1.1 Rendimento isoentropico

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1.1 Rendimento isoentropico"

Transcript

1 . Rendiento isoentroio L oressione o l esnsione di un fluido è un oerzione olto oune nei roessi tenologii. Bsti ensre he qulunque otore er oter funzionre h bisogno di un fse di oressione e di un di esnsione. Nel Citolo 4 bbio diostrto he, si uò ritenere, on buon rossizione, dibti, si l oressione, si l esnsione di un fluido. Se oi l trsforzione, oltre d essere dibti è nhe reersibile, (o leno internente reersibile) ossedio degli struenti tetii er lutre l ndento dell trsforzione. I rgionenti he freo in questo itolo lgono er tutti i fluidi, nhe se noi folizzereo l ttenzione sui gs ideli. Considerio l oressione dibti di Figur 7-. T ' Figur 7-:Coressione dibti s L trsforzione irreersibile è trtteggit er hirezz; in reltà non otrebbe essere rresentt nel ino terodinio in qunto non è fort d stti di equilibrio. Se l trsforzione fosse isoentroi, note le ondizioni terodinihe del unto e un ribile terodini del unto (ressione, teertur o olue seifio), sreo in grdo di lutre le ltre trite le forule (7-47) (7-48) (7-49). Inoltre srebbe ossibile lutre il loro di olue e quello tenio. Purtroo nell reltà l trsforzione, us dei fenoeni dissitii sere resenti, srà dibti non isoentroi, endo, quindi, un entroi di fine oressione ggiore. Ciò oort un teertur ggiore e quindi un loro ggiore. Risult utile definire il rendiento di oressione isoentroio oe il rorto tr il loro idele dell oressione e quello rele: L h h id η is, = = (7-64) Lr h' h In odo nlogo si uò definire un rendiento isoentroio di esnsione. Coe si uò edere in Figur 7-3 us delle irreersibilità l entroi e l teertur di fine esnsione srnno ggiori, e quindi il loro ottenibile srà inore di quello idele. In questo so il rendiento è

2 ri l rorto tr il loro rele he ottengo e quello idele he otterrei in un trsforzione isoentroi. L h h r ' η is, e = = (7-65) Lid h h T ' Figur 7-3: Esnsione dibti. s I rendienti isoentroii sono noti in bse sttisti er le rie hine. In tl odo in fse di rogetto sono in grdo di lutre il loro e le ondizioni terodinihe di usit del fluido dll hin. Se onsiderio er eseio l oressione di un gs idele, noto il rorto di oressione osso lutre il loro tenio idele. L otenz teni rele è ugule : E l teertur di fine oressione è ugule : ( h ) ( t t ) L h L r = = = (7-66) η id is, ηis, ηis, t l id ' = + t ηis, (7-67) Anlogente si oer in un esnsione: l id t ' = t ηis, e (7-68) Eseio 7-5 Considerndo l oressione isoentroi dell eseio 7-4 lolre l otenz teni rele e l teertur di usit dl oressore, suonendo un rendiento isoentroio ri η is, = 0, 75. Solgiento

3 L otenz teni rele di oressione è ugule : L id L r = = = 60093W η 0,75 is,,4,4 T = Tρ = 73,5 30 = 7,8 K = 448,7 L r T ' = + T = + 73,5 = 856,6 K = 583,4 00,03 o C o C. Coressori.. Introduzione In questo rgrfo i ouereo dei oressori lterntii, lsindo i orsi di hine l nlisi degli ltri tii di oressori oluetrii e di quelli entrifughi e ssili. Ciò nonostnte olte delle nozioni generli he edreo sono libili tutti i tii di oressori. In line teori l oressione dibti o ounque olitroi on un esonente n olto iino, non è l uni oressione ossibile. D un unto di ist terodinio srebbe iù oneniente eseguire un oressione isoter. Si uò, inftti, diostrre he l endenz delle ure isotere in un ino - è inore di quell delle ure isoentroihe. Per frlo bst lolre l derit rzile dell ressione teertur ostnte ed entroi ostnte L ur he rresent un trsforzione isoter è Per ui Cost = (7-69) T Cost = = (7-70) L ur rresentti di un trsforzione isoentroi è Per ui = Cost (7-7) s = Cost = (7-7) D ui si ri he l endenz dell isoentroi è olte ggiore di quell dell isoter.

4 Riordndo he nel ino - il loro tenio è rresentto dll re sottes dll ur risetto ll sse delle ordinte, si ede grfiente in Figur 7-4 he il loro risrito è rresentto dll re trtteggit. =ost =ost Figur 7-4:Loro tenio risrito on un oressione isoter risetto d un isoentroi, Purtroo d un unto di ist tenio non è file ostruire un oressore he esegu un oressione isoter. Bisognerebbe oriere e onteorneente sottrrre lore. In rti si utilizzno oressori iù stdi on un interrefrigerzione he si esegue fendo ssre il fluido he ese d uno stdio dentro uno sbitore di lore ri di entrre nello stdio suessio. Coe si ede in Figur 7-5 l re trtteggit indi il risrio di loro tenio he si ottiene on l refrigerzione interedi. Al rire dell ressione interedi bi il loro tenio risrito. Per trore il lore dell ressione interedi he ssiizz il risrio bisogn esriere il loro di oressione in funzione dell i e derirlo. l Tot = l i = ee e + + l34 u i (7-73)

5 u 4 =ost i 3 =ost e Figur 7-5:Coressione on interrefrigerzione l Tot i = e e e u i = 0 (7-74) i L (7-74) si nnull er: = (7-74) i e u Derindo un seond olt si ede he questo è effettiente un inio. Nell sorlientzione dei otori lterntii, si d ensione ondt (ilo Otto), he sontne (ilo Diesel) si rffredd il gs ll usit del oressore. Tle oerzione h il regio di onsentire l iissione dell ri oress in er di obustione d un teertur inore. Questo ftto, oltre d uentre l ss di ri (e quindi di obustibile) iess nell er, non erette nei otori ilo Otto he eng l inneso dell obustione ri he sohi l sintill eitndo, osì, il fenoeno noto oe bttito in test... Coressori lterntii I oressori lterntii sono ostituiti d un ilindro in ui si uoe un istone, ondto d un siste biell noell. Il istone si uoe tr il unto orto sueriore (PMS) e il unto orto inferiore (PMI). Per otii tenii è neessrio lsire uno szio tr l testt del oressore e il PMS. Chiereo questo szio olue noio. Sull testt sono resenti le lole di sirzione e di ndt. Di solito le lole sono ostituite d dishi di iio inossidbile he rono e hiudono er effetto dell ressione differenzile he si gener sui due lti del diso lol. Il funzionento idele di un oressore lterntio è shetizzto in Figur 7-6, entre in Figur 7-7 è indito il funzionento rele.

6 3.S. n 4 g.a. PMS PMI Figur 7-6: funzionento idele di un oressore lterntio Il istone rrito l unto orto sueriore (unto 3) oini l ors di ritorno on tutte le due lole hiuse. Al unto 4 si re l lol di sirzione. Giunto il istone l unto orto inferiore (unto ) si inerte l ors on tutte due le lole hiuse. Qundo si rggiunge l ressione di ndt si re l lol di srio (unto ) e oini l ors di ndt on l esulsione del fluido sirto. Nel unto 3 si hiude l lol di ndt e rioini il ilo. Coe si intuise d quest desrizione il oressore non oer in regie stzionrio. Inoltre il ilo en desritto e rffigurto nell figur 7-6 non è un ilo terodinio in qunto l ss he oer nel ilo non rine ostnte. Questi ili ssuono il noe di ili inditi o dinii. Al oento di hiusur dell lol di ndt il olue 3 è ugule l olue noio n e l ss ontenut nel ilindro l hiereo n.. Nel unto il oressore rà sirto l ss e quindi l ss totle nel ilindro srà ugule n +. Nell trsforzione - il oressore orie l ss n + ed infine nello srio iene esuls l ss. Il loro oiuto dl oressore è ugule ll so dei lori delle singole fsi. L tot (7-75) + + = L4 + L + L3 + L3 4 Il loro di sirzione è ugule Il loro di oressione le: ( ) = ( n + ) n L 4 = = (7-76) + 4 ( n ) L = d = + d (7-77)

7 Il loro di ndt (esulsione del fluido ostnte) è ugule : 3 4 ( 3 ) = n ( + n ) = L = (7-78) 3.S. 4 Il loro di esnsione è ugule : Il loro totle è, quindi, ugule : Riordndo he: Si ottiene he:.a. PMS PMI Figur 7-7: funzionento rele di un oressore lterntio + 4 L3 4 = d = d = d (7-79) 3 n L = + tot d (7-80) ( ) d d d = + (7-8) L = d (7-8) tot Abbio en diostrto he il loro tenio non differise tr un hin oertrie reersibile he lor in odo ontinuo d un he lor in odo disontinuo. n

8 Un retro iortnte er l rogettzione dei oressori lterntii è il rendiento oluetrio definito oe il rorto tr il olue sirto e quello effettiente generto dll hin (edi Figur 7-6). η = (7-83) g In reltà è irorio definire questo retro rendiento in qunto non i riferio rorti di energi. D ltronde, oe edreo tr oo, il rendiento oluetrio è effettiente legto l funzionento dell hin e inoltre quest è l dizione he ouneente iene utilizzt. Il olue sirto è ugule : = + (7-84) n g 4 Se definio on r il rorto tr l ressione di ndt e quell di sirzione r = (7-85) e riordndo he l esnsione d 3 4 è isoentroi ossio sriere he: r n 4 = (7-86) D ui = + = + n g r n g n r (7-87) Sostituendo, infine l (7-87) nell (7-83) si ottiene: n η = r (7-88) g Coe si ede il rendiento oluetrio diinuise ll uentre del rorto di oressione. A rità, inee, di rorto di oressione il rendiento oluetrio uent l diinuire del olue noio. In questo so è eidente he er un hin idele il rendiento oluetrio non influenz il loro di oressione he er qunto bbio isto nelle (7-8) e (7-5) diende solo dll ss sirt e dl rorto di oressione. Un lore bsso del rorto di oressione ili selieente he bisogn utilizzre hine iù grndi er elborre l stess ortt d ri. In un oressore rele l situzione è iù oless. Qundo il istone rggiunge il unto 4 l lol non rirà ieditente; si reerà, osì, un deressione he frà rire l lol, he us dell su elstiità oinerà ibrre generndo delle ulszioni dell ressione. Inoltre us delle erdite di rio nell ttrersento dell lol l ressione si bbsserà ulteriorente er oi rislire d un lore leggerente inferiore ll ressione di sirzione, qundo si hiuderà l lol (unto ).

9 Un roesso nlogo iene ll ressione di ndt. Il oressore rggiunge un ressione ggiore di quell di ndt, si re l lol e oini l esulsione del fluido. L ressione oini lre fino he l lol hiude (unto 3). Oltre lle erdite di rio doute ll linzione del fluido nell ttrersento delle lole, i sono ltre use di irreersibilità (ttriti enii, fenoeni turbolenti), he generno un innlzento dell teertur del fluido. L innlzento dell teertur roo rinilente due fenoeni: l innlzento dell teertur di fine oressione, he uò ortre ll ensione dell olio lubrifinte. l uento del olue seifio e quindi l diinuzione dell ri sirt. Questo fenoeno oort il eggiorento del oeffiiente di rieiento del ilindro. Per questi otii in un oressore onostdio si er di non suerre il lore di r = 9 0. Se serono rorti di oressione iù lti si riorre oressori luristdio on interrefrigerzione.

P O M P E. Per un impianto generico, il cui schema è rappresentato in figura, si adotta la seguente terminologia: H g è la PREVALENZA GEODETICA

P O M P E. Per un impianto generico, il cui schema è rappresentato in figura, si adotta la seguente terminologia: H g è la PREVALENZA GEODETICA O M E Sono cchine IDRULIE OERTRII. Loro coito è quello di trferire l eneri eccnic di cui dionono in eneri idrulic. Quete cchine cedono l fluido incoriiile che le ttrer eneri di reione e/o eneri cinetic.

Dettagli

CONDUTTANZA ELETTRICA DI UN ELETTROLITA IN SOLUZIONE (TEORIA)

CONDUTTANZA ELETTRICA DI UN ELETTROLITA IN SOLUZIONE (TEORIA) CONDUTTANZA ELETTICA DI UN ELETTOLITA IN SOLUZIONE (TEOIA) Se si ppli un differenz di potenzile elettrio fr due elettrodi iersi in un soluzione ioni, si verifi un igrzione risultnte di ioni in direzione

Dettagli

SOLUZIONE PROBLEMI Insegnamento di Fisica dell Atmosfera Seconda prova in itinere

SOLUZIONE PROBLEMI Insegnamento di Fisica dell Atmosfera Seconda prova in itinere Doente: rof Dino Zri serittore: in lessio Bertò OLUZION PROBLMI Insenento i Fisi ell tosfer eon rov in itinere /3 Vlori elle ostnti Rio terrestre eio: 637 Rio solre eio: 7 5 Distnz ei terr-sole : 9 6 Vlore

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Università degli studi di Bologna D.I.E.M. Dipartimento di Ingegneria delle Costruzioni Meccaniche, Nucleari, Aeronautiche e di Metallurgia

Università degli studi di Bologna D.I.E.M. Dipartimento di Ingegneria delle Costruzioni Meccaniche, Nucleari, Aeronautiche e di Metallurgia Università degli studi di Bologna D.I.E.M. Diartiento di Ingegneria delle Costruzioni Meanihe, Nuleari, Aeronautihe e di Metallurgia rev. giugno 2005 Motore ad aensione oandata Motore ad aensione er oressione

Dettagli

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo:

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo: FUNZIONI MATEMATICHE Le relzioni mtemtihe utilizzte per desrivere fenomeni nturli, in iologi ome in ltre sienze, possono ovvimente essere le più svrite. Per lo più si trtt di equzioni lineri, qudrtihe,

Dettagli

ESERCIZI SVOLTI DI TEORIA DEI GIOCHI ED ECONOMIA INDUSTRIALE. Svolgimento A M B A 50,50 0,100 0,100 M 100,0 50,50 0,100 B 100,0 100,0 50,50

ESERCIZI SVOLTI DI TEORIA DEI GIOCHI ED ECONOMIA INDUSTRIALE. Svolgimento A M B A 50,50 0,100 0,100 M 100,0 50,50 0,100 B 100,0 100,0 50,50 ESERCIZI SVOLTI DI TEORIA DEI GIOCHI ED ECONOMIA INDUSTRIALE Eserizio Due irese onorrenti fissno siultneente il rezzo di vendit del ene oogeneo d loro rodotto I ossiili rezzi sono A lto, M edio, B sso

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

COMBINAZIONI DI CARICO SOLAI

COMBINAZIONI DI CARICO SOLAI COMBINAZIONI DI CARICO SOLAI (ppunti di Mrio Zfonte in fse di elorzione) Ai fini delle verifihe degli stti limite, seondo unto indito dll normtiv, in generle le ondizioni di rio d onsiderre, sono uelle

Dettagli

Miscele di aria e vapore d acqua

Miscele di aria e vapore d acqua Brbr Gherri mtr. 4544 Lezione del 20/2/02 or 8:0-0:0 iscele di ri e ore d cqu L esigenz di studire le miscele ri ore deri dll grnde imortnz che esse riestono er il benessere termoigrometrico dell uomo

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

Robotica industriale. Motori a magneti permanenti. Prof. Paolo Rocco (paolo.rocco@polimi.it)

Robotica industriale. Motori a magneti permanenti. Prof. Paolo Rocco (paolo.rocco@polimi.it) Rooti industrile Motori mgneti permnenti Prof. Polo Roo (polo.roo@polimi.it) Generzione di oppi L legge di Lorentz i die he un ri elettri q in moto on veloità v in un mpo mgnetio di intensità B è soggett

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

METODO VOLTAMPEROMETRICO

METODO VOLTAMPEROMETRICO METODO OLTAMPEOMETCO Tle etodo consente di isrre indirettente n resistenz elettric ed ipieg l definizione stess di resistenz : doe rppresent l tensione i cpi dell resistenz e l corrente che l ttrers coe

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

A.A.2009/10 Fisica 1 1

A.A.2009/10 Fisica 1 1 Mhine termihe e frigoriferi Un mhin termi è un mhin he, grzie un sequenz i trsformzioni termoinmihe i un t sostnz, proue lvoro he può essere utilizzto. Un mhin solitmente lvor su i un ilo i trsformzioni

Dettagli

FERRARIS BRUNELLESCHI

FERRARIS BRUNELLESCHI ISTITUTO D ISTRUZIONE SUPERIORE FERRARIS BRUNELLESCHI Vi R. Snzio, 187 50053 Epoli (FI) A.S. 2009/2010 Te di turità di Tecnic dell produzione e lb. Docente: Andre Strnini Soluzione Not: L soluzione non

Dettagli

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L scelt di equilirio del consumtore ntegrzione del C. 21 del testo di Mnkiw 1 Prte 1 l vincolo di ilncio Suonimo che il reddito di un consumtore

Dettagli

4 ; messo in forma = 2. 4 Le tangenti saranno: = x + 8. La circonferenza (Paolo Urbani prima stesura settembre 2002 aggiornamento novembre 2013)

4 ; messo in forma = 2. 4 Le tangenti saranno: = x + 8. La circonferenza (Paolo Urbani prima stesura settembre 2002 aggiornamento novembre 2013) Fsio iproprio di rette prllele r: ipliit risult q r si h: q ; esso in for. onsiderndo he ( ;) q ( q) q e 8 q q q q 6q 6 q ± 6 q 8; q Le tngenti srnno: 8, ; L ironferenz (Polo Urni pri stesur settere ggiornento

Dettagli

pdv + p ponendo v T v p

pdv + p ponendo v T v p Nel aso artiolare in i δl sia esresso in fnzione delle oordinate e, è er trasformazione internamente reersibile ari a : δl d laoro di ariazione di olme, essendo d d d esso si ò osì esrimere δl d d onendo

Dettagli

Primo principio della termodinamica

Primo principio della termodinamica Primo riniio della termodinamia Priniio di equivalenza Due ori a temeratura diversa, in ontatto, raggiungono l'equilibrio termio Durante il ontatto, il "alore" si trasferise dal oro iù aldo al oro iù freddo

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

STUDIO SISTEMATICO DELLE GIUNZIONI BULLONATE

STUDIO SISTEMATICO DELLE GIUNZIONI BULLONATE LEZIONI N 26, 27 E 28 STUDIO SISTEATICO DELLE GIUNZIONI BULLONATE Adottimo un criterio di clssificzione bsto sulle crtteristiche di sollecitzioni trsmesse dlle ste collegte. Per qunto rigurd le unioni

Dettagli

Elementi di calcolo degli impianti oleodinamici

Elementi di calcolo degli impianti oleodinamici Frnco Qurnt, Crmine Sbtino Elementi di clcolo degli iminti oleodinmici F. Qurnt, C. Sbtino Elementi di clcolo degli iminti oleodinmici 1 di 15 Not introduttiv Lo scoo di qunto esosto nelle gine seguenti

Dettagli

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi.

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi. I PRODOTTI NOTEVOLI Nel lolo letterle pit spesso di inontrre moltiplizioni tr prtiolri polinomi. I reltivi sviluppi si ottengono pplindo le regole fin qui viste, m i risultti, opportunmente semplifiti,

Dettagli

] + [ ] [ ] def. ] e [ ], si ha subito:

] + [ ] [ ] def. ] e [ ], si ha subito: OPE OPERAZIONI BINARIE Definizione di operzione inri Dto un insieme A non vuoto, si him operzione (inri) su A ogni pplizione di A in A In generle, un'operzione su A viene indit on il simolo Se (x, y) è

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE.

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE. FCA D UN CCUTO SSTO CONTNNT PÙ GNATO CON UN TMNAL COMUN SNZA TMNAL COMUN. Si verifino quttro iruiti on due genertori: genertori on polrità onorde e un terminle omune genertori on polrità disorde e un terminle

Dettagli

RISCRITTURA DELLE EQUAZIONI DEL METODO DELL INVASO PER CURVE DI POSSIBILITA PLUVIOMETRICA A TRE PARAMETRI

RISCRITTURA DELLE EQUAZIONI DEL METODO DELL INVASO PER CURVE DI POSSIBILITA PLUVIOMETRICA A TRE PARAMETRI Risrittur delle equioni del metodo dell invso er urve di ossiilità luviometri tre rmetri Uffiio Pinifiione e viluo Nuove Oere ing. Mrtino Cerni RICRITTURA DELLE EUAZIONI DEL METODO DELL INAO PER CURE DI

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

4.5 Il Parco dello Sport del Lambro e il PLIS della Media Valle del Lambro

4.5 Il Parco dello Sport del Lambro e il PLIS della Media Valle del Lambro PGT Pino di Governo del Territorio 212 4.5 Il Pro dello Sport del Lmbro e il PLIS dell Medi Vlle del Lmbro Tngenile Est Nuovo pro Cresengo pro Vill Fini Nviglio dell Mrtesn pro Prdisi Lmbro pro dell Mrtesn

Dettagli

Impianto di pressurizzazione e condizionamento

Impianto di pressurizzazione e condizionamento IMPIANTI E SISTEMI Disense del orso, versione 2014 Caitolo 9 Imianto di ressurizzazione e ondizionamento Caitolo 9 Imianto di ressurizzazione e ondizionamento Queste disense ossono essere liberamente sariate

Dettagli

Termometria e calorimetria

Termometria e calorimetria ermometria e alorimetria Priniio zero della termodinamia: 2 ori, e, a temerature differenti ( < ) osti a ontatto raggiungono l equilibrio termio. Se e sono in equilibrio termio on un terzo oro C allora

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

5 Materiali magnetici permanenti

5 Materiali magnetici permanenti Mterili gnetici pernenti 54 5 Mterili gnetici pernenti 5.1 Mterili ferrognetici d lt isteresi terili gnetici pernenti sono terili ferrognetici crtterizzti d un elevt isteresi, in fig.1 è ostrt un generic

Dettagli

ESPONENZIALI LOGARITMI

ESPONENZIALI LOGARITMI ESPONENZIALI LOGARITMI Prerequisiti: Conoscere e sper operre con potenze con esponente nturle e rzionle. Conoscere e sper pplicre le proprietà delle potenze. Sper risolvere equzioni e disequzioni. Sper

Dettagli

parabola curva coniche cono piano parallelo generatrice

parabola curva coniche cono piano parallelo generatrice LA ARABOLA L rol è un urv molto imortnte e lle moltelii rorietà. Ess er onosiut i Grei (Aollonio e Arhimee II e III seolo.c.). Aollonio er rimo, in un fmoso trttto, sorì he l rol f rte i un lsse iù generle

Dettagli

Lezione n. 5 Sanna-Randaccio: Equilibrio Economico Generale in Economia aperta (2x2x2) Benefici del Commercio Internazionale

Lezione n. 5 Sanna-Randaccio: Equilibrio Economico Generale in Economia aperta (2x2x2) Benefici del Commercio Internazionale Lezione n. 5 Snn-Rndio: quilibrio onomio Generle in onomi ert (222) Benefii del Commerio Internzionle I grfii li trovte in MMK 1 onomi ert (222) Il modello in eonomi ert Condizione di equilibrio er il

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

-STRUTTURE DI LEWIS SIMBOLI DI LEWIS

-STRUTTURE DI LEWIS SIMBOLI DI LEWIS STRUTTURE DI LEWIS SIMBLI DI LEWIS ELETTRI DI VALEZA: sono gli elettroni del guscio esterno, i responsbili principli delle proprietà chimiche di un tomo e quindi dell ntur dei legmi chimici che vengono

Dettagli

Le reti di distribuzione degli impianti di riscaldamento

Le reti di distribuzione degli impianti di riscaldamento Corso di IMPIANTI TECNICI er l EDILIZIA Le reti di distribuione degli iianti di riscaldaento Prof. Paolo ZAZZINI Diartiento INGEO Università G. D Annunio Pescara.lft.unich.it Prof. Paolo ZAZZINI Diartiento

Dettagli

Problemi di collegamento delle strutture in acciaio

Problemi di collegamento delle strutture in acciaio 1 Problemi di collegmento delle strutture in cciio Unioni con bulloni soggette tglio Le unioni tglio vengono generlmente utilizzte negli elementi compressi, quli esempio le unioni colonn-colonn soggette

Dettagli

Analisi dei dati ottenuti dalla raccolta dei Questionari consegnati al Tessuto Imprenditoriale e Commerciale della Città di Magenta

Analisi dei dati ottenuti dalla raccolta dei Questionari consegnati al Tessuto Imprenditoriale e Commerciale della Città di Magenta QUESTIONRIO PINO GENERLE DEL TRFFIO URNO ITTÀ DI MGENT nlisi dei dti ottenuti dll rolt dei Questionri onsegnti l Tessuto Imprenditorile e ommerile dell ittà di Mgent Relizzt d onfommerio Mgent e stno Primo

Dettagli

EQUAZIONI ESPONENZIALI -- LOGARITMI

EQUAZIONI ESPONENZIALI -- LOGARITMI Equzioi espoezili e riti pg 1 Adolfo Sioe 1998 EQUAZIONI ESPONENZIALI -- LOGARITMI Fuzioe Espoezile Dto u uero rele positivo osiderio l fuzioe f : R R he d ogi eleeto R f orrispodere l'eleeto y =. Se =

Dettagli

EQUAZIONI DI SECONDO GRADO

EQUAZIONI DI SECONDO GRADO Autore: Enrio Mnfui - 30/04/0 EQUAZIONI DI SECONDO GRADO Le equzioni di seondo grdo in un inognit sono uguglinze di due polinomi di ui lmeno uno è di seondo grdo e l ltro è di grdo minore o ugule due.

Dettagli

Lezione. Investimenti Diretti Esteri (FDI) e Imprese Multinazionali

Lezione. Investimenti Diretti Esteri (FDI) e Imprese Multinazionali Lezione Investimenti Diretti Esteri FDI e Imprese Multinzionli 1 Definizioni Dimensione del fenomeno 3 Tipi di IDE 4 Il prdigm OLI 5 Il modello ``knowledge sed speifi ssets 6 Un modello di selt tr esportzione

Dettagli

Legge del gas perfetto e termodinamica

Legge del gas perfetto e termodinamica Scheda riassuntia 5 caitoli 9-0 Legge del gas erfetto e termodinamica Gas erfetto Lo stato gassoso è quello di una sostanza che si troa oltre la sua temeratura critica. La temeratura critica è quella oltre

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

La statistica nei test Invalsi

La statistica nei test Invalsi L sttisti nei test Invlsi 1) Osserv il grfio seguente he rppresent l distriuzione perentule di fmiglie per numero di omponenti, in se l ensimento 2001.. Qul è l perentule di fmiglie on 2 omponenti? Rispost:..%.

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici.

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici. Il Primo Principio dell Termodinmic non fornisce lcun indiczione rigurdo d lcuni spetti prtici. l evoluzione spontne delle trsformzioni; non individu cioè il verso in cui esse possono vvenire. Pistr cld

Dettagli

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013 Appunti di Algebr Linere Mppe Lineri 0 mggio 203 Indie Ripsso di Teori 2. Cos è un mpp linere.................................. 2.2 Aluni ftti importnti................................... 3 2 Eserizi 4

Dettagli

8. Calcolo integrale.

8. Calcolo integrale. Politenio di Milno - Foltà di Arhitettur Corso di Lure in Edilizi Istituzioni di Mtemtihe - Appunti per le lezioni - Anno Ademio 200/20 26 8 Clolo integrle 8 Signifito geometrio dell integrle definito

Dettagli

Componenti per l elaborazione binaria dell informazione. Sommario. Sommario. Approfondimento del corso di reti logiche. M. Favalli.

Componenti per l elaborazione binaria dell informazione. Sommario. Sommario. Approfondimento del corso di reti logiche. M. Favalli. Sommrio Componenti per l elorzione inri ell informzione Approfonimento el orso i reti logihe M. Fvlli Engineering Deprtment in Ferrr Porte logihe 2 Il livello swith 3 Aspetti tenologii 4 Reti logihe omintorie

Dettagli

Formule di Gauss Green

Formule di Gauss Green Formule di Guss Green In queste lezioni voglimo studire il legme esistente tr integrli in domini bidimensionli ed integrli urvilinei sull frontier di questi. In seguito i ouperemo del problem nlogo nello

Dettagli

Sondaggio piace l eolico?

Sondaggio piace l eolico? Songgio pie l eolio? Durnte l inugurzione i Stell sono stti istriuiti ei questionri per vlutre l inie i grimento ell eolio prte ell popolzione Sono stti ompilti e quini nlizzti 50 questionri Quest presentzione

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione ll lgebr E. Modic ersmo@glois.it Liceo Scientifico Sttle S. Cnnizzro Corso P.O.N. Modelli mtemtici e reltà A.S. 2010/2011 Premess Codificre e Decodificre Nell vit quotidin ci cpit spesso di

Dettagli

d coulomb d volt b trasformatore d alternatore b amperometro d reostato

d coulomb d volt b trasformatore d alternatore b amperometro d reostato ppunti 7 TEST DI VERIFICA 1 Unità i misur ell ri elettri: henry weer volt oulom 2 Unità i misur ell pità elettri: oulom henry fr volt 3 Gener orrente lternt: umultore resistenz 4 Misur l tensione: resistometro

Dettagli

Circuiti Sequenziali Macchine Non Completamente Specificate

Circuiti Sequenziali Macchine Non Completamente Specificate CEFRIEL Consorzio pr l Formzion l Rir in Inggnri ll Informzion Politnio i Milno Ciruiti Squnzili Mhin Non Compltmnt Spifit Introuzion Comptiilità Riuzion l numro gli stti Mtoo gnrl FSM non ompltmnt spifit

Dettagli

disponibile in rete all'indirizzo

disponibile in rete all'indirizzo ESECIZI di MOOI PE AEOMOBII ur di Polo ssioni ssio@hotil.o disonibile in rete ll indirizzo htt://ssio.lterist.org Queste gine sono rotette dlle leggi sul diritto d utore. Autore iet quindi esressente qulunque

Dettagli

PROVE DI CARICO SU SOLAIO

PROVE DI CARICO SU SOLAIO .5. PROVE DI CARICO SU SOAIO Pg. di PROVE DI CARICO SU SOAIO. Sopo prov intende testre le strutture orizzontli, in termini di resistenz e di rispost elsti, sottoponendole lle mssime solleitzioni possiili

Dettagli

Usura di tipo adesivo su un albero di trasmissione. Effetti del fretting su un albero di trasmissione

Usura di tipo adesivo su un albero di trasmissione. Effetti del fretting su un albero di trasmissione Usur di tio desivo su un lbero di trsissione ffetti del fretting su un lbero di trsissione ffetti del itting su un ingrnggio Conttto con rotolento uro o ccognto d strisciento reltivo Conttto tr sfer e

Dettagli

MOMENTI E CENTRAGGIO DEL VELIVOLO

MOMENTI E CENTRAGGIO DEL VELIVOLO x 1 x ISTITUZIONI DI INGEGNERIA AEROSAZIALE OENTI E CENTRAGGIO VELIVOLO OENTI E CENTRAGGIO DEL VELIVOLO er il alolo delle prestazioni in volo orizzontale rettilineo ed uniforme, il velivolo può essere

Dettagli

a è detta PARTE LETTERALE

a è detta PARTE LETTERALE I MONOMI Si die MONOMIO un espressione letterle in ui le unihe operzioni presenti sino il prodotto e l divisione. Esempio è detto COEFFICIENTE del monomio e è dett PARTE LETTERALE Un monomio si die ridotto

Dettagli

c β Figura F2.1 Angoli e lati in un triangolo rettangolo.

c β Figura F2.1 Angoli e lati in un triangolo rettangolo. F. Trigonometri F. Risoluzione dei tringoli rettngoli Risolvere un tringolo rettngolo signifi trovre tutti i suoi lti e tutti i suoi ngoli. Un ngolo lo si onose già ed è l ngolo retto. Le inognite sono

Dettagli

Tesina Interdisciplinare

Tesina Interdisciplinare ITIS. M. PANETTI BARI Alunno: Dcco Vito Clsse: V ETB.s. : 007/008 Tesin Interdiscilinre Indice Mterie 1. Itlino Giovnni Pscoli. Stori Decollo Industrile Il riforiso liberle di Giolitti 3. Diritto ed Econoi

Dettagli

Barriere all entrata e modello del Prezzo Limite Economia industriale Università Bicocca

Barriere all entrata e modello del Prezzo Limite Economia industriale Università Bicocca Brriere ll entrt e modello del Prezzo imite onomi industrile Università Bio Christin Grvgli - Giugno 006 Brriere ll entrt definizioni Condizioni he permettono lle imprese opernti in un industri di elevre

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante Prof.. Di Muro Moto rettilineo uniformemente ccelerto ( m.r.u.. ) Il moto rettilineo uniformemente ccelerto è un moto che iene su un rett con ccelerzione costnte. Dll definizione di ccelerzione t t t t

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Mhin non ompltmnt spifit Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spifit Comptiilità Vrsion l 5/12/02 Sono mhin in ui pr lun onfigurzioni

Dettagli

Le rette r e s sono dette generatrici del fascio. Lezione 16 - Algebra e Geometria - Anno accademico 2009/10 1

Le rette r e s sono dette generatrici del fascio. Lezione 16 - Algebra e Geometria - Anno accademico 2009/10 1 Fsi di rette Si die fsio imrorio di rette generto d rett r:, di rmetri direttori [(,-)], insieme di tutte e rette ree d r. Te insieme srà quindi ostituito d rette rtterite d equioni de tio:,. Si die fsio

Dettagli

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO L RLZIONI L FUNZIONI serizi in più SRIZI IN PIÙ SRIZI I FIN PITOLO TST Nell insieme ell figur, l relzione rppresentt goe ell o elle proprietà: TST L relzione «essere isenente i», efinit nell insieme egli

Dettagli

Le proprietà fondamentali del campo magnetico

Le proprietà fondamentali del campo magnetico 1) Ftti sperimentli. Le proprietà fonmentli el mpo mgnetio Riportimo ue ftti sperimentli: ) Un filo rettilineo infinito perorso orrente I gener un mpo mgnetio on le seguenti proprietà: l intensità ument

Dettagli

Soluzione del problema Un generatore IDEALE

Soluzione del problema Un generatore IDEALE Esmi di Mturità Lieo Sientiio 11 mrzo 15 Soluzione del problem Un genertore IDEALE y A R B L O d Prim di ollegre l resistenz R tr i due poli A e B, nel iruito non irol orrente; l brrett è soggett ll sol

Dettagli

Anno 2. Triangoli rettangoli e teorema delle corde

Anno 2. Triangoli rettangoli e teorema delle corde Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,

Dettagli

Momento di una forza rispettto ad un punto

Momento di una forza rispettto ad un punto Momento di un fo ispettto d un punto Rihimimo lune delle definiioni e popietà sui vettoi già disusse ll iniio del oso Podotto vettoile: ϑ ϑ sin sin θ Il vettoe è dietto lungo l pependiole l pino individuto

Dettagli

Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO

Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO Ai gentili Clienti Loro sedi Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO Al termine di ciscun periodo d impost, dopo ver effettuto le scritture di ssestmento e rettific,

Dettagli

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto 7 I costi dell impres 7.1. Per l combinzione di equilibrio dei due input, si ved il grfico successivo. L pendenz dell line di isocosto e` pri ll opposto del rpporto tr i prezzi dei fttori: -10 = 2 = -5.

Dettagli

Turbomacchine Radiali -Compressori Centrifughi -Turbine Centripete

Turbomacchine Radiali -Compressori Centrifughi -Turbine Centripete Turbomahine Radiali -Compressori Centrifughi -Turbine Centripete Testi di Riferimento Cumpsty, N.A. Compressor Aerodynamis, ISBN 0-470-334-5 Japikse, D. Centrifugal Compressor Design and Performane, ISBN

Dettagli

CAPITOLO 4 EQUAZIONI di CONSERVAZIONE

CAPITOLO 4 EQUAZIONI di CONSERVAZIONE CAPIOLO 4 EQUAZIONI di CONSERVAZIONE 4. Cassifiazione dee ahine Chiamasi mahina a sede di una trasformazione energetia oerante mediante uno o iù fuidi in azione dinamia o inematia; detti fuidi sono i ettori

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

SETTORE URBANO 4 GARIBALDI - STADIO - tavola 1

SETTORE URBANO 4 GARIBALDI - STADIO - tavola 1 SETTORE URBAO GARIBALDI - STADIO - tol 1 Comune di Bologn LEGEDA Tol "Stdio - ie" Tol 5 "Mille" Tol 7 "U. Bssi" Tol 9 "Bolero" Tol "Trioli" Tol "Stdio - Fiume" Tol 6 "Mzzini" Tol 8 "Mnin" TD 0 0 0 TC Sincoli

Dettagli

L Q = 1. e nel ciclo di Carnot questo rendimento assume valore massimo pari a : η =

L Q = 1. e nel ciclo di Carnot questo rendimento assume valore massimo pari a : η = CICLI ERMODINAMICI DIREI: Maccine termice Le maccine ce anno come scoo uello di trasformare ciclicamente in lavoro il calore disonibile da una sorgente termica sono dette maccine termice o motrici e il

Dettagli

CILINDRO SERIE ISO 15552 (EX ISO 6431) TWO-FLAT Ø 32 63 mm

CILINDRO SERIE ISO 15552 (EX ISO 6431) TWO-FLAT Ø 32 63 mm IIRO SRI ISO 2 (X ISO 3) TWO-T mm Questa versione di cilindri serve per mantenere in fase angolare gli oggetti fissati allo stelo ed anche ad applicare coppie, entro i limiti specificati nelle caratteristiche

Dettagli

Portata Q - è il volume di liquido mosso dalla pompa nell'unità di tempo; l'unità di misura della portata è m 3 /sec (l/s; m 3 /h).

Portata Q - è il volume di liquido mosso dalla pompa nell'unità di tempo; l'unità di misura della portata è m 3 /sec (l/s; m 3 /h). OME ER FLUIDI ALIMENARI Definizione Sono macchine oeratrici oeranti su fluidi incomrimibili in grado di trasformare l energia meccanica disonibile all albero di un motore in energia meccanica del fluido

Dettagli

Ricostruzione della cresta in zona 1.1. e 2.1 con lembo palatino a scorrimento coronale e posizionamento di due impianti Prima di Keystone Dental

Ricostruzione della cresta in zona 1.1. e 2.1 con lembo palatino a scorrimento coronale e posizionamento di due impianti Prima di Keystone Dental CASO CLINICO Riostruzione dell rest in zon 1.1. e 2.1 on lemo pltino sorrimento oronle e posizionmento di due impinti Prim di Keystone Dentl Andre Grssi, Odontoitr e liero professionist in Reggio Emili

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

Il dimensionamento dei carichi termici delle celle frigorifere

Il dimensionamento dei carichi termici delle celle frigorifere Il dimensionmento dei crichi termici delle celle frigorifere Andre Verondini Scoo rincile di un iminto di refrigerzione è quello di mntenere in un cell le condizioni che consentno l conserzione delle derrte

Dettagli

CBM a.s. 2012/2013 PROBLEMA DELLE SCORTE

CBM a.s. 2012/2013 PROBLEMA DELLE SCORTE CBM a.s. 212/213 PROBLEMA DELLE SCORTE Chiamiamo SCORTA ogni riserva di materiali presente all interno del sistema produttivo in attesa di essere sottoposto ad un proesso di trasformazione o di distribuzione.

Dettagli

Progettazione di un motore Ringbom Stirling per la produzione di energia elettrica nei paesi in via di sviluppo

Progettazione di un motore Ringbom Stirling per la produzione di energia elettrica nei paesi in via di sviluppo Progettazione di un motore Ringbom Stirling er la roduzione di energia elettrica nei aesi in via di sviluo C. M. Invernizzi, G. Incerti, S. Parmigiani, V. Villa Diartimento di Ingegneria Meccanica e Industriale

Dettagli

Lezione 21 Investimenti Diretti Esteri (FDI) e Imprese Multinazionali 1) Definizioni. 5) Il modello ``knowledge based specific assets

Lezione 21 Investimenti Diretti Esteri (FDI) e Imprese Multinazionali 1) Definizioni. 5) Il modello ``knowledge based specific assets Lezione 1 Investimenti Diretti Esteri FDI e Imprese Multinzionli 1 Definizioni Dimensione del fenomeno 3 Tipi di IDE 4 Il prdigm OLI 5 Il modello ``knowledge sed speifi ssets 6 Un modello di selt tr esportzione

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI ) COSA SIGNIFICANO GLI ESPONENTI IRRAZIONALI pg. ) LA FUNZIONE ESPONENZIALE 5 ) LOGARITMI 8 ) LA FUNZIONE LOGARITMICA 9 5) I LOGARITMI: QUESTIONI DI STORIA E DI SIMBOLOGIA 6) PROPRIETA

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x) Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)

Dettagli

APPROFONDIMENTI SULL UTILIZZAZIONE DI ENERGIA SOLARE

APPROFONDIMENTI SULL UTILIZZAZIONE DI ENERGIA SOLARE APPENDICE 1 APPROFONDIMENI SULL UILIZZAZIONE DI ENERGIA SOLARE 1.1 CONVERSIONE IN ENERGIA ERMICA CON COLLEORI SOLARI 1.1.1 Premess Per qunto rigurd quest form di utilizzo, il merto nzionle è nor oggi iuttosto

Dettagli

Prova n. 1 LEGER TEST

Prova n. 1 LEGER TEST Prov n. 1 LEGER TEST Descrizione L prov si svolge su un percorso delimitto d due coni, posti ll distnz di 20 mt l uno dll ltro. Il cndidto deve percorrere spol l distnz tr i due coni, pssndo dll velocità

Dettagli