La Logica Proposizionale. (Algebra di Boole)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La Logica Proposizionale. (Algebra di Boole)"

Transcript

1 1 ISTITUTO DI ISTRUZIONE SUPERIORE ANGIOY La Logica Proposizionale (Algebra di Boole) Prof. G. Ciaschetti 1. Cenni storici Sin dagli antichi greci, la logica è intesa come lo studio del logos, che in greco significa parola, verbo, o ragione. O anche studio, si pensi a parole come ecologia, psicologia, ecc. La logica, quindi, storicamente, si è occupata dello studio della parola, cioè lo studio delle strutture e delle regole del discorso, allo scopo di comprendere, e utilizzare a proprio vantaggio, come ottenere conclusioni convincenti a partire da determinate premesse. Ancora oggi, a pensarci bene, organizzare un discorso che sia logicamente convincente è fondamentale in diverse discipline: Matematica: esibire la dimostrazione matematica di un risultato (teorema, lemma, postulato) significa fare vedere come, a partire dalle ipotesi, valga una serie di ragionamenti logici che portano via via a nuove conclusioni, fino ad arrivare alla tesi che si vuole dimostrare. Giurisprudenza: un avvocato, in un aula di tribunale, nel difendere il proprio assistito cerca di convincere la corte che i fatti si siano svolti in un determinato modo, e farà questo partendo da alcune premesse nel modo logicamente più convincente possibile. Filosofia: un filosofo è più convincente di altri filosofi nel proporre l esattezza delle proprie argomentazioni se i suoi ragionamenti sono più logicamente corretti. Dagli esempi esposti, si capisce che c è un modo di ragionare logico, che è comunemente accettato come corretto, grazie al quale è possibile convincere gli altri di conclusioni non immediatamente verificabili. Come dicevamo, già dall antichità la logica è stata oggetto di studio, in quanto chi riusciva a essere più logico degli altri nei propri discorsi era anche colui che vinceva le dispute verbali. Riportiamo in questo paragrafo alcuni personaggi e i loro contributi fondamentali allo studio della logica, che hanno costituito le basi per la logica moderna, attualmente usata nei calcolatori elettronici: Aristotele (circa 350 A.C.) Principio di non contraddizione: una cosa e il suo contrario non possono essere contemporaneamente vere (es. le frasi il prof. di informatica è biondo e il prof. di informatica non è biondo non possono essere entrambe vere) Principio del terzo escluso: o è vera una cosa, o è vero il suo contrario, non può esserci una terza possibilità (es. il prof. di informatica è biondo oppure il

2 2 prof. di informatica non è biondo : una delle due deve essere vera e non c è una terza possibilità). Sillogismi: Tutti gli uomini sono mortali, Socrate è un uomo, quindi Socrate è mortale. Crisippo (circa 250 A.C.) È possibile raggiungere nuove conoscenze attraverso la logica (come ad esempio, nelle dimostrazioni matematiche). Regole di deduzione logica e studio dei connettivi logici, come il modus ponens (se ogni volta che si verifica A si verifica B, e si è verificato A, allora si è verificato anche B) o il modus tollens (se ogni volta che si verifica A si verifica B, e non si è verificato B, allora non si è verificato A). Boole (1850 D.C. circa) Uso dei simboli 0 e 1 per indicare il falso e il vero (da qui, l utilizzo automatizzato della logica per mezzo dei calcolatori). Costruzione di un algebra delle proposizioni, da questo momento in poi nota come Algebra di Boole. Uso delle tavole di verità per dimostrare la falsità o la veridicità di espressioni logiche. 2. Algebra di Boole In generale, per definire un algebra occorre specificare quali sono i suoi termini, le sue operazioni, le regole di precedenza tra le operazioni, le diverse proprietà di cui godono le operazioni, e come si costruiscono e si valutano le espressioni. Prima di cominciare a definire l Algebra di Boole, anche facendo un confronto con l algebra aritmetica che abbiamo conosciuto finora in matematica, ci occorrono alcune definizioni: Definizione: Una proposizione è una frase di senso compiuto Ad esempio, le frasi fuori c è bel tempo e oggi non mi va di studiare sono proposizioni, mentre non è una proposizione la frase bello cane io faccio tempo male oppure la frase cosa però voglio non. Definizione: Un enunciato è una proposizione della quale si può stabilire con certezza se è vera o falsa. Ad esempio, la frase l Istituto Angioy è a Carbonia è una proposizione vera, quindi è un enunciato; la frase l Istituto Angioy è a Roma è una proposizione falsa, quindi è un enunciato; la frase informatica è una brutta materia non è un enunciato, perché pur essendo una proposizione, non si può dire che sia sempre vera (a qualcuno non piace) o sempre falsa (a qualcuno piace). Allo stesso modo la frase che bel tempo c è non è un enunciato, perché a qualcuno potrebbe piacere il sole mentre a qualcun altro la pioggia. Torniamo alla definizione della nostra Algebra di Boole. Andiamo a specificare, quindi, chi sono i termini, le operazioni, le regole di precedenza tra le operazioni e le regole di costruzione e

3 3 valutazione delle espressioni, confrontandoci con l algebra aritmetica. Alle proprietà dell Algebra di Boole dedicheremo, successivamente, un paragrafo a parte. termini: se i termini dell aritmetica sono i numeri, i termini dell algebra booleana sono gli enunciati, che possono essere rappresentati con 0 (enunciato falso) e 1 (enunciato vero). Così come in aritmetica, possiamo trovare termini costanti, cioè di cui conosciamo il valore, oppure termini variabili, che indicheremo con lettere come x, y, z, ecc. operazioni: mentre nell aritmetica abbiamo le operazioni di addizione, sottrazione, moltiplicazione e divisione, (quelle che indichiamo con i simboli +, *, - e /), nell algebra booleana abbiamo le operazioni fondamentali AND, OR, NOT, e poi altre operazioni che vedremo successivamente. - L operazione AND è detta di congiunzione o prodotto logico, e può essere rappresentata con i simboli oppure (noi useremo il primo dei due). - L operazione OR è detta di disgiunzione o somma logica e può essere rappresentata con i simboli + oppure (noi useremo il primo dei due). - L operazione NOT è detta negazione logica, e può essere rappresentata con i simboli oppure (noi useremo il primo dei due). Torneremo sulle operazioni (queste tre e altre) più tardi, esaminando attentamente come funzionano e il loro significato. Per il momento, ci basti dire che il NOT è un operazione unaria (si applica a un solo operando) mente l AND, l OR e le altre operazioni che studieremo sono operazioni binarie (si applicano a due operandi come la somma, la sottrazione, ecc.). precedenze: se in aritmetica le operazioni di moltiplicazione e divisione hanno la precedenza su quelle di addizione e sottrazione, nell algebra booleana esiste una sola regola: le operazioni unarie hanno la precedenza su quelle binarie, ossia, il NOT ha la precedenza su tutte le altre operazioni. Così come in aritmetica, per forzare le precedenze ad essere diverse da quelle naturali, si possono usare le parentesi. Nell algebra booleana, inoltre, l uso delle parentesi è necessario ogni qual volta non è ben determinata la precedenza tra due o più operazioni. ESEMPI: corrisponde a (NOT (x)) OR y. Siccome il NOT ha la precedenza sull OR, non c è bisogno di parentesi corrisponde a NOT(x OR y). Per forzare le precedenze ed effettuare prima l OR, abbiamo bisogno di parentesi. l espressione non è ben specificata, in quanto l OR e l AND hanno stessa precedenza, e non sappiamo quale applicare prima. Andrebbero messe delle parentesi. espressioni: la valutazione di un espressione in aritmetica dà come risultato un numero, che può essere noto se l espressione contiene solo termini costanti, o incognito se ci sono delle variabili. Anche nell algebra booleana si può valutare un espressione, il cui risultato è noto se compaiono solo termini costanti, e può essere 0 oppure 1. Nella seguente figura, è riassunta la differenza tra l algebra aritmetica e quella booleana:

4 4 3. Le operazioni binarie fondamentali Torniamo alle tre operazioni booleana fondamentali, il NOT, l AND e l OR, ed esaminiamole più a fondo: 3.1 L operazione NOT L operazione NOT (dall inglese non) è detta negazione logica, e serve a negare una proposizione. Il risultato è trasformare una proposizione vera in falsa, e viceversa, una falsa in vera. Ad esempio, se diciamo ad agosto fa caldo, che è una proposizione vera, e neghiamo quanto detto, otteniamo ad agosto non fa caldo, che è una proposizione falsa. Ad esempio, se diciamo Milano è a sud di Carbonia, proposizione falsa, e la neghiamo, otteniamo Milano non è a sud di Carbonia, che è una proposizione vera. Indichiamo l operazione NOT con il simbolo. In generale, data una proposizione x, essa può essere falsa o vera: se è vera, falsa, è vera. Si può riassumere quanto detto nella seguente tabella: x è falsa, mentre se è La tabella può anche letta per righe in questo modo: risulta 3.2 L operazione AND L operazione AND (dall inglese e) è detta congiunzione o prodotto logico, e serve a congiungere tra loro due proposizioni. Un espressione formata con l operazione AND tra due proposizioni sarà vera se la prima proposizione è vera e la seconda proposizione è vera. Ad esempio, se diciamo c è una sola cattedra in ogni aula (proposizione vera) AND un banco è più piccolo di una cattedra (proposizione vera), l intera frase sarà vera. Se invece diciamo ci sono due cattedre in ogni aula (proposizione falsa) AND c è un registro per ogni classe (proposizione vera), poiché abbiamo detto almeno una falsità, la nostra frase complessiva sarà falsa. Indichiamo l AND con il simbolo In generale, date due proposizioni x e y, l espressione x y sarà vera solo se entrambe x e y sono vere. Si può riassumere quanto detto nella seguente tabella: x y x y L operazione OR L operazione OR (dall inglese o) è detta disgiunzione o somma logica, e serve a disgiungere tra loro due proposizioni. Un espressione formata con l operazione OR tra due proposizioni sarà vera se la prima proposizione è vera o la seconda proposizione è vera. Cioè, se almeno una delle due è vera. Ad esempio, se diciamo c è una sola cattedra in ogni aula (proposizione vera) OR un banco è più piccolo di una cattedra (proposizione vera), l intera frase sarà vera. Se invece diciamo ci sono due cattedre in ogni aula (proposizione falsa) OR c è un registro per ogni classe

5 5 (proposizione vera), poiché abbiamo detto almeno una cosa vera, la nostra frase complessiva sarà vera (l una o l altra delle due è vera). Ad esempio, ancora, se diciamo ci sono tre cattedre in ogni aula (proposizione falsa) OR il prof. di informatica è più giovane dei suoi alunni (proposizione falsa), poiché nessuna delle due è vera, abbiamo detto una frase falsa. Indichiamo l OR con il simbolo +. In generale, date due proposizioni x e y, l espressione x y sarà vera solo se almeno una tra x e y è vera. Si può riassumere quanto detto nella seguente tabella: x y x y Espressioni booleane Come abbiamo detto, è possibile costruire espressioni booleane mettendo insieme termini e operazioni, stando ben attenti a indicare correttamente le precedenze tra le diverse operazioni. Abbiamo anche detto che l operazione NOT (operazione unaria) ha la precedenza su tutte le altre operazioni (operazioni binarie), e che per forzare precedenze diverse occorre usare le parentesi. Infine, ricordiamo che l uso di parentesi è reso necessario ogni qual volta la precedenza tra operazioni non è ben specificata (ad esempio tra OR e AND). Per evitare l uso eccessivo di parentesi, che appesantirebbero eccessivamente la scrittura, adottiamo le seguenti convenzioni: xy xy+z corrisponde a x y corrisponde a (x y) + z corrisponde a (NOT (x)) OR y. corrisponde a NOT(x OR y). Ad esempio, nell espressione si applicheranno, nell ordine, le operazioni NOT (y), poi (x AND NOT(y)), e infine (x AND NOT(y)) OR z. Calcolare un espressione booleana, come vedremo nel prossimo paragrafo, significa applicare in sequenza tutte le operazioni che in essa compaiono, per vedere quanto fa. A differenza di un espressione matematica, il cui calcolo dà un numero, il calcolo di un espressione booleana dà come risultato vero (cioè 1) o falso (cioè 0). 5. Analisi di espressioni booleane: le tavole di verità Andando a calcolare un espressione booleana, se essa contiene solo termini costanti, allora il risultato sarà un termine dell algebra booleana, cioè un enunciato, cioè sarà 0 (falso) oppure 1 (vero). ESEMPIO: Il valore dell espressione (1 0) + (1 + ( )) è pari a: (1 0) + (1 + ) = = 1 ESEMPIO: Il valore dell espressione 1 = 1 0 = 0

6 6 Tuttavia, quando nell espressione sono presenti termini variabili (cioè, il cui valore non è ancora determinato, potrebbe essere sia 0 che 1), non è possibile calcolare l espressione. In questo caso, occorre effettuare un analisi dell espressione booleana, andando a individuare per quali valori delle variabili l espressione è vera o falsa. E possibile fare questo per mezzo delle tavole di verità. Si tratta di calcolare l espressione applicando gli operatori nell ordine giusto, e andare a vedere quanto è il risultato per ogni possibile combinazione delle variabili presenti. Con qualche esempio sarà tutto più chiaro: ESEMPIO: analizziamo l espressione elenchiamo le diverse combinazioni delle variabili che compaiono nell espressione, cioè x e y, e applichiamo nell ordine le diverse operazioni, per ognuna delle combinazioni: x y x+y xy Cosa abbiamo fatto? Riepiloghiamo: per la prima combinazione, x=0 e y=0, abbiamo calcolato x+y, cioè 0+0, che fa 0. Poi abbiamo calcolato, cioè = 1. A questo punto, abbiamo calcolato xy, cioè 0 0, il cui risultato è 0. Quindi, abbiamo fatto l operazione OR tra e, ossia tra 1 e 0, e abbiamo ottenuto 1 come risultato. Ripetendo il procedimento per ogni altra possibile combinazione delle variabili x e y, cioè per ogni altra riga della tavola di verità, abbiamo trovato per quali valori di x e y l espressione è vera (nell ultima colonna): in questo esempio, quando x e y sono entrambi 0 o entrambi 1. Un modo più rapido per sviluppare la tavola di verità è di guardarla per colonne : facciamo vedere come, in un altro esempio: ESEMPIO: analizziamo l espressione di nuovo, elenchiamo le diverse combinazioni delle variabili e calcoliamo il risultato dell espressione, applicando nell ordine gli operatori, per ogni diversa combinazione; l operazione che ha la precedenza è il NOT, quindi cerchiamo innanzitutto relativa alla x ora, possiamo calcolare applicando l operazione OR alle colonne relative a e z. : neghiamo la colonna

7 dopo di che, neghiamo quanto abbiamo ottenuto, e abbiamo così il termine ora dobbiamo calcolare il termine tra parentesi tonde: calcoliamo prima (la colonna relativa a ce l abbiamo già) negando la colonna della y e quindi il termine applicando l operazione OR tra le colonne e Per trovare il nostro risultato, a questo punto, non resta che applicare l operazione AND alle colonne relative ai termini e Nei nostri esercizi, useremo anche scrivere una espressione booleana come una formula del tipo y = f(x 1, x 2,, x N ) dove x 1, x 2,, x N sono le variabili indipendenti e y è il valore dell espressione. ESEMPIO: y =

8 8 6. Proprietà dell Algebra di Boole Come l aritmetica, anche l Algebra di Boole gode di alcune proprietà. Prima di vedere quali, diciamo che è possibile dimostrare l uguaglianza tra due espressioni booleane utilizzando le tavole di verità, nel seguente modo: se la tavola di verità dell espressione a sinistra del simbolo = è uguale a quella dell espressione a destra, allora le due espressioni sono uguali. ESEMPIO: = DIMOSTRAZIONE: x 1 x poiché le due colonne sono uguali, l uguaglianza delle espressioni è verificata! Elenchiamo ora le principali proprietà dell Algebra di Boole, dimostrandone alcune con le tavole di verità, e lasciando per esercizio la dimostrazione delle altre. a) proprietà commutativa: x + y = y + x infatti, risulta xy = yx x y x+y y+x x y xy yx b) proprietà associativa: x + (y + z) = (x + y) + z x(yz) = (xy)z si lascia per esercizio la dimostrazione dell uguaglianza con le tavole di verità. c) proprietà distributiva: x + (yz) = (x + y)(x + z) x(y + z) = xy + xz

9 9 d) identità: x + 0 = x x 1 = x e) complementarità x + = 1 x = 0 f) idempotenza x + x = x x x = x g) dominanza: x 0 = 0 x + 1 = 1 h) involuzione (doppia negazione) i) De Morgan

10 10 7. Altri operatori booleani Oltre alle tre operazioni fondamentali che abbiamo visto, cioè AND, OR e NOT, ci sono altre tre operazioni che possiamo usare: 7.1 L operazione XOR (o EX-OR) Il nome viene dall inglese EXclusive OR, cioè OR esclusivo. Funziona all incirca come l OR, ma è esclusivo perché vieta la possibilità che i due operandi possano essere entrambi veri, uno esclude l altro. Quindi, se l operazione OR corrisponde alla frase la frase è vera se almeno una delle due è vera, l operazione XOR corrisponde alla frase la frase è vera se solo una delle due è vera. Si indica con il simbolo. x y x y L operazione XOR non è una delle operazioni fondamentali, e può essere anche ottenuta usando solo le tre operazioni fondamentali. Infatti risulta: x y = dimostriamolo: x y x y L operazione NAND Letteralmente, è la negazione dell operazione AND. Il simbolo utilizzato è. x y x y x L operazione NOR Letteralmente, è la negazione dell operazione OR. Il simbolo utilizzato è. x y x y x

11 11 8. Insiemi di operatori funzionalmente completi Abbiamo visto finora sei operatori booleani: AND, OR, NOT, XOR, NAND, NOR. Abbiamo anche visto, però, che solo tre di essi sono quelli fondamentali, e cioè NOT, AND e OR. Infatti possiamo ricavare gli altri tre a partire da questi: x y = x y = x y = Possiamo dire allora che l insieme di operatori che comprende i soli operatori NOT, AND e OR, cioè l insieme {,, + } è un insieme funzionalmente completo. Definizione: un insieme di operatori booleani si dice funzionalmente completo quando è possibile, usando solo questi, riprodurre tutti gli altri operatori, cioè ottenere un espressione che si comporta come ognuno degli altri operatori che non fanno parte dell insieme. Ci chiediamo se {,, + } è il più piccolo insieme di operatori funzionalmente completo, oppure se c è qualche altro insieme di operatori, che ne ha solo 2, che è funzionalmente completo. La risposta è si, esistono insieme di operatori funzionalmente completi con solo 2 operatori! - L insieme che comprende i soli operatori NOT e AND, cioè l insieme {, } è funzionalmente completo. Per dimostrare quanto appena detto, dobbiamo far vedere che possiamo riprodurre ogni altro operatore booleano usando i soli operatori NOT e AND. Tuttavia, non è necessario far vedere che possiamo riprodurre tutti gli operatori: essendo {,, +} funzionalmente completo (l abbiamo visto all inizio del paragrafo), basta far vedere che possiamo riprodurre l operazione OR usando solo le operazioni NOT e AND. Se riusciamo con questi due a fare anche l OR, allora siamo in grado di fare anche tutti gli altri. Risulta: x + y = la prima uguaglianza vale per la proprietà dell involuzione, la seconda per la proprietà di De Morgan. - L insieme che comprende i soli operatori NOT e OR, cioè l insieme {, } è funzionalmente completo. Per dimostrare quanto appena detto, dobbiamo far vedere che possiamo riprodurre ogni altro operatore booleano usando i soli operatori NOT e OR. Tuttavia, come prima, non è necessario far vedere che possiamo riprodurre tutti gli operatori: essendo {,, +} funzionalmente completo (l abbiamo visto all inizio del paragrafo), basta far vedere che possiamo riprodurre l operazione AND usando solo le operazioni NOT e OR. Se riusciamo con questi due a fare anche l AND, allora siamo in grado di fare anche tutti gli altri. Risulta: xy =

12 12 la prima uguaglianza vale per la proprietà dell involuzione, la seconda per la proprietà di De Morgan. Ci chiediamo ora se esistono insiemi di operatori funzionalmente completi ancora più piccoli: cioè, con un solo operatore, è possibile fare tutti gli altri? La risposta è si, esistono insieme di operatori funzionalmente completi con solo 1 operatore! - L insieme che comprende il solo operatore NAND, cioè l insieme { } è funzionalmente completo. Per dimostrare questo, dobbiamo far vedere che possiamo riprodurre ogni altro operatore booleano usando il solo operatore NAND. Come prima, non è necessario far vedere che possiamo riprodurre tutti gli operatori, ma basta ricondursi a un altro insieme di operatori funzionalmente completo. Essendo {, } funzionalmente completo, basta far vedere che possiamo riprodurre l operazione AND e l operazione NOT usando la sola operazione NAND. Risulta: la dimostrazione è lasciata per esercizio. = x x xy = (x x) (x x) - L insieme che comprende il solo operatore NOR, cioè l insieme { } è funzionalmente completo. Per dimostrare questo, dobbiamo far vedere che possiamo riprodurre ogni altro operatore booleano usando il solo operatore NOR. Come prima, non è necessario far vedere che possiamo riprodurre tutti gli operatori, ma basta ricondursi a un altro insieme di operatori funzionalmente completo. Essendo {, } funzionalmente completo, basta far vedere che possiamo riprodurre l operazione OR e l operazione NOT usando la sola operazione NOR. Risulta: la dimostrazione è lasciata per esercizio. = x x x + y = (x x) (x x) Concludiamo il paragrafo con un ultima osservazione: perché siamo interessati a trovare insiemi di operatori funzionalmente completi che siano più piccoli possibile? Il motivo sta nell interesse di chi realizza circuiti elettronici per i microprocessori: un microprocessore ha al suo interno diversi circuiti logici combinatori (li studieremo nella prossima dispensa), i quali sono costituiti da porte logiche, componenti elettronici che realizzano elettricamente le operazioni AND, OR, NOT, ecc. Ora, per un produttore costa molto di più realizzare diversi tipi di porte logiche (una per l operazione AND, una per l operazione OR, una per l operazione NOT, e così via ) piuttosto che un solo tipo. Infatti, in molti moderni microprocessori si trova, di fatto, un solo componente: quello che realizza l operazione NAND oppure quello che realizza l operazione NOR.

Algebra di Boole ed Elementi di Logica

Algebra di Boole ed Elementi di Logica Algebra di Boole ed Elementi di Logica 53 Cenni all algebra di Boole L algebra di Boole (inventata da G. Boole, britannico, seconda metà 8), o algebra della logica, si basa su operazioni logiche Le operazioni

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense Linguaggio del calcolatore Circuiti e reti combinatorie ppendice + dispense Solo assenza o presenza di tensione: o Tante componenti interconnesse che si basano su e nche per esprimere concetti complessi

Dettagli

Dall italiano alla logica proposizionale

Dall italiano alla logica proposizionale Rappresentare l italiano in LP Dall italiano alla logica proposizionale Sandro Zucchi 2009-10 In questa lezione, vediamo come fare uso del linguaggio LP per rappresentare frasi dell italiano. Questo ci

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Dall italiano al linguaggio della logica proposizionale

Dall italiano al linguaggio della logica proposizionale Dall italiano al linguaggio della logica proposizionale Dall italiano al linguaggio della logica proposizionale Enunciati atomici e congiunzione In questa lezione e nelle successive, vedremo come fare

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

(anno accademico 2008-09)

(anno accademico 2008-09) Calcolo relazionale Prof Alberto Belussi Prof. Alberto Belussi (anno accademico 2008-09) Calcolo relazionale E un linguaggio di interrogazione o e dichiarativo: at specifica le proprietà del risultato

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

I numeri relativi. Il calcolo letterale

I numeri relativi. Il calcolo letterale Indice Il numero unità I numeri relativi VIII Indice L insieme R Gli insiemi Z e Q Confronto di numeri relativi Le operazioni fondamentali in Z e Q 0 L addizione 0 La sottrazione La somma algebrica La

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI I numeri naturali I numeri interi I numeri razionali Teoria degli insiemi (cenni) ALESSANDRO BOCCONI Indice 1 L insieme N dei numeri naturali 4 1.1 Introduzione.........................................

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

ALGORITMI 1 a Parte. di Ippolito Perlasca. Algoritmo:

ALGORITMI 1 a Parte. di Ippolito Perlasca. Algoritmo: ALGORITMI 1 a Parte di Ippolito Perlasca Algoritmo: Insieme di regole che forniscono una sequenza di operazioni atte a risolvere un particolare problema (De Mauro) Procedimento che consente di ottenere

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

Algebra Relazionale. algebra relazionale

Algebra Relazionale. algebra relazionale Algebra Relazionale algebra relazionale Linguaggi di Interrogazione linguaggi formali Algebra relazionale Calcolo relazionale Programmazione logica linguaggi programmativi SQL: Structured Query Language

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Scuola primaria: obiettivi al termine della classe 5

Scuola primaria: obiettivi al termine della classe 5 Competenza: partecipare e interagire con gli altri in diverse situazioni comunicative Scuola Infanzia : 3 anni Obiettivi di *Esprime e comunica agli altri emozioni, sentimenti, pensieri attraverso il linguaggio

Dettagli

IL TEOREMA FONDAMENTALE DELL ARITMETICA: FATTORIZZAZIONE IN NUMERI PRIMI.

IL TEOREMA FONDAMENTALE DELL ARITMETICA: FATTORIZZAZIONE IN NUMERI PRIMI. IL TEOREMA FONDAMENTALE DELL ARITMETICA: FATTORIZZAZIONE IN NUMERI PRIMI. PH. ELLIA Indice Introduzione 1 1. Divisori di un numero. 2 2. Numeri primi: definizioni. 4 2.1. Fare la lista dei numeri primi.

Dettagli

Il principio di induzione e i numeri naturali.

Il principio di induzione e i numeri naturali. Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

E possibile costruire una mentalità matematica?

E possibile costruire una mentalità matematica? E possibile costruire una mentalità matematica? Prof. F. A. Costabile 1. Introduzione La matematica è più di una tecnica. Apprendere la matematica significa conquistare l attitudine ad un comportamento

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

2 Rappresentazioni grafiche

2 Rappresentazioni grafiche asi di matematica per la MPT 2 Rappresentazioni grafiche I numeri possono essere rappresentati utilizzando i seguenti metodi: la retta dei numeri; gli insiemi. 2.1 La retta numerica Domanda introduttiva

Dettagli

Esercitazioni per il corso di Logica Matematica

Esercitazioni per il corso di Logica Matematica Esercitazioni per il corso di Logica Matematica Luca Motto Ros 14 marzo 2005 Nota importante. Queste pagine contengono appunti personali dell esercitatore e sono messe a disposizione nel caso possano risultare

Dettagli

Logica del primo ordine

Logica del primo ordine Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A7_4 V1.3 Logica del primo ordine Il contenuto del documento è liberamente utilizzabile dagli studenti, per studio

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni.

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. Albero semantico Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. A differenza dell albero sintattico (che analizza la formula da un punto di vista puramente

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Rappresentazione dei numeri nei calcolatori rappresentazioni finalizzate ad algoritmi efficienti per le operazioni

Dettagli

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.

Dettagli

Gli algoritmi. Gli algoritmi. Analisi e programmazione

Gli algoritmi. Gli algoritmi. Analisi e programmazione Gli algoritmi Analisi e programmazione Gli algoritmi Proprietà ed esempi Costanti e variabili, assegnazione, istruzioni, proposizioni e predicati Vettori e matrici I diagrammi a blocchi Analisi strutturata

Dettagli

I numeri. Premessa: Che cosa sono e a che servono i numeri?

I numeri. Premessa: Che cosa sono e a che servono i numeri? I numeri Premessa: Che cosa sono e a che servono i numeri? Come ti sarai reso conto, i numeri occupano un ruolo importante nella tua vita: dai numeri che esprimono il prezzo degli oggetti venduti in un

Dettagli

Il mondo in cui viviamo

Il mondo in cui viviamo Il mondo in cui viviamo Il modo in cui lo vediamo/ conosciamo Dalle esperienze alle idee Dalle idee alla comunicazione delle idee Quando sono curioso di una cosa, matematica o no, io le faccio delle domande.

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

Semantica operazionale dei linguaggi di Programmazione

Semantica operazionale dei linguaggi di Programmazione Semantica operazionale dei linguaggi di Programmazione Oggetti sintattici e oggetti semantici Rosario Culmone, Luca Tesei Lucidi tratti dalla dispensa Elementi di Semantica Operazionale R. Barbuti, P.

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997 1 RAPPRESENTAZIONE BINARIA DEI NUMERI Andrea Bobbio Anno Accademico 1996-1997 Numeri Binari 2 Sistemi di Numerazione Il valore di un numero può essere espresso con diverse rappresentazioni. non posizionali:

Dettagli

Algebra di Boole: Concetti di base. Fondamenti di Informatica - D. Talia - UNICAL 1. Fondamenti di Informatica

Algebra di Boole: Concetti di base. Fondamenti di Informatica - D. Talia - UNICAL 1. Fondamenti di Informatica Fondamenti di Informatica Algebra di Boole: Concetti di base Fondamenti di Informatica - D. Talia - UNICAL 1 Algebra di Boole E un algebra basata su tre operazioni logiche OR AND NOT Ed operandi che possono

Dettagli

Sulla monotonia delle funzioni reali di una variabile reale

Sulla monotonia delle funzioni reali di una variabile reale Liceo G. B. Vico - Napoli Sulla monotonia delle funzioni reali di una variabile reale Prof. Giuseppe Caputo Premetto due teoremi come prerequisiti necessari per la comprensione di quanto verrà esposto

Dettagli

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. Universitá di Bologna

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. <sacerdot@cs.unibo.it> Universitá di Bologna Linguaggi 18: Semantica della logica del prim ordine Universitá di Bologna 11/04/2011 Outline Semantica della logica del prim ordine 1 Semantica della logica del prim ordine Semantica

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Elementi di teoria degli insiemi

Elementi di teoria degli insiemi Elementi di teoria degli insiemi 1 Insiemi e loro elementi 11 Sottoinsiemi Insieme vuoto Abbiamo già osservato che ogni numero naturale è anche razionale assoluto o, in altre parole, che l insieme dei

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica A ARITMETICA I numeri naturali e le quattro operazioni Esercizi supplementari di verifica Esercizio Rappresenta sulla retta orientata i seguenti numeri naturali. ; ; ; 0;. 0 Esercizio Metti una crocetta

Dettagli

Logica del primo ordine

Logica del primo ordine Logica del primo ordine Sistema formale sviluppato in ambito matematico formalizzazione delle leggi del pensiero strette relazioni con studi filosofici In ambito Intelligenza Artificiale logica come linguaggio

Dettagli

ISTITUTO COMPRENSIVO STATALE di BORGORICCO SUGGERIMENTI PER LA COMPILAZIONE DEL P.D.P. PER ALUNNI CON DISTURBI SPECIFICI DI APPRENDIMENTO

ISTITUTO COMPRENSIVO STATALE di BORGORICCO SUGGERIMENTI PER LA COMPILAZIONE DEL P.D.P. PER ALUNNI CON DISTURBI SPECIFICI DI APPRENDIMENTO SUGGERIMENTI PER LA COMPILAZIONE DEL P.D.P. PER ALUNNI CON DISTURBI SPECIFICI DI APPRENDIMENTO Il documento va compilato in forma digitale per poter ampliare gli spazi dello schema (ove necessario) e togliere

Dettagli

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi Evelina De Gregori Alessandra Rotondi al via 1 Percorsi guidati per le vacanze di matematica e scienze per la Scuola secondaria di primo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio Test d'ingresso NUMERI

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Lo Spettro primo di un anello. Carmelo Antonio Finocchiaro

Lo Spettro primo di un anello. Carmelo Antonio Finocchiaro Lo Spettro primo di un anello Carmelo Antonio Finocchiaro 2 Indice 1 Lo spettro primo di un anello: introduzione 5 1.1 Le regole del gioco................................ 5 1.2 Prime definizioni e risultati

Dettagli

Lab. 1 - Introduzione a Matlab

Lab. 1 - Introduzione a Matlab Lab. 1 - Introduzione a Matlab Alcune informazioni su Matlab Matlab è uno strumento per il calcolo scientifico utilizzabile a più livelli, dalla calcolatrice tascabile, alla simulazione ed analisi di sistemi

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

Rapida Introduzione all uso del Matlab Ottobre 2002

Rapida Introduzione all uso del Matlab Ottobre 2002 Rapida Introduzione all uso del Matlab Ottobre 2002 Tutti i tipi di dato utilizzati dal Matlab sono in forma di array. I vettori sono array monodimensionali, e così possono essere viste le serie temporali,

Dettagli

ESEMPIO 1: eseguire il complemento a 10 di 765

ESEMPIO 1: eseguire il complemento a 10 di 765 COMPLEMENTO A 10 DI UN NUMERO DECIMALE Sia dato un numero N 10 in base 10 di n cifre. Il complemento a 10 di tale numero (N ) si ottiene sottraendo il numero stesso a 10 n. ESEMPIO 1: eseguire il complemento

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma.

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma. Addizione: PROPRIETA' COMMUTATIVA Cambiando l'ordine degli addendi la somma non cambia. 1) a + b = b + a PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si

Dettagli

PRINCIPI BASILARI DI ELETTROTECNICA

PRINCIPI BASILARI DI ELETTROTECNICA PRINCIPI BASILARI DI ELETTROTECNICA Prerequisiti - Impiego di Multipli e Sottomultipli nelle equazioni - Equazioni lineari di primo grado e capacità di ricavare le formule inverse - nozioni base di fisica

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Così come le macchine meccaniche trasformano

Così come le macchine meccaniche trasformano DENTRO LA SCATOLA Rubrica a cura di Fabio A. Schreiber Il Consiglio Scientifico della rivista ha pensato di attuare un iniziativa culturalmente utile presentando in ogni numero di Mondo Digitale un argomento

Dettagli

Numeri complessi e polinomi

Numeri complessi e polinomi Numeri complessi e polinomi 1 Numeri complessi L insieme dei numeri reali si identifica con la retta della geometria: in altri termini la retta si può dotare delle operazioni + e e divenire un insieme

Dettagli

Alla pagina successiva trovate la tabella

Alla pagina successiva trovate la tabella Tabella di riepilogo per le scomposizioni Come si usa la tabella di riepilogo per le scomposizioni Premetto che, secondo me, questa tabella e' una delle pochissime cose che in matematica bisognerebbe "studiare

Dettagli

Linguistica Generale

Linguistica Generale Linguistica Generale Docente: Paola Monachesi Aprile-Maggio 2003 Contents 1 La linguistica e i suoi settori 2 2 La grammatica come mezzo per rappresentare la competenza linguistica 2 3 Le componenti della

Dettagli

LA NOTAZIONE SCIENTIFICA

LA NOTAZIONE SCIENTIFICA LA NOTAZIONE SCIENTIFICA Definizioni Ricordiamo, a proposito delle potenze del, che = =.000 =.000.000.000.000 ovvero n è uguale ad seguito da n zeri. Nel caso di potenze con esponente negativo ricordiamo

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado I quesiti sono distribuiti negli ambiti secondo la tabella seguente Ambito

Dettagli

ITALIANO - ASCOLTARE E PARLARE

ITALIANO - ASCOLTARE E PARLARE O B I E T T I V I M I N I M I P E R L A S C U O L A P R I M A R I A E S E C O N D A R I A D I P R I M O G R A D O ITALIANO - ASCOLTARE E PARLARE Ascoltare e comprendere semplici consegne operative Comprendere

Dettagli

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una NUMERI INTERI E NUMERI DECIMALI Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una cassetta sono contenuti 45 penne e che una lamiera misura 1,35 m. dl lunghezza,

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

Materiale di approfondimento: numeri interi relativi in complemento a uno

Materiale di approfondimento: numeri interi relativi in complemento a uno Materiale di approfondimento: numeri interi relativi in complemento a uno Federico Cerutti AA. 2011/2012 Modulo di Elementi di Informatica e Programmazione http://apollo.ing.unibs.it/fip/ 2011 Federico

Dettagli

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI Indice 1 Le funzioni nel discreto 3 1.1 Le funzioni nel discreto.................................. 3 1.1.1 La rappresentazione grafica............................

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

Nota: Eventi meno probabili danno maggiore informazione

Nota: Eventi meno probabili danno maggiore informazione Entropia Informazione associata a valore x avente probabilitá p(x é i(x = log 2 p(x Nota: Eventi meno probabili danno maggiore informazione Entropia di v.c. X P : informazione media elementi di X H(X =

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

Unità 1. I Numeri Relativi

Unità 1. I Numeri Relativi Unità 1 I Numeri Relativi Allinizio della prima abbiamo introdotto i 0numeri 1 naturali: 2 3 4 5 6... E quattro operazioni basilari per operare con essi + : - : Ci siamo però accorti che la somma e la

Dettagli