NUMERI. Per contare le caramelle. 0, 1, 2,3, 4,.. Numeri naturali

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "NUMERI. Per contare le caramelle. 0, 1, 2,3, 4,.. Numeri naturali"

Transcript

1 NUMERI Per contare le caramelle. 0, 1, 2,3, 4,.. Numeri naturali N

2 NUMERI Per contare i soldi del proprio conto in banca! 0,+1, 1,+2, 2,+3, 3,... Numeri interi Z

3 NUMERI Per tagliare le torte! 0,1,-1,1/2,-1/2,2,-2,1/3,-1/3,2/3.-2/3,... Numeri razionali Q

4 Approfondimento: Perché estendere i numeri naturali ai numeri razionali? a) Rendere possibili le due operazioni inverse che nel campo degli interi sono limitatamente eseguibili: la sottrazione e la divisione; b) Esprimere la misura di una grandezza rispetto ad un altra

5 NUMERI Per misurare la circonferenza della ruota della tua bicicletta π= ATTENZIONE! π Se ti chiami Pitagora..! 2= =

6 NUMERI Se ti chiami Nepero.! e= Se cambi idea e vuoi diventare architetto..! ( )/2= )/2= numero aureo Numeri reali:l insieme di tutti i numeri decimali, periodici o non periodici R

7 CREAZIONE DI UNA SCALA DI MISURA I numeri reali si possono mettere in corrispondenza biunivoca con i punti di una retta: ad ogni numero reale corrisponde uno ed un solo punto della retta e viceversa. 1) Si fissa l origine, vale a dire il punto della retta che faremo corrispondere allo zero 2) Si sceglie l unità di misura, vale a dire il punto della retta a cui associare il numero reale 1

8 SI(1960) UNITA DI MISURA Unità fondamentali lunghezza massa tempo corrente elettrica temperatura quantità di materia intensità luminosa Nome SI metro grammo secondo ampère kelvin mole candela Simbolo SI m g s A K mol cd

9 MULTIPLI Prefisso deca etto kilo mega giga tera Simbolo da h k M G T multiplo

10 Attenzione! In informatica i prefissi kilo, mega e giga hanno un significato leggermente diverso, essendo utilizzata la base di numerazione 2 e non 10. kilo=2 10 =1024, mega= 2 20 = giga= 2 30 =

11 SOTTOMULTIPLI Prefisso deci centi milli micro nano pico Simbolo d c m µ n p Sottomultiplo

12 ALCUNI NUMERI IN BIOLOGIA. Ordine 10-3 m 2 m 10-6 m 10-9 m m Esempio lunghezza media di una formica rossa lunghezza max di una zanna di elefante africano 6-8 µm: diametro di un globulo rosso 1-10 µm: diametro di un batterio umano 2nm: diametro dell elica del DNA Angstrom (Å), 5 Å: larghezza dell elica alfa di una proteina

13 OPERAZIONI (a + b) +c = a + (b + c) proprietà associativa della somma a + b = b + a proprietà commutativa della somma a + 0 = 0 + a = a esistenza dell elemento neutro per la somma a + (-a) =(-a) + a = 0 esistenza dell opposto

14 OPERAZIONI (a b) c = a (b c) proprietà associativa del prodotto a b = b a proprietà commutativa del prodotto a 1 = 1 a = a esistenza dell elemento neutro per il prodotto a 1/a = 1/a a = 1 esistenza dell inverso

15 OPERAZIONI a (b + c) = a b + a c (b + c) a = b a + c a proprietà distributiva della somma rispetto al prodotto

16 POTENZE a n a m = a n+m definiamo a 0 = 1 definiamo a -n = 1/ a n a 0 (a n ) m = a nm definiamo a 1/q per a>0, come l unica radice reale q-esima positiva di a (a 1/q ) q = a q/q = a 1 = a a p/q = (a 1/q ) p a -p/q = 1/ a p/q

17 ESEMPI: 6 2 : : 6-3 = /3 8-2/3 = 1/4 1/ (2 4 1/2 ) 1/ (2 4 1/2 ) = 2-1

18 Notazione scientifica Sia x un numero reale positivo x = a 10 b Dove 1 a < 10 e b è un numero intero a si chiama mantissa b esponente, individua l ordine di grandezza di x ESEMPIO: il numero di Avogadro (molecole in una mole di materia) è mol -1 Attenzione! Quando affermiamo che la velocità della luce è m s -1 non stiamo usando la notazione scientifica perché il numero 2997 non è inferiore a 10. Dobbiamo scrivere m s -1 per ottenere la notazione scientifica

19 Notazione scientifica Esercizio: Il diametro della capside di un virus herpes simplex è di circa m. Come si scrive in notazione scientifica? Quali sono la sua mantissa e l ordine di grandezza? R: , dunque mantissa 1.05, ordine di grandezza 10-7

20 Notazione Scientifica Che cosa significa la seguente affermazione? La massa di una molecola è dell ordine di g Vuol dire che essa ha un peso compreso tra g e = g

21 Notazione Scientifica La lunghezza di una cellula di un tessuto misura circa m La lunghezza è dunque dell ordine di..? 10-6 m Qual è l ordine in cm? 10-4 cm

22 Notazione Scientifica Quali sono i vantaggi della notazione scientifica? per numeri molto grandi o molto piccoli si evita di dover scrivere molti zeri l identificazione dell ordine di grandezza l identificazione delle cifre significative

23 Notazione Scientifica Che cosa significa per due misure: essere dello stesso ordine di grandezza? Significa avere lo stesso esponente nelle rispettive notazioni scientifiche attenzione! le due misure, ovviamente, devono avere la stessa unità di misura

24 Operazioni in notazione scientifica Vogliamo calcolare l ordine di grandezza della massa del virus herpes simplex, sapendo che il nucleo ha massa g, la capside nuda vuota (un rivestimento proteico del nucleo) ha massa g, e l inviluppo (un ulteriore rivestimento) g. Le prime due grandezze sono dello stesso ordine e possono essere sommate tra di loro: g, mentre la terza misura va riportata allo stesso ordine di grandezza: g ottenuto moltiplicando e dividendo la misura per Sommando si ottiene g, che va riportato in notazione scientifica, dunque g. La massa totale del virus è, dunque, dell ordine di grandezza g.

25 Operazioni in notazione scientifica Per sommare o sottrarre due numeri in notazione scientifica: x 1 =a 1 10 b 1 e x 2 =a 2 10 b 2 si portano allo stesso esponente, moltiplicando e dividendo, x 2 per 10 b 1 x 2 =a 2 10 b 2 =a 2 (10 b b 1 ) 10 b 1 si sommano o sottraggono le mantisse mantenendo lo stesso esponente x 1 ± x 2 =( a 1 ± a 2 10 b 2 - b 1 ) 10 b 1 si determina l ordine di grandezza del risultato, riportandolo alla notazione scientifica

26 Operazioni in notazione scientifica Per moltiplicare (o dividere) due numeri in notazione scientifica: x 1 =a 1 10 b 1 e x 2 =a 2 10 b 2 si moltiplicano (o dividono) le mantisse si sommano (o sottraggono) gli esponenti si scrive il risultato in notazione scientifica Esempio: su ogni cm 2 della superficie terrestre pesa una massa di 1.0 kg di aria. La superficie terrestre misura circa km 2. Calcolare la massa dell atmosfera

27 Operazioni in notazione scientifica Esempio: su ogni cm 2 della superficie terrestre pesa una massa di 1.0 kg di aria. La superficie terrestre misura circa km 2. Calcolare la massa dell atmosfera 1 km corrisponde a 10 5 cm, quindi 1 km 2 corrisponde a cm 2 La superficie terrestre in cm 2 è quindi Poiché su ogni cm 2 pesa 1kg, si ha una massa totale di kg = kg

NUMERI. q Per contare le caramelle. 0, 1, 2,3, 4,.. Numeri naturali

NUMERI. q Per contare le caramelle. 0, 1, 2,3, 4,.. Numeri naturali Contare, misurare. q Quanti denti ha un cane? Da adulto 42, se cucciolo 28 q Quanto è lunga la coda di una marmotta? Circa 20 cm q Quanto liquido contiene un cucchiaio da minestra? Circa 15 ml q Quanto

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE MOLECOLARI Matematica e statistica corso A. Docente: Paola Cerrai

CORSO DI LAUREA IN SCIENZE BIOLOGICHE MOLECOLARI Matematica e statistica corso A. Docente: Paola Cerrai CORSO DI LAUREA IN SCIENZE BIOLOGICHE MOLECOLARI Matematica e statistica corso A Docente: Paola Cerrai Dipartimento di matematica Largo Pontecorvo 5 Stanza 115, piano terra e-mail: cerrai@dm.unipi.it La

Dettagli

APPUNTI delle lezioni prof. Celino PARTE 1

APPUNTI delle lezioni prof. Celino PARTE 1 APPUNTI delle lezioni prof. Celino PARTE 1 PREREQUISITI MATEMATICI per lo studio della fisica e della chimica... 2 NOTAZIONE SCIENTIFICA... 2 APPROSSIMAZIONE DEI NUMERI DECIMALI... 2 MULTIPLI e SOTTOMULTIPLI...

Dettagli

LA MISURA DELLE GRANDEZZE FISICHE. Prof Giovanni Ianne

LA MISURA DELLE GRANDEZZE FISICHE. Prof Giovanni Ianne LA MISURA DELLE GRANDEZZE FISICHE Prof Giovanni Ianne Il metodo scientifico La Fisica studia i fenomeni naturali per: fornire una descrizione accurata di tali fenomeni interpretare le relazioni fra di

Dettagli

Tutte le altre grandezze fisiche derivano da queste e sono dette grandezze DERIVATE (es. la superficie e il volume).

Tutte le altre grandezze fisiche derivano da queste e sono dette grandezze DERIVATE (es. la superficie e il volume). Grandezze fisiche e misure La fisica studia i fenomeni del mondo che ci circonda e ci aiuta a capirli. Tutte le grandezze che caratterizzano un fenomeno e che possono essere misurate sono dette GRANDEZZE

Dettagli

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA. 2. Insiemi numerici A. A

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA. 2. Insiemi numerici A. A ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 2. Insiemi numerici A. A. 2013-2014 1 INSIEMI NUMERICI sono la base su cui la matematica si è sviluppata costituiscono le tappe di uno dei più importanti

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

Richiami di matematica per lo studio delle discipline scientifiche

Richiami di matematica per lo studio delle discipline scientifiche Richiami di matematica per lo studio delle discipline scientifiche La misura in chimica : Misurare significa confrontare una grandezza in rapporto con un altra ad essa omogenea, scelta come campione.i

Dettagli

Misure e Unità di Misura

Misure e Unità di Misura 2. La Mole Misure e Unità di Misura L Incertezza delle Misure - come utilizzare le cifre significative nel calcolo Le Quantità Chimiche - la MOLE - la MASSA MOLARE - la misura dei composti La Determinazione

Dettagli

FORMULE INVERSE. Nello studio della fisica si incontrano molte formule matematiche e spesso è necessario utilizarle in modo inverso.

FORMULE INVERSE. Nello studio della fisica si incontrano molte formule matematiche e spesso è necessario utilizarle in modo inverso. FORMULE INVERSE FORMULE INVERSE Nello studio della fisica si incontrano molte formule matematiche e spesso è necessario utilizarle in modo inverso. FORMULE INVERSE Nello studio della fisica si incontrano

Dettagli

Fisicaa Applicata, Area Tecnica, M. Ruspa. GRANDEZZE FISICHE e MISURA DI GRANDEZZE FISICHE

Fisicaa Applicata, Area Tecnica, M. Ruspa. GRANDEZZE FISICHE e MISURA DI GRANDEZZE FISICHE GRANDEZZE FISICHE e MISURA DI GRANDEZZE FISICHE 1 LA FISICA COME SCIENZA SPERIMENTALE OSSERVAZIONI SPERIMENTALI Studio di un fenomeno MISURA DI GRANDEZZE FISICHE IPOTESI VERIFICA LEGGI FISICHE Relazioni

Dettagli

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO LE IMMAGINE CONTENUTE SONO STATE TRATTE DAL LIBRO FONDAMENTI DI FISICA DI D. HALLIDAY,

Dettagli

La Misura Esercizi guida con soluzioni

La Misura Esercizi guida con soluzioni La misura Esercizi guida (UbiMath) - 1 La Misura Esercizi guida con soluzioni Grandezze e sistema metrico decimale Scrivi in forma di numerica e come potenza di dieci i seguenti prefissi SI. 1. mega- =

Dettagli

1 - GRANDEZZE E MISURE

1 - GRANDEZZE E MISURE 1 - GRANDEZZE E MISURE INDICE Grandezze fisiche e loro misure: 2 Notazione: 3 Prefissi: 4 Grandezze fondamentali e unità di misura: 5 Grandezze derivate: 9 Valori ed errori, incertezza di misura: 12 Come

Dettagli

INTRODUZIONE GRANDEZZE FISICHE GRANDEZZE FISICHE

INTRODUZIONE GRANDEZZE FISICHE GRANDEZZE FISICHE INTRODUZIONE Scopo della Fisica è quello di fornire una descrizione quantitativa di tutti i fenomeni naturali, individuandone le proprietà significative (grandezze fisiche) ed analizzandone la loro interdipendenza

Dettagli

GRANDEZZE FISICHE - UNITÀ DI MISURA

GRANDEZZE FISICHE - UNITÀ DI MISURA GRANDEZZE FISICHE - UNITÀ DI MISURA DOWNLOAD Il pdf di questa lezione (0227b.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 27/02/2012 2 3 4 UNITÀ DI MISURA Ogni buona unità di misura

Dettagli

c) In quanti modi possono mettersi uno affianco all altro i 21 allievi della vostra classe?

c) In quanti modi possono mettersi uno affianco all altro i 21 allievi della vostra classe? La notazione scientifica l ordine di grandezza di un numero. 0) Introduzione. Capita frequentemente di dover scrivere grandi o piccoli numeri con un enorme quantità di cifre; vedremo come sia possibile

Dettagli

ESERCIZIARIO DI MATEMATICA

ESERCIZIARIO DI MATEMATICA Dipartimento di rete matematica ESERCIZIARIO DI MATEMATICA PER PREPARARSI ALLA SCUOLA SUPERIORE progetto Continuità SCUOLA SECONDARIA DI I GRADO Istituti comprensivi: Riva Riva Arco Dro Valle dei Laghi

Dettagli

Esperienze di Fisica

Esperienze di Fisica Esperienze di Fisica Dr. Alen Khanbekyan Tel.: 057734665 E-mail: khanbekyan@unisi.it Relazioni. Per ogni prova pratica deve essere preparata una relazione scritta strutturata nel modo seguente:. Introduzione

Dettagli

Appunti di Stechiometria per Chimica GRANDEZZE FISICHE

Appunti di Stechiometria per Chimica GRANDEZZE FISICHE Appunti di Stechiometria per Chimica GRANDEZZE FISICHE Una grandezza fisica è una qualunque proprietà della materia che può essere misurata (quantificata). Misurare significa confrontare (rapportare) due

Dettagli

Misurare Grandezze. ( Testo: teoria pag ; esercizi )

Misurare Grandezze. ( Testo: teoria pag ; esercizi ) Misurare Grandezze. ( Testo: teoria pag. 53 73; esercizi 131 139) 1) La grandezza. Una grandezza è una quantità che può essere misurata con strumenti di misura. Tutto ciò che non è misurabile non può essere

Dettagli

Elettronica Grandezze elettriche e unità di misura

Elettronica Grandezze elettriche e unità di misura Elettronica Grandezze elettriche e unità di misura Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Grandezze elettriche e unità di misura

Dettagli

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi. NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene

Dettagli

A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm

A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm A. Calcolo in Q Questo capitolo tratta argomenti che solitamente sono già stati svolti alle scuole medie ed elementari. Tali argomenti sono necessari per affrontare il programma delle scuole superiori.

Dettagli

Richiami di aritmetica(2)

Richiami di aritmetica(2) Richiami di aritmetica() Frazioni definizioni, operazioni, espressioni Numeri decimali Rapporti e proporzioni Percentuali Materia Matematica Autore Mario De Leo Le frazioni La frazione è un operatore che

Dettagli

UNITA di MISURA e DIMENSIONI delle OSSERVABILI FISICHE. UdM 1

UNITA di MISURA e DIMENSIONI delle OSSERVABILI FISICHE. UdM 1 UNITA di MISURA e DIMENSIONI delle OSSERVABILI FISICHE UdM 1 Lo studio dei fenomeni naturali si basa sulle osservazioni sperimentali e richiede la misura di certe grandezze fisiche. Ai fini della misurazione

Dettagli

Tabella 1: Denominazioni dei principali multipli e sottomultipli decimali delle grandezze fisiche

Tabella 1: Denominazioni dei principali multipli e sottomultipli decimali delle grandezze fisiche Unità di misura e fattori di conversione; potenze del 10; notazione scientica La misura di una grandezza va sempre riferita ad una data unità di misura: il metro(m), il grammo (g), e il secondo (s). A

Dettagli

Sintesi degli argomenti di fisica trattati (parte uno)

Sintesi degli argomenti di fisica trattati (parte uno) Sintesi degli argomenti di fisica trattati (parte uno) La grandezza fisica è una proprietà dello spazio o della materia che può essere misurata. Fare una misura vuol dire confrontare la grandezza fisica

Dettagli

UNITA DI MISURA BASE

UNITA DI MISURA BASE Revisione del 2/9/15 ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Valdagno (VI) Corso di Fisica prof. Nardon UNITA DI MISURA BASE Richiami di teoria Il Sistema Internazionale (S.I.) di unità di misura è composto

Dettagli

Corso di Chimica Dott.ssa Fioravanti

Corso di Chimica Dott.ssa Fioravanti Unità di Misura Unità di misura LA MISURA "La misura è la determinazione delle dimensioni, della capacità, della quantità o dell estensione di qualcosa" NUMERI ESATTI E APPROSSIMATI Un numero esatto ha

Dettagli

Corso di FISICA. Docente: Prof. M.P. De Pascale Esercitazioni a cura: Prof. L. Narici, Dr.P.Castrucci

Corso di FISICA. Docente: Prof. M.P. De Pascale Esercitazioni a cura: Prof. L. Narici, Dr.P.Castrucci Anno accademico 2003/2004 Corso di Laurea in Biologia Cellulare e Molecolare Corso di FISICA Docente: Prof. M.P. De Pascale Esercitazioni a cura: Prof. L. Narici, Dr.P.Castrucci LEZIONI martedi ore 9-11

Dettagli

Numeri interi relativi

Numeri interi relativi Numeri interi relativi 2 2.1 I numeri che precedono lo zero Con i numeri naturali non sempre è possibile eseguire l operazione di sottrazione. In particolare, non è possibile sottrarre un numero più grande

Dettagli

4 + 7 = 11. Possiamo quindi dire che:

4 + 7 = 11. Possiamo quindi dire che: Consideriamo due numeri naturali, per esempio 4 e 7. Contando successivamente, dopo le unità del primo, le unità del secondo si esegue l operazione aritmetica detta addizione, il cui simbolo è + ; 4 +

Dettagli

Richiami di aritmetica

Richiami di aritmetica Richiami di aritmetica I numeri naturali L insieme dei numeri naturali, che si indica con N, comprende tutti i numeri interi maggiori di zero. Operazioni fondamentali OPERAZIONE SIMBOLO RISULTATO TERMINI

Dettagli

Numeri relativi: numeri il cui valore dipende dal segno che li precede.

Numeri relativi: numeri il cui valore dipende dal segno che li precede. . Definizioni e proprietà Numeri relativi: numeri il cui valore dipende dal segno che li precede. + 4 è un numero positivo, cioè maggiore di 0, perché preceduto dal segno + (il segno + davanti ai numeri

Dettagli

Laboratorio di Fisica-Chimica

Laboratorio di Fisica-Chimica Laboratorio di Fisica-Chimica Lezione n.1. Che cos'è la Fisica? La Fisica è una scienza che si occupa dello studio dei fenomeni che avvengono in natura. Questo studio viene compiuto tramite la definizione

Dettagli

Capitolo 5. La misura. (Ob. 1, 11) 5.1 Le grandezze e la misura 5.2 Il Sistema Internazionale 5.3 Le grandezze derivate 5.4 La misura dell ampiezza

Capitolo 5. La misura. (Ob. 1, 11) 5.1 Le grandezze e la misura 5.2 Il Sistema Internazionale 5.3 Le grandezze derivate 5.4 La misura dell ampiezza (Ob. 1, 11) 5.1 Le grandezze e la misura 5.3 Le grandezze derivate 5.4 La misura dell ampiezza 5.1 Le grandezze e la misura 5.1 Le grandezze e la misura Grandezza = qualità di un oggetto che può essere

Dettagli

Informatica di Base - 6 c.f.u.

Informatica di Base - 6 c.f.u. Università degli Studi di Palermo Dipartimento di Ingegneria Informatica Informatica di Base - 6 c.f.u. Anno Accademico 27/28 Docente: ing. Salvatore Sorce Rappresentazione delle informazioni Sistemi di

Dettagli

FISICA (dal greco physis = natura )

FISICA (dal greco physis = natura ) FISICA (dal greco physis = natura ) scopo della fisica è lo studio dei fenomeni naturali E' una scienza che si propone di osservare e spiegare i fenomeni naturali. Le parti della fisica Nome Argomenti

Dettagli

METODI DI CONVERSIONE FRA MISURE

METODI DI CONVERSIONE FRA MISURE METODI DI CONVERSIONE FRA MISURE Un problema molto frequente e delicato da risolvere è la conversione tra misure, già in parte introdotto a proposito delle conversioni tra multipli e sottomultipli delle

Dettagli

1 Misurare una grandezza

1 Misurare una grandezza 1 Misurare una grandezza DEFINIZIONE. Misurare una grandezza significa confrontarla con una grandezza dello stesso tipo, assunta come unità di misura, per stabilire quante volte quest ultima è contenuta

Dettagli

Corso di Fisica Sperimentale 1. (Laurea in Scienza dei Materiali)

Corso di Fisica Sperimentale 1. (Laurea in Scienza dei Materiali) Corso di Fisica Sperimentale 1 (Laurea in Scienza dei Materiali) La Fisica: una scienza semplice La combinazione delle varie esperienze quotidiane forma nell uomo l intuito, possiamo quindi dire che la

Dettagli

Primo modulo: Aritmetica

Primo modulo: Aritmetica Primo modulo: Aritmetica Obiettivi 1. ordinamento e confronto di numeri;. riconoscere la rappresentazione di un numero in base diversa dalla base 10; 3. conoscere differenza tra numeri razionali e irrazionali;

Dettagli

CdL Professioni Sanitarie A.A. 2012/2013. Grandezze misurabili fondamentali: lunghezza, tempo, massa

CdL Professioni Sanitarie A.A. 2012/2013. Grandezze misurabili fondamentali: lunghezza, tempo, massa L. Zampieri Fisica per CdL Professioni Sanitarie A.A. 12/13 CdL Professioni Sanitarie A.A. 2012/2013 Introduzione Unità 1 Grandezze Fisiche e Unità di Misura Grandezze misurabili fondamentali: lunghezza,

Dettagli

Equivalenze. Prof. A. Spagnolo IMS P. Villari - Napoli

Equivalenze. Prof. A. Spagnolo IMS P. Villari - Napoli Equivalenze 12dm 2...mm 2 ; 14037cm 2...m 2 ; 12kg...cg; 12hm 2...m 2 ; 3km/h...m/s; 12,8m/s...km/h; 5,5km/min...m/s; 6700m/h...m/s; 34m/s...m/h; 3,75m/s...km/min; 350kg/m 3...g/cm 3 ; 14,4g/cm 3...kg/m

Dettagli

Le operazioni fondamentali con i numeri relativi

Le operazioni fondamentali con i numeri relativi SINTESI Unità Le operazioni fondamentali con i numeri relativi Addizione La somma di due numeri relativi concordi è il numero relativo che ha lo stesso segno degli addendi e come valore assoluto la somma

Dettagli

Fisica con elementi di Matematica (O-Z)

Fisica con elementi di Matematica (O-Z) Fisica con elementi di Matematica (O-Z) alessandra.pastore@ba.infn.it ricevimento: Martedi 12:30 14:30 (previ accordi via mail) Dip. Interateneo di Fisica M. Merlin piano 1, stanza 118 web-page contenente

Dettagli

ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE E. FERDINANDO MESAGNE INDIRIZZI SCIENTIFICO-COMMERCIALE-COREUTICO

ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE E. FERDINANDO MESAGNE INDIRIZZI SCIENTIFICO-COMMERCIALE-COREUTICO ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE E. FERDINANDO MESAGNE INDIRIZZI SCIENTIFICO-COMMERCIALE-COREUTICO ANNO SCOLASTICO 2014/2015 MATERIA FISICA CLASSE 1 C/SA DOCENTE MILIZIA ROBERTO VERIFICA SCRITTA

Dettagli

Le rappresentazioni e le proprietà dei numeri reali

Le rappresentazioni e le proprietà dei numeri reali Le rappresentazioni e le proprietà dei numeri reali In generale un numero qualsiasi, con sviluppo decimale finito o infinito, positivo, negativo o nullo, è un numero relativo e appartiene all insieme dei

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali Le quattro operazioni fondamentali ADDIZIONE Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}.

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}. Teoria degli insiemi Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: A = {a, b, c} B = {1, 2} C = {2, 4, 6, 8, 10,...}. 2. Enunciando una proprietà che è

Dettagli

Corso di Fisica per Scienze e Tecnologie per l Ambiente.

Corso di Fisica per Scienze e Tecnologie per l Ambiente. Corso di Fisica per Scienze e Tecnologie per l Ambiente Fernando Scarlassara tel. 049-87-5911 tel. 049-8068 65 Dipartimento di Fisica (Paolotti) Laboratori Nazionali di Legnaro e-mail: scarlassara@pd.infn.it

Dettagli

Brady Senese Pignocchino Chimica.blu Zanichelli 2013 Soluzione degli esercizi Capitolo 2

Brady Senese Pignocchino Chimica.blu Zanichelli 2013 Soluzione degli esercizi Capitolo 2 Brady Senese Pignocchino Chimica.blu Zanichelli 2013 Soluzione degli esercizi Capitolo 2 Esercizio Risposta PAG 40 ES 1 Per permettere un confronto quantitativo tra i dati raccolti da operatori diversi.

Dettagli

Note a cura di M. Martellini e M. Zeni

Note a cura di M. Martellini e M. Zeni Università dell Insubria Corso di laurea Scienze Ambientali FISICA GENERALE Lezione 1 Introduzione Note a cura di M. Martellini e M. Zeni Queste note sono state in parte preparate con immagini tratte da

Dettagli

UNITÀ DIDATTICA 6 LE PROPORZIONI NUMERICHE

UNITÀ DIDATTICA 6 LE PROPORZIONI NUMERICHE UNITÀ DIDATTICA 6 LE PROPORZIONI NUMERICHE 6.1 Le proporzioni. Problemi del tre semplice e del tre composto Se consideriamo 4 numeri a, b, c, d; con b e d diversi da zero, essi formano una proporzione

Dettagli

Introduzione e Nozioni di Base. Prof. Thomas Casali

Introduzione e Nozioni di Base. Prof. Thomas Casali Università degli studi di Bologna Facoltà di Economia Sede di Forlì Introduzione e Nozioni di Base Corso di Laurea in Economia di Internet Prof. Thomas Casali thomas@casali.biz La rappresentazione digitale

Dettagli

LA NOTAZIONE SCIENTIFICA

LA NOTAZIONE SCIENTIFICA Revisione del 20/7/15 ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Valdagno (VI) Corso di Fisica prof. Nardon LA NOTAZIONE SCIENTIFICA Richiami di teoria La notazione scientifica è uno strumento utile per

Dettagli

Lezione 2. La conoscenza del mondo

Lezione 2. La conoscenza del mondo Lezione 2 Analogico/Digitale Il sistema binario L aritmetica binaria La conoscenza del mondo Per poter parlare (ed elaborare) degli oggetti (nella visione scientifica) si deve poter assegnare a questi

Dettagli

10. 4 4 11. 2 : 12. Quale delle seguenti frazioni occorre

10. 4 4 11. 2 : 12. Quale delle seguenti frazioni occorre www.matematicamente.it Frazioni Frazioni Nome: Classe: Data:. Nella frazione A. è il denominatore, è il numeratore B. è il numeratore, è il denominatore C. Sia, sia sono detti numeratori D. Sia, sia sono

Dettagli

Le operazioni fondamentali in R

Le operazioni fondamentali in R La REGOLA DEI SEGNI: 1. ADDIZIONE Le operazioni fondamentali in R + per + dà + per dà + + per dà per + dà Esempi: (+5) + (+9) = + 5 + 9 = + 14 (+5) + ( 3) = + 5 3 = + 2 ( 5) + ( 9) = 5 9 = 14 ( 5) + (+3)

Dettagli

COMPITI DELLE VACANZE (FISICA)

COMPITI DELLE VACANZE (FISICA) COMPITI DELLE VACANZE (FISICA) Istituto Siai Marchetti A.S. 2008-2009 Gli esercizi proposti dovranno essere svolti su un quaderno e consegnati alla ripresa delle attivitá scolastiche per essere valutati

Dettagli

Il Sistema di numerazione decimale

Il Sistema di numerazione decimale Il Sistema di numerazione decimale Il NUMERO è un oggetto astratto, rappresentato da un simbolo (o cifra) ed è usato per contare e misurare. I numeri usati per contare, 0,1,2,3,4,5,. sono detti NUMERI

Dettagli

3 Le grandezze fisiche

3 Le grandezze fisiche 3 Le grandezze fisiche Grandezze fondamentali e grandezze derivate Tra le grandezze fisiche è possibile individuarne alcune (fondamentali) dalle quali è possibile derivare tutte le altre (derivate) Le

Dettagli

Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria. Prof. Riccardo Torlone Università di Roma Tre

Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria. Prof. Riccardo Torlone Università di Roma Tre Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria Prof. Riccardo Torlone Università di Roma Tre Unità di misura Attenzione però, se stiamo parlando di memoria: 1Byte = 8 bit 1K (KiB: KibiByte)

Dettagli

Lezione di oggi. Sistema internazionale di unità di misura

Lezione di oggi. Sistema internazionale di unità di misura Lezione di oggi Sistema internazionale di unità di misura Processo di misura Risultato di una misurazione = STIMA + INCERTEZZA + U.M. Miglior stima della grandezza che deve essere quantificata Ampiezza

Dettagli

Particolare importanza assumono le potenze del numero 10, permettendo di semplificare la scrittura di numeri molto grandi e molto piccoli.

Particolare importanza assumono le potenze del numero 10, permettendo di semplificare la scrittura di numeri molto grandi e molto piccoli. Elevamento a potenza Potenze del 10, SI e potenze del 2 (UbiMath) - 1 Potenze del 10 e SI Particolare importanza assumono le potenze del numero 10, permettendo di semplificare la scrittura di numeri molto

Dettagli

Le unità fondamentali SI. Corrente elettrica

Le unità fondamentali SI. Corrente elettrica ESERITAZIONE 1 1 Le unità fondamentali SI Grandezza fisica Massa Lunghezza Tempo Temperatura orrente elettrica Quantità di sostanza Intensità luminosa Nome dell unità chilogrammo metro secondo Kelvin ampere

Dettagli

a b a : b Il concetto di rapporto

a b a : b Il concetto di rapporto 1 Il concetto di rapporto DEFINIZIONE. Il rapporto fra due valori numerici a e b è costituito dal loro quoziente; a e b sono i termini del rapporto, il primo termine si chiama antecedente, il secondo si

Dettagli

I termini dell operazione sono: la base, l esponente e il valore della potenza: DOVE 4 è la base 3 è l esponente 64 è il valore della potenza

I termini dell operazione sono: la base, l esponente e il valore della potenza: DOVE 4 è la base 3 è l esponente 64 è il valore della potenza LA RADICE QUADRATA I termini dell operazione sono: la base, l esponente e il valore della potenza: DOVE 4 è la base 3 è l esponente 64 è il valore della potenza L estrazione di radice, l operazione che

Dettagli

I Numeri Interi Relativi

I Numeri Interi Relativi I Numeri Interi Relativi Con i numeri naturali non sempre è possibile eseguire l operazione di sottrazione. In particolare, non è possibile sottrarre un numero più grande da un numero più piccolo, per

Dettagli

Somma di numeri floating point. Algoritmi di moltiplicazione e divisione per numeri interi

Somma di numeri floating point. Algoritmi di moltiplicazione e divisione per numeri interi Somma di numeri floating point Algoritmi di moltiplicazione e divisione per numeri interi Standard IEEE754 " Standard IEEE754: Singola precisione (32 bit) si riescono a rappresentare numeri 2.0 10 2-38

Dettagli

Operazioni in N Le quattro operazioni Definizioni e Proprietà

Operazioni in N Le quattro operazioni Definizioni e Proprietà Operazioni in N Le quattro operazioni Definizioni e Proprietà Prof.Enrico Castello Concetto di Operazione NUMERO NUMERO OPERAZIONE RISULTATO PROCEDIMENTO CHE PERMETTE DI ASSOCIARE A DUE NUMERI, DATI IN

Dettagli

Richiami di aritmetica (1)

Richiami di aritmetica (1) Richiami di aritmetica (1) Operazioni fondamentali e loro proprietà Elevamento a potenza e proprietà potenze Espressioni aritmetiche Scomposizione: M.C.D. e m.c.m Materia: Matematica Autore: Mario De Leo

Dettagli

Costruiamo la STRISCIA DELLE MISURE. decametro metro decimetro. Tm Gm Mm km hm dam m dm cm mm µm nm pm

Costruiamo la STRISCIA DELLE MISURE. decametro metro decimetro. Tm Gm Mm km hm dam m dm cm mm µm nm pm Terametro Gigametro Megametro chilometro ettometro decametro metro decimetro micrometro millimetro milcrometro nanometro picometro Costruiamo la STRISCIA DELLE MISURE. Tm Gm Mm km hm dam m dm cm mm µm

Dettagli

Grandezze e Misure 1

Grandezze e Misure 1 Grandezze e Misure 1 Grandezze e Misure Introduzione Il Metodo Sperimentale Unità di Misura Grandezze Fondamentali e Derivate Massa e Densità Misure dirette e indirette Strumenti di misura Errori nelle

Dettagli

La codifica digitale

La codifica digitale La codifica digitale Codifica digitale Il computer e il sistema binario Il computer elabora esclusivamente numeri. Ogni immagine, ogni suono, ogni informazione per essere compresa e rielaborata dal calcolatore

Dettagli

Come risolvere i quesiti dell INVALSI - secondo

Come risolvere i quesiti dell INVALSI - secondo Come risolvere i quesiti dell INVALSI - secondo Soluzione: Si tratta del prodotto di due potenze con la stessa base. La base rimane la stessa e si sommano gli esponenti: La risposta corretta è la A. Soluzione:

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali 1. ADDIZIONE Le quattro operazioni fondamentali Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

04 Aritmetica del calcolatore

04 Aritmetica del calcolatore Aritmetica del calcolatore Numeri a precisione finita - con un numero finito di cifre - non godono della proprietà di chiusura - le violazioni creano due situazioni distinte: - overflow - underflow Pagina

Dettagli

Fisica (Laurea in Informatica)

Fisica (Laurea in Informatica) Fisica (Laurea in Informatica) 6 ore settimanali (2 di tutoraggio) per un totale di 48 + 24 ore Giovedì 10:30-12:30 (aula 405, via Celoria) Venerdì 8:30-10:30 (aula 405, via Celoria) Giovedì 16.30-18.30

Dettagli

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Quali sono le grandezze fisiche? La fisica si occupa solo delle grandezze misurabili. Misurare una grandezza significa trovare un numero che esprime quante

Dettagli

Sistemi di unità di misura

Sistemi di unità di misura Sistemi di unità di misura L Assemblea Nazionale Francese avvia nel 1790 l adozione di un sistema di unità di misura, che possa essere comune per tutto il genere umano. Prima di questa data ( e anche dopo

Dettagli

Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -.

Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -. I numeri naturali non sono adatti per risolvere tutti i problemi. Esempio. La temperatura atmosferica di un mattino estivo, sopra lo zero, viene indicata con un numero preceduto dal segno + (+19 C, +25

Dettagli

COMPENDIO ESPONENZIALI LOGARITMI

COMPENDIO ESPONENZIALI LOGARITMI TORINO SETTEMBRE 2010 COMPENDIO DI ESPONENZIALI E LOGARITMI di Bart VEGLIA 1 ESPONENZIALi 1 Equazioni esponenziali Un espressione in cui l incognita compare all esponente di una o più potenze si chiama

Dettagli

RICHIAMI DI CONCETTI FONDAMENTALI

RICHIAMI DI CONCETTI FONDAMENTALI Corso di Fisica tecnica e ambientale a.a. 2011/2012 - Docente: Prof. Carlo Isetti RICHIAMI DI CONCETTI FONDAMENTALI 1.1 GENERALITÀ La Scienza della Fisica si propone essenzialmente lo scopo di raggiungere

Dettagli

Liceo scientifico Pascal Manerbio Esercizi di matematica per le vacanze estive

Liceo scientifico Pascal Manerbio Esercizi di matematica per le vacanze estive Di alcuni esercizi non verranno riportati i risultati perché renderebbero inutile lo svolgimento degli stessi. Gli esercizi seguenti risulteranno utili se i calcoli saranno eseguiti mentalmente applicando

Dettagli

Rappresentazione di Numeri Reali. Rappresentazione in virgola fissa (fixed-point) Rappresentazione in virgola fissa (fixed-point)

Rappresentazione di Numeri Reali. Rappresentazione in virgola fissa (fixed-point) Rappresentazione in virgola fissa (fixed-point) Rappresentazione di Numeri Reali Un numero reale è una grandezza continua Può assumere infiniti valori In una rappresentazione di lunghezza limitata, deve di solito essere approssimato. Esistono due forme

Dettagli

Fisica applicata Lezione 1

Fisica applicata Lezione 1 Fisica applicata Lezione 1 Maurizio Tomasi maurizio.tomasi@unimi.it Dipartimento di Fisica Università degli studi di Milano 11 Ottobre 2016 Programma del corso 1. Concetti di base: 1.1 Fondamenti di matematica

Dettagli

MAPPA 1 NUMERI. Strumenti e rappresentazioni grafiche

MAPPA 1 NUMERI. Strumenti e rappresentazioni grafiche MAPPA 1 Strumenti e rappresentazioni grafiche Tabella a doppia entrata Una tabella a doppia entrata è formata da righe e colonne. Per convenzione, si legge in senso orario (nel verso indicato dalla freccia).

Dettagli

DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero.

DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero. L unità frazionaria DEFINIZIONE. L unità frazionaria n con n 0 rappresenta una sola delle n parti uguali in cui è stato diviso l intero. Sono unità frazionarie: ognuna di esse indica che l intero è stato

Dettagli

Lezione 2. Rappresentazione dell informazione

Lezione 2. Rappresentazione dell informazione Architetture dei calcolatori e delle reti Lezione 2 Rappresentazione dell informazione A. Borghese, F. Pedersini Dip. Scienze dell Informazione (DSI) Università degli Studi di Milano L 2 1/30 Alcune unità

Dettagli

APPUNTI DI FISICA (tutto quello che dovete sapere!), CLASSE 1 AS A.A 2011/2012 PROF. PERRI

APPUNTI DI FISICA (tutto quello che dovete sapere!), CLASSE 1 AS A.A 2011/2012 PROF. PERRI APPUNTI DI FISICA (tutto quello che dovete sapere!), CLASSE AS A.A 20/202 PROF. PERRI 0. Le grandezze La misura delle grandezze Denizione. Una grandezza è una quantità che può essere misurata con strumenti

Dettagli

PROGRAMMAZIONE DI MATEMATICA 2016/2017

PROGRAMMAZIONE DI MATEMATICA 2016/2017 PROGRAMMAZIONE DI MATEMATICA 2016/2017 PRIMA CLASSE ARITMETICA Il sistema di numerazione decimale Leggere e scrivere i numeri interi e decimali Riconoscere il valore posizionale delle cifre in un numero

Dettagli

Definizione: Due monomi si dicono simili se hanno la stessa parte letterale.

Definizione: Due monomi si dicono simili se hanno la stessa parte letterale. CALCOLO LETTERALE Definizione: Data una formula si dicono variabili le lettere alle quali può essere sostituito qualsiasi valore numerico; i numeri si dicono, invece, costanti. Nella formula per il calcolo

Dettagli

Notazione scientifica e inversione di formule

Notazione scientifica e inversione di formule Notazione scientifica e inversione di formule M. Spezziga Liceo Margherita di Castelvì Sassari Indice 1 Calcoli in notazione scientifica 2 1.1 Moltiplicazioni per potenze di dieci.......................................

Dettagli

Fondamenti di Programmazione. Sistemi di rappresentazione

Fondamenti di Programmazione. Sistemi di rappresentazione Fondamenti di Programmazione Sistemi di rappresentazione Numeri e numerali Il numero cinque 5 V _ Π 五 Arabo Romano Maya Greco Cinese Il sistema decimale Sistemi posizionali 1 10 3 + 4 10 2 + 9 10 1 + 2

Dettagli

OPERAZIONI IN Q = + = = = =

OPERAZIONI IN Q = + = = = = OPERAZIONI IN Q A proposito delle operazioni tra numeri razionali, affinché il passaggio da N a vero e proprio ampliamento è necessario che avvengano tre cose: Q risulti un ) le proprietà di ciascuna operazione

Dettagli

Esercitazione Informatica I (Parte 1) AA Nicola Paoletti

Esercitazione Informatica I (Parte 1) AA Nicola Paoletti Esercitazione Informatica I (Parte 1) AA 2011-2012 Nicola Paoletti 31 Maggio 2012 2 Antipasto 1. Quanti bit sono necessari per rappresentare (a) (227.551.832) 10? (b) (125.521) 10? 2. Quanti decimali sono

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1)

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1) LGEBR \ CLCOLO LETTERLE \ MONOMI (1) Un monomio è un prodotto di numeri e lettere; gli (eventuali) esponenti delle lettere sono numeri naturali (0 incluso). Ogni numero (reale) può essere considerato come

Dettagli

Il Sistema Internazionale di unità di misura. Ing. Gianfranco Miele

Il Sistema Internazionale di unità di misura. Ing. Gianfranco Miele Il Sistema Internazionale di unità di misura Ing. Gianfranco Miele g.miele@unicas.it Background Sin dall antichità vi è stata la necessità di definire delle unità campione delle più importanti grandezze

Dettagli