Modellistica di sistemi elettromeccanici

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Modellistica di sistemi elettromeccanici"

Transcript

1 Modellistica di sistemi elettromeccanici Legge di Lorentz: una carica elettrica q che si muove con velocità v(t) relativamente ad un campo magnetico di induzione B(t) è soggetta ad una forza v(t) q α B(t) F = q v(t) B(t) (1) F = q v B sinα F(t) Quale forza agisce su un tratto di conduttore di sezione S e lunghezza l, percorso da corrente I e sottoposto ad un campo magnetico di induzione B? Se ci sono n particelle di carica q per unità di volume in moto con velocità v, la corrente si può esprimere come I = n q v S. Poiché la forza su ogni carica è data dalla (1), la forza per unità di volume è n q v(t) B(t) e quindi quella che agisce sul tratto di conduttore ha modulo pari a F = B l I sin α. Roberto Diversi Controlli Automatici T 1 p. 1/17

2 Esempio 1. Si consideri un conduttore rettilineo mobile di lunghezza l percorso dalla corrente I(t), che si trova all interno di un campo magnetico di induzione B costante ortogonale al conduttore stesso. B l F(t) F(t) = B l I(t) s(t) I(t) L espressione F = B l I è detta anche legge dei motori. Un circuito elettrico mobile immerso in un campo magnetico e percorso da corrente è soggetto ad una forza ed inizia dunque a muoversi. Il flusso magnetico concatenato con il circuito è dunque variabile ed in esso si genera una forza elettromotrice = nei sistemi elettromeccanici la legge dell induzione elettromagnetica e la legge di Lorentz si considerano sempre insieme. Con riferimento all esempio sopra, la f.e.m. che si genera sarà tale da contrastare la corrente I(t). Roberto Diversi Controlli Automatici T 1 p. /17

3 Esempio. Si consideri una spira di sezione S percorsa dalla corrente I(t) ed immersa in un campo magnetico di induzione B costante. F (t) F (t) Le forze F (t) tendono a deformare la spira S θ(t) B Le forze F (t) generano una coppia che tende a disporre la spira ortogonalmente al campo mag- F (t) netico. I(t) F (t) Applicazioni della legge di Lorentz: motori elettrici, strumenti di misura (amperometri, voltmetri, wattmetri), altoparlanti e microfoni magnetici, sensori ad effetto Hall, etc. Roberto Diversi Controlli Automatici T 1 p. 3/17

4 Modelli nello spazio degli stati di sistemi elettromeccanici Esempio 1: altoparlante magnetico?? I(t) R L? k s(t) V (t) e(t) F L (t) m B β S N S B?? A F L (t) Φ c (t) = k A s(t) = e(t) = Φ c (t) = k A ṡ(t) V (t) = R I(t) + L I(t) + k A ṡ(t) m s(t) = F L (t) k s(t) β ṡ(t) Quanto vale F L (t)? Bilancio energetico: e(t) I(t) = F L (t) ṡ(t) = F L (t) = k A I(t) Roberto Diversi Controlli Automatici T 1 p. 4/17

5 x 1 = I x = s x 3 = ṡ u = V y 1 = I y = β ṡ ẋ 1 = R L x 1 k A L x 3 + u L y 1 = x 1 ẋ = x 3 ẋ 3 = k A m x 1 k m x β m x y = β x 3 3 L effetto utile dell altoparlante è la potenza acustica β ṡ. Sullo stesso principio di funzionamento si basa il microfono magnetico:? I(t) R L F u (t) R c e(t) F L (t) m k β k m ṡ = (R + R c ) I + L I m s = F u (t) k s β ṡ k m I dove F u (t) = P u (t) A m con P u (t) pressione acustica ed A m area della membrana. Roberto Diversi Controlli Automatici T 1 p. 5/17

6 Esempio : condensatore con armatura mobile s(t) C(s) F e (t) m k? L armatura di destra è mobile β u(t) V c (t) C = C(s) Tra le armature esiste una forza di attrazione R dovuta al campo elettrico. Quanto vale F e (t)? I(t) V c = f 1 (Q,s) Bilancio energetico: F e = f (Q,s) V c (t) C(s) de = V c I dt = de e + F e ds s(t) dove E e è l energia immagazzinata dal campo elettrico: F e (t) E e = f 3 (Q,s) Roberto Diversi Controlli Automatici T 1 p. 6/17

7 de e (Q,s) = V c dq F e ds = E e(q,s) Q dq + E e(q,s) s ds V c (Q, s) = E e(q, s) Q F e (Q,s) = E e(q,s) s L energia in una certo stato (Q,s) si può trovare integrando lungo un percorso qualunque. Se il condensatore è lineare si ha Q(t) = C(s) V c (t) F(0,s) = 0. Si pu dunque integrare prima tra (0, 0) e (0,s) e poi tra (0, s) e (Q, s) ottenendo e quindi E e (Q,s) = Q 0 Q C(s) dq = Q C(s) F e (Q,s) = E e(q, s) s = Q C (s) dc(s) ds Roberto Diversi Controlli Automatici T 1 p. 7/17

8 Condensatore ad armature piane e parallele di area A: C(s) = ǫ A s = k C s = F e = Q k C u = Q C + R Q = Q s k C + R Q m s = Q k C k (s s 0 ) β ṡ, dove s 0 è la posizione dell armatura con molla a riposo. x 1 = Q x = s x 3 = ṡ y 1 = V c y = s ẋ 1 = x 1 x k C R + u R x 1 0 ẋ = x 3 x > 0 ẋ 3 = x 1 k C m k m (x s 0 ) β m x 3 y 1 = x 1 x y = x k C Applicazioni: microfono a condensatore. Roberto Diversi Controlli Automatici T 1 p. 8/17

9 Esempio 3: levitatore magnetico V (t) I(t) L elettromagnete magnetizza l ancora Φ(t) N µ F A nasce una forza di attrazione dovuta al campo magnetico R F : riluttanza percorso nel ferro R 0 : riluttanza percorso in aria µ 0 s(t) µ F >> µ 0 = R F << R 0 F m (t) N I(t) = R 0 Φ(t), R 0 = s(t) µ 0 A Φ c (t) = N Φ(t) = L = L(s) = µ 0 A N s(t) = k m s(t) Quanto vale la forza di attrazione F m (t)? Roberto Diversi Controlli Automatici T 1 p. 9/17

10 Bilancio energetico: de = I dφ c = de m + F m ds dove E m è l energia immagazzinata dal campo magnetico: E m = f(φ c,s) = de m (Φ c, s) = I dφ c F m ds = E m(φ c, s) Φ c Utilizzando l approccio dell esempio si ottiene dφ c + E m(φ c,s) s ds E m (Φ c, s) = Φ c L(s) = L(s) I = F m (Φ c, s) = Φ c L (s) dl(s) ds = I dl(s) ds = k m I s I(t) R L(s) s(t) V (t) e(t) m F m (t) m g V = R I + Φ c M s = F m + mg V = R I + L I + L I = R I + k m s m s = k m I s + mg I k m s ṡ I Roberto Diversi Controlli Automatici T 1 p. 10/17

11 x 1 = I x = s x 3 = ṡ u = V = ẋ 1 = R x 1 x + u x k m k m ẋ = x 3 ẋ 3 = k m x 1 m x + g Esempio 4: dinamica di due circuiti mutuamente accoppiati Si considerino due circuiti mutuamente accoppiati, il primo immobile e il secondo in grado di ruotare intorno ad un asse fisso. In tale caso il coefficiente di mutua induzione dipende dalla posizione angolare θ(t) del circuito mobile. θ(t) I 1 I V 1 L 1 L V M(θ) Roberto Diversi Controlli Automatici T 1 p. 11/17

12 Φ c1 = L 1 I 1 + M(θ) I = Φ c = L I + M(θ) I 1 V 1 = Φ c1 = L 1 I1 + M(θ) I + K(θ) θ I V = Φ c = L I + M(θ) I 1 + K(θ) θ I 1 dove Bilancio energetico: K(θ) = dm(θ) dθ V 1 I 1 + V I = L 1 I1 I 1 + M(θ) I I 1 + K(θ) θ I I 1 Si può dimostrare che + L I I + M(θ) I 1 I + K(θ) θ I 1 I = de m dt + C m θ E m (Φ c1, Φ c, θ) = 1 L 1 I L I + M(θ) I 1 I C m (t) = K(θ) I 1 (t) I (t) Roberto Diversi Controlli Automatici T 1 p. 1/17

13 Accoppiamento massimo Accoppiamento minimo Φ 1 Φ Φ Φ 1 M(θ) = max K(θ) = min (K(θ) 0) C(θ) = min (C(θ) 0) M(θ) = min (M(θ) 0) K(θ) = max C(θ) = max Quando la coppia è massima gli effetti della mutua induzione sono minimi e viceversa. Roberto Diversi Controlli Automatici T 1 p. 13/17

14 Motore in corrente continua C M (t) θ(t) I e (t) I a (t) Φ e (t) Φ a (t) Φ a (t) Φ e (t) θ(t) Φ e (t) e Φ a (t) sono i flussi generati dalla corrente di eccitazione I e (t) e dalla corrente di armatura I a (t). θ(t) è l angolo tra gli assi dei flussi magnetici ed è funzione dell angolo di rotazione del motore: θ(t) = f(θ(t)). I circuiti di eccitazione ed armatura sono dunque mutuamente accoppiati e si ha: M = g( θ) = f(θ). Roberto Diversi Controlli Automatici T 1 p. 14/17

15 Ipotesi 1: linearità del circuito magnetico R e I e (t) I a (t) R a C M (t) θ(t) V e (t) L e L a V a (t) M(θ) V e = R e I e + L e Ie + M(θ) I a + K(θ) I a θ V a = R a I a + L a Ia + M(θ) I e + K(θ) I e θ C M = K(θ) I e I a Ipotesi : gli assi magnetici sono sempre ortogonali = M(θ) 0, K(θ) K max = K M Ipotesi 3: effetto del circuito di armatura su quello di eccitazione trascurabile = I e indipendente da I a V e = R e I e + L e Ie V a = R a I a + L a Ia + K M I e θ C M = K M I e I a Roberto Diversi Controlli Automatici T 1 p. 15/17

16 R a I a (t) L a V a (t) R e I e (t) L e C M (t) θ(t) e(t) V e (t) C R (t) J: momento di inerzia albero motore β: coefficiente di attrito albero motore C R (t): coppia resistente x 1 = I e x = I a x 3 = θ x 4 = θ u 1 = V e u = V a u 3 = C R ẋ 1 = R e L e x 1 + u 1 L e ẋ = R a L a x K M L a x 1 x 4 + u L a ẋ 3 = x 4 ẋ 4 = K M J x 1 x β J x 4 u 3 J Roberto Diversi Controlli Automatici T 1 p. 16/17

17 Se V e (t) = costante = I e (t) = costante = modello di ordine 3 (lineare) x 1 = I a x = θ x 3 = θ u 1 = V a u = C R Posto K M = K M I e si ha: A = L a 0 K M La R a B = 1 L a K M J 0 β J 0 1 J A volte la dinamica della parte elettrica viene trascurata = modello di ordine (lineare) J θ = K M V a K M θ R a β θ C R J θ = ( β + K ) M K θ + M V a C R R a R a Roberto Diversi Controlli Automatici T 1 p. 17/17

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA Se un magnete è posto vicino ad un circuito conduttore chiuso, nel circuito si manifesta una f.e.m. quando il magnete è messo in movimento. Tale

Dettagli

INTERPRETAZIONE CINEMATICA DELLA DERIVATA

INTERPRETAZIONE CINEMATICA DELLA DERIVATA INTERPRETAZIONE CINEMATICA DELLA DERIVATA Consideriamo un punto mobile sopra una qualsiasi linea Fissiamo su tale linea un punto O, come origine degli archi, e un verso di percorrenza come verso positivo;

Dettagli

Fisica II. 7 Esercitazioni

Fisica II. 7 Esercitazioni Esercizi svolti Esercizio 7.1 Il campo magnetico che agisce perpendicolarmente ad un circuito costituito da 3 spire di 3 cm di diametro, passa da un valore di.4t a -.65T in 18 msec. Calcolare la tensione

Dettagli

Esercizi di magnetismo

Esercizi di magnetismo Esercizi di magnetismo Fisica II a.a. 2003-2004 Lezione 16 Giugno 2004 1 Un riassunto sulle dimensioni fisiche e unità di misura l unità di misura di B è il Tesla : definisce le dimensioni [ B ] = [m]

Dettagli

(a) ;

(a) ; Corso di Fisica Generale II - A.A. 2005/2006 Proff. S. Amoruso, M. Iacovacci, G. La Rana Esercizi di preparazione alle prove intercorso ------------------------- Cap. VIII Campi elettrici e magnetici variabili

Dettagli

Forze su cariche nei fili: il motore elettrico

Forze su cariche nei fili: il motore elettrico Forze su cariche nei fili: il motore elettrico In presenza di un campo magnetico B, un tratto di filo (d l) percorsa da una corrente i è soggetto ad una forza F = id l B. Un tratto rettilineo di filo di

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti.

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. 1 / 1 La forza di Lorentz è: una forza conservativa. una forza radiale. una forza

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

Il motore a corrente continua

Il motore a corrente continua Il motore a corrente continua 15 marzo 2015 Ing. chiara.foglietta@uniroma3.it Università degli Studi Roma TRE Agenda Il motore a corrente continua 2 Il motore elettrico a corrente continua è un componente

Dettagli

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio).

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). MAGNETISMO Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). Le proprietà magnetiche si manifestano alle estremità del magnete, chiamate

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)!

FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)! FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)! ì Docente: Claudio Melis, Ricercatore a tempo determinato presso il Dipartimento di Fisica! Email: claudio.melis@dsf.unica.it!! Telefono

Dettagli

Modellistica grafica: Bond Graphs

Modellistica grafica: Bond Graphs 1. - Bond Graphs 1.1 1 Modellistica grafica: Bond Graphs In qualsiasi campo energetico è sempre possibile scomporre il sistema in parti elementari che si interconnettono ad altre tramite delle porte energetiche,

Dettagli

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991)

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) 1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della

Dettagli

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B.

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B. Φ ε ds ds dφ = dt Legge di Faraday E x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di q in un campo E

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014 Prova scritta del corso di Fisica con soluzioni Prof. F. icci-tersenghi 14/11/214 Quesiti 1. Si deve trascinare una cassa di massa m = 25 kg, tirandola con una fune e facendola scorrere su un piano scabro

Dettagli

Fisica Generale II (prima parte)

Fisica Generale II (prima parte) Corso di Laurea in Ing. Medica Fisica Generale II (prima parte) Cognome Nome n. matricola Voto 4.2.2011 Esercizio n.1 Determinare il campo elettrico in modulo direzione e verso generato nel punto O dalle

Dettagli

Esempi di modelli fisici

Esempi di modelli fisici 0.0..2 Esempi di modelli fisici ) Dinamica del rotore di un motore elettrico. Si consideri un elemento meccanico con inerzia J, coefficiente di attrito lineare che ruota alla velocità angolare ω al quale

Dettagli

Modellistica di sistemi elettrici e magnetici

Modellistica di sistemi elettrici e magnetici Modellistica di sistemi elettrici e magnetici Modellistica di sistemi elettrici e magnetici Per i circuiti elettrici si utilizzano la legge di Ohm ed i principi di Kirchoff per il caso generale di circuiti

Dettagli

Prova scritta del corso di Fisica e Fisica 1 con soluzioni

Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prof. F. Ricci-Tersenghi 17/02/2014 Quesiti 1. Un frutto si stacca da un albero e cade dentro una piscina. Sapendo che il ramo da cui si è staccato

Dettagli

Lezione 18. Motori elettrici DC a magneti permanenti. F. Previdi - Controlli Automatici - Lez. 18

Lezione 18. Motori elettrici DC a magneti permanenti. F. Previdi - Controlli Automatici - Lez. 18 Lezione 18. Motori elettrici DC a magneti permanenti F. Previdi - Controlli Automatici - Lez. 18 1 1. Struttura di un motore elettrico DC brushed Cilindro mobile di materiale ferromagnetico detto rotore;

Dettagli

Campo magnetico e forza di Lorentz (II)

Campo magnetico e forza di Lorentz (II) Campo magnetico e forza di Lorentz (II) Moto di particelle cariche in un campo magnetico Seconda legge elementare di Laplace Principio di equivalenza di Ampere Effetto Hall Galvanometro Moto di una particella

Dettagli

L'intensità del campo magnetico nell'aria (o nel vuoto) H0 misurato in amperspire/m, può avere in alcuni casi espressioni particolarmente semplici:

L'intensità del campo magnetico nell'aria (o nel vuoto) H0 misurato in amperspire/m, può avere in alcuni casi espressioni particolarmente semplici: C A M P O M A G N E T I C O N E L L ' A R I A L'intensità del campo magnetico nell'aria (o nel vuoto) H0 misurato in amperspire/m, può avere in alcuni casi espressioni particolarmente semplici: 1] Intensità

Dettagli

FISICA (modulo 1) PROVA SCRITTA 23/06/2014

FISICA (modulo 1) PROVA SCRITTA 23/06/2014 FISICA (modulo 1) PROVA SCRITTA 23/06/2014 ESERCIZI E1. Un corpo puntiforme di massa m = 2 Kg si muove su un percorso che ha la forma di un quarto di circonferenza di raggio R = 50 cm ed è disposta su

Dettagli

Attrito statico e attrito dinamico

Attrito statico e attrito dinamico Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza

Dettagli

Modelli di sistemi elementari. (Fondamenti di Automatica G. Ferrari Trecate)

Modelli di sistemi elementari. (Fondamenti di Automatica G. Ferrari Trecate) Modelli di sistemi elementari (Fondamenti di Automatica G. Ferrari Trecate) Circuiti elettrici Resistore R i resistenza corrente v tensione v = Ri( Induttore L i induttanza corrente v tensione L i! = v(

Dettagli

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza Induzione magne-ca a legge di Faraday- Neumann- enz e l indu7anza egge di Faraday Un filo percorso da corrente crea un campo magnetico. Con un magnete si può creare una corrente? a risposta è naturalmente

Dettagli

IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G.

IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G. IL CAMPO MAGNETICO V Classico Prof.ssa Delfino M. G. UNITÀ - IL CAMPO MAGNETICO 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz LEZIONE

Dettagli

Appunti di elettromagnetismo

Appunti di elettromagnetismo Appunti di elettromagnetismo Andrea Biancalana ottobre 1999 1 Magneti e correnti elettriche Magneti: esistono materiali che manifestano interazioni non-gravitazionali e non-elettriche; caratteristica dei

Dettagli

Campo magnetico terrestre

Campo magnetico terrestre Magnetismo Vicino a Magnesia, in Asia Minore, si trovava una sostanza capace di attrarre il ferro Due sbarrette di questo materiale presentano poli alle estremità, che si attraggono o si respingono come

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

ELETTROTECNICA. Elettromagnetismo. Livello 13. Andrea Ros sdb

ELETTROTECNICA. Elettromagnetismo. Livello 13. Andrea Ros sdb ELETTROTECNICA Livello 13 Elettromagnetismo Andrea Ros sdb Livello 13 Elettromagnetismo Sezione 1 Campi magnetici e correnti elettriche Nel 1820 il fisico Oersted scoprì che il passaggio di una corrente

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA Fisica enerale Modulo di Fisica II A.A. 05-6 INDUZIONE EETTOMANETIA Eb. Una spira rettangolare di altezza l 0 cm è 0. T completata da un contatto mobile che viene spostato verso destra alla velocità costante

Dettagli

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 1. Il campo elettrico e legge di Coulomb: esempio del calcolo generato da alcune semplici distribuzioni. 2. Il campo

Dettagli

Generatori di tensione

Generatori di tensione Correnti alternate Generatori di tensione Sinora come generatore di forza elettromotrice abbiamo preso in considerazione soltanto la pila elettrica. Questo generatore ha la caratteristica di fornire sempre

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

OSCILLAZIONI SMORZATE E FORZATE

OSCILLAZIONI SMORZATE E FORZATE OSCILLAZIONI SMORZATE E FORZATE Questo esperimento permette di studiare le oscillazioni armoniche di un pendolo e le oscillazioni smorzate e smorzate-forzate. Studiando il variare dell ampiezza dell oscillazione

Dettagli

1.11.3 Distribuzione di carica piana ed uniforme... 32

1.11.3 Distribuzione di carica piana ed uniforme... 32 Indice 1 Campo elettrico nel vuoto 1 1.1 Forza elettromagnetica............ 2 1.2 Carica elettrica................ 3 1.3 Fenomeni elettrostatici............ 6 1.4 Legge di Coulomb.............. 9 1.5 Campo

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Esercizio 1 (7 punti): Nella regione di spazio compresa tra due cilindri coassiali

Dettagli

La corrente alternata

La corrente alternata La corrente alternata Corrente continua e corrente alternata Le correnti continue sono dovute ad un generatore i cui poli hanno sempre lo stesso segno e pertanto esse percorrono un circuito sempre nello

Dettagli

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico Il campo magnetico n Le prime osservazioni dei fenomeni magnetici risalgono all antichità n Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro n Un ago magnetico

Dettagli

Test Esame di Fisica

Test Esame di Fisica Test Esame di Fisica NOTA: per le domande a risposta multipla ogni risposta corretta viene valutata con un punto mentre una errata con -0.5 punti. 1) Una sola delle seguenti uguaglianze non e corretta?

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1 Liceo Scientifico L. Cremona - Milano. Classe: TEST DI FISICA. Magnetismo. Docente: M. Saita Cognome: Nome: Dicembre 2015 ispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova:

Dettagli

Nome: Cognome: Matricola:

Nome: Cognome: Matricola: Esercizio 1: Una particella ++ si trova in uiete a una istanza = 100 µm a un piano metallico verticale mantenuto a potenziale nullo. i. Calcolare le componenti el campo E in un generico punto P el semispazio

Dettagli

Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007

Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 y Nel sistema di figura posto in un piano verticale il carrello A scorre con vinco- q, R M lo liscio lungo l asse verticale. Il

Dettagli

df = I dl B df = dq v B

df = I dl B df = dq v B Forza Magnetica su un conduttore Forza magnetica agente su un filo percorso da corrente Consideriamo un filo percorso da una corrente in presenza di un campo magnetico. Agirà una forza su ciascuna delle

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ).

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ). ESERCIZI 1) Un razzo viene lanciato verticalmente dalla Terra e sale con accelerazione a = 20 m/s 2. Dopo 100 s il combustibile si esaurisce e il razzo continua a salire fino ad un altezza massima h. a)

Dettagli

UNIVERSITA degli STUDI del SANNIO

UNIVERSITA degli STUDI del SANNIO UNIVERSITA degli STUDI del SANNIO FACOLTA di INGEGNERIA CORSO di LAUREA in INGEGNERIA TRACCE DI FISICA II (aggiornato al luglio 9) Calcolare, per una sfera di raggio R, l energia del campo elettrostatico

Dettagli

Esercizi relativi alla legge di Faraday-Lenz

Esercizi relativi alla legge di Faraday-Lenz Esercizi relativi alla legge di Faraday-Lenz La legge di Faraday-Lenz permette di associare d una generica variazione di flusso magnetico una forza elettromotrice indotta tramite la relazione f e.m. =

Dettagli

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira.

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira. Fenomeni Magnetici Campo Magnetico e Forza di Lorentz Moto di cariche in campo magnetico Momento e campo magnetico di una spira Legge di Ampère Solenoide Campo Magnetico I fenomeni magnetici possono essere

Dettagli

Fig. 1: rotore e statore di una dinamo

Fig. 1: rotore e statore di una dinamo La dinamo La dinamo è una macchina elettrica rotante per la trasformazione di lavoro meccanico in energia elettrica, sotto forma di corrente continua. Costruttivamente è costituita da un sistema induttore

Dettagli

Dinamica del punto materiale

Dinamica del punto materiale Dinamica del punto materiale Formule fondamentali L. P. 5 Aprile 2010 N.B.: Le relazioni riportate sono valide in un sistema di riferimento inerziale. Princìpi della dinamica Secondo principio della dinamica

Dettagli

Strumenti Indicatori Analogici Elettromeccanici

Strumenti Indicatori Analogici Elettromeccanici Facoltà di Ingegneria Università degli Studi di Firenze Dipartimento di Elettronica e Telecomunicazioni Strumenti Indicatori Analogici Elettromeccanici Ing. Andrea Zanobini Dipartimento di Elettronica

Dettagli

Studio del comportamento. Esercitazione 02

Studio del comportamento. Esercitazione 02 DINAMICA DELLE MACCHINE E DEGLI IMPIANTI ELETTRICI: Stuio el comportamento inamico i i un elettromagnete t Esercitazione Moellizzazione i un sistema i inuttori Sistema i inuttori: i è un multiporta Legame

Dettagli

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente

Dettagli

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G. L INDUZIONE ELETTROMAGNETICA V Scientifico Prof.ssa Delfino M. G. INDUZIONE E ONDE ELETTROMAGNETICHE 1. Il flusso del vettore B 2. La legge di Faraday-Neumann-Lenz 3. Induttanza e autoinduzione 4. I circuiti

Dettagli

rdr = 1 2!Bl2 = 0:5 V:

rdr = 1 2!Bl2 = 0:5 V: Lauree in Ing. Gest. dell Inform. e Industr. e Ing. Ambientale A.A. 2010/2011 Corso di Fisica Generale II_con Lab. 28 Gilberto Giugliarelli 4.1 Una sbarretta conduttrice di lunghezza l = 10 cm ruota con

Dettagli

INTERAZIONE ELETTROMAGNETICA. Una corrente che passa in un conduttore genera un campo magnetico intorno al conduttore stesso.

INTERAZIONE ELETTROMAGNETICA. Una corrente che passa in un conduttore genera un campo magnetico intorno al conduttore stesso. INTERAZIONE ELETTROMAGNETICA Una corrente che passa in un conduttore genera un campo magnetico intorno al conduttore stesso. INTERAZIONE ELETTROMAGNETICA L'intensità del campo magnetico è proporzionale

Dettagli

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla

Dettagli

FORMULARIO ELETTROMAGNETISMO

FORMULARIO ELETTROMAGNETISMO FORMULARIO ELETTROMAGNETISMO Forza di Coulomb : forza che intercorre tra due particelle cariche Campo elettrico : quantità vettoriale generata da una carica Densità di carica superficiale, volumetrica

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Cinematica Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale - a.a.

Dettagli

Esercitazione 3. Soluzione Il raggio della spira varia secondo la legge A = ¼D2. = ¼ 4 4 (D 0 2vt) 2 ; B = BA = ¼ 4 B(D 0 2vt) 2 :

Esercitazione 3. Soluzione Il raggio della spira varia secondo la legge A = ¼D2. = ¼ 4 4 (D 0 2vt) 2 ; B = BA = ¼ 4 B(D 0 2vt) 2 : 19 Gilberto Giugliarelli 3.1 Una spira circolare di materiale conduttore elastico viene stirata (facendo in modo che continui ad avere forma circolare) fino ad assumere un diametro D 0 = 24.0 cm. Un campo

Dettagli

Esame di Fisica Data: 7 Giugno Fisica. 7 Giugno Problema 1

Esame di Fisica Data: 7 Giugno Fisica. 7 Giugno Problema 1 Fisica 7 Giugno 212 ˆ Esame meccanica: problemi 1, 2 e 3. ˆ Esame elettromagnetismo: problemi 4, 5 e 6. ˆ Segnare con una croce l opzione richiesta: ecupero compitino Appello esame Problema 1 Un ascensore

Dettagli

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1 Problemi di Fisica per l ammissione alla Scuola Galileiana 2015-2016 Problema 1 Un secchio cilindrico di raggio R contiene un fluido di densità uniforme ρ, entrambi ruotanti intorno al loro comune asse

Dettagli

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I):

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni Parte I: 06-07-06 Problema. Un punto si muove nel piano xy con equazioni xt = t 4t, yt = t 3t +. si calcolino le leggi orarie per le

Dettagli

Esercizio (tratto dal Problema 3.35 del Mazzoldi 2)

Esercizio (tratto dal Problema 3.35 del Mazzoldi 2) 1 Esercizio (tratto dal Problema 3.35 del Mazzoldi 2) Un corpo sale lungo un piano inclinato (θ 18 o ) scabro (µ S 0.35, µ D 0.25), partendo dalla base con velocità v 0 10 m/s e diretta parallelamente

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Esempi di forze conservative Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Coordinate e Sistemi di Riferimento

Coordinate e Sistemi di Riferimento Coordinate e Sistemi di Riferimento Sistemi di riferimento Quando vogliamo approcciare un problema per risolverlo quantitativamente, dobbiamo per prima cosa stabilire in che sistema di riferimento vogliamo

Dettagli

campo magnetico Introduzione

campo magnetico Introduzione campo magnetico ntroduzione F i s i c a s p e r i m e n t a l e Si era detto: La forza elettrica è descritta dalla legge di Coulomb Tuttavia: La verifica sperimentale era fatta in condizioni statiche La

Dettagli

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite 59 Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite Questa proprietà non è uniforme su tutto il materiale, ma si localizza prevelentemente

Dettagli

Fisica 2 per biotecnologie: Prova in itinere 26 Maggio 2014

Fisica 2 per biotecnologie: Prova in itinere 26 Maggio 2014 Fisica 2 per biotecnologie: Prova in itinere 26 Maggio 2014 Scrivere immediatamente, ED IN EVIDENZA, sui due fogli protocollo consegnati (ed eventuali altri fogli richiesti) la seguente tabella: NOME :...

Dettagli

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica Don Bosco 014/15, Classe B - Primo compito in classe di Fisica 1. Enuncia il Teorema dell Energia Cinetica. Soluzione. Il lavoro della risultante delle forze agenti su un corpo che si sposta lungo una

Dettagli

b) DIAGRAMMA DELLE FORZE

b) DIAGRAMMA DELLE FORZE DELLO SCRITTO DELL SETTEMBRE 5 - ESERCIZIO - Un corpo di massa m = 9 g e dimensioni trascurabili è appeso ad uno dei capi di una molla di costante elastica k = 5 N/m e lunghezza a riposo L = cm. L'altro

Dettagli

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI Magnete FENOMENI MAGNETICI Che cos è un magnete? Un magnete è un materiale in grado di attrarre pezzi di ferro Prof. Crosetto Silvio 2 Prof. Crosetto Silvio Quando si avvicina ad un pezzo di magnetite

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Corso di Fisica Per Informatica Esercitazioni 2009

Corso di Fisica Per Informatica Esercitazioni 2009 Coordinate Esercitatore: Stefano Argirò stefano.argiro@unito.it tel 011670-7372 Ricevimento: su appuntamento tramite e-mail http://www.to.infn.it/ argiro 1 Esercitazioni di Fisica - Vettori 1. Dato un

Dettagli

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO FORMULARIO DI FISICA 3 MOTO OSCILLATORIO Corpo attaccato ad una molla che compie delle oscillazioni Calcolare la costante elastica della molla 2 2 1 2 2 ω: frequenza angolare (Pulsazione) ; T: Periodo

Dettagli

isolanti e conduttori

isolanti e conduttori 1. ELETTROMAGNETISMO 1.1. Carica elettrica 1.1.1. Storia: Franklin Thomson Rutherford Millikan 1.1.2. L atomo: struttura elettroni di valenza (legame metallico) isolanti e conduttori ATOMO legge di conservazione

Dettagli

APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO

APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO Quando un punto materiale P si sposta di un tratto s per effetto di una forza F costante applicata

Dettagli

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011.

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011. Cognome Nome Numero di matricola Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 00/0 Prova in itinere del 4/3/0. Tempo a disposizione: h30 Modalità di risposta: scrivere la formula

Dettagli

Le osservazioni e i modelli: update

Le osservazioni e i modelli: update Disclaimer: credits given in the first presentation of this series Le osservazioni e i modelli: update n La quantità di moto (mv) si conserva sempre nelle interazioni! d! F = ( mv) dl = 0 dt ds = Q ε 0

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Fisica Classe VB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 FORZA E CAMPI ELETTRICI (Richiami) Teoria sui vettori I

Dettagli

Lezione 15 Geometrie lineari di confinamento magnetico

Lezione 15 Geometrie lineari di confinamento magnetico Lezione 15 Geometrie lineari di confinamento magnetico G. Bosia Universita di Torino G. Bosia Introduzione alla fisica del plasma Lezione 15 1 Disuniformità con gradiente in direzione del campo ( ) Una

Dettagli

Fisica II. 3 Esercitazioni

Fisica II. 3 Esercitazioni etem Esercizi svolti Esercizio 3. alcolare le componenti cartesiane del campo elettrico generato da un dipolo p orientato lungo l asse x in un punto lontano rispetto alle dimensioni del dipolo. Soluzione:

Dettagli

Elettrostatica II. Energia Elettrostatica (richiamo) Potenziale Elettrico. Potenziale di cariche puntiformi. Superfici equipotenziali.

Elettrostatica II. Energia Elettrostatica (richiamo) Potenziale Elettrico. Potenziale di cariche puntiformi. Superfici equipotenziali. Elettrostatica II Energia Elettrostatica (richiamo) Potenziale Elettrico Potenziale di cariche puntiformi Superfici equipotenziali Condensatori Dielettrici Energia potenziale di due cariche Si può dimostrare

Dettagli

Le macchine in corrente continua sono composte da una parte fissa (statore o induttore) e da una parte rotante (rotore o indotto).

Le macchine in corrente continua sono composte da una parte fissa (statore o induttore) e da una parte rotante (rotore o indotto). Il motore in c.c. è stato il motore elettrico maggiormente impiegato negli azionamenti a velocità variabile; ciò è dovuto sia alla maggiore semplicità costruttiva dei convertitori con uscita in corrente

Dettagli

SCIENZE INTEGRATE (FISICA) - settore tecnologico COMPETENZE DISCIPLINARI CLASSI SECONDE

SCIENZE INTEGRATE (FISICA) - settore tecnologico COMPETENZE DISCIPLINARI CLASSI SECONDE SCIENZE INTEGRATE (FISICA) - settore tecnologico COMPETENZE DISCIPLINARI CLASSI SECONDE Saper analizzare un fenomeno o un problema riuscendo ad individuare gli elementi significativi e le relazioni coinvolte,

Dettagli

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente?

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Si abbia una molla verticale al cui estremo inferiore

Dettagli

Mutua induzione S P E R I M E N T A L E = MI 1. Dipende solo dalla geometria dei circuiti

Mutua induzione S P E R I M E N T A L E = MI 1. Dipende solo dalla geometria dei circuiti D A T Mutua induzione S P R I M N T A = MI 1 Dipende solo dalla geometria dei circuiti D A T Disclaimer: credits given in the irst presentation o this series in generale S P R I M N T A per reciprocità

Dettagli

f s m s n f s =f s,max =m s n f d =m d n

f s m s n f s =f s,max =m s n f d =m d n Serway, Jewett Principi di Fisica IV Ed. Capitolo 5 Sperimentalmente: f s m s n Con m s costante di attrito statico; n=modulo della forza normale. L uguaglianza vale quando (in condizioni di moto imminente):

Dettagli

Quesiti di Fisica Generale

Quesiti di Fisica Generale Quesiti di Fisica Generale 3. Elettromagnetismo prof. Domenico Galli, prof. Umberto Marconi 3 aprile 2012 I compiti scritti di esame del prof. D. Galli e del prof. U. Marconi propongono 4 quesiti, sorteggiati

Dettagli

La fisica di Feynmann Meccanica

La fisica di Feynmann Meccanica La fisica di Feynmann Meccanica 1.1 CINEMATICA Moto di un punto Posizione r = ( x, y, z ) = x i + y j + z k Velocità v = dr/dt v = vx 2 + vy 2 + vz 2 Accelerazione a = d 2 r/dt 2 Moto rettilineo Spazio

Dettagli

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I ELETTOTECNICA (0 CFU) CS INGEGNEIA MATEMATICA I prova in itinere 20 Novembre 2009 SOLUZIONI - - D. (punti 4 ) ) Spiegare cosa si intende per DUALITA nello studio dei circuiti elettrici. 2) Scrivere per

Dettagli

Misure di campi magnetici: bobine di Helmholtz e solenoidi

Misure di campi magnetici: bobine di Helmholtz e solenoidi Misure di campi magnetici: bobine di Helmholtz e solenoidi - S.S., 12 Settembre 2007 - Per il calcolo del campo magnetico prodotto da una corrente che fluisce in un circuito di forma nota è utile servirsi

Dettagli

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa 1 Olimpiadi di Fisica 015 ampo elettrico Franco illa 1. ate le cariche Q = -1 µ e Q = - µ (ale in cm O=0, O=10, =10, O=0) determinare: il potenziale elettrico ed il campo elettrico E (modulo, direzione

Dettagli