1b. Un triangolo isoscele ABC di base AB = 5 cm è inscritto in un cerchio di raggio

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1b. Un triangolo isoscele ABC di base AB = 5 cm è inscritto in un cerchio di raggio"

Transcript

1 1a. Un triangolo isoscele AB di base AB = 5 cm è inscritto in un cerchio di raggio R = 5 cm e centro in O. In A e B sono poste due cariche positive uguali q A = q B = 6 ; la carica in, q, è tale che il campo in O si annulla. Il valore di q è circa pari a (in ) (A) 7.2 (B) 10.4 () 9.6 (D) 8.5 (E) 6.0 Si calcola il cateto OH dal triangolo rettangolo AOH (dove AO =R, AH = AB /2). La componente verticale del campo dovuto a q A è Si impone A O H E A B E A 1b. Un triangolo isoscele AB di base AB = 5 cm è inscritto in un cerchio di raggio R = 5 cm e centro in O. In A e B sono poste due cariche positive uguali q A = q B = 6 ; il campo nel punto vale in modulo circa (in N/) (A) (B) () (D) (E) Si calcola il cateto OH dal triangolo rettangolo AOH e l ipotenusa A dal triangolo AH. Le componenti orizzontali dei campi E A ed E B si elidono e la risposta è A O H B 2a. Ai vertici del rettangolo ABD della figura vi sono quattro cariche, q A, q B, q, q D. Quattro superfici sferiche 1,2,3,4 con centro nel piano di ABD intersecano il piano nelle circonferenze indicate con i 1 numeri 1,2,3,4. I flussi di E uscenti dalle superfici sferiche valgono: 1 = 113 V m, 2 = 226 V m, 3 = 339 V m D 4 = 113 V m. La carica q nel punto vale 2 (A) 2 n (B) 1 n () 0 n A (D) 1 n (E) 2 n x B Poichè il flusso è proporzionale alla carica contenuta, il disegno si traduce nel sistema di equazioni 3 4 Per sostituzioni progressive si ricava q. 1

2 2b. Una carica Q 1 = 2 si trova al centro di un cubo di lato l = 10 cm. Una carica Q 2 è a distanza d = 35 cm dal centro del cubo come indicato in figura. Se il flusso del campo elettrico generato da Q 1 e Q 2 attraverso la faccia ombreggiata del cubo indicata in figura è nullo, la carica Q 2 vale all incirca (si tenga conto del fatto che d>>l). (A) 19 (B) 38 * () 57 (D) 75 (E) 113 Q 1 Q 2 Il flusso di Q 1 attraverso la faccia è un sesto del flusso attraverso la superficie del cubo (Q 1 / 0 ) e diretto verso destra. Se Q 2 è positiva, il suo flusso attraverso la faccia è diretto verso sinistra e può compensare il flusso di Q 1. Si noti che la distanza tra Q 2 e la faccia (30 cm) è molto maggiore di l/2 (5 cm) per cui il flusso di Q 2 è praticamente uguale al campo al centro del cubo moltiplicato per l 2 3a. Una carica q = 5 m è posta nell origine O di un sistema di assi cartesiani; un altra carica Q = 3 m è posta nel punto A(5 m,0) dell asse delle x. L ascissa x del punto P della retta y = a con a = m in cui il potenziale elettrico si annulla vale circa (in metri) (A) (B) 7.75 () 2.81 (D) 7.81 (E) y O,q P(x,a) A,Q x Sinteticamente: lungo l asse delle x, il potenziale si annulla nei punti di ascissa OA 5/8 e OA 5/2; il luogo dei punti P del piano xy dove il potenziale si annulla è un ellisse determinato dall equazione Fissata l ordinata y=a di P, l equazione dell ellisse diventa un equazione di secondo grado in P(x) che può avere due soluzioni distinte (discriminante >0), due soluzioni coincidenti (discriminante nullo) e nessuna soluzione (discriminante <0) a seconda del valore di a. Poiché viene indicata una sola soluzione, il valore di a è stato scelto in modo da annullare il discriminante e la soluzione si trova a metà tra i punti dell asse delle x dove il potenziale si annulla (125/16 m). Analiticamente: 3b. Nel piano x,y vi è un campo elettrico uniforme, i potenziali dei punti A,B, della figura (coordinate in metri) sono: V A = 6 V, V B = 2V, V = 4V. La componente E y del campo elettrico vale (A) 0.75 V/m (B) 1 V/m () 0 V/m (D) 0.75 V/m (E) 1 V/m y A(0,4) x Si deve calcolare il potenziale nell origine (punto di mezzo tra e B) 2 ( 3, 0) B(3, 0)

3 come V O =(V +V B )/2 e scrivere 4a. Due cariche di segno opposto e di valore assoluto q = 6 n sono poste nel vuoto a distanza D = 5 cm. Il punto P è posto a distanza L = 3 D dal centro del dipolo, mentre l angolo ϑ è di 20. Il rapporto tra il potenziale elettrico esatto e quello approssimato creato dal dipolo nel punto P vale circa (A) 0.22 (B) 0.43 () 1.02 (D) 3.53 (E) O D L ϑ P Posta l origine cartesiana O nel centro del dipolo, i potenziali in P(Lcos, Lsin ) esatti e approssimati sono ( ) 4b. Due dipoli elettrici uguali D = 10 9 m di piccole dimensioni sono posti sullo stesso asse a distanza L = 1.5 cm. La forza con cui attraggono vale circa (in N) (A) 0.14 (B) 1.07 () 5.40 (D) (E) 86.4 Indichiamo con <<L la distanza tra le cariche q del dipolo D =q. Il campo elettrico approssimato del primo dipolo a distanza L lungo l asse del dipolo stesso posto nell origine è (vedi l esercizio precedente) La forza di attrazione è ( ) 5a. Un protone nel vuoto (m = kg, q = ) con velocità iniziale v 0 = m/s penetra per una distanza d = 0.2 m in un campo elettrico uniforme prima di arrestarsi. L'intensità media del campo elettrico E che lo frena è di (A) 67 kv/m (B) 157 kv/m () 235 kv/m (D) 470 kv/m (E) 3

4 5b. Un protone (e= , m= kg) si trova inizialmente nel punto O(0,0) tra due cariche fisse positive uguali q = poste lungo l asse delle y a distanze d = 2 nm. Il protone si muove nel verso positivo dell asse delle x con velocità iniziale v x (0) = 1 m/s. Nel punto P distante a = nm dall origine la sua velocità sarà di circa (A) 5 km/s (B) 10 km/s () 15 km/s (D) 20 km/s (E) km/s 2d q q y v x (0) a P v x? Si uguagliano le energie potenziale+cinetica nei punti O e P L energia cinetica iniziale è trascurabile. 6a. Una carica puntiforme q = 0.2 e massa m = kg si trova inizialmente a distanza d 0 = 2 m dal centro di una sfera isolante uniformemente carica di raggio R = 1 m e carica Q = 10 4 e si dirige verso essa con velocità iniziale v 0 = 232 m/s. La massima distanza raggiunta dalla carica rispetto al centro della sfera vale circa (in m) (A) 2.0 (B) 3.0 () 3.6 (D) 4.0 (E) 5.0 La carica puntiforme accelera sino al centro della sfera e poi decelera allontanandosi da questa. A distanza uguale a quella di partenza (ma dalla parte opposta) ha l energia cinetica iniziale che poi consuma allontanandosi sino al punto d arresto a distanza x>r (la sfera carica si considera puntiforme). Si ha Si noti che il prodotto qq è negativo e che non vi è soluzione se la velocità iniziale supera la velocità di fuga data da 6b. Una carica puntiforme q = 0.2 e massa m = kg si trova inizialmente a distanza d 0 = 2 m dal centro di una sfera isolante uniformemente carica di raggio R = 1 m e carica Q = 10 4 e si dirige verso essa con velocità iniziale v 0 = 232 m/s. Al centro della sfera la velocità raggiunta dalla carica vale circa (in m/s) (A) 424 (B) 459 () 469 (D) 475 (E) 484 L energia cinetica finale è la somma dell energia cinetica iniziale e del lavoro fatto da E(Q) nel portare q da d a R (campo coulombiano) e da R al centro della sfera (campo proporzionale a x<r) 4

5 7a. Dati i quattro condensatori del disegno con 1 = 1 F, 2 = 2 F, 3 = 3 F, 4 = 5 F, il rapporto Q 1 /Q 2 tra le cariche su 1 e su 2 vale (A) 9/4 (B) 9/5 () 1/6 (D) 5/2 (E) 5/ V La carica di Q 1 si divide tra 2 e 3 proporzionalmente ai valori dei condensatori in parallelo 7b. Due condensatori a facce piane e parallele, 1i e 2i, sono posti in serie e collegati a un generatore da V g = 1 kv; la caduta di tensione sul primo condensatore è V 1i = 250 V. Quando il primo condensatore perde il dielettrico la sua capacità diventa 1f = 1i / r ; la caduta di tensione ai suoi capi diventa V 1f = 333 V e attraverso il generatore fluisce complessivamente una carica Q i Q f = 1 m. 2i vale (A) 2.0 F (B) 2.4 F () 4 F (D) 5 F (E)12 F La carica iniziale Q i è legata alle cadute di potenziale da cui ossia e la capacità equivalente iniziale dei due condensatori in serie è In modo simile per le capacità finali ossia e la capacità equivalente finale è Il passaggio di carica pari in valore assoluto a 8a. Un voltaggio continuo V è applicato all istante iniziale al circuito della figura dove = 3 mf e R 1 = 2 R 2. Molto tempo dopo la chiusura dell interruttore l energia immagazzinata in è di 37.5 mj. Il voltaggio V del generatore vale (A) 6 V (B) 9 V () 10 V (D) 12 V (E) 15 V V R 1 R 2 Il voltaggio V di equilibrio su è quello del partitore 5

6 e l energia elettrostatica è 9a. on riferimento al problema precedente, la carica del condensatore è per metà completata un tempo t½ = 6.93 ms dopo il collegamento del generatore. La resistenza R 2 vale circa (A) 1 (B) 2 () 3 (D) 4 (E) 5 Durante la carica le due resistenze sono in parallelo a in quanto la somma algebrica delle loro correnti dà la corrente in. La costante di tempo è perciò Il tempo di dimezzamento è ( ) 8b. Su di un nastro isolante lungo d = 4 m e largo L = 3 cm è depositato uno strato di rame (u) alto h = 5 m. Agli estremi del nastro è applicata una differenza di potenziale V = 2 V (resistività di u a 20 = m). La corrente che circola nel nastro a 20 vale circa (A) 0.25 A (B) 0.75 A () 1.34 A (D) 2.68 A (E) 4.69 A 9b. Un generatore con V = 6 V è applicato al tempo t = 0 alla rete R della figura dove il condensatore è inizialmente scarico e R 2 = 3R 1. All istante iniziale il generatore eroga W(0) = 4 W; dopo un secondo ( 1/2 ) eroga W(1) = 3 W e dopo 100 s eroga la potenza asintotica W( ) = 2 W. La resistenza R 3 vale R 1 (A) 1 (B) 4 () 9 (D) 16 (E) 25 Il parallelo tra R 1 e R 2 vale V R 2 R 3 La differenza di potenziale iniziale sulle resistenze in parallelo è il voltaggio del generatore (su scarico non vi è differenza di potenziale) e la potenza erogata dal generatore è A carica completa, non vi è corrente in e il generatore vede in serie a R 3 6

7 10a. Una batteria da V = 12 V e resistenza interna r = 0.1 alimenta un trenino elettrico con motore che assorbe una potenza pari a W = 2 W e ha resistenza maggiore di r. Se la batteria ha una carica pari a Q = 1 A h si scarica in un tempo circa pari a (A) s (B) s () s (D) 4000 s (E) 3600 s Una soluzione approssimata si ha trascurando la resistenza interna e la potenza su questa dissipata; questo permette di eguagliare la potenza W assorbita dal trenino (resistenza equivalente R) a quella emessa dal generatore La soluzione esatta si ha risolvendo il circuito nelle incognite I,R ottenendo un equazione di secondo grado in R e prendendo in considerazione solo la radice positiva maggiore Il tempo esatto è 10b. Quando all'impianto elettrico di casa (V h = 220 V e W h =3 kw) è attaccata la lavatrice in fase di riscaldamento (W wm = 2 kw) e il ferro da stiro l'impianto elettrico salta. La corrente elettrica efficace assorbita dal ferro da stiro è di almeno (A) 1.4 A (B) 3.6 A () 4.5 A (D) 9.1 A (E) 10.0 Le correnti efficaci dei dispositivi attaccati in parallelo si sommano sino a raggiungere il limite di potenza W h =I max 220V. Poiché la massima potenza disponibile per il ferro da stiro è 1kW, la corrente nel ferro da stiro non deve superare 1kW/220V. 11a. Tre lunghi fili perpendicolari al piano del disegno lo incontrano nei punti A(0,a), B(b,0), (0, a) dove a = 3 m e b = 6.5 m. I tre fili sono percorsi dalle correnti I A =I B =I = 1 A, tutte e tre uscenti dal piano del disegno. L ascissa di un punto P dell asse delle x dove il campo B prodotto dalle tre correnti si annulla vale circa (in metri) (A) 0,87 e 3,47 (B)1.8 () 2.8 (D) 3.1 (E) 4.0 y A B x a B x Per ascisse x positive, la risultante del campo B prodotto dalle correnti in A e è diretta nella direzione positiva dell asse della y e vale due volte la proiezione di B sull asse y (vedi figura) Per x<b, il campo B prodotto dalla corrente in B è diretto nella direzione negativa dell asse delle y; imponendo che BB sia uguale a si ha L equazione ha due radici positive (eventualmente coincidenti) oppure nessuna soluzione. 7

8 11b. Un solenoide di 300 spire avvolte su un cilindro di rame ( r 1) lungo L = 40 cm con una sezione S = 8 cm 2 porta una corrente I = 1.2 A. Il flusso di B attraverso una sezione del solenoide vale (A) 0.9 Wb (B) 5.0 Wb () 43.0 Wb (D) 130 Wb (E) 415 Wb 12a. In due conduttori cilindrici identici molto lunghi di raggio R, paralleli tra loro e a notevole distanza l uno dall altro, scorrono con densità omogenea le correnti I 1 e I 2 di verso opposto, con I 1 entrante nel piano del foglio e I 2 uscente. La circuitazione del campo magnetico lungo i percorsi chiusi 1 e 2 indicati in figura vale rispettivamente 0 e 20 π 10-7 T m. I 2 vale circa in valore assoluto (in A) (A) 16 (B) 32 () 64 (D) 128 (E) R Poiché la circuitazione lungo 1 è nulla e la sezione del conduttore a sinistra coperta da 1 è doppia rispetto alla sezione coperta del conduttore a destra, la densità di corrente del conduttore a sinistra è la metà del conduttore di destra, ossia I 2 =2I 1. La circuitazione lungo 2 si calcola sommando algebricamente le correnti concatenate nei due conduttori, proporzionali alle aree racchiuse da 2 R I 1 I 1 R/2 R/2 1 2 I 2 I 2 [ ( ) ] 12b. Un solenoide toroidale ideale è costituito da 200 spire circolari di sezione S = 0.28 m 2 percorse da una corrente I = 10 A. Il centro di ogni spira dista R m = 40 cm dal centro del solenoide. Il campo magnetico B a distanza r = cm dal centro del toroide vale circa in modulo (A) 3.14 mt (B) 4.8 mt () 6.28 mt (D) 8.00 mt (E) 9.81 mt La sezione del toroide è 2R m r Dalla relazione tra circuitazione di B lungo una circonferenza di raggio r e corrente concatenata (200 I) si ha NB. Nel testo era scritto S=0.28cm, corrispondenti a un raggio di spira di circa 3 mm anziché di 30 cm. Il percorso circolare concatenava corrente solo per r 40cm e la risposta corretta per gli altri 8

9 r era 0. Per qualunque r, si accettava come valida anche la risposta corrispondente a r=40cm olte a quella indicata nel problema corretto. 13a. Una bussola con ago ruotante in un piano orizzontale è posta a Ovest di un filo metallico verticale. Quando nel filo passano degli elettroni il polo nord della bussola va a puntare verso sud. La direzione del moto degli elettroni è (A) in giù (B) in su () verso est (D) verso sud (E) verso nord A ovest di un filo verticale percorso da corrente ascendente il suo campo B è diretto verso sud. Gli elettroni lungo il filo si muovono perciò lungo la verticale discendente (in giù) quando la bussola va a sud. 13b. Nel piano del disegno vi è un lungo filo diretto come l asse delle y e passante per l origine che porta una corrente I f = 250 A e una spira rettangolare di vertici ABD le cui coordinate espresse in metri sono date nel disegno. Se la spira è costituita da n = 150 spire percorse da una corrente I s = 40 A, la risultante delle forze magnetiche sulla spira è di I f D(1,2) (2,2) I s (A) 0.1 N (B) 0.2 N () 0.3 N (D) 0.4 N (E) N O(0,0) A(1,0) B(2,0) Indicata con L l altezza della spira (2m) con d 1 (=1m) la distanza del lato prossimo e d 2 (2m) del lato distante la forza lungo x sulla spira vale 14a. Un tratto di filo rettilineo lungo L = 3 m, giacente lungo l asse delle x e percorso da una corrente I = 0.5 A, è immerso in un campo magnetico uniforme B = 0.424i+0.212j+0.212k (componenti in tesla). Il tratto di filo è sottoposto a una forza che in modulo vale (A) 0.30 N (B) 0.45 N () 0.60 N (D) 0.71 N (E) 0.90 N 14b. Due spire circolari coassiali di raggio R= 50 cm sono poste in piani paralleli orizzontali distanti d = 3 mm. La spira superiore è appesa al giogo di una bilancia. Se nelle spire circola nello stesso verso una stessa corrente I = 9.7 A, per ristabilire l equilibrio occorre aggiungere sull altro piatto una massa m circa pari a (in mg) (A) 2.0 (B) 9.8 () 25.0 (D) 37.0 (E) 98.0 m R I d 9

10 Per d<<circonferenza spira, la spira stessa è assimilabile a un filo indefinito che crea un campo e una forza attrattiva sulla spira vicina (lunga 2 R) percorsa da corrente equiversa I pari a mg 15a. Un avvolgimento costituito da N=20 spire circolari di raggio R = 60 cm appartenenti al piano xy e percorse da una corrente I è immerso in un campo B uniforme di componenti cartesiane B x = 0.50 T, B y = 0.40 T, B z = 0.45 T. Se il momento torcente sull avvolgimento vale in modulo M = 15 Nm, la corrente I dell avvolgimento è pari a circa (A) 6.9 A (B) 3.5 A () 1.8 A (D) 1.0 A (E) A 15b. Una bobina circolare di raggio R = 17 cm è composta da N=13 spire ed è percorsa da una corrente I = 6.65 A. L asse della bobina forma un angolo di =30 con un campo magnetico di intensità B = 0.8 T. Il momento della forza che agisce sulla bobina vale circa (in N m) (A) 3.14 (B) 9.81 () 16.0 (D) 29.0 A (E)

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff Esercizio Un conduttore cilindrico in rame avente sezione di area S = 4mm è percorso da una corrente

Dettagli

Fisica Generale II (prima parte)

Fisica Generale II (prima parte) Corso di Laurea in Ing. Medica Fisica Generale II (prima parte) Cognome Nome n. matricola Voto 4.2.2011 Esercizio n.1 Determinare il campo elettrico in modulo direzione e verso generato nel punto O dalle

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

(a) ;

(a) ; Corso di Fisica Generale II - A.A. 2005/2006 Proff. S. Amoruso, M. Iacovacci, G. La Rana Esercizi di preparazione alle prove intercorso ------------------------- Cap. VIII Campi elettrici e magnetici variabili

Dettagli

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa 1 Olimpiadi di Fisica 015 ampo elettrico Franco illa 1. ate le cariche Q = -1 µ e Q = - µ (ale in cm O=0, O=10, =10, O=0) determinare: il potenziale elettrico ed il campo elettrico E (modulo, direzione

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA Fisica enerale Modulo di Fisica II A.A. 05-6 INDUZIONE EETTOMANETIA Eb. Una spira rettangolare di altezza l 0 cm è 0. T completata da un contatto mobile che viene spostato verso destra alla velocità costante

Dettagli

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO FORMULARIO DI FISICA 3 MOTO OSCILLATORIO Corpo attaccato ad una molla che compie delle oscillazioni Calcolare la costante elastica della molla 2 2 1 2 2 ω: frequenza angolare (Pulsazione) ; T: Periodo

Dettagli

Campi Elettromagnetici Stazionari - a.a

Campi Elettromagnetici Stazionari - a.a Campi Elettromagnetici Stazionari - a.a. 2005-06 I Compitino - 17 Novembre 2005 Due anelli di raggio a=1 cm e sezione trascurabile, disposte come in Figura 1, coassiali tra loro e con l'asse x, in posizione

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003 Facoltà di Ingegneria Prova scritta di Fisica II - VO 5-Aprile-003 Esercizio n. Un campo magnetico B è perpendicolare al piano individuato da due fili paralleli, cilindrici e conduttori, distanti l uno

Dettagli

Prova scritta del corso di Fisica e Fisica 1 con soluzioni

Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prof. F. Ricci-Tersenghi 17/02/2014 Quesiti 1. Un frutto si stacca da un albero e cade dentro una piscina. Sapendo che il ramo da cui si è staccato

Dettagli

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A,

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A, ebbraio 1. L intensità di corrente elettrica che attraversa un circuito in cui è presente una resistenza R è di 4 A. Se nel circuito si inserisce una ulteriore resistenza di 2 Ω la corrente diventa di

Dettagli

Lezione 8. Campo e potenziale elettrici

Lezione 8. Campo e potenziale elettrici Lezione 8. Campo e potenziale elettrici Legge di Coulomb: Unitá di misura: F = 1 q 1 q 2 4πɛ 0 r 2 1 4πɛ 0 = 8.99 10 9 Nm 2 /C 2 Campi elettrici E = F/q 1 F = qe Unitá di misura del campo elettrico: [E]

Dettagli

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi 1) Una sfera conduttrice di raggio r = 5 cm possiede una carica q = 10 8 C ed è posta nel centro di un guscio sferico conduttore, di raggio interno R = 20 cm, posto in contatto con la terra (a massa).

Dettagli

Corso di Fisica Per Informatica Esercitazioni 2009

Corso di Fisica Per Informatica Esercitazioni 2009 Coordinate Esercitatore: Stefano Argirò stefano.argiro@unito.it tel 011670-7372 Ricevimento: su appuntamento tramite e-mail http://www.to.infn.it/ argiro 1 Esercitazioni di Fisica - Vettori 1. Dato un

Dettagli

Compito di Fisica II del 14/09/2009

Compito di Fisica II del 14/09/2009 Compito di Fisica II del 14/09/2009 Prof. G. Zavattini Una sbarretta conduttrice omogenea di massa m = 1g, lunghezza d = 10 cm e resistenza trascurabile è incernierata perpendicolarmente a due guide rettilinee

Dettagli

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti.

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. 1 / 1 La forza di Lorentz è: una forza conservativa. una forza radiale. una forza

Dettagli

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI Magnete FENOMENI MAGNETICI Che cos è un magnete? Un magnete è un materiale in grado di attrarre pezzi di ferro Prof. Crosetto Silvio 2 Prof. Crosetto Silvio Quando si avvicina ad un pezzo di magnetite

Dettagli

UNIVERSITA degli STUDI del SANNIO

UNIVERSITA degli STUDI del SANNIO UNIVERSITA degli STUDI del SANNIO FACOLTA di INGEGNERIA CORSO di LAUREA in INGEGNERIA TRACCE DI FISICA II (aggiornato al luglio 9) Calcolare, per una sfera di raggio R, l energia del campo elettrostatico

Dettagli

Tutorato di Fisica 2 Anno Accademico 2010/2011

Tutorato di Fisica 2 Anno Accademico 2010/2011 Matteo Luca Ruggiero DIFIS@Politecnico di Torino Tutorato di Fisica 2 Anno Accademico 2010/2011 () 2 1.1 Una carica q è posta nell origine di un riferimento cartesiano. (1) Determinare le componenti del

Dettagli

UNIVERSITA DEGLI STUDI DI GENOVA SCUOLA POLITECNICA FISICA GENERALE I

UNIVERSITA DEGLI STUDI DI GENOVA SCUOLA POLITECNICA FISICA GENERALE I FISICA GENERALE I - Sede di Spezia Prova A del 15/02/2016 ME 1 Un pezzetto di plastilina di massa m=100 g cade partendo da fermo da un altezza h= 5.0 m su una lastrina orizzontale di massa M=120 g attaccata

Dettagli

Esercizi di magnetismo

Esercizi di magnetismo Esercizi di magnetismo Fisica II a.a. 2003-2004 Lezione 16 Giugno 2004 1 Un riassunto sulle dimensioni fisiche e unità di misura l unità di misura di B è il Tesla : definisce le dimensioni [ B ] = [m]

Dettagli

i. Calcolare le componenti del campo in un generico punto P dell asse z. i. Calcolare la densità superficiale di corrente che fluisce nella lamina.

i. Calcolare le componenti del campo in un generico punto P dell asse z. i. Calcolare la densità superficiale di corrente che fluisce nella lamina. Esercizio 1: Una cilindro dielettrico di raggio R = 10 cm e lunghezza indefinita ha una delle sue basi che giace sul piano xy, mentre il suo asse coincide con l asse z. Il cilindro possiede una densità

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Esercizio 1 (7 punti): Nella regione di spazio compresa tra due cilindri coassiali

Dettagli

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA Esercizio 1 Due cariche q 1 e q 2 sono sull asse x, una nell origine e l altra nel punto x = 1 m. Si trovi il campo elettrico

Dettagli

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1 Liceo Scientifico L. Cremona - Milano. Classe: TEST DI FISICA. Magnetismo. Docente: M. Saita Cognome: Nome: Dicembre 2015 ispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova:

Dettagli

Esercitazione 1. Matteo Luca Ruggiero 1. Anno Accademico 2010/ Dipartimento di Fisica del Politecnico di Torino

Esercitazione 1. Matteo Luca Ruggiero 1. Anno Accademico 2010/ Dipartimento di Fisica del Politecnico di Torino Esercitazione 1 Matteo Luca Ruggiero 1 1 Dipartimento di Fisica del Politecnico di Torino Anno Accademico 2010/2011 ML Ruggiero (DIFIS) Esercitazione 1: Elettrostatica E1.2010/2011 1 / 29 Sommario 1 Riferimenti

Dettagli

Cognome Nome Matricola

Cognome Nome Matricola Cognome Nome Matricola DOCENTE Energetica Biomedica DM 270 Elettronica Informazione Informatica DM509 Problema 1 Nel circuito di figura (a) i resistori hanno valori tali che R 1 / = 2 e i condensatori

Dettagli

Problemi di Fisica. Elettromagnetismo. La Carica Elettrica e la Legge di Coulomb

Problemi di Fisica. Elettromagnetismo. La Carica Elettrica e la Legge di Coulomb Problemi di isica Elettromagnetismo La arica Elettrica e la Legge di oulomb Data la distribuzione di carica rappresentata in figura, calcolare la forza totale che agisce sulla carica Q posta nell origine

Dettagli

1.2 Moto di cariche in campo elettrico

1.2 Moto di cariche in campo elettrico 1.2 Moto di cariche in campo elettrico Capitolo 1 Elettrostatica 1.2 Moto di cariche in campo elettrico Esercizio 11 Una carica puntiforme q = 2.0 10 7 C, massa m = 2 10 6 kg, viene attratta da una carica

Dettagli

Elettromagnetismo

Elettromagnetismo Elettromagnetismo 1. Una bolla di sapone di raggio r = 7.0 cm è caricata al potenziale V 1 = 150 V. La parete della bolla ha spessore s = 5.2 x 10-6 cm. Se si fa scoppiare la bolla e si suppone di raccogliere

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

Compitino di Fisica II 15 Aprile 2011

Compitino di Fisica II 15 Aprile 2011 Compitino di Fisica II 15 Aprile 2011 Alcune cariche elettriche q sono disposte ai vertici di un quadrato di lato a come mostrato in figura. Si calcoli: +2q y +q a) il momento di dipolo del sistema; b)

Dettagli

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio).

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). MAGNETISMO Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). Le proprietà magnetiche si manifestano alle estremità del magnete, chiamate

Dettagli

Compito di Fisica Generale (Meccanica) 13/01/2014

Compito di Fisica Generale (Meccanica) 13/01/2014 Compito di Fisica Generale (Meccanica) 13/01/2014 1) Un punto materiale inizialmente in moto rettilineo uniforme è soggetto alla sola forza di Coriolis. Supponendo che il punto si trovi inizialmente nella

Dettagli

0 : costante dielettrica nel vuoto

0 : costante dielettrica nel vuoto 0 : costante dielettrica nel vuoto Φ Flusso del campo elettrico E dφ E E da EdAcosθ Se la superficie è chiusa (superficie gaussiana) il flusso si calcola come integrale chiuso: Φ E dφ E E da v EdAcosθ

Dettagli

Scritto di Fisica 2 dott. Esposito 20/02/2013

Scritto di Fisica 2 dott. Esposito 20/02/2013 Scritto di Fisica 2 dott. Esposito 20/02/2013 Corso di Laurea: Data orale (indicativa): 25 febbraio 4 marzo Anno di corso: 1) Si considerino due bobine di N spire percorse da una corrente i. Esse sono

Dettagli

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente?

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Si abbia una molla verticale al cui estremo inferiore

Dettagli

Temi di elettromagnetismo

Temi di elettromagnetismo Temi di elettromagnetismo Prova scritta del 12/04/1995 1) Una carica puntiforme q 1 = 5 µc e' fissata nell'origine ed una seconda carica q 2 = -2µC e' posta sull'asse x, a una distanza d = 3 m, come in

Dettagli

Fisica II. 7 Esercitazioni

Fisica II. 7 Esercitazioni Esercizi svolti Esercizio 7.1 Il campo magnetico che agisce perpendicolarmente ad un circuito costituito da 3 spire di 3 cm di diametro, passa da un valore di.4t a -.65T in 18 msec. Calcolare la tensione

Dettagli

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira.

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira. Fenomeni Magnetici Campo Magnetico e Forza di Lorentz Moto di cariche in campo magnetico Momento e campo magnetico di una spira Legge di Ampère Solenoide Campo Magnetico I fenomeni magnetici possono essere

Dettagli

Soluzioni della prova scritta di Fisica Generale

Soluzioni della prova scritta di Fisica Generale Scienze e Tecnologie dell Ambiente Soluzioni della prova scritta di Fisica Generale 1 Febbraio 2011 Parte 1 Esercizio 1 Un punto parte dall origine dell asse x con velocità v 0 positiva. Il punto viaggia

Dettagli

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico Il campo magnetico n Le prime osservazioni dei fenomeni magnetici risalgono all antichità n Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro n Un ago magnetico

Dettagli

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014 Prova scritta del corso di Fisica con soluzioni Prof. F. icci-tersenghi 14/11/214 Quesiti 1. Si deve trascinare una cassa di massa m = 25 kg, tirandola con una fune e facendola scorrere su un piano scabro

Dettagli

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue 1.1 Una sfera conduttrice di raggio R 1 = 10 cm ha una carica Q = 10-6 C ed è circondata da uno strato sferico di dielettrico di raggio (esterno) R 2 = 20 cm e costante dielettrica relativa. Determinare

Dettagli

CAMPO ELETTRICO. F r e = q E r. Newton ;

CAMPO ELETTRICO. F r e = q E r. Newton ; 1 CAMPO ELETTRICO Si definisce campo elettrico (o elettrostatico) una qualunque regione dello spazio nella quale si manifestano azioni su cariche elettriche. 1. DESCRIZIONE DEL CAMPO Per descrivere un

Dettagli

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 1. Il campo elettrico e legge di Coulomb: esempio del calcolo generato da alcune semplici distribuzioni. 2. Il campo

Dettagli

= 0 B = 0 perché la corrente

= 0 B = 0 perché la corrente CALCOLO DEL CAMPO LEGGE D AMPÈRE Da. Un conduttore cilindrico cavo, di raggio esterno a. cm e raggio interno b.6 cm, è percorso da una corrente A, distribuita uniormemente sulla sua sezione. Calcolare

Dettagli

df = I dl B df = dq v B

df = I dl B df = dq v B Forza Magnetica su un conduttore Forza magnetica agente su un filo percorso da corrente Consideriamo un filo percorso da una corrente in presenza di un campo magnetico. Agirà una forza su ciascuna delle

Dettagli

IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G.

IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G. IL CAMPO MAGNETICO V Classico Prof.ssa Delfino M. G. UNITÀ - IL CAMPO MAGNETICO 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz LEZIONE

Dettagli

Campo magnetico terrestre

Campo magnetico terrestre Magnetismo Vicino a Magnesia, in Asia Minore, si trovava una sostanza capace di attrarre il ferro Due sbarrette di questo materiale presentano poli alle estremità, che si attraggono o si respingono come

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 14/11/ NOME

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 14/11/ NOME Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11 Prova di esame del 14/11/2011 - NOME 1) a) Quanto calore è necessario per aumentare la temperatura di una pentola di ferro

Dettagli

1 ) Il numero atomico dell atomo di ossigeno è 8. Ciò significa che:

1 ) Il numero atomico dell atomo di ossigeno è 8. Ciò significa che: ) Il numero atomico dell atomo di ossigeno è 8. Ciò significa che: A. 4 elettroni orbitano intorno al nucleo che contiene 4 protoni. B. Attorno al nucleo orbitano 8 elettroni. C. Il nucleo è costituito

Dettagli

Misure di campi magnetici: bobine di Helmholtz e solenoidi

Misure di campi magnetici: bobine di Helmholtz e solenoidi Misure di campi magnetici: bobine di Helmholtz e solenoidi - S.S., 12 Settembre 2007 - Per il calcolo del campo magnetico prodotto da una corrente che fluisce in un circuito di forma nota è utile servirsi

Dettagli

rdr = 1 2!Bl2 = 0:5 V:

rdr = 1 2!Bl2 = 0:5 V: Lauree in Ing. Gest. dell Inform. e Industr. e Ing. Ambientale A.A. 2010/2011 Corso di Fisica Generale II_con Lab. 28 Gilberto Giugliarelli 4.1 Una sbarretta conduttrice di lunghezza l = 10 cm ruota con

Dettagli

Campo magnetico e forza di Lorentz (II)

Campo magnetico e forza di Lorentz (II) Campo magnetico e forza di Lorentz (II) Moto di particelle cariche in un campo magnetico Seconda legge elementare di Laplace Principio di equivalenza di Ampere Effetto Hall Galvanometro Moto di una particella

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 5 CAMPO MAGNETICO B LEGGE DI AMPÈRE

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 5 CAMPO MAGNETICO B LEGGE DI AMPÈRE Fisica Generale Modulo di Fisica A.A. 5-6 CAMPO MAGNETCO LEGGE D AMPÈRE Da. Sei ili conduttori entrano perpendicolarmente nel oglio come in igura. Ogni ilo è attraversato, nella direzione speciicata in

Dettagli

Nome Cognome...Classe Data.. 1

Nome Cognome...Classe Data.. 1 Esercitazione in preparazione al compito di fisica 1 Una spira rettangolare di filo di rame di lati, rispettivamente, di 2,0 cm e 4,0 cm è percorsa da 0,5 ma di corrente e viene immersa in un campo magnetico

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.

Dettagli

Esercizi di Fisica LB: elettrostatica

Esercizi di Fisica LB: elettrostatica Esercizio 1 Esercizi di Fisica LB: elettrostatica Esercitazioni di Fisica LB per ingegneri - A.A. 2004-2005 Una carica puntiforme q (per semplicità si immagini che abbia un raggio ɛ molto piccolo) è situata

Dettagli

approfondimento Struttura atomica e conservazione della carica nei fenomeni elettrici

approfondimento Struttura atomica e conservazione della carica nei fenomeni elettrici approfondimento Struttura atomica e conservazione della carica nei fenomeni elettrici Flusso del campo elettrico e legge di Gauss: Il campo elettrico generato da distribuzioni di carica a simmetria sferica

Dettagli

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B.

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B. Φ ε ds ds dφ = dt Legge di Faraday E x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di q in un campo E

Dettagli

1.6 Circuiti resistivi

1.6 Circuiti resistivi 1.6 Circuiti resistivi Esercizio 31 Ilcircuitoinfiguraèalimentatoconunageneratorereale, confemv 0 = 100V e una resistenza interna R i = 10 Ω. Le resistenze hanno valori: R 1 = 1.0 kω, R 2 = 1.5 kω, R 3

Dettagli

Corso di Laurea in FARMACIA

Corso di Laurea in FARMACIA Corso di Laurea in FARMACIA 2015 simulazione 1 FISICA Cognome nome matricola a.a. immatric. firma N Evidenziare le risposte esatte Una sferetta è appesa con una cordicella al soffitto di un ascensore fermo.

Dettagli

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito quando: 1) il circuito è in presenza di un campo magnetico

Dettagli

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991)

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) 1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della

Dettagli

1 CIRCUITAZIONE E FLUSSO DEL CAMPO MAGNETICO. 2 Circuitazione di B: il teorema di Ampère

1 CIRCUITAZIONE E FLUSSO DEL CAMPO MAGNETICO. 2 Circuitazione di B: il teorema di Ampère CRCUTAZONE E FLUSSO DEL CAMPO MAGNETCO Abbiamo gia detto che per determinare completamente un campo vettoriale dobbiamo dare il valore della sua circuitazione ed il flusso del campo attraverso una superficie

Dettagli

Esercizi di elettrostatica (prima parte)

Esercizi di elettrostatica (prima parte) Esercizi di elettrostatica (prima parte) Esercizi di elettrostatica: forza di coulomb, campo elettrico. 1. Date tre cariche elettriche puntiformi identiche ( Q ) poste ai vertici di un triangolo equilatero

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Fisica Classe VB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 FORZA E CAMPI ELETTRICI (Richiami) Teoria sui vettori I

Dettagli

Fisica II. 3 Esercitazioni

Fisica II. 3 Esercitazioni etem Esercizi svolti Esercizio 3. alcolare le componenti cartesiane del campo elettrico generato da un dipolo p orientato lungo l asse x in un punto lontano rispetto alle dimensioni del dipolo. Soluzione:

Dettagli

Simulazione di Terza Prova. Classe 5DS. Disciplina: Fisica. Data: 10/12/10 Studente: Quesito N 1. Punti 4. Come si definisce l energia potenziale elettrica? Si ricavi l espressione dell energia potenziale

Dettagli

Il magnetismo magnetismo magnetite

Il magnetismo magnetismo magnetite Magnetismo Il magnetismo Fenomeno noto fin dall antichità. Il termine magnetismo deriva da Magnesia città dell Asia Minore dove si era notato che un minerale, la magnetite, attirava a sé i corpi ferrosi.

Dettagli

Elettrostatica II. Energia Elettrostatica (richiamo) Potenziale Elettrico. Potenziale di cariche puntiformi. Superfici equipotenziali.

Elettrostatica II. Energia Elettrostatica (richiamo) Potenziale Elettrico. Potenziale di cariche puntiformi. Superfici equipotenziali. Elettrostatica II Energia Elettrostatica (richiamo) Potenziale Elettrico Potenziale di cariche puntiformi Superfici equipotenziali Condensatori Dielettrici Energia potenziale di due cariche Si può dimostrare

Dettagli

Prova scritta di Fisica - Faenza, 28/01/2016 CdS in Chimica e Tecnologie per l'ambiente e per i materiali - curriculum materiali Nota:

Prova scritta di Fisica - Faenza, 28/01/2016 CdS in Chimica e Tecnologie per l'ambiente e per i materiali - curriculum materiali Nota: Prova scritta di Fisica - Faenza, 28/01/2016 CdS in Chimica e Tecnologie per l'ambiente e per i materiali - curriculum materiali Punteggio: Problemi Vero/Falso: +1 risposta corretta, 0 risposta sbagliata

Dettagli

Raccolta di esercizi di Elettricità e Magnetismo

Raccolta di esercizi di Elettricità e Magnetismo 1 E. Silva Raccolta di esercizi di Elettricità e Magnetismo parte I Questo fascicolo raccoglie alcuni esercizi assegnati agli esami di: Fisica Generale II-1 modulo, Ingegneria Elettronica Fisica Generale

Dettagli

Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna)

Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna) Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna) 7 giugno 2013 1 Errori di misura Errore sulle misure dirette: Errore massimo (il risultato della misura non fluttua): 1 oppure

Dettagli

Problemi di Fisica per l ammissione alla Scuola Galileana Problema 1

Problemi di Fisica per l ammissione alla Scuola Galileana Problema 1 Problemi di Fisica per l ammissione alla Scuola Galileana 014-015 Problema 1 Nella regione di spazio interna alla sfera S 1, centrata in O 1 e di raggio R 1, è presente una densità di carica di volume

Dettagli

Problemi sull ellisse

Problemi sull ellisse 1 equazione dell ellisse Determina l equazione di un ellisse che ha i fuochi sull asse delle ascisse, semiasse maggiore lungo 6 e distanza focale uguale a 6 + yy Scrivi l equazione dell ellisse con i fuochi

Dettagli

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente

Dettagli

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1 Problemi di Fisica per l ammissione alla Scuola Galileiana 2015-2016 Problema 1 Un secchio cilindrico di raggio R contiene un fluido di densità uniforme ρ, entrambi ruotanti intorno al loro comune asse

Dettagli

FORMULARIO ELETTROMAGNETISMO

FORMULARIO ELETTROMAGNETISMO FORMULARIO ELETTROMAGNETISMO Forza di Coulomb : forza che intercorre tra due particelle cariche Campo elettrico : quantità vettoriale generata da una carica Densità di carica superficiale, volumetrica

Dettagli

MOTO DI CARICHE IN CAMPI MAGNETICI

MOTO DI CARICHE IN CAMPI MAGNETICI MOTO DI CARICHE IN CAMPI MAGNETICI E1. Un protone (q = 1.6(10 19 )C, m = 1.67(10 7 )kg) con una velocità iniiale v = 4(10 6 m/s)i + 4(10 6 m/s)j entra in una ona dove vi è un campo magnetico uniforme =

Dettagli

FISICA per SCIENZE BIOLOGICHE A.A. 2013/2014 1) FLUIDI V= 5 dm3 a= 2 m/s2 aria = g / cm 3 Spinta Archimedea Tensione della fune

FISICA per SCIENZE BIOLOGICHE A.A. 2013/2014 1) FLUIDI V= 5 dm3 a= 2 m/s2 aria = g / cm 3 Spinta Archimedea Tensione della fune FISICA per SCIENZE BIOLOGICHE A.A. 2013/2014 II Compitino 26 Giugno 2014 1) FLUIDI Un bambino trattiene un palloncino, tramite una sottile fune. Il palloncino ha volume V= 5 dm 3. La sua massa, senza il

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione

Dettagli

Esercitazione 3. Soluzione Il raggio della spira varia secondo la legge A = ¼D2. = ¼ 4 4 (D 0 2vt) 2 ; B = BA = ¼ 4 B(D 0 2vt) 2 :

Esercitazione 3. Soluzione Il raggio della spira varia secondo la legge A = ¼D2. = ¼ 4 4 (D 0 2vt) 2 ; B = BA = ¼ 4 B(D 0 2vt) 2 : 19 Gilberto Giugliarelli 3.1 Una spira circolare di materiale conduttore elastico viene stirata (facendo in modo che continui ad avere forma circolare) fino ad assumere un diametro D 0 = 24.0 cm. Un campo

Dettagli

Componenti elettronici

Componenti elettronici A.R.I. - Sezione di Parma Corso di preparazione esame patente radioamatore 2016 Componenti elettronici Carlo Vignali, I4VIL Esempi di grandezze esprimibili con numeri reali esprimibili con numeri complessi

Dettagli

Campi Elettrici e Magnetici. ELETTROSTATICA Cariche Elettriche e Forze Elettriche

Campi Elettrici e Magnetici. ELETTROSTATICA Cariche Elettriche e Forze Elettriche Campi Elettrici e Magnetici ELETTROSTATICA Cariche Elettriche e Forze Elettriche Esperienza ==> Forza tra cariche SI INTRODUCE UNA NUOVA GRANDEZZA FONDAMENTALE: LA CARICA ELETTRICA UNITÀ DI MISURA NEL

Dettagli

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Fisica II CdL Chimica

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Fisica II CdL Chimica Capacità Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Definizione Capacità La capacità è una misura di quanta carica debba possedere un certo tipo di condensatore

Dettagli

m = 53, g L = 1,4 m r = 25 cm

m = 53, g L = 1,4 m r = 25 cm Un pendolo conico è formato da un sassolino di 53 g attaccato ad un filo lungo 1,4 m. Il sassolino gira lungo una circonferenza di raggio uguale 25 cm. Qual è: (a) la velocità del sassolino; (b) la sua

Dettagli

L2 - Completa la seguente frase: "L'auto sta al telaio come il corpo sta..."

L2 - Completa la seguente frase: L'auto sta al telaio come il corpo sta... Simulazione test di ingresso Ingegneria Industriale Viterbo Quesiti di Logica, Chimica e Fisica Logica L1 - Come continua questa serie di numeri? 3-4 - 6-9 - 13-18 -... a) 21 b) 22 c) 23 d) 24 L2 - Completa

Dettagli

1.5 Calcolo di erenziale vettoriale Derivata ordinaria Gradiente Esempio n. 3 - Gradiente di 1

1.5 Calcolo di erenziale vettoriale Derivata ordinaria Gradiente Esempio n. 3 - Gradiente di 1 Indice 1 ANALISI VETTORIALE 1 1.1 Scalari e vettori......................... 1 1.1.1 Vettore unitario (versore)............... 2 1.2 Algebra dei vettori....................... 3 1.2.1 Somma di due vettori.................

Dettagli

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica Don Bosco 014/15, Classe B - Primo compito in classe di Fisica 1. Enuncia il Teorema dell Energia Cinetica. Soluzione. Il lavoro della risultante delle forze agenti su un corpo che si sposta lungo una

Dettagli

ELETTROLOGIA Cap II. Calcolo del Campo Elettrico dovuto ad alcune distribuzioni di carica. Elettrologia II

ELETTROLOGIA Cap II. Calcolo del Campo Elettrico dovuto ad alcune distribuzioni di carica. Elettrologia II ELETTROLOGIA Cap II Calcolo del Campo Elettrico dovuto ad alcune distribuzioni di carica 1 Anello di raggio R uniformemente carco con carica Q. Anello di dimensioni trasversali trascurabili rispetto al

Dettagli

Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h

Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h Prova intermedia del 23 novembre 2012 durata della prova: 2h CINEMTIC E CLCL DI QUNTITÀ MECCNICHE Nelsistemadifiguraildiscodicentro ruoy ta intorno al suo centro; il secondo disco rotola senza strisciare

Dettagli

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo Il Dipolo Elettrico Dipolo Elettrico: due cariche (puntiformi) q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo qa che va da qq a q Dato un punto P molto distante

Dettagli

Fisica Generale II Esercitazione A tutorato ESERCIZI CON SOLUZIONE

Fisica Generale II Esercitazione A tutorato ESERCIZI CON SOLUZIONE Fisica Generale II Esercitazione A tutorato. ESERCIZI CON SOLUZIONE. Tre elettroni sono posti ai vertici di un triangolo euilatero di. nm di lato. Il campo elettrico nel baricentro del triangolo ha modulo

Dettagli

LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5A 2 o periodo/ 1 a verifica scritta 6 febbraio Campo magnetico e suoi effetti

LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5A 2 o periodo/ 1 a verifica scritta 6 febbraio Campo magnetico e suoi effetti LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5A 2 o periodo/ 1 a verifica scritta 6 febbraio 2012 Campo magnetico e suoi effetti Alunno:................................................ Domande a risposta

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Se proviamo a disporre, sul piano cartesiano, una retta vediamo che le sue possibili posizioni sono sei: a) Coincidente con l asse delle y; b) Coincidente con l asse delle

Dettagli