ed é dato, per P (t) una qualsiasi parametrizzazione di cui sopra, da

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ed é dato, per P (t) una qualsiasi parametrizzazione di cui sopra, da"

Transcript

1 1 Integrali su una curva regolare Sia C R N una curva regolare, ossia: (1) C é l immagine di una funzione P (t) definita in un intervallo [a, b] (qui preso chiuso e limitato), tipicamente chiuso e limitato, ed a valori in R N (2) Si richiede che P (t) ammetta derivata prima continua (3) Si richiede che il vettore derivata P (t) sia P (t) per ogni t. Sia f una funzione continua definita in C a valori in R. Allora l integrale di f in C si denota con f(p )dl ed é dato, per P (t) una qualsiasi parametrizzazione di cui sopra, da b (1.1) f(p )dl = f(p (t)) P (t) dt C C a con P (t) il modulo del vettore P (t). La formula (1.1) puó essere presa come definizione (una dimostrazione della indipendenza dalla particolare rappresentazione parametrica si trova in [1]). Un modo per comprendere (1.1) é anche di considerare il fatto che se ripartiamo la curva C in una una unione di curve C j, di lunghezza l in ognuna delle quali scegliamo un punto P j, abbiamo somme di Riemann f(pj ) l j. Ora, l itegrale non é nient altro che f(p )dl = C lim max{ l j } f(pj ) l j. Se fissiamo una parametrizzazione P (t) per t [a, b], possiamo considerare le decomposizioni di C che prendono origine da decomposizioni di [a, b]. Ciascun C j sará sostanzialmente un segmento di estemi e quindi di lunghezza P (t j ) P (t j + t j ) P (t j ) + t j P (t j ) l j P (tj + t j ) P (t j ) tj P (t j ) = P (t j ) tj. Ma allora f(p )dl f(p j ) l j f(p (t j )) P (t j ) tj C b a f(p (t)) P (t) dt. La lunghezza di C é semplicemente l integrale della funzione 1 su C. 1 Typeset by AMS-TEX

2 2 1.1 Integrali su grafici di funzione. ata una funzione F (x, y) definita sul grafico C di y = f(x) con x [a, b], abbiamo (1.1.1) C F (x, y)dl = b a F (x, f(x)) 1 + [f (x)] 2 dx. Basta applicare la formula (1.1) rappresentando parametricamente il grafico con x = x y = f(x) per x [a, b]. Allora il cui modulo é d dx (x, f(x)) = (1, f (x)) 1 + [f (x)] 2. Calcoliamo la lunghezza L di y = x 2 per x [, 1]. Applicando (1.1.1) abbiamo L = x2 dx Posto 2x = sinh t e per t la soluzione che identificheremo dopo dell equazione 2 = sinh t abbiamo dx = 1 2 cosh t dt, 1 + 4x2 = 1 + sinh 2 t = cosh t e pertanto = 1 4 sinh 2t + t x2 dx = t cosh 2 tdt = t cosh 2t + 1 dt = 2 Ora abbiamo sinh 2t = 2 sinh t cosh t = 2 sinh t 1 + sinh 2 t = 4 5.

3 3 Non ci resta che determinare t. Abbiamo Quindi a qui ricaviamo e quindi 2 = sinh t = et e t. 2 e 2t 4e t 1 =. e t = 2 ± 5 ( t = log 2 + ) 5 (ovviamente log ( 2 5 ) non ha senso). (1.1) Si tratta qui della curva 1.1 Cicloide x = t sin t y = 1 cos t. Notare che (x(t) t)2 + (y(t) 1) 2 = 1 ossia la distanza del punto della curva dal corrispondente punto (t, 1) é costante. Infatti (1.1) é il moto di un punto di una ruota di raggio 1 il cui centro si muova a velocitá costante 1. Calcoliamo la lunghezza per t [, 2π]. Abbiamo 2π 2π (1 cos t) 2 + sin 2 tdt = 1 2 cos t + cos 2 t + sin 2 tdt = 4 2π = π 2π 2 2 cos tdt = 4 1 cos t dt = 2 2 π sin 2 t = 4 sin t = Elicoide 2π sin 2 ( t 2 )dt = (1.2) La lunghezza per t [, R] é: R x = a cos t y = a sin t z = ct. a 2 cos 2 t + a 2 sin 2 t + c 2 dt = R a 2 + c 2

4 4 1.3 Cardioide Consideriamo la lunghezza del cardioide r = 1 + cos θ per θ [, 2π]. Poniamo (1.3) x = (1 + cos θ) cos θ = cos θ + cos 2 θ y = (1 + cos θ) sin θ = sin θ + cos θ sin θ. Abbiamo (x ) 2 + (y ) 2 == ( sin θ sin 2θ) 2 + (cos θ + cos 2θ) 2 = = 2 2 cos θ = 2 sin θ 2 Ora la lunghezza é 2π 2 sin θ π 2 = 4 sin tdt = 8. 2 Superfici regolari parametrizzate Un modo per dare una superficie S in R 3 é di definire S come l immagine di una funzione iniettiva definita in un qualche dominio in R 2. Esempi. Il piano Oppure la sfera x = x(u, v) = u + 3v y = y(u, v) = 2v z = z(u, v) = u + v. (2.1) x = x(ϑ, ϕ) = cos ϑ sin ϕ y = y(ϑ, ϕ) = sin ϑ sin ϕ z = z(ϑ, ϕ) = cos ϕ. Le variabili indipendenti sono dette parametri o coordinate e quelle sopra sono dette rappresentazioni parametriche delle superfici (nella fattispecie di un piano e della sfera unitaria). Nel seguito consideriamo funzioni x(u, v) (2.2) P = f(u, v) = y(u, v) z(u, v)

5 dove la funzione P (u, v) é differenziabile per ogni valore dei parametri. La regolaritá dei parametri non impedisce che la superficie S possa essere non liscia, cioé con punti in cui non esiste il piano tangente (punti angolosi, conici, spigoli). Ad esempio il cono z 2 = x 2 + y 2 z ammette una rappresentazione parametrica x = u 3, y = v 3, z = u 6 + v 6 dove la differenziabiliá non impedisce la singolaritá conica. Il piano tangente esiste in qualsiasi punto 1 chiedendo che la matrice Jacobiana Jf(u, v) = x u(u, v) x v (u, v) y u (u, v) y v (u, v) z u (u, v) z v (u, v) abbia rango 2 per ogni (u, v). In altre parole, che i vettori colonna f u (u, v) = x u(u, v) y u (u, v), f v (u, v) = x v(u, v) y v (u, v) z u (u, v) z v (u, v) siano linearmente indipendenti per ogni (u, v) ossia (2.3) f u (u, v) f v (u, v). Quando ció accade, in un punto P = f(u, v ) il piano tangente alla superficie é dato dal piano per P con vettore normale f u (u, v ) f v (u, v ). 3 Superfici regolari Notare subito che per la parametrizzazione (2.1) della sfera non é vero che per qualsiasi valore dei parametri si ha P ϕ P ϑ perché per esempio P ϑ (ϑ, ) = sin ϑ sin i + cos ϑ sin j =. Naturalmente la sfera é regolare qualsiasi sia il senso si voglia dare al termine regolare.. Si dice che una superficie é regolare quando essa puó essere suddivisa in pezzi ognuno dei quali é una superficie regolare parametrizzata (i parametri vengono detti anche coordinate locali). Quindi per esempio la sfera va suddivisa in due calotte, e la (2.1) rende la sfera meno il punto (,, 1) (polo nord) una superficie regolare parametrizzata. 5 1 Non che singolaritá di vario tipo non siano legittime e verosimili. Solo che nello svolgere la teoria ci teniamo alla larga per evitare complicazioni non necessarie. Molte cose che diremo qui si estrapolano peraltro abbastanza facilmente.

6 6 4 Area di superfici regolari parametrizzabili Supponiamo dunque di avere un superficie S e supponiamo che (2.2) sia una sua rappresentazione parametrica, differenziabile ovunque in e con JP (u, v) ovunque in di rango 2. Allora si definisce area di S l integrale (4.1) Area(S) = P u (u, v) P v (u, v) dudv. Se noi consideriamo un altra scelta di parametri, per esempio descriviamo la superficie con P (ϕ, ψ) e con dominio Ω, vale l uguaglianza (4.2) Area(S) = P ϕ (ϕ, ψ) P ψ (ϕ, ψ) dϕdψ, Ω ossia la formula non dipende dalla parametrizzazione. Un altro modo per capire intuitivamente 2 che (4.1) é intrinseca, é il seguente. Approssimiamo il dominio con una unione di rettangolini di lato u e v. Il rettangolino di vertici (u, v), (u + u, v), (u, v + v) e (u + u, v + v) finisce in una piccola superficie S con vertici P (u, v) P (u + u, v) P (u, v) + u P u (u, v) P (u, v + v) P (u, v) + v P v (u, v) P (u + u, v + v) A meno di infinitesimi di ordine superiore, l elemento di superficie S é il parallelogramma ottenuto applicando al punto P (u, v) i vettori u P u (u, v), v P v (u, v). Siccome l area di Sé la somma delle aree degli elementi di superficie S, se poniamo per A = Area( S) e sostituiamo A P u (u, v) P v (u, v) u v Area(S) = A P u (u, v) P v (u, v) u v. Quest ultima é una somma di Riemann che per u e per v converge all integrale P u (u, v) P v (u, v) dudv e, contemporaneamente, converge anche ad Area(S). 2 La seguente non é una dimostrazione rigorosa

7 vediamo un esempio importante. COnsideriamo l area del grafico di una funzione u(x, y) definita in un R 2. Ossia consideriamo la superficie di equazione z = u(x, y) con (x, y). L area é data da (4.3) 1 + u(x, y) 2 dxdy, dove u(x, y) = u x (x, y) i + u y (x, y) j. Per capirlo basta osservare che x = x y = y z = u(x, y) é una rappresentazione parametrica. Inoltre i j k P x P y = 1 u x = u x i uy j + k 1 u y 7 e pertanto P x P y = 1 + u(x, y) Area della sfera La sfera di raggio R e centro l origine puó essere espressa come x = x(ϑ, ϕ) = R cos ϑ sin ϕ y = y(ϑ, ϕ) = R sin ϑ sin ϕ z = z(ϑ, ϕ) = R cos ϕ. Con un conto si verifica P ϑ P ϕ = R 2 sin ϕ dϕ dϑ e pertanto l area é R 2 2π π dϑ sin ϕdϕ = 4πR 2.

8 8 Calcoliamo l area di 4.2 Paraboloide Abbiamo da (4.3) x 2 +y 2 1 z = x 2 + y 2 per x 2 + y 2 1. dxdy x 2 + 4y 2 = 2π dr r 1 + 4r Superfici di rotazione Partiamo dal grafico y = f(x), x [a, b]. Se lo ruotiamo attorno all asse x otteniamo una superficie di area b (4.3.1) 2π f(x) 1 + (f (x)) 2. a Se invece ruotiamo il grafico attorno all asse y otteniamo una superficie di area b (4.3.2) 2π x 1 + (f (x)) 2. a In effetti, nel primo caso, se pensiamo di avere invece r = f(z) e di ruotare attorno all asse z, abbiamo una rappresentazione parametrica x = f(z) cos θ y = f(z) sin θ z = z. Quindi consideriamo i j k f (z) cos θ f (z) sin θ 1 = f(z) sin θi f(z) cos θj + f (z)fk. f(z) sin θ f(z) cos θ Il valore assoluto é f(z) 1 + (f (z)) 2 da integrare per z [a, b] e per θ [, 2π]. Nel secondo caso se pensiamo di avere invece z = f(r) e di ruotare attorno all asse z, abbiamo una rappresentazione parametrica x = r cos θ y = r sin θ z = f(r).

9 9 Quindi consideriamo i j k cos θ sin θ f (r) = rf (r) cos θi rf (r) sin θj + rfk. r sin θ r cos θ Il valore assoluto é r 1 + (f (r)) 2 da integrare per r [a, b] e per θ [, 2π] Area del toro Ricordiamoci del toro, che é ottenuto ruotando attorno all asse y la circonferenza (x a) 2 + y 2 = c 2. Quindi La sua area é a+c (x a)2 2 x 1 + a c c 2 (x a) 2 dx = 2 + 2a = 2ac a+c a c a+c a c (x a) (x a+c a)2 c 2 dx = 2ac (x a) 2 a c 1 dx = 4ac. 1 x (x a)2 c 2 (x a) 2 dx+ 1 c2 (x a) 2 dx = 5 Integrale di una funzione su una superficie regolare parametrizzabile Sia f(x, y, z) una funzione continua definita su una superficie S parametrizzabile. Vogliamo definire f(x, y, z) da S dove da é l elemento di area. Scegliamo una qualsiasi parametrizzazione parametrizzazione P (u, v) di S definita in un dominio ed abbiamo (5.1) f(x, y, z) da = f(p (u, v)) P u (u, v) P v (u, v) dudv. S La definizione é intrinseca, non dipende dalla particolare parametrizzazione, come si puó intuire col ragionamento di 4: f(x, y, z) da f(p ) A f(p (u, v)) P u (u, v) P v (u, v) u v S f(p (u, v)) P u (u, v) P v (u, v) dudv.

10 1 6 Campi e funzioni su una superficie regolare ata S possiamo considerare funzioni continue (6.1) F : S R n. Per n = 1 la formula (6.1) ci dice che F é una funzione scalare. Per n = 3 abbiamo un campo vettoriale (per esempio un campo di forze applicato sui punti della superficie). 7 Superfici regolari orientabili Sono quelle che ammettono un campo continuo normale ovunque non nullo, ossia N: S R 3 che é ortogonale, cioé N(P ) = per ogni P S e N(P ) ortogonale al piano tangente per ogni P S. Un campo normale unitario é un campo normale il cui modulo é costantemente 1. Notare che una superfice regolare orientabile ammette esattamente due versori normali (che puntano in direzioni opposte). Non tutte le superfici sono orientabili. Un esempio é il nastro di Möbius ottenuto prendendo [, 1] [, 1] ed identificando coppie di punti (x, ) e (1 x, 1) per ogni x [, 1] (notare che identificando coppie di punti (x, ) e (x, 1) si ottiene invece una cilindro topologico, che invece é orientabile). 8 Superfici regolari orientate SOno superfici orientabili su cui si é fatta una scelta di campo normale unitario. 9 Flusso di un campo attraverso una superficie regolarie orientata ata S e E : S R 3 un campo continuo N: S S 2 un campo normale unitario (S 2 la sfera unitaria di centro l origine) il flusso di E attraverso la superficie regolare orientata S (abbiamo scelto N) é F lusso( E, S) = Se S é parametrizzata mediante P (u, v), e se S E N da. N(P (u, v)) = P u(u, v) P v (u, v) P u (u, v) P v (u, v) (i due membri possono differire solo del segno) allora

11 11 ci consentono di scrivere che F lusso( E, S) = da = P u (u, v) P v (u, v) dudv N(P (u, v)) = P u(u, v) P v (u, v) P u (u, v) P v (u, v) E (P (u, v)) Pu (u, v) P v (u, v) dudv.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

Integrali di superficie: esercizi svolti

Integrali di superficie: esercizi svolti Integrali di superficie: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio. Calcolare i seguenti integrali superficiali sulle superfici

Dettagli

FORME DIFFERENZIALI IN R 3 E INTEGRALI

FORME DIFFERENZIALI IN R 3 E INTEGRALI FORME DIFFERENZIALI IN R 3 E INTEGRALI CLADIO BONANNO Contents 1. Spazio duale di uno spazio vettoriale 1 1.1. Esercizi 3 2. Spazi tangente e cotangente 4 2.1. Esercizi 6 3. Le forme differenziali e i

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

POLITECNICO di BARI - A.A. 2012/2013 Corso di Laurea in INGEGNERIA Informatica e dell Automazione

POLITECNICO di BARI - A.A. 2012/2013 Corso di Laurea in INGEGNERIA Informatica e dell Automazione POLITECNICO di BARI - A.A. 0/03 Corso di Laurea in INGEGNERIA Informatica e dell Automazione Problema Sia f :[0, +[! R una funzione continua. La funzione composta g() =f(kk) è c o n t i n u a? Problema

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

. analisi teorica (studio di esistenza, unicità della soluzione, sensitività rispetto ai dati, regolarità, comportamento qualitativo).

. analisi teorica (studio di esistenza, unicità della soluzione, sensitività rispetto ai dati, regolarità, comportamento qualitativo). 1 Modelli matematici Un modello è un insieme di equazioni e altre relazioni matematiche che rappresentano fenomeni fisici, spiegando ipotesi basate sull osservazione della realtà. In generale un modello

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Lezione del 28-11-2006. Teoria dei vettori ordinari

Lezione del 28-11-2006. Teoria dei vettori ordinari Lezione del 8--006 Teoria dei vettori ordinari. Esercizio Sia B = {i, j, k} una base ortonormale fissata. ) Determinare le coordinate dei vettori v V 3 complanari a v =,, 0) e v =, 0, ), aventi lunghezza

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente 1.1 Il motore a corrente continua Il motore a corrente continua, chiamato così perché per funzionare deve essere alimentato con tensione e corrente costante, è costituito, come gli altri motori da due

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

L. Pandolfi. Lezioni di Analisi Matematica 2

L. Pandolfi. Lezioni di Analisi Matematica 2 L. Pandolfi Lezioni di Analisi Matematica 2 i Il testo presenta tre blocchi principali di argomenti: A Successioni e serie numeriche e di funzioni: Cap., e 2. B Questa parte consta di due, da studiarsi

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Nota su Crescita e Convergenza

Nota su Crescita e Convergenza Nota su Crescita e Convergenza S. Modica 28 Ottobre 2007 Nella prima sezione si considerano crescita lineare ed esponenziale e le loro proprietà elementari. Nella seconda sezione si spiega la misura di

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Capitolo 2 Equazioni differenziali ordinarie 2.1 Formulazione del problema In questa sezione formuleremo matematicamente il problema delle equazioni differenziali ordinarie e faremo alcune osservazioni

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

M P = PA^V. Il risultante e denito semplicemente come la somma dei vettori di a

M P = PA^V. Il risultante e denito semplicemente come la somma dei vettori di a VETTORI APPLICATI Sistema di vettori applicati L'ente matematico costituito da un punto P e da un vettore (libero) V, si dice vettore applicato in P e si denota con (P;V). E comodo rappresentare il vettore

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Le funzioni reali di variabile reale

Le funzioni reali di variabile reale Prof. Michele Giugliano (Gennaio 2002) Le funzioni reali di variabile reale ) Complementi di teoria degli insiemi. A) Estremi di un insieme numerico X. Dato un insieme X R, si chiama maggiorante di X un

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Analisi Complessa. Prof. Sebastiano Seatzu. Università degli Studi di Cagliari Dipartimento di Matematica. 29 settembre 2010

Analisi Complessa. Prof. Sebastiano Seatzu. Università degli Studi di Cagliari Dipartimento di Matematica. 29 settembre 2010 Università degli Studi di agliari Dipartimento di Matematica Prof. Sebastiano Seatzu Analisi omplessa 9 settembre Facoltà di Ingegneria orso di laurea in Ingegneria Elettronica 3 Indice ANALISI OMPLESSA

Dettagli

Cosa sono gli esoneri?

Cosa sono gli esoneri? Cosa sono gli esoneri? Per superare l esame di Istituzioni di Matematiche è obbligatorio superare una prova scritta. Sono previsti due tipi di prova scritta: gli esoneri e gli appelli. Gli esoneri sono

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

ARGOMENTI MATEMATICA PER L INGEGNERIA VOLUME 4

ARGOMENTI MATEMATICA PER L INGEGNERIA VOLUME 4 ARGOMENTI DI MATEMATICA PER L INGEGNERIA VOLUME 4 Indice LA LUNGHEZZA DI UNA CURVA. Alcuni richiami sull integrazione............................2 Uniforme continuità..................................

Dettagli

F (x) = f(x) per ogni x I. Per esempio:

F (x) = f(x) per ogni x I. Per esempio: Funzioni Primitive (Integrali Indefiniti) (l.v.) Pur essendo un argomento che fa parte del Calcolo Differenziale, molti autori inseriscono funzioni primitive nel capitolo sul Calcolo Integrale, in quanto

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

Capitolo Dodicesimo CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI

Capitolo Dodicesimo CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI Capitolo Dodicesimo CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI CAMPI SCALARI Sono dati: un insieme aperto A Â n, un punto x = (x, x 2,, x n )T A e una funzione f : A Â Si pone allora il PROBLEMA

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

Fondamenti di FISICA MATEMATICA II: Introduzione alla Teoria delle Equazioni alle Derivate Parziali del Secondo Ordine

Fondamenti di FISICA MATEMATICA II: Introduzione alla Teoria delle Equazioni alle Derivate Parziali del Secondo Ordine Valter Moretti Dipartimento di Matematica Università di Trento Fondamenti di FISICA MATEMATICA II: Introduzione alla Teoria delle Equazioni alle Derivate Parziali del Secondo Ordine Corso di Fondamenti

Dettagli

LEZIONE 17. B : kn k m.

LEZIONE 17. B : kn k m. LEZIONE 17 17.1. Isomorfismi tra spazi vettoriali finitamente generati. Applichiamo quanto visto nella lezione precedente ad isomorfismi fra spazi vettoriali di dimensione finita. Proposizione 17.1.1.

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

6. Moto in due dimensioni

6. Moto in due dimensioni 6. Moto in due dimensioni 1 Vettori er descriere il moto in un piano, in analogia con quanto abbiamo fatto per il caso del moto in una dimensione, è utile usare una coppia di assi cartesiani, come illustrato

Dettagli

Figura 4. Conclusione

Figura 4. Conclusione Forza di Coriolis La forza di Coriolis é una forza che si manifesta su un corpo all interno di un sistema di riferimento (SDR) rotante, quale la terra che ruota su se stessa, quando il corpo stesso si

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Appunti ed esercizi. di Meccanica Razionale

Appunti ed esercizi. di Meccanica Razionale Appunti ed esercizi di Meccanica Razionale Università degli Studi di Trieste - Sede di Pordenone Facoltà di Ingegneria Appunti ed esercizi di Meccanica Razionale Luciano Battaia Versione del 29 dicembre

Dettagli

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio.

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio. Appunti di Analisi Matematica Docente:Fabio Camilli SAPIENZA, Università di Roma A.A. 4/5 http://www.dmmm.uniroma.it/~fabio.camilli/ (Versione del 9 luglio 5) Note scritte in collaborazione con il prof.

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento:

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento: Capitolo 3 Serie 3. Definizione Sia { } una successione di numeri reali. Ci proponiamo di dare significato, quando possibile, alla somma a + a 2 +... + +... di tutti i termini della successione. Questa

Dettagli

Note integrative ed Esercizi consigliati

Note integrative ed Esercizi consigliati - a.a. 2006-07 Corso di Laurea Specialistica in Ingegneria Civile (CIS) Note integrative ed consigliati Laura Poggiolini e Gianna Stefani Indice 0 1 Convergenza uniforme 1 2 Convergenza totale 5 1 Numeri

Dettagli

1 LA CORRENTE ELETTRICA CONTINUA

1 LA CORRENTE ELETTRICA CONTINUA 1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo

Dettagli

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2)) Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Applicazioni Lineari 1. Sia f : R 3 R 3 l applicazione lineare definita da f(x, y, z) = (x + ky + z, x y + 2z, x + y z) per ogni (x,

Dettagli

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta Francesco Zumbo www.francescozumbo.it http://it.geocities.com/zumbof/ Questi appunti vogliono essere

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

1) IL MOMENTO DI UNA FORZA

1) IL MOMENTO DI UNA FORZA 1) IL MOMENTO DI UNA FORZA Nell ambito dello studio dei sistemi di forze, diamo una definizione di momento: il momento è un ente statico che provoca la rotazione dei corpi. Le forze producono momenti se

Dettagli

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello.

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. CURVE DI LIVELLO Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. Definizione. Si chiama insieme di livello k della funzione f

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

Richiami di algebra lineare e geometria di R n

Richiami di algebra lineare e geometria di R n Richiami di algebra lineare e geometria di R n combinazione lineare, conica e convessa spazi lineari insiemi convessi, funzioni convesse rif. BT.5 Combinazione lineare, conica, affine, convessa Un vettore

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

Analisi Matematica I

Analisi Matematica I Analisi Matematica I Fabio Fagnani, Gabriele Grillo Dipartimento di Matematica Politecnico di Torino Queste dispense contengono il materiale delle lezioni del corso di Analisi Matematica I rivolto agli

Dettagli

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE 2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 INTRODUZIONE Il problema agli autovalori di un operatore La trattazione del problema agli autovalori di un operatore fatta negli spazi finitodimensionali

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA DEFINIZIONE: Dato un numero reale a che sia a > 0 e a si definisce funzione esponenziale f(x) = a x la relazione che ad ogni valore di x associa uno e un solo

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica Potenziale Elettrico Q V 4pe 0 R Q 4pe 0 r C R R R r r B q B r A A independenza dal cammino Superfici Equipotenziali Due modi per analizzare i problemi Con le forze o i campi (vettori) per determinare

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli I numeri complessi Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli 1 Introduzione Studiare i numeri complessi può sembrare inutile ed avulso dalla realtà;

Dettagli

Laboratorio di Elettrotecnica

Laboratorio di Elettrotecnica 1 Laboratorio di Elettrotecnica Rappresentazione armonica dei Segnali Prof. Pietro Burrascano - Università degli Studi di Perugia Polo Scientifico Didattico di Terni 2 SEGNALI: ANDAMENTI ( NEL TEMPO, NELLO

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

Macchine rotanti. Premessa

Macchine rotanti. Premessa Macchine rotanti Premessa Sincrono, asincrono, a corrente continua, brushless sono parecchi i tipi di motori elettrici. Per ognuno teoria e formule diverse. Eppure la loro matrice fisica è comune. Unificare

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA ANALISI EDIANTE LO SPETTRO DI RISPOSTA arco BOZZA * * Ingegnere Strutturale, già Direttore della Federazione regionale degli Ordini degli Ingegneri del Veneto (FOIV), Amministratore di ADEPRON DINAICA

Dettagli

QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA

QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA Michele Impedovo Bollettino dei Docenti di Matematica del Canton Ticino (CH) n 36, maggio 98. Il problema Il lavoro che

Dettagli