1.1 Rendimento isoentropico

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1.1 Rendimento isoentropico"

Transcript

1 . Rendiento isoentroio L oressione o l esnsione di un fluido è un oerzione olto oune nei roessi tenologii. Bsti ensre he qulunque otore er oter funzionre h bisogno di un fse di oressione e di un di esnsione. Nel Citolo 4 bbio diostrto he, si uò ritenere, on buon rossizione, dibti, si l oressione, si l esnsione di un fluido. Se oi l trsforzione, oltre d essere dibti è nhe reersibile, (o leno internente reersibile) ossedio degli struenti tetii er lutre l ndento dell trsforzione. I rgionenti he freo in questo itolo lgono er tutti i fluidi, nhe se noi folizzereo l ttenzione sui gs ideli. Considerio l oressione dibti di Figur 7-. T ' Figur 7-:Coressione dibti s L trsforzione irreersibile è trtteggit er hirezz; in reltà non otrebbe essere rresentt nel ino terodinio in qunto non è fort d stti di equilibrio. Se l trsforzione fosse isoentroi, note le ondizioni terodinihe del unto e un ribile terodini del unto (ressione, teertur o olue seifio), sreo in grdo di lutre le ltre trite le forule (7-47) (7-48) (7-49). Inoltre srebbe ossibile lutre il loro di olue e quello tenio. Purtroo nell reltà l trsforzione, us dei fenoeni dissitii sere resenti, srà dibti non isoentroi, endo, quindi, un entroi di fine oressione ggiore. Ciò oort un teertur ggiore e quindi un loro ggiore. Risult utile definire il rendiento di oressione isoentroio oe il rorto tr il loro idele dell oressione e quello rele: L h h id η is, = = (7-64) Lr h' h In odo nlogo si uò definire un rendiento isoentroio di esnsione. Coe si uò edere in Figur 7-3 us delle irreersibilità l entroi e l teertur di fine esnsione srnno ggiori, e quindi il loro ottenibile srà inore di quello idele. In questo so il rendiento è

2 ri l rorto tr il loro rele he ottengo e quello idele he otterrei in un trsforzione isoentroi. L h h r ' η is, e = = (7-65) Lid h h T ' Figur 7-3: Esnsione dibti. s I rendienti isoentroii sono noti in bse sttisti er le rie hine. In tl odo in fse di rogetto sono in grdo di lutre il loro e le ondizioni terodinihe di usit del fluido dll hin. Se onsiderio er eseio l oressione di un gs idele, noto il rorto di oressione osso lutre il loro tenio idele. L otenz teni rele è ugule : E l teertur di fine oressione è ugule : ( h ) ( t t ) L h L r = = = (7-66) η id is, ηis, ηis, t l id ' = + t ηis, (7-67) Anlogente si oer in un esnsione: l id t ' = t ηis, e (7-68) Eseio 7-5 Considerndo l oressione isoentroi dell eseio 7-4 lolre l otenz teni rele e l teertur di usit dl oressore, suonendo un rendiento isoentroio ri η is, = 0, 75. Solgiento

3 L otenz teni rele di oressione è ugule : L id L r = = = 60093W η 0,75 is,,4,4 T = Tρ = 73,5 30 = 7,8 K = 448,7 L r T ' = + T = + 73,5 = 856,6 K = 583,4 00,03 o C o C. Coressori.. Introduzione In questo rgrfo i ouereo dei oressori lterntii, lsindo i orsi di hine l nlisi degli ltri tii di oressori oluetrii e di quelli entrifughi e ssili. Ciò nonostnte olte delle nozioni generli he edreo sono libili tutti i tii di oressori. In line teori l oressione dibti o ounque olitroi on un esonente n olto iino, non è l uni oressione ossibile. D un unto di ist terodinio srebbe iù oneniente eseguire un oressione isoter. Si uò, inftti, diostrre he l endenz delle ure isotere in un ino - è inore di quell delle ure isoentroihe. Per frlo bst lolre l derit rzile dell ressione teertur ostnte ed entroi ostnte L ur he rresent un trsforzione isoter è Per ui Cost = (7-69) T Cost = = (7-70) L ur rresentti di un trsforzione isoentroi è Per ui = Cost (7-7) s = Cost = (7-7) D ui si ri he l endenz dell isoentroi è olte ggiore di quell dell isoter.

4 Riordndo he nel ino - il loro tenio è rresentto dll re sottes dll ur risetto ll sse delle ordinte, si ede grfiente in Figur 7-4 he il loro risrito è rresentto dll re trtteggit. =ost =ost Figur 7-4:Loro tenio risrito on un oressione isoter risetto d un isoentroi, Purtroo d un unto di ist tenio non è file ostruire un oressore he esegu un oressione isoter. Bisognerebbe oriere e onteorneente sottrrre lore. In rti si utilizzno oressori iù stdi on un interrefrigerzione he si esegue fendo ssre il fluido he ese d uno stdio dentro uno sbitore di lore ri di entrre nello stdio suessio. Coe si ede in Figur 7-5 l re trtteggit indi il risrio di loro tenio he si ottiene on l refrigerzione interedi. Al rire dell ressione interedi bi il loro tenio risrito. Per trore il lore dell ressione interedi he ssiizz il risrio bisogn esriere il loro di oressione in funzione dell i e derirlo. l Tot = l i = ee e + + l34 u i (7-73)

5 u 4 =ost i 3 =ost e Figur 7-5:Coressione on interrefrigerzione l Tot i = e e e u i = 0 (7-74) i L (7-74) si nnull er: = (7-74) i e u Derindo un seond olt si ede he questo è effettiente un inio. Nell sorlientzione dei otori lterntii, si d ensione ondt (ilo Otto), he sontne (ilo Diesel) si rffredd il gs ll usit del oressore. Tle oerzione h il regio di onsentire l iissione dell ri oress in er di obustione d un teertur inore. Questo ftto, oltre d uentre l ss di ri (e quindi di obustibile) iess nell er, non erette nei otori ilo Otto he eng l inneso dell obustione ri he sohi l sintill eitndo, osì, il fenoeno noto oe bttito in test... Coressori lterntii I oressori lterntii sono ostituiti d un ilindro in ui si uoe un istone, ondto d un siste biell noell. Il istone si uoe tr il unto orto sueriore (PMS) e il unto orto inferiore (PMI). Per otii tenii è neessrio lsire uno szio tr l testt del oressore e il PMS. Chiereo questo szio olue noio. Sull testt sono resenti le lole di sirzione e di ndt. Di solito le lole sono ostituite d dishi di iio inossidbile he rono e hiudono er effetto dell ressione differenzile he si gener sui due lti del diso lol. Il funzionento idele di un oressore lterntio è shetizzto in Figur 7-6, entre in Figur 7-7 è indito il funzionento rele.

6 3.S. n 4 g.a. PMS PMI Figur 7-6: funzionento idele di un oressore lterntio Il istone rrito l unto orto sueriore (unto 3) oini l ors di ritorno on tutte le due lole hiuse. Al unto 4 si re l lol di sirzione. Giunto il istone l unto orto inferiore (unto ) si inerte l ors on tutte due le lole hiuse. Qundo si rggiunge l ressione di ndt si re l lol di srio (unto ) e oini l ors di ndt on l esulsione del fluido sirto. Nel unto 3 si hiude l lol di ndt e rioini il ilo. Coe si intuise d quest desrizione il oressore non oer in regie stzionrio. Inoltre il ilo en desritto e rffigurto nell figur 7-6 non è un ilo terodinio in qunto l ss he oer nel ilo non rine ostnte. Questi ili ssuono il noe di ili inditi o dinii. Al oento di hiusur dell lol di ndt il olue 3 è ugule l olue noio n e l ss ontenut nel ilindro l hiereo n.. Nel unto il oressore rà sirto l ss e quindi l ss totle nel ilindro srà ugule n +. Nell trsforzione - il oressore orie l ss n + ed infine nello srio iene esuls l ss. Il loro oiuto dl oressore è ugule ll so dei lori delle singole fsi. L tot (7-75) + + = L4 + L + L3 + L3 4 Il loro di sirzione è ugule Il loro di oressione le: ( ) = ( n + ) n L 4 = = (7-76) + 4 ( n ) L = d = + d (7-77)

7 Il loro di ndt (esulsione del fluido ostnte) è ugule : 3 4 ( 3 ) = n ( + n ) = L = (7-78) 3.S. 4 Il loro di esnsione è ugule : Il loro totle è, quindi, ugule : Riordndo he: Si ottiene he:.a. PMS PMI Figur 7-7: funzionento rele di un oressore lterntio + 4 L3 4 = d = d = d (7-79) 3 n L = + tot d (7-80) ( ) d d d = + (7-8) L = d (7-8) tot Abbio en diostrto he il loro tenio non differise tr un hin oertrie reersibile he lor in odo ontinuo d un he lor in odo disontinuo. n

8 Un retro iortnte er l rogettzione dei oressori lterntii è il rendiento oluetrio definito oe il rorto tr il olue sirto e quello effettiente generto dll hin (edi Figur 7-6). η = (7-83) g In reltà è irorio definire questo retro rendiento in qunto non i riferio rorti di energi. D ltronde, oe edreo tr oo, il rendiento oluetrio è effettiente legto l funzionento dell hin e inoltre quest è l dizione he ouneente iene utilizzt. Il olue sirto è ugule : = + (7-84) n g 4 Se definio on r il rorto tr l ressione di ndt e quell di sirzione r = (7-85) e riordndo he l esnsione d 3 4 è isoentroi ossio sriere he: r n 4 = (7-86) D ui = + = + n g r n g n r (7-87) Sostituendo, infine l (7-87) nell (7-83) si ottiene: n η = r (7-88) g Coe si ede il rendiento oluetrio diinuise ll uentre del rorto di oressione. A rità, inee, di rorto di oressione il rendiento oluetrio uent l diinuire del olue noio. In questo so è eidente he er un hin idele il rendiento oluetrio non influenz il loro di oressione he er qunto bbio isto nelle (7-8) e (7-5) diende solo dll ss sirt e dl rorto di oressione. Un lore bsso del rorto di oressione ili selieente he bisogn utilizzre hine iù grndi er elborre l stess ortt d ri. In un oressore rele l situzione è iù oless. Qundo il istone rggiunge il unto 4 l lol non rirà ieditente; si reerà, osì, un deressione he frà rire l lol, he us dell su elstiità oinerà ibrre generndo delle ulszioni dell ressione. Inoltre us delle erdite di rio nell ttrersento dell lol l ressione si bbsserà ulteriorente er oi rislire d un lore leggerente inferiore ll ressione di sirzione, qundo si hiuderà l lol (unto ).

9 Un roesso nlogo iene ll ressione di ndt. Il oressore rggiunge un ressione ggiore di quell di ndt, si re l lol e oini l esulsione del fluido. L ressione oini lre fino he l lol hiude (unto 3). Oltre lle erdite di rio doute ll linzione del fluido nell ttrersento delle lole, i sono ltre use di irreersibilità (ttriti enii, fenoeni turbolenti), he generno un innlzento dell teertur del fluido. L innlzento dell teertur roo rinilente due fenoeni: l innlzento dell teertur di fine oressione, he uò ortre ll ensione dell olio lubrifinte. l uento del olue seifio e quindi l diinuzione dell ri sirt. Questo fenoeno oort il eggiorento del oeffiiente di rieiento del ilindro. Per questi otii in un oressore onostdio si er di non suerre il lore di r = 9 0. Se serono rorti di oressione iù lti si riorre oressori luristdio on interrefrigerzione.

CONDUTTANZA ELETTRICA DI UN ELETTROLITA IN SOLUZIONE (TEORIA)

CONDUTTANZA ELETTRICA DI UN ELETTROLITA IN SOLUZIONE (TEORIA) CONDUTTANZA ELETTICA DI UN ELETTOLITA IN SOLUZIONE (TEOIA) Se si ppli un differenz di potenzile elettrio fr due elettrodi iersi in un soluzione ioni, si verifi un igrzione risultnte di ioni in direzione

Dettagli

SOLUZIONE PROBLEMI Insegnamento di Fisica dell Atmosfera Seconda prova in itinere

SOLUZIONE PROBLEMI Insegnamento di Fisica dell Atmosfera Seconda prova in itinere Doente: rof Dino Zri serittore: in lessio Bertò OLUZION PROBLMI Insenento i Fisi ell tosfer eon rov in itinere /3 Vlori elle ostnti Rio terrestre eio: 637 Rio solre eio: 7 5 Distnz ei terr-sole : 9 6 Vlore

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

Miscele di aria e vapore d acqua

Miscele di aria e vapore d acqua Brbr Gherri mtr. 4544 Lezione del 20/2/02 or 8:0-0:0 iscele di ri e ore d cqu L esigenz di studire le miscele ri ore deri dll grnde imortnz che esse riestono er il benessere termoigrometrico dell uomo

Dettagli

Robotica industriale. Motori a magneti permanenti. Prof. Paolo Rocco (paolo.rocco@polimi.it)

Robotica industriale. Motori a magneti permanenti. Prof. Paolo Rocco (paolo.rocco@polimi.it) Rooti industrile Motori mgneti permnenti Prof. Polo Roo (polo.roo@polimi.it) Generzione di oppi L legge di Lorentz i die he un ri elettri q in moto on veloità v in un mpo mgnetio di intensità B è soggett

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

METODO VOLTAMPEROMETRICO

METODO VOLTAMPEROMETRICO METODO OLTAMPEOMETCO Tle etodo consente di isrre indirettente n resistenz elettric ed ipieg l definizione stess di resistenz : doe rppresent l tensione i cpi dell resistenz e l corrente che l ttrers coe

Dettagli

A.A.2009/10 Fisica 1 1

A.A.2009/10 Fisica 1 1 Mhine termihe e frigoriferi Un mhin termi è un mhin he, grzie un sequenz i trsformzioni termoinmihe i un t sostnz, proue lvoro he può essere utilizzto. Un mhin solitmente lvor su i un ilo i trsformzioni

Dettagli

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L scelt di equilirio del consumtore ntegrzione del C. 21 del testo di Mnkiw 1 Prte 1 l vincolo di ilncio Suonimo che il reddito di un consumtore

Dettagli

Primo principio della termodinamica

Primo principio della termodinamica Primo riniio della termodinamia Priniio di equivalenza Due ori a temeratura diversa, in ontatto, raggiungono l'equilibrio termio Durante il ontatto, il "alore" si trasferise dal oro iù aldo al oro iù freddo

Dettagli

pdv + p ponendo v T v p

pdv + p ponendo v T v p Nel aso artiolare in i δl sia esresso in fnzione delle oordinate e, è er trasformazione internamente reersibile ari a : δl d laoro di ariazione di olme, essendo d d d esso si ò osì esrimere δl d d onendo

Dettagli

Impianto di pressurizzazione e condizionamento

Impianto di pressurizzazione e condizionamento IMPIANTI E SISTEMI Disense del orso, versione 2014 Caitolo 9 Imianto di ressurizzazione e ondizionamento Caitolo 9 Imianto di ressurizzazione e ondizionamento Queste disense ossono essere liberamente sariate

Dettagli

] + [ ] [ ] def. ] e [ ], si ha subito:

] + [ ] [ ] def. ] e [ ], si ha subito: OPE OPERAZIONI BINARIE Definizione di operzione inri Dto un insieme A non vuoto, si him operzione (inri) su A ogni pplizione di A in A In generle, un'operzione su A viene indit on il simolo Se (x, y) è

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE.

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE. FCA D UN CCUTO SSTO CONTNNT PÙ GNATO CON UN TMNAL COMUN SNZA TMNAL COMUN. Si verifino quttro iruiti on due genertori: genertori on polrità onorde e un terminle omune genertori on polrità disorde e un terminle

Dettagli

Termometria e calorimetria

Termometria e calorimetria ermometria e alorimetria Priniio zero della termodinamia: 2 ori, e, a temerature differenti ( < ) osti a ontatto raggiungono l equilibrio termio. Se e sono in equilibrio termio on un terzo oro C allora

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Analisi dei dati ottenuti dalla raccolta dei Questionari consegnati al Tessuto Imprenditoriale e Commerciale della Città di Magenta

Analisi dei dati ottenuti dalla raccolta dei Questionari consegnati al Tessuto Imprenditoriale e Commerciale della Città di Magenta QUESTIONRIO PINO GENERLE DEL TRFFIO URNO ITTÀ DI MGENT nlisi dei dti ottenuti dll rolt dei Questionri onsegnti l Tessuto Imprenditorile e ommerile dell ittà di Mgent Relizzt d onfommerio Mgent e stno Primo

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

Lezione. Investimenti Diretti Esteri (FDI) e Imprese Multinazionali

Lezione. Investimenti Diretti Esteri (FDI) e Imprese Multinazionali Lezione Investimenti Diretti Esteri FDI e Imprese Multinzionli 1 Definizioni Dimensione del fenomeno 3 Tipi di IDE 4 Il prdigm OLI 5 Il modello ``knowledge sed speifi ssets 6 Un modello di selt tr esportzione

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

Elementi di calcolo degli impianti oleodinamici

Elementi di calcolo degli impianti oleodinamici Frnco Qurnt, Crmine Sbtino Elementi di clcolo degli iminti oleodinmici F. Qurnt, C. Sbtino Elementi di clcolo degli iminti oleodinmici 1 di 15 Not introduttiv Lo scoo di qunto esosto nelle gine seguenti

Dettagli

ESPONENZIALI LOGARITMI

ESPONENZIALI LOGARITMI ESPONENZIALI LOGARITMI Prerequisiti: Conoscere e sper operre con potenze con esponente nturle e rzionle. Conoscere e sper pplicre le proprietà delle potenze. Sper risolvere equzioni e disequzioni. Sper

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

La statistica nei test Invalsi

La statistica nei test Invalsi L sttisti nei test Invlsi 1) Osserv il grfio seguente he rppresent l distriuzione perentule di fmiglie per numero di omponenti, in se l ensimento 2001.. Qul è l perentule di fmiglie on 2 omponenti? Rispost:..%.

Dettagli

Sondaggio piace l eolico?

Sondaggio piace l eolico? Songgio pie l eolio? Durnte l inugurzione i Stell sono stti istriuiti ei questionri per vlutre l inie i grimento ell eolio prte ell popolzione Sono stti ompilti e quini nlizzti 50 questionri Quest presentzione

Dettagli

Portata Q - è il volume di liquido mosso dalla pompa nell'unità di tempo; l'unità di misura della portata è m 3 /sec (l/s; m 3 /h).

Portata Q - è il volume di liquido mosso dalla pompa nell'unità di tempo; l'unità di misura della portata è m 3 /sec (l/s; m 3 /h). OME ER FLUIDI ALIMENARI Definizione Sono macchine oeratrici oeranti su fluidi incomrimibili in grado di trasformare l energia meccanica disonibile all albero di un motore in energia meccanica del fluido

Dettagli

d coulomb d volt b trasformatore d alternatore b amperometro d reostato

d coulomb d volt b trasformatore d alternatore b amperometro d reostato ppunti 7 TEST DI VERIFICA 1 Unità i misur ell ri elettri: henry weer volt oulom 2 Unità i misur ell pità elettri: oulom henry fr volt 3 Gener orrente lternt: umultore resistenz 4 Misur l tensione: resistometro

Dettagli

Problemi di collegamento delle strutture in acciaio

Problemi di collegamento delle strutture in acciaio 1 Problemi di collegmento delle strutture in cciio Unioni con bulloni soggette tglio Le unioni tglio vengono generlmente utilizzte negli elementi compressi, quli esempio le unioni colonn-colonn soggette

Dettagli

Lezione 21 Investimenti Diretti Esteri (FDI) e Imprese Multinazionali 1) Definizioni. 5) Il modello ``knowledge based specific assets

Lezione 21 Investimenti Diretti Esteri (FDI) e Imprese Multinazionali 1) Definizioni. 5) Il modello ``knowledge based specific assets Lezione 1 Investimenti Diretti Esteri FDI e Imprese Multinzionli 1 Definizioni Dimensione del fenomeno 3 Tipi di IDE 4 Il prdigm OLI 5 Il modello ``knowledge sed speifi ssets 6 Un modello di selt tr esportzione

Dettagli

Formule di Gauss Green

Formule di Gauss Green Formule di Guss Green In queste lezioni voglimo studire il legme esistente tr integrli in domini bidimensionli ed integrli urvilinei sull frontier di questi. In seguito i ouperemo del problem nlogo nello

Dettagli

RISCRITTURA DELLE EQUAZIONI DEL METODO DELL INVASO PER CURVE DI POSSIBILITA PLUVIOMETRICA A TRE PARAMETRI

RISCRITTURA DELLE EQUAZIONI DEL METODO DELL INVASO PER CURVE DI POSSIBILITA PLUVIOMETRICA A TRE PARAMETRI Risrittur delle equioni del metodo dell invso er urve di ossiilità luviometri tre rmetri Uffiio Pinifiione e viluo Nuove Oere ing. Mrtino Cerni RICRITTURA DELLE EUAZIONI DEL METODO DELL INAO PER CURE DI

Dettagli

L Q = 1. e nel ciclo di Carnot questo rendimento assume valore massimo pari a : η =

L Q = 1. e nel ciclo di Carnot questo rendimento assume valore massimo pari a : η = CICLI ERMODINAMICI DIREI: Maccine termice Le maccine ce anno come scoo uello di trasformare ciclicamente in lavoro il calore disonibile da una sorgente termica sono dette maccine termice o motrici e il

Dettagli

MOMENTI E CENTRAGGIO DEL VELIVOLO

MOMENTI E CENTRAGGIO DEL VELIVOLO x 1 x ISTITUZIONI DI INGEGNERIA AEROSAZIALE OENTI E CENTRAGGIO VELIVOLO OENTI E CENTRAGGIO DEL VELIVOLO er il alolo delle prestazioni in volo orizzontale rettilineo ed uniforme, il velivolo può essere

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

Scheda tecnica. art. 92150-92155 TESTINA ELETTRICA DESCRIZIONE. SPECIFICHE PRODOTTO MISURE (in mm.) 47,0 54,0 4,0

Scheda tecnica. art. 92150-92155 TESTINA ELETTRICA DESCRIZIONE. SPECIFICHE PRODOTTO MISURE (in mm.) 47,0 54,0 4,0 rt. 92150-92155 DESCRIZIONE L'utilizzo delle stine elettriche quchnik instll sui singoli circuiti di collettori perettono, con l'usilio degli ppositi condi elettronici, l gestione di ogni singol zon/nello.

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

Momento di una forza rispettto ad un punto

Momento di una forza rispettto ad un punto Momento di un fo ispettto d un punto Rihimimo lune delle definiioni e popietà sui vettoi già disusse ll iniio del oso Podotto vettoile: ϑ ϑ sin sin θ Il vettoe è dietto lungo l pependiole l pino individuto

Dettagli

sorgente di lavoro meccanico operante in maniera ciclica internamente reversibile esternamente reversibile termostato T

sorgente di lavoro meccanico operante in maniera ciclica internamente reversibile esternamente reversibile termostato T CICLI MOORI Utilizzando un motore (sorgente di lavoro meccanico oerante in maniera ciclica) che evolve secondo il ciclo isotermo-adiabatico di Carnot in maniera internamente reversibile, scambiando calore

Dettagli

APPROFONDIMENTI SULL UTILIZZAZIONE DI ENERGIA SOLARE

APPROFONDIMENTI SULL UTILIZZAZIONE DI ENERGIA SOLARE APPENDICE 1 APPROFONDIMENI SULL UILIZZAZIONE DI ENERGIA SOLARE 1.1 CONVERSIONE IN ENERGIA ERMICA CON COLLEORI SOLARI 1.1.1 Premess Per qunto rigurd quest form di utilizzo, il merto nzionle è nor oggi iuttosto

Dettagli

CBM a.s. 2012/2013 PROBLEMA DELLE SCORTE

CBM a.s. 2012/2013 PROBLEMA DELLE SCORTE CBM a.s. 212/213 PROBLEMA DELLE SCORTE Chiamiamo SCORTA ogni riserva di materiali presente all interno del sistema produttivo in attesa di essere sottoposto ad un proesso di trasformazione o di distribuzione.

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

Progettazione di un motore Ringbom Stirling per la produzione di energia elettrica nei paesi in via di sviluppo

Progettazione di un motore Ringbom Stirling per la produzione di energia elettrica nei paesi in via di sviluppo Progettazione di un motore Ringbom Stirling er la roduzione di energia elettrica nei aesi in via di sviluo C. M. Invernizzi, G. Incerti, S. Parmigiani, V. Villa Diartimento di Ingegneria Meccanica e Industriale

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

Diagrammi per la rappresentazione dei dati di fatica

Diagrammi per la rappresentazione dei dati di fatica olitecnico di Torino Ftic in - High Cycle Ftigue (HCF) igri per l rppresentzione dei dti di ftic i dti di ftic di bse sono ottenuti d prove con sollecitzioni noinli unissili d piezz costnte; le prove possono

Dettagli

SETTORE URBANO 4 GARIBALDI - STADIO - tavola 1

SETTORE URBANO 4 GARIBALDI - STADIO - tavola 1 SETTORE URBAO GARIBALDI - STADIO - tol 1 Comune di Bologn LEGEDA Tol "Stdio - ie" Tol 5 "Mille" Tol 7 "U. Bssi" Tol 9 "Bolero" Tol "Trioli" Tol "Stdio - Fiume" Tol 6 "Mzzini" Tol 8 "Mnin" TD 0 0 0 TC Sincoli

Dettagli

TERMODINAMICA E TERMOFLUIDODINAMICA. Cap. 3 TERMODINAMICA E LAVORO MECCANICO

TERMODINAMICA E TERMOFLUIDODINAMICA. Cap. 3 TERMODINAMICA E LAVORO MECCANICO TERMODINMIC E TERMOFLUIDODINMIC Ca. 3 TERMODINMIC E LVORO MECCNICO d 0 stato finae 0 stato iniziae F V m 0 / 0 G. Cesini Termodinamica e termofuidodinamica - Ca. 3_TD e aoro meccanico Ca. 3 TERMODINMIC

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

Il dimensionamento dei carichi termici delle celle frigorifere

Il dimensionamento dei carichi termici delle celle frigorifere Il dimensionmento dei crichi termici delle celle frigorifere Andre Verondini Scoo rincile di un iminto di refrigerzione è quello di mntenere in un cell le condizioni che consentno l conserzione delle derrte

Dettagli

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO L RLZIONI L FUNZIONI serizi in più SRIZI IN PIÙ SRIZI I FIN PITOLO TST Nell insieme ell figur, l relzione rppresentt goe ell o elle proprietà: TST L relzione «essere isenente i», efinit nell insieme egli

Dettagli

MACCHINE ELETTRICHE. Stefano Pastore. Macchine in Corrente Continua

MACCHINE ELETTRICHE. Stefano Pastore. Macchine in Corrente Continua MACCHINE ELETTRICHE Mahine in Corrente Continua Stefano Pastore Dipartiento di Ingegneria e Arhitettura Corso di Elettrotenia (IN 043) a.a. 2012-13 Statore Sistea induttore (Statore): anello in ghisa o

Dettagli

Risoluzione. dei triangoli. e dei poligoni

Risoluzione. dei triangoli. e dei poligoni UNITÀ Risoluzione dei tringoli e dei poligoni TEORI Relzioni tr lti e ngoli di un tringolo qulunque (sleno) riteri per risolvere i tringoli qulunque 3 re dei tringoli 4 erhi notevoli dei tringoli 5 ltezze,

Dettagli

CONTROLLO DEglI impianti termici

CONTROLLO DEglI impianti termici CONTROLLO DEglI imianti termii Parte 3 CSIE - Corso di Studi in Ingegneria Elettria CSIEo - Corso di Studi in Ingegneria ElettrONia CSIEn - Corso di Studi in Ingegneria Energetia - Diartimento di Ingegneria

Dettagli

RISCALDAMENTO PER PISCINE

RISCALDAMENTO PER PISCINE 0 ENERGIE LOGO RISLDMENO ER ISINE ENERGI SOLRE ERMODINMI BLOO SOLRE / / / 8 / 0 ENERGIE LOGO RISLDMENO ISINE Soluzione Solare ermodinamica+ per piscine Dispositivi da a 0 pannelli solari RISLDMENO ISINE

Dettagli

Equivalenza tra equazioni di Lagrange e problemi variazionali

Equivalenza tra equazioni di Lagrange e problemi variazionali Equivlenz tr equzioni di Lgrnge e problemi AM Cherubini 20 Aprile 2007 1 / 21 Problemi Mostrimo or come si possono ricvre sistemi di equzioni con struttur lgrngin in un mbito diverso: prim si er crtterizzt

Dettagli

LO STRUMENTO VINCENTE PER LA TUA ATTIVITÀ COMMERCIALE

LO STRUMENTO VINCENTE PER LA TUA ATTIVITÀ COMMERCIALE LO STRUMENTO VINCENTE PER LA TUA ATTIVITÀ COMMERCIALE Vorresti... Avere i mezzi promozionali della Grande Distribuzione? Oggi si può, entrando a far parte di un grande circuito Aumentare la visibilità

Dettagli

Calcolo della densità dell aria alle due temperature utilizzando l equazione dei gas:

Calcolo della densità dell aria alle due temperature utilizzando l equazione dei gas: Lezione XXIII - 0/04/00 ora 8:0-0:0 - Esercizi tiraggio e sorbona - Originale di Marco Sisto. Esercizio Si consideri un ipianto di riscaldaento a caino caratterizzato dai seguenti dati: T T Sezione ati

Dettagli

Manuale Generale Sintel Guida alle formule di aggiudicazione

Manuale Generale Sintel Guida alle formule di aggiudicazione MANUALE DI SUPPOTO ALL UTILIZZO DELLA PIATTAFOMA SINTEL GUIDA ALLE FOMULE DI AGGIUDICAZIONE Pgin 1 di 21 AGENZIA EGIONALE CENTALE ACQUISTI Indice 1 INTODUZIONE... 3 1.1 Cso di studio... 4 2 FOMULE DI CUI

Dettagli

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x) Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)

Dettagli

SERVIZIO SANITARI O REGI ONE SARDE GN A -A.S.L. N 5 ORISTAN O. L an n o d u e m i l a u n d i c i a d d ì d e l m e s e di M a g g i o TR A

SERVIZIO SANITARI O REGI ONE SARDE GN A -A.S.L. N 5 ORISTAN O. L an n o d u e m i l a u n d i c i a d d ì d e l m e s e di M a g g i o TR A Alle g a t o (A) all a Deli b e r a z i o n e Dir e t t o r e G e n e r a l e n 144 d el 23/ 0 5/ 2 0 11 Co m p o s t o d a n 6 p a g i n e SERVIZIO SANITARI O REGI ONE SARDE GN A -A.S.L. N 5 ORISTAN O

Dettagli

Capitolo Ventitrè. Offerta nel breve. Offerta dell industria. Offerta di un industria concorrenziale Offerta impresa 1 Offerta impresa 2 p

Capitolo Ventitrè. Offerta nel breve. Offerta dell industria. Offerta di un industria concorrenziale Offerta impresa 1 Offerta impresa 2 p Caitolo Ventitrè Offerta dell industria Offerta dell industria concorrenziale Come si combinano le decisioni di offerta di molte imrese singole in un industria concorrenziale er costituire l offerta di

Dettagli

Macchine elettriche in corrente continua

Macchine elettriche in corrente continua cchine elettriche in corrente continu Generlità Può essere definit mcchin un dispositivo che convert energi d un form un ltr. Le mcchine elettriche in prticolre convertono energi elettric in energi meccnic

Dettagli

PROVE DI CARICO SU SOLAIO

PROVE DI CARICO SU SOLAIO .5. PROVE DI CARICO SU SOAIO Pg. di PROVE DI CARICO SU SOAIO. Sopo prov intende testre le strutture orizzontli, in termini di resistenz e di rispost elsti, sottoponendole lle mssime solleitzioni possiili

Dettagli

GEOTECNICA LEZIONE 11 PROBLEMI DI STABILITA ANALISI LIMITE SPINTA DELLE TERRE. Ing. Alessandra Nocilla

GEOTECNICA LEZIONE 11 PROBLEMI DI STABILITA ANALISI LIMITE SPINTA DELLE TERRE. Ing. Alessandra Nocilla GEOTECNICA LEZIONE 11 POBLEMI DI STABILITA ANALISI LIMITE SPINTA DELLE TEE Ing. Alessndr Nocill 1 POBLEMI DI STABILITA OPEE DI SOSTEGNO OPEE DI SOSTEGNO IGIDE FLESSIBILI L stbilità è legt l eso W dell

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Elementi di meccanica dei fluidi

Elementi di meccanica dei fluidi IMPIANTI AEROSPAZIALI DISPENSE DEL CORSO, VERSIONE 005 Caitolo 3 Elementi di meccanica dei fluidi 3. IMPIANTI AEROSPAZIALI DISPENSE DEL CORSO, VERSIONE 005 3. Introduzione In molti imianti il collegamento

Dettagli

ALLEGATO TECNICO PER L USO DEL PROGRAMMA RICHIESTA DATI ALUNNI DISABILI

ALLEGATO TECNICO PER L USO DEL PROGRAMMA RICHIESTA DATI ALUNNI DISABILI 1 ALLEGATO TECNICO PER L USO DEL PROGRAMMA RICHIESTA DATI ALUNNI DISABILI Il pr e s e n t e do c u m e n t o for ni s c e le info r m a z i o n i ne c e s s a r i e ed es s e n z i a l i a su p p o r t

Dettagli

Compressori e ventilatori. Impianti frigoriferi

Compressori e ventilatori. Impianti frigoriferi Sheda riassuntiva 10 apitolo 13 Compressori e ventilatori. Impianti frigoriferi Compressori e ventilatori I ompressori si possono lassifiare seondo lo shema seguente: Volumetrii alternativi rotativi Dinamii

Dettagli

Questo materiale è stato prodotto dal progetto Programma di informazione e comunicazione a sostegno degli obiettivi di Guadagnare Salute del

Questo materiale è stato prodotto dal progetto Programma di informazione e comunicazione a sostegno degli obiettivi di Guadagnare Salute del Questo mterile è stto prodotto dl progetto Progrmm di informzione e omunizione sostegno degli oiettivi di Gudgnre Slute del Ministero dell Slute /CCM, in ollorzione ol Ministero dell Istruzione, dell Università

Dettagli

TERMODINAMICA E TERMOFLUIDODINAMICA TRASMISSIONE DEL CALORE PER CONVEZIONE

TERMODINAMICA E TERMOFLUIDODINAMICA TRASMISSIONE DEL CALORE PER CONVEZIONE TERMODINAMICA E TERMOFUIDODINAMICA TRASMISSIONE DE CAORE PER CONVEZIONE h C T Q ( T ) m ( ) ρ = V T V ost T = A T S Trasmissione del alore per onvezione Indie 1. a onvezione termia forzata e naturale 2.

Dettagli

T16 Protocolli di trasmissione

T16 Protocolli di trasmissione T16 Protoolli di trsmissione T16.1 Cos indi il throughput di un ollegmento TD?.. T16.2 Quli tr le seguenti rtteristihe dei protoolli di tipo COP inidono direttmente sul vlore del throughput? Impossiilità

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI ) COSA SIGNIFICANO GLI ESPONENTI IRRAZIONALI pg. ) LA FUNZIONE ESPONENZIALE 5 ) LOGARITMI 8 ) LA FUNZIONE LOGARITMICA 9 5) I LOGARITMI: QUESTIONI DI STORIA E DI SIMBOLOGIA 6) PROPRIETA

Dettagli

Calcolo del costo unitario FASE 1

Calcolo del costo unitario FASE 1 ESERCIZIO Definizione el pino ei entri i osto e eterminzione el osto unitrio i prootto Clolo el osto unitrio FASE 1 Azien i prouzione: proue i eni,,, Il proesso prouttivo prevee 3 fsi o proessi prinipli:

Dettagli

Sessione live #2 Settimana dal 24 al 30 marzo. Statistica Descrittiva (II): Analisi congiunta, Regressione lineare Quantili.

Sessione live #2 Settimana dal 24 al 30 marzo. Statistica Descrittiva (II): Analisi congiunta, Regressione lineare Quantili. Sessione lie # Settimana dal 4 al 30 marzo Statistica Descrittia (II): Analisi congiunta, Regressione lineare Quantili Lezioni CD: 3 4-5 Analisi congiunta Da un camione di 40 studenti sono stati rileati

Dettagli

APPUNTI del CORSO di MACCHINE I

APPUNTI del CORSO di MACCHINE I APPUNI del CORSO di MACCHINE I Motori a combustione interna A cura del dott. ing. Daniele Scatolini dalle lezioni del rof. Cinzio Arrighetti Introduzione Il motore a combustione interna (m.c.i.) ha origine

Dettagli

Sci en zapert u tti. im m e rs io n e, c o n ta m in a z io n e e d a p p ro d o

Sci en zapert u tti. im m e rs io n e, c o n ta m in a z io n e e d a p p ro d o Sci en zapert u tti im m e rs io n e, c o n ta m in a z io n e e d a p p ro d o Luigi Benussi (lu ig i.b e n u s s i@ ln f.in fn.it) Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

Dettagli

6. I GAS IDEALI. 6.1 Il Gas perfetto

6. I GAS IDEALI. 6.1 Il Gas perfetto 6. I GAS IDEALI 6. Il Gas erfetto Il gas erfetto o ideale costituisce un modello astratto del comortamento dei gas cui tendono molti gas reali a ressioni rossime a quella atmosferica. Questo modello di

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

Camera dei D eputati - 9 1 3 - Senato della Repubblica

Camera dei D eputati - 9 1 3 - Senato della Repubblica Camera dei D eputati - 9 1 3 - Senato della Repubblica POR FESR 2 0 0 7-2 0 1 3 A r t.ii.1.1 Prod e n e r g ie rinn (M isura 2 ) "INCENTIVAZIONI ALL'INSEDIAMENTO DI LINEE DI PRODUZIONE DI SISTEM I E COMPONENTI

Dettagli

I segnali nelle telecomunicazioni

I segnali nelle telecomunicazioni I segli elle telecouiczioi Geerlità I segli ossoo essere rresetti el doiio del teo edite u grfico crtesio vete i scisse il teo e i ordite i vlori isttei dell'iezz del segle cosiderto. Tle grfico, detto

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri i Primo Gro Clsse Prim Suol..........................................................................................................................................

Dettagli

DIGICULT: PRE SENTAZIONE GENE RALE

DIGICULT: PRE SENTAZIONE GENE RALE DIGICULT: PRE SENTAZIONE GENE RALE Cosa è Digicult Il portale web Il magazine online Il podcast e la newsletter L'agenzia D i gi C U L T è u n a p i a t t a f o r m a c u l t u r al e It alia n a o n li

Dettagli

a cura della Dott. Fiorenza Vandini 1

a cura della Dott. Fiorenza Vandini 1 1 Consultazione con il mondo del lavoro Proposta della Facoltà Nucleo di Valutazione Senato accademico Comitato di coordinamento regionale Consiglio di amministrazione 2 Raggiungere un MODELLO EUROPEO

Dettagli

GAS IDEALI. Dell ossigeno, supposto gas ideale con k = 1.4 cost, evolve secondo un ciclo costituito dalle seguenti trasformazioni reversibili:

GAS IDEALI. Dell ossigeno, supposto gas ideale con k = 1.4 cost, evolve secondo un ciclo costituito dalle seguenti trasformazioni reversibili: Eserzo GAS IDEALI Dell osseo, sosto as deale o.4 ost, eole seodo lo osttto dalle seet trasorazo reersl: Coressoe sotera dallo stato ( 0.9 ar; 0.88 /) allo stato 2; trasorazoe soora da 2 a ( 2.5 ar); esasoe

Dettagli

La velocità massima espressa in metri al secondo e l accelerazione voluta sono: 1000

La velocità massima espressa in metri al secondo e l accelerazione voluta sono: 1000 Diesioeto di ssi di otore correte cotiu Si idividuio i pretri pricipli di u cchi correte cotiu eccitzioe idipedete i rdo di uovere u tr veloce ote che sio le seueti specifiche: Tesioe di lietzioe dell

Dettagli

PRESENTAZIONE AL QUESTIONARIO DI AUTOVALUTAZIONE DELLA MEMORIA (Everyday Memory Questionnaire - EMQ)

PRESENTAZIONE AL QUESTIONARIO DI AUTOVALUTAZIONE DELLA MEMORIA (Everyday Memory Questionnaire - EMQ) PRESENTAZIONE AL QUESTIONARIO DI AUTOVALUTAZIONE DELLA MEMORIA (Everydy Memory Questionnire - EMQ) Drio Slmso e Giuseppin Viol CNR-Psicologi, Vile Mrx 15-00137 ROMA) L'EMQ (Sunderlnd et l., 1983) si propone

Dettagli

Collegamenti Albero-mozzo

Collegamenti Albero-mozzo Collegameni Albero-mozzo /11/01 Obieivo: Collegare assialmene ue organi (in moo fisso o mobile) al fine i rasmeere coia orcene e quini eviare che vi sia un moo roaorio relaivo Accoiameno i forma Faore

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Gnmr Mrtn UNIVERSITÀ DEGLI STUDI DI BERGAMO Fcoltà d Ingegner Isttuzon d Econom Lure Trennle n Ingegner Gestonle Lezone 9 Domnd del mercto Prof. Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner

Dettagli

Allegato 3 Elenco BAT ed esempio interventi efficientamento

Allegato 3 Elenco BAT ed esempio interventi efficientamento Allegto 3 Eleno BAT e esempio interventi effiientmento LINEE GUIDA per l onuzione ell ignosi energeti nel settore rtrio Pg. 1 i 6 Riepilogo BAT sul onsumo e sull effiienz energetii estrtte ll DECISIONE

Dettagli

Le Macchine a Fluido. Tutor Ing. Leonardo Vita

Le Macchine a Fluido. Tutor Ing. Leonardo Vita Le Macchine a Fluido Tutor Ing. Leonardo Vita Introduzione Si uò definire macchina, in senso lato, un qualsiasi convertitore di energia cioè, in generale, una scatola chiusa in cui entra e da cui esce

Dettagli

Incentivi finanziari alle imprese

Incentivi finanziari alle imprese Incentivi finanziari alle imprese Delibera della Giunta regionale n. 208 del 2 aprile 2012 Programma Attuativo Regionale (PAR) a valere sul Fondo per lo Sviluppo e la Coesione (FSC) 2007-2013 Asse I Linea

Dettagli

Appunti di telecomunicazione

Appunti di telecomunicazione Aunti di telecounicazione Indice 3. Modulazione FM 3.. Preessa 3.. Deviazione di requenza 3.3. Indice di odulazione 3.4. Modulazione ercentuale 3.5. Forula di Carson 3.6. Potenza del segnale odulato 3.7.

Dettagli

Corso di Laurea: INGEGNERIA INFORMATICA (classe 09) Insegnamento: n Lezione: Titolo: V M. Fig. 5.1 Schematizzazione di una macchina a fluido

Corso di Laurea: INGEGNERIA INFORMATICA (classe 09) Insegnamento: n Lezione: Titolo: V M. Fig. 5.1 Schematizzazione di una macchina a fluido Corso di Laurea: INGEGNERIA INFORMATICA (lasse 09) Le equazioni del moto dei fluidi L equazione di onservazione dell energia in forma termodinamia V M Ω Ω Fig. 5. Shematizzazione di una mahina a fluido

Dettagli

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI Elis Gonizzi N mtricol: 3886 Lezione del -- :3-:3 IRRAGGIAMENO: APPLICAZIONI ED EERCIZI E utile l fine di comprendere meglio le ppliczioni e gli esercizi ricordre cos si intend con i termini CORPI NERI

Dettagli

Logistica (mn) 6 CFU Appello del 22 Luglio 2010

Logistica (mn) 6 CFU Appello del 22 Luglio 2010 Logistica (mn) 6 CFU Aello del Luglio 010 NOME: COGNOME: MATR: Avvertenze ed istruzioni: Il comito dura ore e quindici. Non è ermesso lasciare l'aula senza consegnare il comito o ritirarsi. Se dovessero

Dettagli

14/05/2013. Onde sonore

14/05/2013. Onde sonore Onde sonore valutazione del fenomeno acustico 1 Cos è il suono? Una erturbazione di carattere oscillatorio che si roaga in un mezzo elastico Alla roagazione corrisonde una roagazione di energia ma non

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

progetto formativo la gestione del rischio clinico m c q

progetto formativo la gestione del rischio clinico m c q progetto forativo la gestione del rishio linio identifiazione del rishio valutazione o analisi del rishio gestione o ontrollo del rishio Valutazione dei rishi Freuenza Gravità: lesioni ortali o gravi Stia

Dettagli