ Il moto più semplice cui si f riferimento è in genere il moto stzionrio, che è crtterizzto

Dettagli

STUDIO COMMERCIALE TRIBUTARIO TOMASSETTI & PARTNERS Corso Trieste 88 00198 Roma Tel. 06/8848666 (RA) Fax 068844588 info@mt-partners.

STUDIO COMMERCIALE TRIBUTARIO TOMASSETTI & PARTNERS Corso Trieste 88 00198 Roma Tel. 06/8848666 (RA) Fax 068844588 info@mt-partners. CIRCOLARE INFORMATIVA NR. 14 del 30/11/2012 ARGOMENTO: IMPOSTA SOSTITUIVA TFR 2013 Scde il prossimo 16 dicembre il termine per pgre l impost sostitutiv sul TFR. Tle impost rppresent l nticipo di tsse dovute

Dettagli

Appunti di Analisi matematica 1. Paolo Acquistapace

Appunti di Analisi matematica 1. Paolo Acquistapace Appunti di Anlisi mtemtic Polo Acquistpce 23 febbrio 205 Indice Numeri 4. Alfbeto greco................................. 4.2 Insiemi..................................... 4.3 Funzioni....................................

Dettagli

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per Funzioni di utilità (finlmente un po di geroglifici, dopo i grffiti) NB: non fte leggere queste pgine un mtemtico, ltrimenti mi msscr!. Definizione e proprietà Considerimo due eni e di interesse per un

Dettagli

Tassi di cambio, prezzi e

Tassi di cambio, prezzi e Tssi di cmbio, prezzi e tssi di interesse 2009 1 Introduzione L relzione tr l ndmento del livello generle dei prezzi e i tssi di cmbio: l Prità dei Poteri di Acquisto Le relzione tr i tssi di cmbio e i

Dettagli

a con base a maggiore di 1 Dominio Codominio Crescenza/decrescenza Funz Crescente in Concavità/convessità Strettamente convessa in

a con base a maggiore di 1 Dominio Codominio Crescenza/decrescenza Funz Crescente in Concavità/convessità Strettamente convessa in Funzione esponenzile Dto un numero rele >0, l funzione si chim funzione esponenzile di bse e f prte dell fmigli delle funzioni elementri. Il suo ndmento (crescenz o decrescenz) è strettmente legto l vlore

Dettagli

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali Problemi di Fisic Moti unidimensionli Moti nel pino. Moti unidimensionli Problem N. Rppresentre grficmente le seguenti leggi del moto rettilineo uniforme e commentrle: ) S 0 -t ) S 5t 3) S -0 + 3t 4) S

Dettagli

LE RETTIFICHE DI STORNO

LE RETTIFICHE DI STORNO Cpitolo 11 LE RETTIFICHE DI STORNO cur di Alfredo Vignò Le scritture di rettific di fine esercizio Sono composte l termine del periodo mministrtivo per inserire nel sistem vlori stimti e congetturti di

Dettagli

Automobile Club d'italia

Automobile Club d'italia Automobile Club d'itli SCHDA DI SINTSI MODALITA' DI AUTNTICA PRMSSA L'rt. 7 L. 24812006 non specific le modlit8 d seguire per I'utentic delle sottoscrizioni, né richim lcun disciplin già esistente, qule

Dettagli

CA SA A NZIA NI C A S L A NO - 2

CA SA A NZIA NI C A S L A NO - 2 S NZI NI S L NO - 2 LEGEND :. NUOV S NZINI. INGRESSO PRINIPLE. INGRESSO ENTRO DIURNO E NOTTURNO D. PRHEGGI E. INGRESSO VEIOLRE UTORIMESS F. ORTE G. GIRDINO OMUNE H. GIRDINO PROTETTO D + 0.00 H + 6.50 G

Dettagli

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L scelt di equilirio del consumtore ntegrzione del C. 21 del testo di Mnkiw 1 Prte 1 l vincolo di ilncio Suonimo che il reddito di un consumtore

Dettagli

Le verifiche finali e le scritture di assestamento

Le verifiche finali e le scritture di assestamento Numero 60/2012 Pgin 1 di 8 Le verifiche finli e le scritture di ssestmento Numero : 60/2012 Gruppo : Oggetto : Norme e prssi : Scric l guid complet sulle scritture di chiusur e il pssggio del bilncio d

Dettagli

Test di autovalutazione

Test di autovalutazione Test di utovlutzione 0 0 0 0 0 50 0 70 0 0 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle 5 lterntive. n Confront le tue risposte on le soluzioni. n Color, prtendo d

Dettagli

Complementi di Matematica e Calcolo Numerico A.A. 20010-2011 Laboratorio 10 - Integrazione numerica

Complementi di Matematica e Calcolo Numerico A.A. 20010-2011 Laboratorio 10 - Integrazione numerica Complementi di Mtemtic e Clcolo Numerico A.A. 20010-2011 Lbortorio 10 - Integrzione numeric Dtunfunzionef vlorireliperclcolre b fornisce l funzione predefinit qud Sintssi: q=qud(f,,b,tol) input: f funzione

Dettagli

Imparare: cosa, come, perché.

Imparare: cosa, come, perché. GIOCO n. 1 Imprre: cos, come, perché. L pprendimento scolstico non è solo questione di metodo di studio, m di numerose situzioni di tipo personle e di gruppo, oppure legte l contesto in cui pprendimo.

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

ISTITUTO TECNICO INDUSTRIALE STATALE "FERMI"

ISTITUTO TECNICO INDUSTRIALE STATALE FERMI ISTITUTO TECNICO INDUSTIALE STATALE "EMI" TEVISO GAA NAZIONALE DI MECCANICA 212 ropost di soluzione rim rov cur di Benetton rncesco (vincitore edizione 211 unzionmento: L gru bndier girevole sopr riportt

Dettagli

Nota metodologica. Finalità, campo di osservazione, concetto di prezzo

Nota metodologica. Finalità, campo di osservazione, concetto di prezzo Not metodologic numeri indici dei prezzi l consumo misurno le vrizioni nel tempo dei prezzi di un pniere di eni e servizi rppresenttivi di tutti quelli destinti l consumo finle delle fmiglie presenti sul

Dettagli

Manuale Generale Sintel Guida alle formule di aggiudicazione

Manuale Generale Sintel Guida alle formule di aggiudicazione MANUALE DI SUPPOTO ALL UTILIZZO DELLA PIATTAFOMA SINTEL GUIDA ALLE FOMULE DI AGGIUDICAZIONE Pgin 1 di 21 AGENZIA EGIONALE CENTALE ACQUISTI Indice 1 INTODUZIONE... 3 1.1 Cso di studio... 4 2 FOMULE DI CUI

Dettagli

Borse di studio per i figli studenti e provvidenze a favore dei Dipendenti studenti. Ambito: Tutti

Borse di studio per i figli studenti e provvidenze a favore dei Dipendenti studenti. Ambito: Tutti Circolre n. 36 del 16 settembre 2014 Oggetto: Borse di studio per i figli studenti e provvidenze fvore dei Dipendenti studenti Serie: PERSONALE Argomento: Società interesste: Ambito: CONDIZIONI CONTRATTUALI

Dettagli

Scale con rampe diritte. Scala rettilinea a una rampa. Scala rettilinea a due rampe. Scala destra a una rampa a chiocciola (con un quarto di giro)

Scale con rampe diritte. Scala rettilinea a una rampa. Scala rettilinea a due rampe. Scala destra a una rampa a chiocciola (con un quarto di giro) 0.0 Scle di legno 9 0.0 Scle di legno Le scle servono superre le differenze di ltezz. Nelle cse unifmiliri sono sovente costruite in legno. Un scl è definit tle se formt d lmeno tre sclini consecutivi,

Dettagli

ASSENZE PER ASSISTENZA PORTATORI DI HANDICAP

ASSENZE PER ASSISTENZA PORTATORI DI HANDICAP NORMATIVA ASSENZE PER ASSISTENZA PORTATORI DI HANDICAP A cur di Libero Tssell d Scuol&Scuol del 21/10/2003 Riferimenti normtivi: rt. 21 e 33 5.2.1992 n. 104 e successive modifiche ed integrzioni, Dlgs.

Dettagli

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici.

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici. Il Primo Principio dell Termodinmic non fornisce lcun indiczione rigurdo d lcuni spetti prtici. l evoluzione spontne delle trsformzioni; non individu cioè il verso in cui esse possono vvenire. Pistr cld

Dettagli

PIANO di LAVORO A. S. 2013/ 2014

PIANO di LAVORO A. S. 2013/ 2014 Nome docente Borgn Giorgio Mteri insegnt Mtemtic Clsse Previsione numero ore di insegnmento IV G IPSIA ore complessive di insegnmento 33 settimne X 3 ore = 99 ore Nome Ins. Tecn. Prtico Testo in dozione

Dettagli

Appunti di Analisi Matematica 1

Appunti di Analisi Matematica 1 Appunti di Anlisi Mtemtic 1 MASTER IN ECONOMIA DIGITALE & e-business Centro per lo studio dei sistemi complessi Università di Sien Mrzo 2005 Prof. Polo Nistri Un funzione (o ppliczione) tr due insiemi

Dettagli

ESERCIZI RELATIVI AL CAP. 8 GLI INVESTIMENTI E I DISINVESTIMENTI IN TITOLI E PARTECIPAZIONI a cura di Daniela Corbetta

ESERCIZI RELATIVI AL CAP. 8 GLI INVESTIMENTI E I DISINVESTIMENTI IN TITOLI E PARTECIPAZIONI a cura di Daniela Corbetta ESERCIZI RELATIVI AL CAP. 8 GLI INVESTIMENTI E I DISINVESTIMENTI IN TITOLI E PARTECIPAZIONI cur di Dniel Corbett P.S.: l fine di trttre in modo esustivo l rgomento, si precis che nei seguenti esercizi

Dettagli

Febbraio 2014. PROGETTO: Studio di Architettura e Urbanistica Dott. Arch. Guido Leoni Via Affò, 4 - Parma - tel. 0521.233423

Febbraio 2014. PROGETTO: Studio di Architettura e Urbanistica Dott. Arch. Guido Leoni Via Affò, 4 - Parma - tel. 0521.233423 Comune di Poviglio Provinci di Reggio Emili Relzione illustrtiv dell Delierzione Consilire di pprovzione, dei coefficienti e prmetri di conversione che ssicurno l equivlenz tr le definizioni e le modlità

Dettagli

UNITÀ DI APPRENDIMENTO II QUADRIMESTRE SCUOLE PRIMARIE CLASSI SECONDE

UNITÀ DI APPRENDIMENTO II QUADRIMESTRE SCUOLE PRIMARIE CLASSI SECONDE UNITÀ DI APPRENDIMENTO II QUADRIMESTRE SCUOLE PRIMARIE CLASSI SECONDE UNITA DI APPRENDIMENTO Denominzione Compito-prodotto Competenze mirte Comuni/cittdinnz IL TEMPO PASSA IL MONDO GIRA REALIZZAZIONE DI

Dettagli

PROVVEDIMENTO del Funzionario delegato DAL DIRETTORE

PROVVEDIMENTO del Funzionario delegato DAL DIRETTORE ISTITUZIONE SERVIZI EDUCATIVI SCOLASTICI CULTURALI E SPORTIVI DEL COMUNE DI CORREGGIO Vile dell Repubblic, 8 - Correggio (RE) 42015 tel. 0522/73.20.64-fx 0522/63.14.06 P.I. / C.F. n. 00341180354 PROVVEDIMENTO

Dettagli

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo:

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo: FUNZIONI MATEMATICHE Le relzioni mtemtihe utilizzte per desrivere fenomeni nturli, in iologi ome in ltre sienze, possono ovvimente essere le più svrite. Per lo più si trtt di equzioni lineri, qudrtihe,

Dettagli

3. Il calcolo a scuola (2): l uso della calcolatrice 1

3. Il calcolo a scuola (2): l uso della calcolatrice 1 Didttic 3. Il clcolo scuol (2): l uso dell clcoltrice 1 Ginfrnco Arrigo 57 1. Clcoli con un sol operzione L prim cos d insegnre d un giovne llievo che voglimo educre ll uso corretto dei moderni mezzi di

Dettagli

Università degli studi di Cagliari CORSO ANALISI II A.A. 2007/2008. Rappresentazione delle CONICHE e QUADRICHE

Università degli studi di Cagliari CORSO ANALISI II A.A. 2007/2008. Rappresentazione delle CONICHE e QUADRICHE Università degli studi di Cgliri CORSO ANALISI II A.A. 007/008 Rppresentzione delle CONICHE e QUADRICHE Rppresentzione delle CONICHE Generlità Si definiscono coniche le curve pine risultto dell intersezione

Dettagli